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A B S T R A C T   

Infertility is associated to multiple types of different genomic instabilities and is a genetic feature of genomic 
instability syndromes. While the mismatch repair machinery contributes to the maintenance of genome integrity, 
surprisingly its potential role in infertility is overlooked. Defects in mismatch repair mechanisms contribute to 
microsatellite instability and genomic instability syndromes, due to the inability to repair newly replicated DNA. 
This article reviews the literature to date to elucidate the contribution of microsatellite instability to genomic 
instability syndromes and infertility. The key findings presented reveal microsatellite instability is poorly 
researched in genomic instability syndromes and infertility.   

Introduction 

Infertility is defined as either primary or secondary infertility. Pri-
mary infertility refers to the failure of pregnancy after one year without 
the use of birth control methods [1], whilst secondary infertility refers to 
the failure of conceiving another child after the first [2]. Furthermore, 
recurrent miscarriage (RM), is defined as three or more consecutive 
miscarriages [3–4]. Infertility is reported to affect approximately 15% of 
couples globally [5]. Genetic analyses has provided strong evidence for 
the role of gene variants and chromosomal aberrations [6–14]. These 
data suggest that individuals harbouring factors that predispose them to 
genomic instability have decreased fertility rates. 

Genomic instability can manifest as multiple types of aberrations 
within the human genome. These aberrations are evident at the chro-
mosomal or gene level as aneuploidy [15], translocations [16], in-
versions [17], deletions [18]. Genomic instability is most pronounced in 
patients with genomic instability syndromes due to variant(s) of gene(s) 
responsible for DNA repair. Genomic instability and genomic instability 
syndromes may be accompanied with microsatellite instability (MSI) 
[19–20,10,21]. 

Microsatellites 

Microsatellites, the “genetic fingerprints” of the human genome, 
contains variable numbers of repeated 1–6 base pair units (bp), 
encompass approximately 3% of the human genome [22]. Generally, 
microsatellites are located within the intron regions (Fig. 1) of a gene 
[23], the 5’ and 3’ untranslated regions (5’UTR and 3’UTR) [24], 
intergenic spaces [25], and present in exon regions [26]. Additionally, 
for humans specifically, microsatellites can be observed adjacent to 
transcriptional start sites [27], translation initiation sites [28], and 
around CpG DNA methylation sites [27]. High levels of variability be-
tween individuals at microsatellite sites lends microsatellites to different 
applications including DNA profiling [29–31], and studies of disease 
[32–34]. Also, these may not be actively conserved in the human 
genome, as microsatellites are in regions that are not vital to gene 
function and hence, they are prone to variation (Fig. 1). DNA replication 
slippage may also be one of the factors involved in MSI occurrence 
[35–37]. 

The hypermutable state of microsatellites is partially due to the 
mismatch repair (MMR) system, correcting DNA sequences by acting as 
a “proof-reader” (Fig. 2) if there is a sequence error. The other 
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contributor is the simple nature of a microsatellite sequence as discussed 
above. DNA errors recognised by the MMR pathway include insertions 
[46], deletions [43], and mis-incorporations [47] of a nucleotide base. 
Defects within the MMR pathway is to MSI. MSI in turn is associated 
with several diseases and syndromes including cancers [48–51], in-
flammatory diseases including Crohn’s disease [32,52] and Behçet’s 
syndrome [33]. It should also be acknowledged that “hereditary non- 
polyposis colorectal cancer (HNPCC) or Lynch syndrome (LS) is the 
most common disorder with MSI” [53–60], yet the role of MSI in 
infertility is poorly understood. 

Research to date evidenced links between genomic instability syn-
dromes and gene variants and infertility [61–74]. In contrast, the spe-
cific link between MSI and infertility/RM, independent of genomic 
instability syndromes, is poorly understood. Therefore, we aim to 
highlight upon the importance of MSI in infertility by reviewing the 
literature on 1) the role of MSI during gametogenesis, early embryo-
genesis, and implantation, 2) MSI in genomic instability syndromes on 
infertility and 3), the known impact of specific MSI sites on infertility 
independent of genomic instability syndromes. We show that MSI con-
tributes to infertility in genomic instability syndromes and independent 
of genomic instability syndromes. However, data is limited and more 
research in this area is warranted. 

Microsatellite instability in germ cell development 

MSI may disrupt normal foetal development through different 
mechanisms including prior to conception during gametogenesis, 
through influencing germ cell mosaicism and during early embryogen-
esis and implantation. We describe the role of MSI in each of these three 
stages in turn below. 

Gametogenesis and microsatellite instability 
Gametogenesis is the process of diploid or haploid cells entering 

cellular division and undergoing differentiation to mature haploid 
gametes. In male’s, primordial germ cells (PGCs) enter mitosis to pro-
duce diploid cells (2n) and meiotic events for spermatogenesis [75]. In 
females, PGCs are required to produce primary oocytes through a series 

of meiotic events [76]. During the DNA replication stages, replicative 
errors may occur, leading to variation in nucleotide sequences and MSI 
sites. 

Previous work has shown MMR genes can contribute to abnormal 
chromosomal synapse formations during chromosomal recombination 
during meiosis, leading to MSI at D6Mit59, D7Mit91, D19Mit36 and 
D1Mit62 in mice [77]. It was also reported that male mice deficient in 
PMS2, a key protein for DNA mismatch repair, had reduced spermatozoa 
and reduced fertility, whilst PMS2-/- females were fertile. Furthermore, 
spermatozoa were physiologically abnormal with misshaped, truncated, 
and irregular flagella with abnormally shaped heads. It was concluded 
that spermatogenesis is disrupted at the primary spermatocyte stage 
during meiosis I [77]. These data suggests that MSI may also disrupt 
human spermatogenesis and contribute to infertility. 

Data relating to MMR gene variants and their impact on gameto-
genesis in humans are limited. However, a study by Ferrás et al. (ref 78), 
investigated variants of hMLH3, which encodes a protein key for DNA 
mismatch repair. Of 300 male patients studied, 13 showed spermato-
genic arrest at the primary spermatocyte stage and one of the 13 had 
family history of HNPCC. Between them, these 13 patients had four 
missense variants including; 2896T/C and 2531C/T and eight intronic 
(IVS9 + 66G/A) within hMLH3 [78]. Despite of these variants, MSI was 
not observed in the BAT-34 microsatellite. 

MMR genes have also been reported to have a regulatory role within 
oogenesis. Exo1− /− female mice have been reported to be sterile due to 
meiotic defects, with an increased susceptibility to lymphomas and MSI 
[79]. The method of detecting MSI were from DNA of EXO1-/- mice by 
PCR using end-labelled primers and electrophoresis [79]. Mutation rate 
analysis involved studying mutation rates of the HRPT locus. Embryonic 
stem cells exhibited either EXO1-/-, MSH2-/- and wild-type genotype, the 
cell line studies identified a 30-fold increase (0.6 × 10-6) of MSI occur-
rences in EXO1-/- cells. MSH2-/- cells exhibited a 150-fold increase (3.0 
× 10-6) for mutation rates compared to wild-type cells [79]. Cells in 
meiosis I entered prophase I, but chiasmata was absent in metaphase I, 
leading to meiotic failure. The size of oocytes was smaller in Exo1− /−

mice, but the oocytes had normal progression through diplonema, 
despite of the lack of a functioning EXO1 protein. At day 2 postpartum, 

Fig. 1. Microsatellite structure and microsatellite instability. Within the intron, 5′UTR and 3′UTR of a gene, microsatellites can be identified which contain short 
(1–6 bp) regions repeated a variable number of times (orange segments). In individuals with defects in the mismatch repair pathway (MMR) (red arrows) this can 
lead to three outcomes; contraction because of a gene deletion [38], a nucleotide change [39], or additional repeats are added [40] (red segments). (For inter-
pretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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oocytes were reported to be in dictyate arrest. Additionally, MSI was 
detected within the microsatellites; D7Mit91, D17Mit123, and at the 
uPAR gene [79]. MSI and the effects on oogenesis in humans as not been 
explored but from these data suggests oogenesis in humans may also be 
affected by MSI. 

Microsatellite instability and germ cell mosaicism 
Mosaicism can be described as the presence of two or more geneti-

cally different sets of somatic and germline cells that contain 46 chro-
mosomes [80], or a variation in the number of chromosomes [81]. 
Germline mosaicism is known to be a contributing factor to infertility in 
males. Jaruzelska et al. (ref 81) reported a 45 X mosaicism, within 65 
men with azoospermia and 23 men with oligozoospermia. However, MSI 
was not reported upon within this study. 

Despite the study of Jaruzelska et al. [81] described above, reports 
investigating the impact of germline mosaicism/MSI and infertility in 
humans are lacking. However, de novo germline mosaicism within MSH2 
was identified in one patient with a Lynch-like syndrome [82]. Due to 
the de novo variant, the patient developed endometrial cancer (aged 45) 

and colorectal cancer (CRC) (aged 60). Further analysis of the CRC of 
this patient, showed MSI and loss of expression in the genes MSH2 and 
MSH6 [82]; similar analysis was not performed for the endometrial 
cancer. It should be acknowledged that previous research identified that 
MSI can be detected with endometrial cancer [83]. One of the clinical 
complications with endometrial cancer is there is an increased risk of 
infertility. This is due to patients with endometrial cancers having a 
thinner endometrial wall compared to those without cancer [84] 
causing reduced embryo implantation in endometrial cancer patients; 
however, MSI was not studied in these cancer patients [84]. In other 
research in MSI and cancer, Black et al. (ref 85), reported 20% of 473 
endometrial cancer patients contained MSI associated with defective 
DNA repair [85]. Whilst Kanopiene et al. (ref 86) reported on MSI status 
of 100 of 109 endometrial cancers showing endometrioid type histology. 
From the 100 endometrial cancers, 17 demonstrated MSI-high status 
and 83 showed MSI-stable status. Furthermore, MSI-high cancers were 
linked to the pathology of deep myometrial invasion and higher histo-
logical gradings of endometrioid type cancers. These findings were 
identified using the Promega MSI analysis system which utilises five 

Fig. 2. The DNA mismatch repair 
pathway. After DNA replication has 
occurred the newly replicated DNA is 
proofread by the MMR pathway for 
mismatch errors. A) DNA mismatches are 
detected by the MutSα (a heterodimer of 
MSH2 and MSH6) or the MutSβ complex (a 
heterodimer of MSH2 and MSH3). These 
recruit MutLα (a MLH1-PMS2 heterodimer) 
[41,42]. B) PCNA interacts with MutLα for 
DNA MMR repair, by which PCNA binds to 
DNA acting as a sliding clamp to allow 
DNA polymerase δ (Pol δ) and EXO1 to 
bind to the mismatch region [41], whilst 
the recruitment of replication factor C 
(RFC) acts as the clamp loader for Pol δ and 
EXO1 [44]. C) After the binding of EXO1 to 
DNA, the mismatch error is excised from 
the DNA whilst, Pol δ replicates the DNA to 
compliment the 3′ →5′ strand. D) After the 
binding of DNA ligase to the DNA strand, 
the enzyme ligates the newly synthesised 
strand, replacing the region where the 
mismatch occurred. E) The DNA contain-
ing the mismatch error is repaired. Figure 
has been adapted from [45], with 
permission.   
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mononucleotide microsatellites (BAT-25, BAT-26, NR-21, NR-24, and 
MONO-27) [86]. 

In testicular cancers, germline mosaicism remains to be investigated. 
The presence of MSI in testicular cancer is reported in two studies. 
Huddart et al. (ref 87), reported multiple MSI within two tetranucleotide 
microsatellites (vWFa and vWFb), two trinucleotide microsatellites 
(TFIID and AR) and one dinucleotide marker (D16S303), in human 
testicular tumours [87]. Another study reported MSI within testicular 
cancer complimented with reduced MLH1 and MSH2 expression [51]. It 
remains unclear whether germ cell mosaicism is accompanied with the 
presence of MSI. Surprisingly, neither study reported upon the fertility 
status of the male patients, as fertility is known to be affected by 
testicular cancer [88]. 

Embryo implantation/postzygotic microsatellite instability through mitotic 
and meiotic instability 

After fertilisation, the preimplantation embryo then enters the womb 
for implantation. Throughout the development to a fully developed 
foetus, a series of cellular division events occur. These events are 
regulated by two spindle assembly checkpoint genes, BUB1 and CEP57 
(discussed below), ensuring chromosomal segregation is achieved 
[70,89–90]. Mice with defective maternally-derived Bub1 show em-
bryonic aneuploidy and subsequent embryo loss after implantation 
[91–92]. Paternal inheritance of Bub1m/m (Bub1 mutant) is not associ-
ated with embryo mitotic defects in mice [91]. 

In relation to MMR, recent research has suggested that MLH1 and 
MLH3 are also required for normal disjunction during meiosis. Singh 
et al. (ref 93), used computational analysis in different human genomic 
databases to investigate variants associated with MLH1 (E268G, K618E, 
V326A and V716M) and MLH3 (A3914T, R93Q and R1230H). These 
variants were then created in mice for phenotypic analysis [93]. To 
summarise the results, MLH341230H males were completely infertile due 
to spermatocyte arrest and reduced testicular size, whilst in female mice, 
MLH1E268G, MLH1V326A, MLH1K618E, MLH1K618T, and MLH1V716M, 
produced offspring where the size of subsequent litters reduced over 
time. MLH1K618T/K618T females had fewer follicles, thus, suggesting 
chromosomal crossover events during meiosis were reduced. Further 
effects reported included that decreased chromosomal crossover events 
lead to increased aneuploidy and embryo loss, however the exact 
mechanism remains unanswered [93]. In MLH3R1230H/R1230H male mice, 
testicular size was reduced with complete sperm absence. Screening for 
MSI within mutant mice did not reveal MSI occurrences but data were 
not shown [93]. Previous work suggests mice that Do not have a MLH1 
functional gene, have MSI and show increases in morbidity, lymphoma 
development, and different gastrointestinal related tumours [94]. 

Genomic instability syndromes 

Genomic instability syndromes arise from heritable variants within 
genes involved in DNA repair mechanisms which can affect the fidelity 
of the genome during cell replication and cell division [95], leading to 
different genomic aberrations as discussed above. Variants within MMR 
genes leads to MSI as discussed above and a feature of many genomic 
instability syndromes. We here, review evidence to discern whether MSI 
contributes to infertility/ RM or is coincident with it but not causative in 
the context of genomic instability syndromes. Here we have discussed 
three different genomic instability syndromes (Table 1); Mosaic Varie-
gated Aneuploidy syndrome (MVA) [70], Bloom syndrome (BS) [99], 
and Lynch syndrome (LS) [68]. 

Aneuploidy and MVA 

Aneuploidy is associated with the genomic instability syndrome 
MVA1 (OMIM #257300) (associated with BUB1B) and MVA2 (OMIM 
#614114) (associated with CEP57). MVA1 is due to variants within the 
BUB1B gene [70,89–90]. The BUB1B protein regulates the spindle 

assembly checkpoint during cellular division and therefore, maintains 
genomic stability by delaying cell division until full chromosome 
segregation is achieved [100–101]. Variants within the BUB1B gene lead 
to monosomy or trisomy [102–103]. 

Patients who have a mutation in the BUB1B gene are diagnosed with 
MVA1 [19,104]. The research on MVA1 shows fertility status can be 
unaffected and patients can successfully conceive (and this syndrome is 
heritable) [13,105]. There is no research linking MSI to infertility in 
MVA1 in human patients. Baker et al. (ref 106), generated Bub1b- 

(knockout) Bub1bH (hypomorphic) and Bub1b+ (wildtype) mice, 
investigating the role for Bub1b, resembling MVA1. The Bub1b-/- 

offspring died during early embryo development, Bub1b-/H offspring 
survived birth but died 12 h after birth. Furthermore, mouse embryo 
fibroblasts (MEFs) were also examined and revealed Bub1bH/H MEFs 
had deficient cell cycle arrest and aneuploidy, whilst Bub1b-/H MEFs had 
higher aneuploidy compared to Bub1bH/H. Male Bub1bH/H mice were 
infertile due to a 4-fold reduction in sperm compared to Bub1b+/+ mice. 
Bub1b+/+ mice were reported to be fully fertile. The crossing of Bub1bH/ 

H with Bub1b+/+ mice led to a reduction in the number of fertilised eggs 
[106]. Therefore, these data show that Bub1b is essential for spindle 
assembly checkpoints and defects cause aneuploidy; MSI was not re-
ported upon. In humans, infertility associations with MVA1 have not 
been reported to date. 

Mosaic variegated aneuploidy syndrome (MVA2) (OMIM #614114) 
is caused by variants within the CEP57 gene, and this is a diagnostic 
biomarker [72]. CEP57 protein functions to maintain microtubule sta-
bility by ensuring that spindle microtubules are attached to chromo-
somes for proper segregation [107–108]. A case study found secondary 
infertility could be a clinical feature of MVA2, but this is complicated by 
the consanguineous nature of the couple involved [72]. At the time of 
writing this review, MSI has not been detected within MVA1 or MVA2. 

Bloom syndrome 

Bloom syndrome (BS) (OMIM #210900) is the product of mutations 
to the causative gene, BLM. The BLM protein functions to repair DNA 
double stranded breaks (DSBs) via homologous recombination [97,109]. 
Therefore, the presence of a BLM variant is associated with an increased 
rate of MSI, due to abnormal expression patterns of the BLM gene 
[110,111]. Furthermore, other research not related to BS specifically, 
has associated MMR defects for DSB repair gene transcripts with MSI 
[112]. BS is an autosomal recessive syndrome which phenotypically 
presents as red rashes around the facial area, short stature and elongated 
limbs [113]. BS predisposes patients to other complications including 
type 2 like diabetes mellitus [114], sun-sensitive skin [115], moderate to 
severe immunodeficiency [115], and cancers including leukaemia and 
Burkitt lymphoma [116,110]. 

BLM gene variants in BS have also been linked to infertility. While 

Table 1 
Summary of genomic instability syndromes.  

Genomic 
Instability 
Syndrome 

Genes 
Mutated 

Gene summary or gene 
variant outcome 

Reference 

Mosaic 
Variegated 
Aneuploidy 

BUB1 and 
CEP57 

Defective chromosomal 
segregation leading to 
chromosomal aneuploidy. 

[70,72] 

Lynch Syndrome MSH2, 
MLH1, 
PMS2, MSH6 

Variants in these MMR genes 
gives arise to a range of different 
cancers associated to Lynch 
syndrome, including colorectal 
cancers. 

[96,59] 

Bloom 
Syndrome 

BLM Essential for homologous 
recombination for DNA double 
strand break repair. Variants of 
BLM can lead to leukaemia and 
Burkitt lymphoma. 

[97–98]  
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two case studies have revealed that female patients with BS are able to 
successfully achieve pregnancy and conceive [117–118], male patients 
with BS have been reported to be infertile with oligozoospermia or 
azoospermia [119]. El Ghamrasni et al. (ref 120) reported a higher 
occurrence of genomic instability including chromosome breaks and 
chromosome fragmentation of dicentric chromosomes in Blm− /− and 
Mus81− /− mice compared to wildtype mice. This study did not report on 
MSI [120]. However, this suggests MSI may be associated with BS as 
BLM is a DNA repair participating gene. 

BS is also associated with higher rates of sister chromatid exchange 
(SCE), a process by which sister chromatids break and re-join [121]. For 
instance, Howell and Davis [122] reported SCE counts between 31 and 
70 in BS patient, compared to normal chorionic cells that contained 6 to 
8 SCE counts; these discrepancies can be used to diagnose BS [122]. 
Other work has suggested that the rates of SCE in BS patients are be-
tween 10 and 12 times more than those without BS [123]. In mice 
models of BS, telomere length was observed to be reduced due to the loss 
of telomerase activity and a loss in telomeric repeats in fibroblast cells 
[124]. Therefore, telomeric dysregulation could also be a molecular 
characteristic within BS patients. Previous research has found short 
telomere length associated with MSI [125–128]. The mechanism linking 
these two processes is not entirely clear. 

DNMT1 codes for DNA methyltransferase 1 which participates in 
DNA methylation [129–130]. DNA methylation involves the attachment 
of methyl groups to CpG islands, suppressing gene expression 
[131–133]. In relation to MSI in BS, Guo et al. (ref 20), screened for 
MMR deficient genes in blm-deficient embryonic stem cells. This anal-
ysis revealed Dnmt1 as a putative novel MMR gene, as dnmt1-defiicent 
cells exhibited MSI and Dnmt1 expression was not detectable [20]. A 
similar study also reported DNMT1 as a novel MMR gene, using dnmt1- 
deficient mouse embryonic stem cells [134]. These data also suggest that 
there is a potential postzygotic predisposition to MSI in BS patients; 
whether this contributes to infertility remains unclear. 

Only one study attempted to analyse MSI in six unrelated BS patients, 
by PCR and cell line analysis [135]. This study used eight different cell 
lines, from six unrelated patients which included five BS fibroblast cell 
lines (GM02520A, GM03402A, GM03498C, GM03509A, GM03510), 
one BS SV40-transformed fibroblast cell line (GM08505B) and two BS 
EBV-transformed lymphoblastoid B cell lines (GM03403D, GM04408A) 
where the cell lines GM03498C and GM04408A came from the same 
patient [135]. This analysis reported that MSI could not be detected in 
all six patients. 

Patients with BS are predisposed to an increased risk of leukaemia 
and Burkitt lymphoma. Both cancer types arise in childhood in BS pa-
tients [98]. Of note, MSI has been reported within a BS-associated 
lymphoma. In this study, two Japanese siblings aged 23 and 25 of 
consanguineous parents were studied [136]. Genomic analysis revealed 
MSI within the p53 gene and a 3-bp deletion in the BLM gene [136]. MSI 
in non-cancerous cells was not evaluated in this report. 

Lynch syndrome 

Lynch syndrome (LS) (OMIM #120435) is associated with variants in 
MLH1 [137],MSH2 [138],MSH6 [68], and/or PMS2 [139]. These vari-
ants contribute to the onset of multiple cancers including endometrial 
[96], breast [140], colorectal [141], and prostate [142]. Recently, for 
the first time, testicular cancer was found to be associated with LS pa-
tients [143]. Testicular cancer may not be a common cancer to occur in 
male LS patients. 

Infertility is associated with LS. A case study revealed that females 
diagnosed with LS and CRC, have decreased fertility across a broad age 
range (15 to 47) compared to those with CRC but without LS [144]. This 
was expressed as “children per woman and is calculated as the sum of 
age-specific fertility ages 15 to 49”. This is based on a total fertility rate 
value defined as “an average number of children produced of a hypo-
thetical cohort of women had by the end of their reproductive life, if 

they children at the population age-specific rates during their whole life” 
[144]. In LS male patients decreased fertility was also observed in the 
same age range [144]. Even though mutations in MMR genes have been 
linked to male infertility contributing to oligozoospermia and azoo-
spermia [145–148], research to date has not addressed how LS is spe-
cifically linked to male infertility. 

LS is associated with other cancers as identified above in this section. 
Limited research thus far has reported MSI in LS. For instance, Latham 
et al. (ref 59), studied 15,409 patients with more than 50 different types 
of cancers present in LS patients. 53 of 326 (16.3%) had high levels of 
MSI (MSI-H), 13 of 699 (1.9%) has low MSI (MSI-l) and 37 of 14,020 
(0.3%) showed microsatellite stable phenotype (MSS). Furthermore, 33 
of 66 (50%) had primary tumours excluding CRC. In LS-related tumours 
containing MSI (MSI-H/l), 12 of 32 (37.5%) were urothelial, 26 of 137 
(19%) were CRC, 2 of 13 (15.4%) were gastric cancers. In those with 
high or low levels of MSI (MSI-H/I) pancreatic cancers 34 of 824 (4.1%); 
only 5 of these 34 (14.7%) were LS related [59], involving five germline 
MMR genes (MLH1, MSH2, MSH6, PMS2 and EPCAM). MSI can be 
detected in non-LS related breast [149], colorectal [150], prostate [151] 
and testicular cancers [87]. Therefore, further research is important for 
the investigation of MSI. However, as Latham et al. (ref 59) revealed, LS 
is complicated by the presence of LS and non-LS related cancers which 
may prove difficult to address MSI related studies in LS patients. 

Microsatellite instability in infertility and recurrent miscarriage 

In this section we have discussed MSI occurrences in infertile patients 
independent of genomic instability syndromes. After searching the 
literature, we found four papers [152–155], that reported links between 
MSI and infertility/RM, independent of genomic instability syndromes. 
We have identified that from these four studies that MSI may be a 
common feature in idiopathic infertility. These studies reveal MSI is 
associated with infertility/RM and spontaneous abortions. The associa-
tion of MSI within preimplantation failure in humans remains unclear. 
Some molecular mechanisms have recently been proposed for the po-
tential reasons for preimplantation failure [156], discussed further 
below. 

In the study of Kiaris et al. (ref 152) MSI was investigated at two 
different distal sites per spontaneously aborted embryo and compared 
against those of a normal birth. Thirty spontaneously aborted embryonic 
tissues were selected at the time of rejection and frozen until DNA 
analysis. Eight different microsatellite markers were selected: D6S344, 
D7S531, HRM, D12S94, D13S175, TCRD, THRA1 and D19S49. MSI was 
reported in 12 (40%) of the 30 specimens. In aborted embryonic tissue 
samples, in samples coming from those without a normal childbirth 61% 
(11 of 18 cases) had MSI. In samples that came from a normal birth, only 
8% (1 of 12 cases) had MSI. THRA1 and D6S344 presented instability in 
5 of the cases whilst D7S531 did not present MSI [152]. Both THRA1 and 
D6S344 have been found to be highly polymorphic microsatellite 
markers in other studies [157–160]. This provides evidence that MSI 
increases at the embryonic stages of pregnancy. Thus, MSI analyses 
should not be overlooked during genetic analysis of infertile patients 
and in embryos. 

A second report focused on infertility associated with an MSI site in 
the CTLA-4 gene [153]. The protein product of the CTLA-4 gene (CTLA-4 
protein) is an inhibitory receptor that maintains T-cell homeostasis 
through suppressive mechanisms [161–162]. Tsai et al. (ref 153) 
hypothesised that a microsatellite residing within the 3′UTR of the 
CTLA-4 gene, compromised of an AT(n) repeat region (between 16 bp 
and 46 bp total length), leads to mRNA instability thereby leading to 
altered CTLA-4 protein expression. In turn this may alter immune 
tolerance of the foetus in utero and predispose to foetal rejection and 
infertility. To test this hypothesis, 60 couples were studied, each with a 
minimum of 3 unexplained spontaneous miscarriages and compro-
mising a total cohort of 51 liveborn children and 10 abortuses. Cord 
blood and placental tissues from both liveborn and aborted foetuses 
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were genotyped for the CTLA-4 microsatellite locus. This revealed that 
the shorter alleles, inherited from the maternal side, were associated 
with increased foetal survival. Thus, mRNA transcribed from the longer 
alleles were shown to be intrinsically unstable, with reduced expression 
[153]. Other studies have also revealed a link between CTLA-4 gene 
expression patterns and infertility but did not report upon MSI 
[163–164]; whether protein expression is significantly altered by the 
CTLA-4 MSI site remains to be seen. 

A third study aimed to evaluate MSI incidence in 35 spontaneously 
aborted (between 6 and 20 weeks of gestation) embryonic tissues [154]. 
This study compared seven different microsatellite markers between 
parents and embryos; D3S1234, D4S194, D10S109, HRM, TCRD, 
THRA1 and D17S855. In total,19 of the patients who had a history of 
spontaneous abortion, had at least one instability in at least one of the 
microsatellite markers in aborted tissue samples [154]. This is sup-
porting the idea that MSI in an embryo contributes to spontaneous 
abortions, alike to Tsai et al. [153]. 

Finally, a pilot study aimed to identify genetic loci that could be 
contributing factors for idiopathic recurrent miscarriage (IRM) [155]; 
45 patients with IRM in the first trimester were included along with 44 
healthy controls that were matched by sex and ethnicity. Of the 403 
evaluable microsatellite markers studied, 17 were different between 
IRM patients and controls of which D6S446 (6q27), D9S1776 (9q31.1) 
and DXS1226 (Xp22.11), were found to have an association with IRM. 
Further analysis to identify genes around these sites, revealed 26 genes 
including TNFSF8 and TNFSF15 which are linked to immune function 
[155]. Of note, other members of the TNF superfamily are present at the 
maternal-foetal interface and likely play a key role in preventing em-
bryonic rejection [165,166]. Despite these findings, confirmatory 
studies with patients with IRM of other ethnicities should be conducted 
to confirm if MSI is present in the same microsatellites or to reveal other 
unstable microsatellites. 

We did not find any research assessing MSI in preimplantation em-
bryos. A recent review suggests there are several potential molecular 
mechanisms including DNA damage and repair, aneuploidy and meiotic 
recombination that could contribute to genomic instability within a 
preimplantation embryo [156] and which may lead to spontaneous 
abortion. More research within this area is clearly needed. 

Discussion and conclusion 

Genomic instabilities are a result of chromosomal aberrations 
serving as a genomic predisposition for genomic instability syndromes. 
Microsatellites are 1–6 bp units, encompassing approximately 3% of the 
human genome [22]. MSI is a result of mutations to genes in the DNA 
MMR pathway [18,167–168]. The aim of this review was to discuss 
research into the role of MSI and genomic instability syndromes in 
infertility/RM. Our findings reveal that MSI is poorly investigated in 
genetic analyses of patients with genomic instability syndromes and 
infertility, including patients with infertility/RM independent of 
genomic instability syndromes. Potential reasons that may account for 
this are that; 1) MSI is not a core component of genetic analyses for 
infertility or genomic instability, 2) current methods used in genetic 
analyses may not identify MSI as a genetic feature, 3) MSI may happen 
during preimplantation which may lead to technical and ethical barriers 
for analyses. 

Preimplantation genetic testing (PGT) is used in assisted reproduc-
tion methods to determine the genetic profile of embryos and to reveal 
whether an embryo is at risk of inheriting a disease or syndrome. PGT 
can be used to identify monogenic diseases (PGT-M) [169], chromo-
somal structural rearrangements (PGT-SR) [170] and aneuploidy (PGT- 
A) [170–171]. However, these current PGT methods do not address 
investigate MSI within infertile patients and/or in the embryo. From the 
studies that have been reviewed here we suggest that MSI may be a 
genomic instability feature a contributor to idiopathic infertility. 

To conclude, we comprehensively reviewed limited research to date 

to reveal the role of microsatellite instability in genomic instability 
syndromes and infertility. We suggest the need for further research to 
define the role of microsatellite instability in infertility, including mi-
crosatellite instability in preimplantation embryos. We therefore pro-
pose the use of microsatellite instability as a biomarker of underlying 
DNA repair deficiencies resulting in unexplained infertility. 

Key messages 

The involvement of microsatellite instability in genomic insta-
bility syndromes and infertility is poorly understood. Whether infertility 
is a clinical phenotype of genomic instability syndromes remains 
unclear. 
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