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Abstract
Model uncertainty has gained popularity in machine learning due to the overconfident
predictions derived from standard neural networks which are not trustworthy. Recently,
Monte-Carlo based adversarial attack (MC-AA) has been proposed as a simple uncertainty
estimation method which is powerful in capturing data points that lie in the overlapping
distribution of the decision boundary.MC-AA produces uncertainties by performing back-
and-forth perturbations of a given data point towards the decision boundary using the idea
of adversarial attacks. Despite its efficacy against other uncertainty estimation methods,
this method has been only examined on binary classification problems. Thus, we present
and examine MC-AA with multi-class classification tasks. We point out the limitation of
this method with multiple classes which we tackle by converting multiclass problem into
‘one-versus-all’ classification. We compare MC-AA against other recent model uncer-
tainty methods on Cora – a graph structured dataset – and MNIST – an image dataset.
Thus, the conducted experiments are performed using a variety of deep learning algo-
rithms to perform the classification. Consequently, we discuss the best results of model
uncertainty with Cora data using LEConv model of AUC-score 0.889 and MNIST data
using CNN of AUC-score 0.98 against other uncertainty estimation methods.

Keywords Uncertainty estimation . Adversarial attack . Deep neural network

1 Introduction

Machine learning applications have been exhaustively attracting the interests of many in the
globe with various applications such as healthcare [6, 10, 17], blockchain [3, 41], cyber-
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security [9, 16], and self-driving cars [25, 32]. On the other hand, machine learning models
accompanied with softmax outputs often produces overconfident predictions which lead to
poor decision-making regardless the models’ performance. In Fig. 1, an image of digit “2″ in
the MNIST dataset is predicted as “7″ with high confidence. Indeed, it is obvious to interpret
this confusion by the machine learning model wherein the machine learning confidently
misclassifies the given example. There are more serious scenarios that provide erroneous
and confident predictions leading to more cataclysmic decisions such the case in self-driving
cars [36]. In May 2016, a fatal accident is caused by the autopilot feature of a Tesla Model S,
which failed to discriminate the white tractor-trailer against a bright sky. Furthermore, other
applications are also subjected to misleading predictions such as in misclassifying legitimate
transactions as illegal in anti-money laundering [4]. These faults caused by the learning model
should be detected, analysed, and avoided. Consequently, model uncertainty is unavoidably
needed besides the model’s predictions to provide a reliable decision-making. Model Uncer-
tainty in machine learning has interestingly become an emergent topic by the resurgence of
Bayesian approximation in [12]. Regarding classification tasks, there are two main types of
uncertainty known as epistemic and aleatoric uncertainty. Epistemic occurs when a new data
point lacks to in formation of training instances, whereas aleatoric is observed when data
points fall in common regions of different class distribution resulting in wrong predictions. The
former can be reduced by more data, while the latter is unavoidable unless more informative
features are added to obtain a better classification rule. Gal et al. [12] have tackled the
computational complexity of Bayesian neural networks by proposing Monte-Carlo dropout
– a Bayesian approximation method – which efficiently produce uncertainty estimates in
machine learning models. A comprehensive review covering the recent advances in uncer-
tainty quantification methods is carried out by Abdar et al. [1]. Concisely, uncertainty
quantification methods have appeared to detect data points that the model is not trained on
such in deterministic uncertainty quantification (DUQ) [37], or to capture data points that fall
near decision boundary such in Deep Ensembles [20] and Monte-Carlo dropout (MC-dropout)
[13]. DUQ reflects the out-of-distribution tested points which appear far from the trained data.
Deep Ensembles and MC-dropout are commonly based on ensemble of models to produce
uncertainty. However, the former method is a combination of model with different initialised
parameters. Whereas the latter one is an ensemble of models with shared parameters by the
means of the dropout. Despite their efficiency in modelling uncertainty, these methods have
revealed a significant drawback [2, 5]. It is identified by the failure of these methods in
detecting the points that fall in the overlapping regions. Henceforth, the data points falling in
the overlapping regions of multiple class distributions cannot be influenced by the variability
of the decision boundary referring to [2]. The latter study has introduced Monte-Carlo
adversarial attack (MC-AA), an uncertainty method that provides perturbations on the given
data point in the direction of the decision boundary. The perturbed inputs are computed using
the adversarial attack method where multiple perturbed input samples are linearly generated.
Consequently, these samples produce uncertainty in the same experimental procedure to MC-
dropout. MC-AA has shown its capability in capturing model uncertainty on data points by
forcing them to travel between two given class distributions. Despite its promising perfor-
mance, MC-AA has been only studied with binary classification problems. Motivated by
previous work in [2], we propose a general way of MC-AA method that can be applied to
multi-class classifications. MC-AA in multiclass classification is a challenging problem
because there exist multiple decision boundaries. In other words, it is not clear in which
directions the multiple back-and-forth perturbations on a given data point should be performed.
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In this study, we propose a generalised MC-AA that performs multiple perturbations in back-
and-forth fashion towards the decision boundary that is associated with the predicted class on a
given data point. Subsequently, we conduct our experiments using a variety of deep learning
models on Cora and MNIST datasets as a type of multi-classification problems. Then, we
evaluate and compare the performance of the model uncertainty using MC-AA against recent
uncertainty estimation methods. On the other hand, the presented MC-AA has revealed
limitations in some cases, which we discuss in the experiments. We effectively solve these
limitations by converting multi-class classification to one-versus-all binary classification.
Admittedly, we show the competence of the presented MC-AA in capturing uncertainty
against other uncertainty methods on the given datasets. This paper is structurally divided as
follows: Section 2 involves the overview of the related work. Section 3 provides the back-
ground of the previously proposed MC-AA on binary classification problems. Section 4
demonstrates our generalised MC-AA with multiclass classification tasks. Section 5 provides
the conducted experiments and results. A discussion and a conclusion are given in Section 6
and 7, respectively.

2 Overview of related works

Primarily, neural networks with distributions over the weights have emerged as Bayesian
neural networks (BNNs) that have been studied by Neal et al. [28, 29] and by Mackay et al.
[24]. Subsequently, BNN models have witnessed resurgence in the recent years referring to [7,
15, 18]. Admittedly, BNNs have revealed significant success in modelling uncertainty of
neural networks. However, this approach is subjected to prohibitive computational cost
referring [12]. Consequently, Gal et al. [13] have proposed MC-dropout method as an
approximation of Bayesian approach which uses dropout as a variational inference. MC-
dropout is a simple and efficient method that uses dropout [35] after each hidden layer to
produce uncertainty estimates in neural networks [19]. To produce uncertainty, this is per-
formed using dropout during testing phase [13]; thus, a data point is subjected to multiple
stochastic versions of perturbed decision boundary which reflects the uncertainty about its

Fig. 1 Example of digit two image
in MNIST dataset
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predictions. Subsequently, an adaptive version of MC-dropout has appeared in [14] where the
dropout parameter is optimised with respect to a given objective function. Deep Ensemble
method is another Bayesian approximation which utilises an ensemble of multiple neural
network models with different initialisations [20]. The study in [30] has shown that Deep
Ensemble method has a superior success over BNNs. However, this method has shown poor
performance on a simple 2D synthetic data [37]. The latter study has introduced deterministic
uncertainty quantification (DUQ) model which reliably captures the out-of-distribution data –
i.e., data points distant from the trained data. DUQ is a deep model that learns feature
representations in which the distance between these features and centroids derived from the
training data are assessed using a kernel function. This model that uses radial basis function
(RBF) kernel is known as RBF network [22]. Other uncertainty estimation methods also exist
such as using an approximated variational inference by Gaussian processes in [38],
DropConnect as another version of MC-dropout [27] and uncertainty estimation based on
evidential deep learning [40]. MC-dropout and Deep Ensemble methods seek to perturb the
decision boundary between different class distributions where they have revealed promising
results in capturing model uncertainties. However, these methods have failed to capture data
points that fall in the overlapping region of class distributions. This issue has been tackled in
[2] by proposing MC-AA. MC-AA is an uncertainty estimation method that uses adversarial
attack idea to perform back-and-forth perturbations of a given data point toward the decision
boundary. Primarily, adversarial attacks have been extensively discovered in various aspects of
machine learning such as in [23] to improve classification, in [34, 39] to act against adversarial
examples. However, MC-AA is used to spot out data points lying near decision boundary of
neural network models, wherein noisy points can be detected with high uncertainty. MC-AA
has revealed significant outperformance over other methods in producing reliable predictive
uncertainties in binary classification problems [2]. Thus, we conduct experiments on multiclass
classification datasets using various deep learning model to capture model uncertainty using
MC-AA. Furthermore, we compare the model performance against MC-dropout, DUQ and
Deep Ensemble methods.

3 Methods for quantifying uncertainty

In this section, we present the methods used in our experiments to quantify uncertainty of deep
learning models.

3.1 Monte-Carlo based adversarial attack: MC-AA

Adversarial attacks are crafted inputs to fool the neural network decision [8]. Obtaining
adversarial example in white box attacks using Fast Gradient Sign Method (FGSM) can be
expressed as:

xAdv ¼ xþ ϵ:sign ∇x J x; yð Þð Þ; ð1Þ
where xAdv is the crafted input known as an adversarial example, ϵ is a small scale between 0
and 1, ∇x is the gradient with respect to the initial input x, and y is the desired class label.
Moreover, sign is the sign function that produces 1 for positive values and − 1 for negative
ones.
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The study in [2] has proposed MC-AA, an uncertainty estimation method based on the idea
adversarial attacks, which produces uncertainty estimates besides the predictions of a neural
network. MC-AA uses FGSM method to perturb the inputs during the testing phase with
multiple values of ϵ that belong to a small symmetric interval in a neighbourhood of zero.
However, FGSM requires the desired class label to shift the data input in the opposite direction
of the assigned class. In [2], MC-AA assigns an arbitrary class label (i.e., 0 or 1) to FGSM to
its given inputs, wherein multiple perturbed versions of each input are produced derived from
multiple values of ϵ.

For multiclass classification, MC-AA is modified by assigning the class predictions for
FGSM as provided in Algorithm 1. This modification takes into consideration the multiple
classes where the given input is perturbed towards/away from the direction of its predicted
class regardless of other classes. Referring to [2], the predictive mean can be computed as
follows:

by ¼ pMC−AA yjxð Þ≈ 1

T
∑
T

i¼1
byϵi ; ð2Þ
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wherebyϵi is the output associated with xϵi at ϵi, and i = 1, 2,…, T, where T is the total number

of the produced outputs to be tuned.
To obtain the predictive uncertainty, we use mutual information (MI) that can be computed

as follows:

bI yjxð Þ ¼ bH yjxð Þ þ ∑
c

1

T
∑
T

i¼1
p y ¼ cjxϵið Þlogp y ¼ cjxϵið Þ; ð3Þ

where c is the class label, and

bH yjxð Þ ¼ −∑
c
pMC−AA y ¼ cjxð ÞlogpMC−AA y ¼ cjxð Þ ð4Þ

3.2 Monte-Carlo dropout: MC-dropout

In this method, the dropout is activated during the testing phase which is applied after each
weight layer in a neural network. Given a neural network with input x and its observation y that
is trained on Dtrain, with L layers and learnable parameters w, then the predictive distribution
can be written as:

p yjx;Dtrainð Þ ¼ ∫p yjx;wð Þp wjDtrainð Þdw; ð5Þ
where p(y| x, w) is the likelihood of the model and p(w| Dtrain) is the posterior distribution over
the weights. Referring to [13], the posterior distribution – which is intractable – can be
approximated by q(w) by the minimisation of Kullback-Leibler divergence. By variational
inference, the approximated predictive distribution becomes:

q yjxð Þ ¼ ∫p yjx;wð Þq wð Þdw ð6Þ
Gal et al. [13] has chosen the approximated posterior q(w) as the distribution over the matrix of
learnable weights with the randomly dropped out connections for posterior approximation.
This is performed using the dropout during the testing phase. In other words, q(w) can be
defined as:

Wi ¼ Mi:diag zi; j
� �Ki

j¼1

� �
; ð7Þ

with zi, j as the realisations drawn from Bernoulli distribution for i = 1,…, L and j = 1,…, Ki

− 1 such that the size of matrix Wi is KixKi − 1.

By drawing T samples from Bernoulli distribution, this produces Wt
1;…;Wt

L

� �T
t¼1 which

so allows to express the approximated predictive mean of a given input as:

Eq yjxð Þ yð Þ≈
1

T
∑T

t¼1by x;Wt
1;…;Wt

L

� 	 ¼ pMC yjxð Þ ð8Þ
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Hence the predictive uncertainty using mutual information can be expresses as:

bI yjx;Dtrainð Þ ¼ bH yjx;Dtrainð Þ þ ∑c
1

T
∑T

t¼1p y ¼ cjx;wð Þlogp y ¼ cjx;wð Þ ð9Þ

Where c is the class label and

bH yjx;Dtrainð Þ ¼ −∑cpMC y ¼ cjx;wð Þ log pMC y ¼ cjx;wð Þ ð10Þ

3.3 Deterministic uncertainty quantification (DUQ)

DUQ consists of feature extractor as a base model followed by an additional learnable layer to
obtain the feature vectors corresponding to each class. The predictions are performed by
computing a kernel function. The kernel function is the RBF kernel which computes the
distance between the feature vectors and the centroids. The centroid of each class is updated
using an exponential moving average of the feature vectors of the data points corresponding to
the class with a momentum γ. The predictive uncertainty is obtained in a single deterministic
forward pass. The output of a DUQ model can be expressed, referring to [37], as:

Kc f θ xð Þ; ecð Þ ¼ exp −

1

n
Wc f θ xð Þ−eck k22

2σ2

0
B@

1
CA ð11Þ

Where fθ is the feature extractor mapping from input x of dimension m to the feature vectors of
dimension d, and learnable parameters θ. Wc – for a class c – is a weight matrix of size n by
d corresponding to the additional layer that transforms the output of the feature extractor to
new embedding space with centroids size. Kc – the kernel output – is computed for each
centroid class ec with σ being the hyperparameter called the length scale. The prediction of this
model is represented as:

argmaxc Kc f θ xð Þ; ecð Þ: ð12Þ
Hence, the predictive uncertainty can be obtained by finding: max

c
Kc f θ xð Þ; ecð Þ.

The optimisation function can be expressed as:

L x; yð Þ ¼ −∑cyclog Kcð Þ þ 1−ycð Þlog 1−Kcð Þ ð13Þ
Moreover, there is further regularisation using two-sided gradient penalty (l2 norm) where this
penalty consists of regularisation factor λ to be tuned.

3.4 Deep ensemble

Deep Ensemble is a collection of deep models with different initialisations. Training multiple
models with distinct initialised weights produce multiple outputs on a given prediction like
MC-dropout but with independent parameters. Hence, the predictive mean can be obtained as
follows:
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ŷ ¼ pensemble y ¼ cjxð Þ ¼ 1

T
∑
T

i¼1
Mi xð Þ;

where Mi(x) is the prediction obtained by model Mi on a given input x. The predictive
uncertainty is obtained using Eqs. 9 and 10 but replacing pMC by pensemble.

4 Evaluating model uncertainty

To evaluate the goodness of model uncertainty, we follow the same procedure applied in [26].
The predictive mean beside the predictive uncertainty can reflect the model uncertainty.
Predictive mean provides the correct or incorrect classification with respect to the actual
labels. Predictive uncertainty is derived from MI measurement, in which an arbitrary threshold
Tu is set to classify MI between certain and uncertain. By tying predictive mean with
uncertainty, we can realise four states that resemble the binary classification task as provided
in Table 1. For simplicity, MI measurements are normalised via min-max with respect to the
test set. Consequently, Tu is an arbitrary threshold between 0 and 1. The following abbrevi-
ations TN, FN, FP, TP correspond to true negatives, false negatives, false positives, and true
positives, respectively.

Referring to Table 1, higher TN and TP are desired, with lower FP and FN. However, FN
hurts the goodness of uncertainty in which erroneous predictions with high certainty are
produced. On the other hand, FP is preferably required to be low, but this does not affect
the performance of model uncertainty because uncertain and correct examples can be for-
warded to an annotator. These measurements can be written as conditional probabilities to
assess the performance of model uncertainty as following:

& Accuracy of model uncertainty:

Au ¼ TN þ TP
TN þ FN þ FPþ TP

& Negative Predictive Value (NPV): This can be expressed as conditional probability:

p correctjcertainð Þ ¼ p correct; certainð Þ
p certainð Þ ¼ TN

TN þ FN

Table 1 Possible cases in uncertainty estimation model

Model Uncertainty Certain: MI<Tu Uncertain: MI≥Tu

Correct TN: Correct and Certain FP: Correct and Uncertain
Incorrect FN: Incorrect and Certain TP: Incorrect and Uncertain
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& True Positive Rate (TPR): This can be expressed as a conditional probability:

p uncertainjincorrectð Þ ¼ p uncertain; incorrectð Þ
p incorrectð Þ ¼ TP

TP þ FN

& False Positive Rate (FPR): It can be written as a conditional probability:

p correctjuncertainð Þ ¼ p correct; uncertainð Þ
p uncertainð Þ ¼ FP

FPþ TN

Furthermore, the last two metrics can be used to plot Receiver-Operation-Curve (ROC) and
compute Area-Under-Curve (AUC) score to evaluate the goodness of model uncertainty by
moving the threshold Tu between 0 and 1.

5 Experiments and results

In our experiments, we apply different machine learning models on graph and image datasets
known as Cora and MNIST, respectively. Then, we estimate uncertainties besides the predic-
tions to evaluate and compare the different uncertainty estimation methods. We use Pytorch
[31] and Pytorch-Geometric package [11] in Python programming language.

5.1 Experimenting with graph data

As an example of graph data, we use Cora dataset to assess the proposed uncertainty method.
Cora is a graph-structured data that comprises academic publications as nodes, and citations as
the edges [33]. This data is used in node classification tasks in which each node is classified
into one of seven subjects. The node features reflect the absence/presence as 0/1 of the
corresponding word in the dictionary, in which the unique words in the dictionary are the
total number of features. The data is described in Table 2. In this paper, we follow the same
experimental setup for this data as in [42].

Since Cora is graph-structured data, we choose various graph neural network models to
perform node classification. The graph learning models are arbitrarily chosen as following:

& GCN: Graph Convolutional Network based spectral approach. GCN layer can be
expressed as:

x
0
i ¼ Θ ∑

j∈N ið Þ∪ if g

e j;iffiffiffiffiffiffiffiffibd j
bdi

q x j

& GraphConv: Graph Convolutional Network based spatial approach. GraphConv layer can
be expressed as:
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x
0
i ¼ Θ1:xi þΘ2 ∑

j∈N ið Þ
e j;i:x j

& GAT: Graph Attention Network. GAT layer can be expressed as:

x
0
i ¼ αi;iΘ:xi þΘ ∑

j∈N ið Þ
αi; j:x j

& SAGEConv: Graph SAGE Convolution. It is expressed as:

x
0
i ¼ Θ1:xi þΘ2:mean j∈N ið Þ x j

& LEConv: Local Extremum Convolution.

x
0
i ¼ Θ1:xi þ ∑

j∈N ið Þ
e j;i: Θ2:xi−Θ3:x j

� 	

& TAGConv: Topology Adaptive GCN. It is written as:

x
0
i ¼ ∑

K

k¼0
∑

j∈N ið Þ∪ if g
Θk

e j;iffiffiffiffiffiffiffiffiffiffibd j
bdi

q
0
B@

1
CA

k

x j

where x
0
i is the embedding derived from the input node i in the hidden layer,Θk is the learnable

weight matrix at layer k, ei, j is the edge weight which is arbitrarily equal to 1, mean is the
average over the sum, bdi is the degree of node i andN ið Þ is the set of nodes in neighbourhood
of node i.

The widths of all hidden layers are set to 16 neurons, a dropout after each hidden layer is set
to 0.5 and the number of epochs is set to 100. We use a non-weighted NLLLoss and Adam
optimiser to train the given models. Each of the preceded models consists of two graph
convolutional layers. All hidden layers are squashed by ReLU and the output layers are
followed by softmax function except for DUQ that uses RBF kernel as output.

Table 2 Graph network description of Cora data

Cora Data

# Nodes 2708
# Edges 5429
# Classes 7
# Features 1433
Train/Validation/Test 140/500/1000 nodes

Table 3 Tuned hyper-parameters of uncertainty methods using Cora Data

Model Uncertainty Hyper-parameters (Cora)

MC-AA ϵmax=0.15, T=10, β ¼ 2ϵmax
10

MC-dropout T=10, dropout=0.5
DUQ λ=1x10−2, σ=0.3, γ=0.99
Deep Ensemble T=10
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To capture model uncertainty, we use MC-AA, MC-dropout, DUQ and Deep Ensemble
methods. The hyper-parameters for these methods are empirically tuned which are summarised
in Table 3.

After computing MI, we plot Au, NPV, TPR and ROC to compare our proposed method
with MC-dropout as depicted in Figs. 2, 3, 4, 5, 6 and 7.

5.2 Experimenting with image data

Regarding MNIST dataset [21], the data is divided as 90 k/10 k for train/test split.
We use convolutional neural network (CNN) model that appeared in [37] as a deep
feature extractor. The deep model consists of 3 CNN layers with output channels 64,
128 and 128, respectively, and a feed-forward layer with widths of 256. The kernel
size is set to 3. Moreover, batch normalisation after every convolutional layer follow-
ed by 2 max pooling of size 2 by 2 is applied. The padding in the first two
convolutional layer is set to 1. A dropout of value 0.5 is empirically set after the
feed-forward hidden layer. The learning rate is set to 0.001, chosen empirically. The
output layer is followed by softmax function to output the class prediction which is
one of the handwritten digits from 0 to 9. The batch size is arbitrarily chosen to be
1024, then we perform 30 epochs to train the model. This model has attained an
accuracy over 98% to classify the digits. Likewise, we capture model uncertainty on
CNN model by performing MC-AA, MC-dropout, DUQ, and Deep Ensemble where
the hyper-parameters are summarised in Table 4. As the input images 28 × 28 are
grey-scale, the perturbed inputs by MC-AA should be clamped between −1 and 1
which is the range of the pixel values. We plot the preceded model uncertainty
metrics as depicted in Fig. 8.

Fig. 2 GCN model uncertainty. The subplots (from left to right) correspond to Au, NPV, TPR and ROC-curve as
a function of threshold Tu

Fig. 3 GraphConv model uncertainty. The subplots (from left to right) correspond to Au, NPV, TPR and ROC-
curve as a function of threshold Tu
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6 Discussion

6.1 Uncertainty performance with Cora data

The performance of model uncertainty is computed by moving a threshold between 0
and 1 and computing the evaluation metrics provided earlier at each threshold.
Generally, MC-AA for multiclass classification, has noticeably revealed competence
against other uncertainty estimation methods on various graph learning models with
Cora data in terms of accuracy and ROC-AUC curve plots in Figs. 2, 3, 4, 5, 6 and
7. Regarding other measurements, NPV metric has shown the highest with MC-AA
against other methods with GCN and TAGCN models. TPR metric has revealed
acceptable outcomes with MC-AA in the different graph learning models except for
LEConv. All graph learning models have admitted the outperformance of DUQ in the
subplots corresponding to TPR metrics. The same models have revealed the poor
accuracy using DUQ model wherein the overall model is considered with a deficient
performance. Despite MC-AA has revealed competent uncertainty estimates, this
method has performed poorly with LEConv model. The reason of the deficient
performance is due to multiple class distributions that restrict the behaviour of MC-
AA. In other words, FGSM method in multiclass models might produce a perturbed
input that cannot escape its relevant class. Thus, the perturbation using adversarial
attack idea is not exact towards the decision boundary as we use the sign of gradients
which is the L∞ norm and neglect the ratios corresponding to each dimensional
feature. Therefore, the perturbation on the given input does not allow this data point
to fall in another class.

Fig. 4 GAT model uncertainty. The subplots (from left to right) correspond to Au, NPV, TPR and ROC-curve as
a function of threshold Tu

Fig. 5 SAGEConv model uncertainty. The subplots (from left to right) correspond to Au, NPV, TPR and ROC-
curve as a function of threshold Tu
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For this reason, we propose a way to avoid this drawback of MC-AA by
converting multi-class classification problems into one-versus-all binary classification
which has appeared to be more effective with MC-AA. We choose LEConv which
performed poorly with MC-AA. To convert to “one-versus-all” classification, we
choose the class with the highest false instances among all other classes to be the
positive class, which is class 4, while the remaining labels are assigned as the
negative class. However, the same concept can also be applied to the different
permutations of one-versus-all binary classifications (e.g., first class versus others,
second class vs others, etc.). The model LEConv is trained following the same
experimental setup as preceded. Henceforth, we capture model uncertainty using
MC-AA (for binary classification), MC-dropout, DUQ, and Deep Ensemble. The
results are provided in Fig. 9.

After converting the classes of Cora data into binary labels, MC-AA has shown a superior
success against other uncertainty methods. Clearly, low FN (incorrect and certain) is provided.
Here, the sign of the gradients in FGSM method allows the data points to jump to the opposite
class as there are only two competing classes.

6.2 Uncertainty performance with MNIST data

Referring to Fig. 8, the model uncertainty of CNN using MC-AA has outperformed other
uncertainty methods using MNIST data. The overall model performance among all
methods have attained the same accuracy. Whereas NPV and TPR metrics have depicted
superior success with MC-AA wherein lower FN (incorrect and certain) has been
obtained. To highlight the effectiveness of uncertainty estimates, we plot the normalised
density distribution of the predictive uncertainties in Fig. 10. We cluster the distributions
according to the correct/incorrect predictions, referring to Table 1. Clearly, all methods

Fig. 6 LEConv model uncertainty. The subplots (from left to right) correspond to Au, NPV, TPR and ROC-curve
as a function of threshold Tu

Fig. 7 TAGConv model uncertainty. The subplots (from left to right) correspond to Au, NPV, TPR and ROC-
curve as a function of threshold Tu
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commonly have reflected good uncertainty estimates for correct predictions. However,
the distribution of incorrect predictions among all uncertainty methods has shown
different densities. The density of incorrect predictions with MC-AA is more concen-
trated towards the right values of mutual information where these predictions are
considered uncertain. With other methods, the predictive uncertainty of incorrect predic-
tions is distributed among the whole mutual information scale. Moreover, the uncertainty
estimates with DUQ model have depicted more mix between correct/incorrect densities
which is reflected in Fig. 9. In addition, we compute the mean/standard deviation to
describe these distributions as provided in Table 5. The mean of incorrect predictions
with MC-AA has attained the highest value with the smallest standard deviation. This is
desired to obtain an effective model uncertainty that classifies incorrect predictions as
uncertain. On the other hand, all methods have shown adequate results of low mean/low
standard deviation for correct predictions. To pinpoint the effectiveness of MC-AA on
the image MNIST data, we provide a case-study where we opt for an image example,
depicted in Fig. 1, that is wrongly predicted by CNN among all methods. We investigate
the predicted class of this digit two image as well as its uncertainty estimates by MC-AA,
MC-dropout, DUQ and Deep Ensemble as provided in Fig. 11. Closely, all methods have
erroneously predicted this digit as seven with high confidence, whereas the class two has
provided a low predicted probability.

7 Conclusion

We have extended the study of MC-AA, an uncertainty estimation method based
adversarial attack that works for multiclass classification. By benchmarking MC-AA
method against other uncertainty estimation methods, we have shown the effectiveness
of MC-AA in capturing model uncertainty using deep models on graph data of Cora and
image data of MNIST. Concisely, we have examined MC-AA with multiclassification

Table 4 Tuned hyper-parameters of uncertainty methods using MNIST Data

Model Uncertainty Hyper-parameters (MNIST)

MC-AA ϵmax=0.2, T=10, β ¼ 2ϵmax
10

MC-dropout T=10, dropout=0.5
DUQ λ=1x10−1, σ=0.4, γ=0.9
Deep Ensemble T=10

Fig. 8 CNN model uncertainty. The subplots (from left to right) correspond to Au, NPV, TPR and ROC-curve as
a function of threshold Tu
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tasks against MC-dropout, DUQ and Deep Ensemble method. However, the presented
method has revealed low performance in LEConv model using Cora data. We tackle this
limitation by converting the multiclass classification into binary classification task where
MC-AA outperforms other methods. We discuss the best uncertainty model performance
of MC-AA which attained an AUC score of 0.889 with LEConv model, after converting
the Cora data to binary classification, where the corresponding NPV and TPR have also
revealed superior success in comparison to other methods. Surprisingly, MC-AA has
shown a significant outperformance using MNIST without the need to convert to binary
classification. The recorded AUC-score of this method is 0.98 outperforming other
methods in addition to their NPV and TPR curves. To wrap up, MC-AA is powerful
in reducing the number of false negatives of model uncertainty (i.e., data points that are
incorrect but certain). This is due to the perturbations that are performed on the input
level, unlike previous uncertainty methods. The limitation of this study is that it is not

Fig. 9 Model uncertainty of LEConv as binary classification (class 4 vs rest) using MC-AA and MC-dropout.
The subplots (from left to right) correspond to Au, NPV, TPR and ROC-curve as a function of threshold Tu

Fig. 10 Distribution of predictive uncertainty measurements derived from MNIST test set using MC-AA, MC-
dropout, DUQ and Deep Ensemble. Correct predictions curve is the uncertainty measurements of the data points
that are predicted correctly. Similarly, incorrect predictions curve is the uncertainty measurements of the data
points that are predicted incorrectly
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known when MC-AA is a good approach in multiclassification tasks. However, the
conversion to binary classification is always promising since MC-AA tends to perturb
an input between decision boundaries. Consequently, having a single decision boundary
leads to effective results. Whereas multiple classes mislead the perturbed input which
fails to reflect a good uncertainty estimate using FGSM sign method in MC-AA.

We foresee in future work to replace FGSM that uses l∞ to more effective norm in MC-AA,
where the gradients directions are more accurate towards the class boundary. This could lead to
accurate perturbation towards the class boundary and eventually produce better uncertainty
estimates.

Table 5 Descriptive statistics summary of predictive uncertainty distribution using MNIST test set

Uncertainty method Predictive uncertainty density Mean Standard deviation

MC-AA Correct prediction 0.099 0.177
Incorrect prediction 0.765 0.144

Mc-dropout Correct prediction 0.016 0.069
Incorrect prediction 0.456 0.22

DUQ Correct prediction 0.073 0.085
Incorrect prediction 0.272 0.1753

Deep Ensemble Correct prediction 0.012 0.058
Incorrect prediction 0.398 0.218

Fig. 11 Case study on MNIST test set. The top subplot is the predictive probability by the various CNN models
(CNN with MC-AA, MC-dropout, DUQ, Deep Ensemble) of a single MNIST digit shown to the bottom left
subplot. The bottom right subplot belongs to its uncertainty estimate derived from different uncertainty estimation
methods
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