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Abstract—Human Activity Recognition is an important task in
Computer Vision that involves the utilization of spatio-temporal
features of videos to classify human actions. The temporal
portion of videos contains vital information needed for accurate
classification. However, common Deep Learning methods simply
average the temporal features, thereby giving all frames equal im-
portance irrespective of their relevance, which negatively impacts
the accuracy of the model. To combat this adverse effect, this
paper proposes a novel Transformer Based Attention Consensus
(TBAC) module. The TBAC module can be used in a plug-and-
play manner as an alternate to the conventional consensus meth-
ods of any existing video action recognition network. The TBAC
module contains four components: (i) Query Sampling Unit, (ii)
Attention Extraction Unit, (iii) Softening Unit, and (iv) Attention
Consensus Unit. Our experiments demonstrate that the use of
the TBAC module in place of classical consensus can improve the
performance of the CNN-based action recognition models, such
as Channel Separated Convolutional Network (CSN), Temporal
Shift Module (TSM), and Temporal Segment Network (TSN).
We also propose the Decision Consensus (DC) algorithm that
utilizes multiple independent but related action recognizer models
in order to improve upon the performance of most of these
constituent models, using a novel fusion algorithm. Results have
been obtained on two benchmark human action recognition
datasets, HMDB51 and HAA500. The use of the proposed TBAC
module along with Decision Consensus achieves state-of-the-art
performances, with 85.23% and 83.73% classification accuracies
on the two databases HMDB51 and HAA500, respectively. The
code will be made publicly available.

Index Terms—Video Action Recognition, Human Activity
Recognition, Transformers, Temporal Attention, Consensus, Con-
volutional Neural Networks

I. INTRODUCTION

Action recognition is one of the representative tasks in
computer vision, which aims to classify actions performed in
videos into predefined classes based on certain spatio-temporal
features. It finds applications in many domains including
human-robot interaction, sports analysis, video understanding,
behavior analysis, etc. [1].

The two dominant types of information that are considered
while classifying actions are spatial and temporal features
extracted from videos. Although information of the spatial
category can be derived from individual frames, they lack the
ability to give a global understanding of the video, which is
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Fig. 1. Overview of the TBAC Module with Decision Consensus. Suitable
action classification networks can be plugged into our Decision Consensus
(DC) function to derive improved performance.

why the interrelation between contexts of the frames provided
by temporal features is necessary. Video Action Recognition
involves the challenges of identifying interclass similarities
and intraclass variations, making it critical to utilize relevant
spatial and temporal features in the most desirable way to
achieve greater performance.

In this paper, we propose the Transformer Based Atten-
tion Consensus (TBAC) module, a novel approach to video
action recognition that supplements CNN-based architectures
designed for the same task. The introduced TBAC module
consists of four main components: 1) Query Sampling Unit, 2)
Attention Extraction Unit, 3) Softening Unit, and 4) Attention
Consensus Unit. A backbone first converts the input video to
a spatio-temporal context map, from which an assortment of
features is drawn by the Query Sampling Unit to serve as a
query set. The attention-based integrants of the Attention Ex-
traction Unit generate values representative of the importance
of the given temporal features. The Softening Unit alters the
relative sensitivity towards these attentional values to balance
any acute bias. As a replacement to the standard consensus
of the original network, the Attention Consensus Unit treats
the softened values as relevance measures to derive a final
feature representation for classification. We further propose



the Decision Consensus algorithm, an innovative method to
enhance accuracy using the confidence scores of employed
video action recognizers.

Our key contributions are as follows: We introduce the
TBAC module, a novel concept that uses attention from a
transformer-based mechanism to reach a consensus between
temporal features, which can be used in a plug-and-play
fashion. We use the notion of balanced attention to sustain
a degree of fairness among the temporal relations. Moreover,
we propose the Decision Consensus algorithm to bring the
best out of individual, but related video action recognizers. We
analytically assess our proposals with comprehensive ablation
studies to exhibit the efficacy of each Unit as well as the
overall impact of both the TBAC module and the Decision
Consensus algorithm. Experimental results demonstrate that
our methods outperform prior state-of-the-art action recogni-
tion networks, on both the HMDB51 and HAA500 datasets.
We report accuracies of 85.23% and 83.73% on the HMDB51
and HAA500 datasets, respectively.

II. RELATED WORKS

A. Action Recognition using CNN Architectures

In recent years, Convolutional Neural Networks (CNNs)
have achieved remarkable performance in almost all domains
of computer vision [2]–[14]. In particular, CNNs have become
the de-facto base network for almost any recent video recogni-
tion network architecture. Video Action Recognition has seen
tremendous growth in recent years. DeepVideo [15] is among
the earliest architectures to apply deep CNNs for video action
recognition. There are two trends in video action recognition,
i.e. Two-Stream CNNs, and 3D-CNNs. The first trend utilizes
two streams for spatial and temporal feature extraction. This
trend started from the Two-Stream Networks [16], followed
by many others like TSN [17], Fusion [18], TRN [19],
etc. TSN [17] samples video clips from evenly divided
segments in order to effectively learn representations of the
whole video. To capture information along with temporal
dimension, TRN [19] and TSM [20] utilize a shift module
by replacing average pooling with an interpretable relational
module. However, two-stream networks generally utilize a
2D CNN, which incorporates the mechanism of average
consensus among the temporal features, which may inhibit
the model from effectively utilizing relevant information. The
second trend uses 3D convolutional kernels throughout the
whole architecture to jointly model the spatial and temporal
semantics. Examples include C3D [21], I3D [22], R3D [23],
Non-Local [24], SlowFast [25], R(2+1)D [26], etc. Another
important 3D CNN architecture, which we make use of, is
Channel-Separated Convolutional Networks (CSN) wherein
the interactions among channels are performed separately from
the interactions among spatio-temporal features [27]. These 3D
CNN architectures also utilize a mechanism that gives equal
importance to all the temporal features, such as the global
spatio-temporal pooling layer of CSN, which may also suffer
the same limitation as average consensus.

B. Transformers in Vision

Transformer-based networks have made significant progress
in tackling various problems in Deep Learning. These net-
works rely on the concept of trainable attention which helps
identify complex dependencies between the elements of each
input sequence [28]. Transformers, introduced in [29], is
intended to address the challenges of sequence modeling tasks,
and its success in the field of NLP has motivated researchers
to pursue applications of transformers in the domain of
Computer Vision. The transformer’s primary concept of self-
attention has been availed in many recent methodologies in
diverse visual tasks, such as DETR [30] for object detection,
ViT [31] and DeIT [32] for image classification, PVT [33] for
dense prediction tasks, TransTrack [34] for multiple object
tracking, Relaxed Transformers [35] for action proposal, and
CrossTransformers [36], LTM-BERT [37], GCF-NET [38],
and GTA [39] for action recognition. The remarkable ability
of attention to gauge interdependencies among sequential
contexts incentivizes us to use it in our method. To the best
of our knowledge, the proposed method is the earliest to
explicitly use attention as a means to calculate weights for
deriving a temporal consensus.

III. PROPOSED METHODOLOGY

In this section, we delineate the architecture of action
recognizers that make use of TBAC. The starting point is
a pre-existing action recognizer with a head that performs
average consensus on temporal features. This model serves
as the base network, into which the TBAC module can be
inserted, simply by slicing out the aforementioned consensus
operation and loading the TBAC module in its place, in a plug-
and-play fashion. A succinct, black-box overview of the model
is as follows: the base network produces a spatio-temporal map
from the input video, which are fed to the TBAC module to
provide a temporal consensus, and finally, these values produce
confidence scores for the C classes of the training data. We
further detail the Decision Consensus algorithm which can also
be used in a plug-and-play manner to improve performance by
using the class scores of distinct but related action recognizers.

A. Base Network

The backbones have been derived from ResNet-based archi-
tectures such as CSN, TSM, and TSN. Before the operations
of the backbone commence, T frames are extracted from the
RGB video to be resized, normalized, and finally reshaped
to a dimension of T × 3 × H × W (3 channels for RGB).
The numerous convolutions and pooling layers transform the
dimensions to T ′ × D × H

32 ×
W
32 , where D is the specified

channel dimension. For CSN T ′ = T
8 , while for TSM and TSN

T ′ = T . Further, for TSN and TSM, spatial average pooling
is included within the backbone to allow the operations of
the head to work solely on temporal features. For CSN, the
temporal portion of the already existing global spatio-temporal
average pooling is removed. The extracted feature map, having
a dimension of T ′×D, is submitted to the TBAC module for
temporal consensus.
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Fig. 2. Overview of the TBAC Module with Decision Consensus architecture: A CNN-based backbone extracts spatio-temporal features from an input RGB
video. After spatial averaging, the Querying Sampling Unit chooses certain queries which are passed along with a key and value to the Attention Extraction
Unit. This Unit makes use of transformer-based operations in order to generate attention maps and transform the temporal features. These attention maps are
softened, then used as weights to arrive at a consensus between the temporal features given to the Attention Consensus Unit. Action class scores are generated
from the final feature representation. The Decision Consensus algorithm obtains a consensus, based on output class probabilities of independent, but related
action recognizers (with TBAC Modules inserted) in order to improve performance.

B. The TBAC Module

Broadly, the TBAC module, shown in Fig. 2, provides a
consensus of temporal features by harnessing the attention
mechanism of transformers, with a specific focus on balanced
attention. To reach the final output vector of dimension 1×D,
several computations ensue which can be segregated into Units
based on their sequential ordering and functionalities. Each
Unit is described in the following subsections.

Query Sampling Unit: Before generating attention maps
from the input features, appropriate queries must be sampled.
The feature map can be visualized as T ′ temporally distinct
vectors for a given video. A set of w vectors chosen to be the
queries and their indices, i.e. their temporal location within
the feature map can be denoted by:

P = {(p1, ..., pw) ∈ Nw : 1 ≤ pi ≤ T ′} (1)

Thus, the query set is Q = {qp1
, ..., qpw

}. Any of the vectors
can be selected as a query, however, our focus turns to
the temporally-central feature (as used in [40]) as well as
the temporally-starting and temporally-ending features. The
motive behind this sampling of a limited number of queries is
to generate moderate attention values since they would neither
depend on every temporally distinct feature, nor on a singular
one.

Attention Extraction Unit: This Unit aims to represent the
extracted features from the action recognizer backbone in a
way that reflects the requisite attention between the frames
as well as outputs the attention maps themselves. Initially,
incoming features are imbued with a sense of their relative
position within the native video by adding positional encodings

(PE), calculated in a similar manner as given in [29]. Since
PE is also added to the queries, the new transformed set of
queries is represented as Q′ = {q′p1

, ..., q′pw
}, where

q′pi
= qpi + PE(pi) ; 1 ≤ i ≤ w (2)

The attention mechanism performed in this unit requires the
selection of a key (K), value (V ) pair as well. The natural
choice is the convolutional feature map procured from the
backbone, as it contains the temporal context of the input
video. The natural choice for the key (K), value (V ) pair
required in the upcoming attention calculation is the feature
map procured from the backbone, as it contains temporal
context information. The two matrix multiplications of the
scaled dot product computation of attention are bisected in
order to extricate the intermediate attentional value. Finally,
a Softmax operation is performed to get the resulting set
A = {ap1 , .., apw}, where

api = Softmax

(
q′pi

KT

√
D

)
; 1 ≤ i ≤ w (3)

Th subsequent step is to employ the attentional values in a
weighted sum operation on the value V to provide attentional
outputs O = {op1

, ..., opw
}, where

opi
= api

V ; 1 ≤ i ≤ w (4)

The mean of this set, denoted by Ō is calculated. These evalua-
tions are for single-head attention, but can readily be extended
to incorporate multiple heads. The weighted sum operation
may be adversely affected if the set A is largely imbalanced,



which occurs if one temporal feature garners an inordinate
amount of attention. Evidently, a residual connection between
Ō and the original feature map (F ) can alleviate this issue.
Since there is a mismatch in the temporal dimension, the
values of Ō are first stacked then the residual connection is
implemented to produce the preliminary residual output R, as
follows:

R = F + ϕ(Ō, T ′) (5)

where, ϕ(.) is the stacking function, which is given Ō, and T ′

(the number of times to be stacked). Thus, these modifications
to the standard transformer operations help balance the atten-
tional values. A branch incorporating a standard Feed Forward
Module (FFM) and LayerNorm operations is appended as seen
in Fig. 2. These culminating operations on R provide the
Attention Extraction Unit output Γ. The attentional maps (A)
are passed to the Softening Unit, while (Γ) is forwarded to the
Attention Consensus Unit.

Softening Unit: The purpose of this Unit is to allay any
possible unduly large disparity between the attention values,
by abating their relative variance. The inceptive step of this
unit is to reach an agreement between the w number of
attention maps in A, which is done by computing their mean,
denoted by Ā =

∑w
i=1

api

w . The initial standard deviation
(σ) and 1

T ′ i.e. the original mean is calculated from the T ′

attentional values, and using a provided value of moderated
standard deviation (σ̄) the softened attention map (ĀS) is
computed as:

ĀS =

(
1− σ̄

σ

)
∗
(

1

T ′

)
+

(
σ̄

σ

)
∗ (Ā) (6)

Notably, this equation maintains both the initial mean and
relative priority, modifying only the standard deviation of the
values. Performing this operation ensures that neither a few
attentional values will overwhelmingly impact the classifica-
tion nor will an initial derisory attentional value amount to a
loss of temporal information that may have been fruitful to
classification. Thus, this softened attention map is balanced.

Attention Consensus Unit: The common practice of clas-
sical algorithms is to simply average the temporal dimen-
sion for consensus, which may be detrimental to reaching
higher performance. The averaging operation treats each of
the frames’ representations with equal weightage. This may
cause misclassification when certain temporal features which
possess more relevant information pertaining to the actual
action category to be given less importance than necessary.
Further, the inverse may also hold: irrelevant features are
attended to with just as much importance as other features. To
mitigate these adverse effects, this unit requires information
about the relative relevance of the features present in Γ. This
information is already present in the attention maps (ĀS).
Unlike average consensus, these maps possess a variance
that is not zero, while also not being extreme. They can be
thought of as measures of relative importance between the
temporal features, and thereby used as weights for a weighted
average (M ) taken on Γ. This operation can be expressed as

M = ĀSΓ. Finally, a dropout is applied to this output, which
is then fed to a Linear Layer to derive class probability scores.

C. Decision Consensus

This work also proposes the Decision Consensus module,
which can complement the TBAC-inserted action recognizers.
Rather than direct classification, this module uses the class
probabilities obtained from the input action recognizers to
compute new class probabilities. The following equations can
readily be extended to n models, however, for the sake of sim-
plicity, we assume this module extracts class probabilities from
two trained recognizers, V ARX and V ARY . For C classes,
the output probabilities can be expressed as X = (x1, ..., xC)
and Y = (y1, ..., yC). Taking one model (X in this case) as
the primary, we first compute the apposite confidence measures
(CMX and CMY ) as follows:

CMX =

C∑
i=1

(
xi ∗ xi

)
, CMY =

C∑
i=1

(
yi ∗ xi

)
(7)

Subsequently, these values are used in a weighted average
between the original class probabilities:

DC(X,Y ) =
CMX ∗X + CMY ∗ Y

CMX + CMY
(8)

The intuition behind these calculations is that each model
learns a different feature space, which can be combined in
an effective manner. The strategy described above is loosely
based on the concept of attention, as when the models are in
concord, the Decision Consensus module outputs the class they
agreed upon, while when they fail to reach a consensus, the
model with a greater confidence score is paid more attention.
We expect that using this technique of giving proportional rel-
evance can surpass both the constituent models’ performances
and the performance when simply averaging the probabilities.
The complete algorithm is included in Algorithm 1.

IV. EXPERIMENTAL RESULTS

All the experimental results mentioned in this section were
obtained by evaluating the final model and various ablations on
the HAA500 and the HMDB51 datasets. We obtained the base
models from the MMAction2 repository [41]. The ResNet ar-
chitectures used for both the TSN and TSM derived backbones
had a depth of 50, while that of the CSN derived backbone had
a depth of 152. For the TBAC-applied action recognizers using
a TSN or TSM base, the value of the temporal resolution (T )
was kept at 8, while for TBAC-applied CSN based networks,
an initial resolution of either 32 or 48 was used, which
was subsequently downsampled by the temporal poolings of
the component layers to produce a temporal dimension of
4 and 6, respectively, as inputs to the TBAC module. The
CSN backbone made use of the interaction-reduced setting
of its component blocks, as described in [27]. The feature
dimensionality we used was D = 2048. The 2 layer MLP
used an intermediate representation with feature dimension
D′ = 4 ∗ D. We also augmented the data with random flips
and crops, which tends to improve accuracy as seen in [40].



Input: Class scores of Primary Model (X) and Class
scores of N Secondary Models (Y1, ..., YN )

Output: Class scores after Decision Consensus (MC)
Function ModelConsesus(X,Y1, Y2, ...YN):

C ←− X.length
CMX ←− 0
for i=1 to N do

CMYi
←− 0

end
MC[1..C]←− 0
for i = 1 to C do

CMX = CMX + (X[i] ∗X[i])
for j = 1 to N do

CMYj
= CMYj

+ (Yj [i] ∗X[i])
end

end
for i = 1 to C do

MC[i] =
CMX∗X[i]+CMY1

∗Y1[i]+...+CMYN
∗YN [i]

CMX+CMY1
+...+CMYN

end
return MC

END
Algorithm 1: Decision Consensus Algorithm

The models were trained on 2 8GB Quadro P4000 GPUs. The
optimizer chosen was SGD and the dropout ratios were set
to 0.4 for TSN derived models and 0.5 for TSM and CSN
derived models. The loss used was Cross-Entropy Loss.

A. Dataset Details

The two datasets considered are representative of a broad
range of HAR tasks, since HMDB51 contains generic class
labels, while HAA500 involves temporally sensitive classes
with high inter-class similarity.

HMDB51: [42] The Human Motion Data Base dataset is
a large collection of videos containing general action classes.
The dataset is composed of 6,849 video clips from 51 action
categories with each class having a minimum of 101 clips. The
evaluation is done by taking the average over three different
training/testing with 70 clips for training and 30 clips for
testing per class.

HAA500: [43] The Human-centric Atomic Action dataset
is a fine-grained, manually annotated dataset used for Action
Recognition. It contains 10,000 videos of 500 classes of
different actions. Each class has 20 videos that can be split
into train, test, and validation sets in the ratio 16:3:1.

B. Ablation Studies

We perform our experiments with various models (primarily
using the base models of TSN, TSM, and CSN). Note that the
TBAC-applied models involved in the ensuing experiments are
initialized with pre-trained weights; TSN and TSM derived
models with Kinetics-400 [22] weights and CSN derived
models with IG65M [44] weights.

TABLE I
EFFECT OF ADDING TBAC MODULES TO TSM, TSN, AND CSN FOR

HAA500 [43].

Model Pre-trained TBAC Top-1 Top-3

TSM Kinetcs-400 × 52.60% 74.00%
TSM Kinetcs-400 ✓ 55.60% 75.33%
TSN Kinetcs-400 × 56.10% 77.86%
TSN Kinetcs-400 ✓ 61.47% 83.27%

CSN (32f) IG65M × 80.13% 94.00%
CSN (32f) IG65M ✓ 81.93% 95.53%

TABLE II
COMPARISON OF TSN ON HAA500 [43] WITH AND WITHOUT CERTAIN

TBAC UNITS.

Model Attention Attention Softening Top-1
Extraction Unit Consensus Unit Unit Accuracy

T
SN

× × × 56.10%
✓ × × 57.00%
✓ ✓ × 60.33%
✓ ✓ ✓ 61.47%

Baselines.: The TSN-derived networks differ in two prop-
erties from the results reported in [43]: firstly, they make
use of pre-trained weights, and secondly, they make use of
the TBAC module. The first step, therefore, would be to
set suitable baselines against which fair comparisons can be
made. We first train a TSN model initialized with Kinetics-400
weights, which is devoid of any TBAC-related components.
Many action recognition frameworks make use of optical flow
as an input stream during training, nevertheless, for this portion
of the discussion, we solely concentrate on RGB video inputs.
Using weights pre-trained on Kinetics-400, the accuracy of
TSN increases by 0.77% (from 55.33% to 56.10%). Further,
since we also make use of the TSM model when inserting
the TBAC unit, we train a baseline TSM model with its pre-
trained weights, resulting in an accuracy of 52.60%. Similarly,
for CSN (32 frames), baseline accuracies of 80.13% and
82.92% are obtained for the HAA500 and HMDB51 datasets,
respectively.

Performance of the TBAC module.: Having set suitable
baselines, we can directly compare the networks with and
without the use of the TBAC module. We use the TSM, TSN
and CSN derived architectures to exemplify the performance
of the TBAC module on the HAA500 dataset. Further, we
use the CSN derived architecture to illustrate the same for the
HMDB51 dataset. The results can be seen in TABLE I.

The effect of adding the TBAC module, without any other
runtime modifications, provides substantial improvements; an
increase of 3%, 5.37%, and 1.8% in Top-1 accuracy for TSM,
TSN, and CSN respectively. Using the TBAC module for
CSN on the HMDB51 dataset improves the performance from
82.92% to 83.73%.

Impact of TBAC Units.: Having seen the overall effect
of adding the TBAC module, we can evaluate the impact
of the units within the TBAC module by comparing certain
settings of the module, with and without selected units. The



Fig. 3. Example visualizations for the TBAC-TSN model on the HAA500 dataset where higher attention values denote a greater relevance for that frame
during attention consensus.

three settings (apart from the previous baseline) for this
experiment are chosen in a step-by-step manner. The first
setting comprises a TSN base plus the use of only the Attention
Extraction Unit. This works by forwarding the 1 ×D vector
- computed after the weighted sum operation in the unit
- directly to the final Linear Layer for classification. The
second setting is the TSN base plus both the Transformer and
Attention Consensus Units (since the presence of the Attention
Consensus Unit necessitates the existence of the Attention
Extraction Unit). The third setting is the TSN base with the
Transformer, Attention Consensus, and Softening Units. All
settings make use of Kinetics-400 [22] pre-trained weights
and RGB input modalities. The results of these settings can
be seen in TABLE II.

These results show that the combination of TBAC’s units
works best in order to achieve higher accuracies. Furthermore,
all subsequent additions of TBAC units generate an incre-
mental accuracy improvement. The addition of the Attention
Extraction Unit increases accuracy by 0.9%, while the greatest
boost of 3.33% is obtained when adding our novel Attention
Consensus Unit. The Softening Unit too improves the accuracy
by 1.14%. Visualization of the attention heatmaps generated
by the Attention Extraction Unit is given in Fig. 3.

To analyze the choices that can be made for the parameters
of the Query Sampling Unit, we used the TSN-derived TBAC
model, starting from Kinetics-400 pre-trained weights. There
were two parameters to be considered for this Unit, one was
the value of w, and the other was choosing values for p1 to pw.
For sampling a combination of queries from a set of size T ′,
a total of 2T

′ − 1 different choices can be made. Thus for the
sake of brevity, we considered three choices that semantically
encompassed the range of possible options. Firstly, we took
w = 1 and p1 = T ′

2 , i.e. only the middle temporal index was

TABLE III
EFFECT OF DIFFERENT CHOICES FOR SELECTIVE QUERYING.

Model w Values of p Top-1 Accuracy

TBAC-TSN
1 T ′/2 58.93%
T’ 1,2,...,T ′ 60.60%
3 1, T ′/2, T ′ 61.47%

TABLE IV
OUTCOME OF DECISION CONSENSUS (DC) ON TBAC-TSN AND

TBAC-TSM TRAINED ON HAA500 [43].

Model Top-1 Top-3

TBAC-TSM 55.60% 75.33%
TBAC-TSN 61.47% 83.27%

DC (TBAC-TSN, TBAC-TSM) 64.47% 84.93%

TABLE V
OUTCOME OF DECISION CONSENSUS ON SPLITS OF HMDB51 USING

TBAC-CSN VARIANTS.

Split 32 frames 48 frames Average Decision
Consensus Consensus

Split-1 83.46% 84.84% 84.90% 85.10%
Split-2 84.84% 85.62% 85.95% 86.47%
Split-3 82.88% 83.40% 83.99% 84.12%

Average 83.73% 84.62% 84.95% 85.23%

chosen as query. Secondly, we took w = T ′ with p1 = 1, p2 =
2, . . . , pw = w, thus sampling every temporal index possible
as queries. Thirdly, we chose a more balanced version with
w = 3 and p1 = 1, p2 = T ′

2 and p3 = T ′, thereby sampling
the first, middle and ending temporal indices as queries. The
results can be seen in Table III.

TABLE VI
COMPARISON WITH THE STATE-OF-THE-ART RESULTS ON THE
HMDB51 [42] DATASET. BLUE REPRESENTS THE PREVIOUS

STATE-OF-THE-ART. RED DENOTES THE BEST RESULTS.

Model Pre-trained Top-1 Accuracy

ResNeXt101 [8] Kinetics-400 81.78%
ResNeXt101 BERT [37] Kinetics-400 83.55%

R(2+1)D BERT (32f) [37] IG65M 83.99%
R(2+1)D BERT (64f) [37] IG65M 85.10%

CSN (32f) IG65M 82.92%
TBAC-CSN (32f) (ours) IG65M 83.73%
TBAC-CSN (48f) (ours) IG65M 84.62%

DC-TBAC-CSN (32f, 48f) (ours) IG65M 85.23%

Ablation studies for different settings of the Query Sampling
Unit are included in the Appendix.



TABLE VII
COMPARISON WITH THE STATE-OF-THE-ART RESULTS ON THE
HAA500 [43] DATASET. BLUE REPRESENTS THE PREVIOUS

STATE-OF-THE-ART. RED DENOTES THE BEST RESULTS.

Model Pre-trained Top-1 Top-3
Accuracy Accuracy

TSM [20] Kinetics-400 52.60% 74.00%
TBAC-TSM(ours) Kinetcs-400 55.60% 75.33%

TSN [17] × 55.33% 75.00%
TSN [17] (Flow) × 49.13% 66.60%

TSN [17] (Two-Stream) × 64.40% 80.13%
TSN Kinetcs-400 56.10% 77.86%

TBAC-TSN(ours) Kinetcs-400 61.47% 83.27%
DC (TBAC-TSN,TBAC-TSM)(ours) Kinetcs-400 64.47% 84.93%

Semi-supervised Few-Shot [45] × 80.68% -
CSN (32f) IG65M 80.13% 94%

TBAC-CSN (32f) (ours) IG65M 81.93% 95.53%
TBAC-CSN (48f) (ours) IG65M 82.40% 94.87%

DC-TBAC-CSN (32f, 48f) (ours) IG65M 83.73% 95.73%

Impact of Decision Consensus.: The second proposal of
this paper is a methodology aimed at enhancing the overall
performance of models by extrapolating a better class proba-
bility distribution from the constituent models used. Taking
the case of two models, namely TBAC-TSN and TBAC-
TSM trained on the HAA500 dataset, we can see that the
disparity between the Top-1 and Top-3 accuracies is large -
around 20% difference for both. This empirically shows that
in many cases, the correct class’s probability may be within the
top few probabilities, just not with the necessary confidence
that it would need for a correct prediction. This is where
the Decision Consensus mechanism can help, by allowing
two distinct models to interact and arrive at a consensus,
based on their respective class scores. Results for Decision
Consensus between TBAC-TSN and TBAC-TSM can be found
in TABLE IV.

Decision Consensus thus provides a boost of 8.87% and
3% over the Top-1 accuracies of TBAC-TSM and TBAC-
TSN, respectively. We also find that a Decision Consensus
can be found between two of the same base models, but with
varying input frame rates (T ). The intuition behind using this
approach can be loosely derived from the concept introduced
in [25], where differing input frame rates can cause the same
model to learn differing semantic information. To demonstrate
this notion, we test the Decision Consensus mechanism on the
TBAC-CSN model variants trained on the HMDB51 dataset.
To exhibit the consistency that this function has on improving
accuracy, all 3 splits of the HMDB51 dataset as well as the
average of these values, before and after Decision Consensus
are evaluated. Further, the two temporal resolutions taken are
T = 32 and T = 48. We had stated earlier that we expect the
performance of Decision Consensus to exceed that of naive
averaging, so we include a column for average consensus. As
shown in TABLE V, for every split, the Decision Consensus
increases the overall accuracy, by 1.5% for the 32 frame
setting and 0.61% for the 48 frame setting. The Decision
Consensus accuracy obtained from the two constituent TBAC-
CSN models is consistently better than that of simple average

consensus, by a margin of 0.28%. Thus, we confirm our initial
hypothesis, which stipulated that the Decision Consensus
function’s weighted average mechanism is superior to a simple
average.

C. Comparison with State-of-the-Art

Here, we compare the results of our proposed TBAC-
inserted models against relevant state-of-the-art methods. Al-
though all TBAC inserted models improve results, TBAC-CSN
models with IG65M pre-trained weights generally provide the
highest accuracies. We show the results on the two benchmark
datasets mentioned earlier: HMDB51 in TABLE VI, and
HAA500 in TABLE VII.

For the HMDB51 dataset, the Decision Consensus on
TBAC-CSN (32 and 48 frames) reaches a new peak accuracy
of 85.23%, which is higher than the previous state-of-the-art
by a margin of 0.13%. The component models of TBAC-
CSN (32f) and TBAC-CSN (48f) too obtain comparable
performance with the prior state-of-the-art.

For the HAA500 dataset, the Top-1 accuracy is increased
by a margin of 19.33% using Decision Consensus on TBAC-
CSN (32f, 48f). Unless specified, models use RGB inputs.
Although we display the result for the proposed model in [45],
we do not consider it for comparison as it makes use of
a train/test split of 310/156 classes, which differs from the
split originally provided by the authors of HAA500 [43].
We use all 500 classes for training as well as testing. The
component models themselves top the prior state-of-the-art,
taken from [43] itself; TBAC-CSN (32f) and TBAC-CSN
(48f) exceed the benchmark accuracy by 17.53%, and 18%,
respectively. Thus, our models perform well on a coarse-
grained atomic action dataset like HMDB51, as well as on
a fine-grained atomic action dataset like HAA500.

V. CONCLUSION

This paper proposed the Transformer Based Attention Con-
sensus (TBAC) module. This module can be used in a plug-
and-play fashion with existing CNN architectures for action
recognition. The extensive experimental analysis showed that
introducing the TBAC module improved the recognition per-
formance of CNN action recognition architectures. Addition-
ally, we proposed the Decision Consensus (DC) algorithm
that boosts performance by generating new apposite class
probabilities based on the confidence scores of similar action
recognizers. DC can also be used in a plug-and-play manner.
The proposed model has outperformed the state-of-the-art on
the HMDB51 and HAA500 datasets, providing accuracies of
85.23% and 83.73% respectively using DC-TBAC-CSN (32f,
48f). The extensive ablation studies quantitatively demonstrate
the effectiveness of our proposed TBAC module and Decision
Consensus Algorithm.
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