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Abstract

With the development of smart technologies built on big data analysis, the vision of smart
city, that aims to improve quality of life, reduce energy consumption and pollution and
drive economic growth, has been enhanced. One important component of this vision is
the urban transport network which is continuously challenged with increasing number of
vehicles on roads. This results in issues including long travel time, increasingly persistent
traffic congestion, accidents and road safety concerns. The research work in this thesis
aims to predict traffic in urban transport networks which are capable of solving those
issues.

Understanding and control of traffic patterns are fundamental towards this aim. For this,
we develop a short-term traffic flow prediction model, named EM, on linear roadways
based on machine learning technology. EM is able to analyse and extract spatial and tem-
poral features from original traffic data for the final prediction. This short-term traffic
prediction could give drivers traffic situation in advance and guide them to avoid con-
gested roads to reduce travel time and also relieve traffic congestion.

Moreover, armed with accurate short-term traffic prediction models on linear roadways,
we further develop a novel deep learning model, named ALLSCP, for short-term traffic
flow prediction on intersections where traffic situations are more complex compared to
linear roadways. The difference to EM is that ALLSCP can analyse more detailed features
(i.e. global- and local-spatial and short-, medium- and long-term temporal features) for
the final prediction. Due to the fact that traffic flows are almost controlled by traffic lights
in most cities around the world, this could benefit the optimisation of traffic light strategies
so that more vehicles are allowed to pass in a short duration.

After analysing traffic data on linear roadways and intersections, we consider and solve
traffic prediction problem on large-scale road networks and develop a deep learning model
(named SAGCN-SST) based on Graph Convolution Network (GCN) and Attention mech-
anism for multiple traffic speed prediction on large-scale road networks. This SAGCN-
SST is able to capture dynamic-spatial and temporal features for the final prediction. The
predicted traffic speed on large-scale road networks could be used to find vulnerable roads
and then optimise routing strategies for reducing traffic congestion and long travel time.



Furthermore, we design another deep learning model based on Virtual Dynamic Graph
Convolution Network and Transformer with Gate and Attention mechanisms (VDGC-
NTGA) for multi-step traffic speed prediction on large-scale road networks, which can
explore dynamic and hidden spatial and temporal features in network-wide for the final
prediction. VDGCNTGA has ability to generate and update a virtual dynamic road graph
each batch to represent dynamic and hidden spatial dependencies that are not described in
the real road graph. Compared to our last SAGCN-SST model, VDGCNTGA can exploit
more useful hidden spatial dependencies of road segments in network-wide.

Finally, we develop a deep learning model based on Sequence-to-Sequence architecture
with an embedded module using Graph Convolution Neural Network and Transformer,
named GCNT-Seq2Seq, for long-term traffic speed prediction in large-scale road net-
works. This model is able to analyse and extract local- and global-spatial and long-term
temporal features for the final prediction, which benefits the optimisation of traffic strate-
gies for improving road network efficiency.

For this research, we use real transportation data collected from urban transport networks
of different characteristics to evaluate our proposed models and also compare them against
well-known existing traffic prediction models.

Keywords: Urban Transport Networks, Traffic Prediction, Deep Learning, Data Anal-
ysis, Linear Roadways, Intersections, Large-scale Road Networks
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Chapter 1

Introduction

1.1 Background and Motivation

In recent years, with the economic growth, vehicles are more affordable, which results
in the increasing number of vehicles on roads. According to the report from Department
for Transport in United Kingdom ( UK), there are around 32.7 million passenger cars in
operation in the United Kingdom in 2021, an increase of 5.5 million from 2000. In the
world, there are around 1.4 billion vehicles in 2021 (Hedges n.d.).

Due to an increasing number of vehicles on roads, various traffic problems, including
traffic congestion, traffic accidents and long travel time, worsen and become serious chal-
lenges in recent decades. Particularly for large urban areas, those traffic problems are
worse because more job opportunities bring big challenges for mobility. Two obvious
traffic problems are traffic congestion and long travel time. INRIX reported that in 2019,
on average, an American citizen lost 99 hours (equivalent to USD $1,377 per driver) (IN-
RIX n.d.c) and a British citizen lost 115 hours (equivalent to £893 per driver) due to traffic
congestion, especially for road users in London losing 149 hours (INRIX n.d.d). It is pro-
jected that by the mid-21st century, the world’s urban population will almost double from
over 3.4 billion in 2009 to 6.4 billion in 2050 and the worst hit areas are usually urban
areas, which means the traffic situation will become worse in the future (INRIX n.d.c).
Figure 1.1 shows the top 25 cities with worst traffic congestion and their hours lost per
driver in the world in 2019 (INRIX n.d.a), in which per driver lost more than 119 hours
due to traffic congestion. From 2020, Covid-19 has spread all over the world. People has
been encouraged to work from homes, which results in an decreasing number of vehicles
on roads. Even so, traffic congestion still exists, and per driver from the top 25 cities
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with worst traffic congestion in the world still lost more than 50 hours (INRIX n.d.b).
This situation can be observed in Figure 1.2. In addition, traffic accidents also bring a big
challenge to the world. According to the report from World Health Organisation (WHO)
(Organisation n.d.), approximately 1.3 million people die every year because of traffic
accidents.

Apart from the death resulted from traffic accidents, there are also some negative influ-
ences, like air pollution and extra fuel costs, from traffic congestion and long travel time.
For air pollution, according to Transport and Environment Statistics 2021 Annual Re-
port (Seymour n.d.), transport contributed a substantial portion of air pollutants to UK’s
domestic total: 34% of NOX emissions, 13% of PM2.5 emissions, and 11% of PM10

emissions came from transport in 2019. For fuel costs, (Treiber et al. 2008) found that
there are an increase of fuel consumption of the order of 80% due to traffic congestion.
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To solve traffic problems mentioned above and reduce their negative influences to the
world, the advanced Intelligent Transportation Systems (ITSs) (Vaa et al. 2007) have
been developed for aiming to provide synchronous traffic information to achieve traf-
fic efficiency by minimising traffic problems including traffic congestion, accidents and
long travel time. Besides, it is also used for road safety and efficient infrastructure usage.
Application areas of ITSs includes Advanced Traffic Management System (ATMS), Ad-
vanced Traveller Information System (ATIS), Advanced Vehicle Control System (AVCS),
Advanced Public Transportation System (APTS), Advanced Rural Transportation System
(ARTS), and Advanced Commercial Vehicles Operations System (ACVOS).

All applications or systems of ITSs mentioned above are supported by traffic information
collection, processing, analysis and sharing. Traffic prediction as important traffic infor-
mation and fundamental of ITSs can efficiently release worse traffic situations like traffic
congestion, accidents and long travel time. For example, divers can be informed by the
predicted traffic states in advance so that they can select roads with smooth traffic. Be-
sides, the predicted traffic states on the road networks can also be used to find vulnerable
road segments and then help the navigator reroute so as to help divers avoid busy roads
and reduce travel time. For the traffic managers, the traffic prediction, especially for long-
term traffic prediction, can be used to help them make traffic strategies and decisions to
optimise the road efficiency. An efficient application is that traffic prediction can be used
to control traffic lights on intersections to allow more vehicles to pass in a short duration.

In recent years, many researchers have paid attention on various traffic predictions on
roadways, areas and road networks. The methodologies used in those traffic prediction
have evolved into using Deep Learning (DL) (LeCun et al. 2015) technique from the very
earliest stage using statistical technique (Hogg et al. 2005) and the second stage using
traditional Machine Learning (ML) (Jordan & Mitchell 2015) technique. This evolu-
tion is based on the development of technologies on two areas: 1) the advanced sensor
technology and 2) the new generation of powerful computers. The advanced sensor tech-
nology enables traffic data to be more affordable for analysing traffic patterns and being
used to optimise traffic prediction models while the new generation of powerful computer
enhances the ability of computation so as to enable models to be built with million pa-
rameters for obtaining more features from traffic data. Currently, the traffic prediction
problem has been solved in its third stage using deep learning technique.

The traffic problems mentioned above and the development of new technologies in sensor
and computation motivate the research work of this thesis to predict traffic in urban trans-
port networks based on DL technique. Furthermore, to summarise and clarify the logic
of this research, we use Figure 1.3 to show the overall logic of background that motivates
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this research work. From this figure, it is observed clearly that obvious traffic problems
include traffic congestion and incidents and the extra traffic problems include environment
pollution, long travel time and extra fuel costs caused by traffic congestion and incidents.
Traffic prediction can provide traffic states in advance used to reroute and make traffic
strategies for supporting the applications under ITSs so as to solve those traffic problems.

Figure 1.3: Thesis logic map.

1.2 Aims and Objectives

Considering that traffic prediction as an important role on ITSs benefits reducing travel
time, traffic congestion and accidents, this PhD research project aims to develop novel
deep learning models for traffic prediction in urban transport networks and offer high
prediction accuracy. To achieve this aim, the objectives are as follows:

1. Short-term traffic flow prediction on linear roadways – To build a novel hybrid
DL model for short-term traffic flow prediction on linear roadways to identify traffic
situations such as traffic congestion. The ability to predict emerging traffic patterns
is important for enabling many tasks in traffic management. By identifying traffic
situations in advance, ITSs may make management decisions in a timely and more-
informed manner. Compared to long-term traffic prediction or multi-step traffic
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prediction on network-wide where traffic patterns are more complex and not easily
captured, we start from analysing short-term traffic states on linear roadways. Based
on short-term traffic prediction, travellers can change their travel routes on-the-fly
to avoid travelling on the roads with traffic congestion to reduce travel time and not
exacerbating current traffic congestion.

2. Short-term traffic flow prediction on intersections – To develop a novel model
or an algorithm based on DL for short-term traffic flow prediction in intersections.
Statistics (Yu et al. 2013) show that, in the world, traffic delays caused by traffic
congestion in intersections accounted for more than 33% of total delay of urban
traffic while accidents in intersections took more than 50% of all traffic accidents.
Therefore, accurate traffic prediction on intersections could efficiently release those
situations. Besides, an increasing number of intersections are controlled by traffic
lights. A better-optimised traffic signal control method that splits traffic phases dif-
ferently based on the number of waiting vehicles can reduce traffic congestion and
improve traffic flow (Jafari et al. 2021). This results in smooth traffic flow that
brings less challenges for both short-term and long-term traffic predictions. Mean-
while, the accurate traffic prediction can benefit the optimisation of traffic signal as
well. The predicted traffic flow can be shared with traffic signal control systems and
used to adjust traffic phases to maximise traffic flow and reduce traffic congestion.
Therefore, accurate traffic prediction and a better-optimised traffic signal control
method benefit each other.

3. Multi-step traffic speed prediction on large-scale networks – To develop a novel
model or an algorithm based on the latest deep learning (DL) technologies for multi-
step traffic speed prediction on large-scale road networks. This could benefit iden-
tifying vulnerable roads and optimising traffic routing strategies so as to improve
the efficiency of the whole road network. “vulnerable roads” means to refer to road
segments or junctions that are especially prone to traffic congestion during both
normal operating conditions as well as on occasions when interruption events occur
(e.g., road accidents or maintenance work). Predicted traffic speed on large-scale
road networks can help find vulnerable roads so that the traffic department could
adapt some strategies like installing traffic lights and resetting off-peak times and
parking price. Besides, it also helps navigating software reroute so as to reduce
travel time for drivers.

4. Long-term traffic speed prediction on large-scale networks – To build a novel
DL model to analyse and extract specific traffic patterns for long-term traffic speed
prediction on large-scale road networks. Compared to short-term traffic predic-
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tion, long-term traffic prediction is more challenging due to sensitivity of error
propagation. In addition, long-term traffic prediction could be better for meeting
the requirement of decision making for traffic management while short-term traffic
prediction mainly works for real-time traffic control. Therefore, accurate long-term
traffic prediction could offer helps for traffic managers to make efficient strategies
and measures to improve the traffic efficiency in network-wide.

1.3 Contributions

Based on achieved results from the PhD research work that aims to develop novel DL
models for traffic prediction on urban transport networks and offer high prediction accu-
racy, our major contributions are as follows:

• We reviewed, categorised and summarised existing works that solve traffic predic-
tion problems from our perspectives. Specifically, we detailed the latest well-known
existing hybrid DL models by analysing their architectures and functions of inside
modules. Furthermore, we also conducted comparison experiments by selecting
ten representative and classical models and evaluating them on two large real-world
datasets (cf. Chapter 2).

• We designed an Ensemble Model, named EM, for short-term traffic flow prediction
on linear roadways and obtained high prediction accuracy. This EM model is able to
analyse and extract spatial-temporal features for traffic data (including traffic flow
and speed) collected from linear roadways by considering two important elements
including 1) high quality data (in volume and granularity) and 2) combinations of
prediction models (cf. Chapter 3).

• We developed a novel DL model based on Autoregressive integrated moving-average,
two Long-short term memories, Stacked autoencoder and Capsnet , named ALLSCP,
for short-term traffic flow prediction on intersections. The ALLSCP model are de-
signed to be capable of analysing and extracting short-, medium-, and long-term
temporal as well as global and local spatial features for contributing to final predic-
tion on intersections. We evaluated our ALLSCP model on real-world traffic data
collected from intersections and also tested it on collected traffic data from linear
roadways to show the robustness of ALLSCP (cf. Chapter 4).
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• We built a novel DL model, named SAGCN-SST (Self-Attention Graph Convo-
lution Network with Spatial, Sub-spatial, and Temporal blocks), based on the ad-
vanced DL technologies: Graph Convolution Network (GCN) and Attention Mech-
anism, for multi-step traffic speed prediction on large-scale road networks. The
SAGCN-SST model is developed to be able to analyse dynamic temporal-spatial
features in network-wide for multi-step traffic speed prediction. We then eval-
uated this model on two real-world traffic datasets from different places, named
LOOP-SEATTLE (Cui et al. 2018, 2019) from Greater Seattle and METR-LA (Li
et al. 2018) from Los Angles in United States (cf. Chapter 5).

• We further proposed a novel Virtual Dynamic Graph Convolution Network and
Transformer-based model with Gated and Attention mechanisms (VDGCNTGA)
for multi-step traffic speed prediction on large-scale road networks by considering
hidden spatial dependencies under real road networks and dynamic spatial-temporal
features. Compared to our SAGCN-SST model, the differences are that VDGC-
NTGA can exploit hidden spatial dependencies of road segments in network-wide
by generating the virtual graph using the attention mechanism and offer higher pre-
diction accuracy. We then evaluated this model on two real-world and large traffic
datasets from different places: PEMS-BAY from Bay Area and METR-LA from Los
Angles in United States (cf. Chapter 6).

• We finally designed a DL model, named GCNT-Seq2Seq, based on the Sequence-
to-Sequence architecture with an embedded module for long-term traffic speed pre-
diction. The embedded module uses Graph Convolution Neural Network for the lo-
cal spatial dependency analysis by conducting convolution operation on the k−hop

neighbourhood matrix while utilises Transformer for the global spatial dependency
analysis by implementing the attention mechanism that assigns individual weights
to neighbour road segments for contributing to the targeted road segment. We eval-
uated the GCNT-Seq2Seq model on a public large dataset named METR-LA from
Los Angles in United Sates (cf. Chapter 7).

1.4 Organisation

This thesis is organised into eight chapters. The first chapter introduces the background,
motivation and scope, core research works, main contributions and related publications
during the whole PhD research period. The structure of this thesis is summarised in
Figure 1.4.
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Figure 1.4: Thesis structure.

Chapter 2 provides an overview of the whole state-of-the-art that could be divided into
three stages: the very early stage based on statistical models; the second stage based on
traditional ML models; and the third (also current) stage based on DL models; for traffic
predictions including traffic flow, speed and travel time. Besides, it also defines the gen-
eral traffic prediction problem and the performance evaluation methods, and summarises
public data sources used in literature.

Chapter 3 describes our designed Ensemble Model, EM, for solving short-term traffic flow
prediction problem on linear roadways. We collected and analysed traffic data from linear
roadways and then evaluated our designed EM model on the collected traffic datasets. By
the end, we analysed and discussed the result of our EM model by comparing it to the
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results of several well-known existing models.

Chapter 4 presents our developed DL model, ALLSCP, for short-term traffic flow predic-
tion on intersections. It details the specific features (i.e. short-, medium-, and long-term
temporal as well as global and local spatial features) that our developed model is able
to extract from original traffic data for final prediction. Two real-world datasets from
different places are then collected and used for evaluating the developed model. In addi-
tion, comparison experiments via comparing our developed model to several well-known
existing models and ablation experiments by removing one module once to build the vari-
ants of ALLSCP are conducted and analysed to show the performance of our developed
model.

Chapter 5 describes our novel DL model, SAGCNT-SST, for multi-step traffic speed pre-
diction on large-scale road networks. It explains how SAGCNT-SST function extract
complex dynamic-spatial and temporal features for prediction on network-wide. Further-
more, two large datasets from different places are described and used for comparison
experiments and ablation experiments to show results.

Chapter 6 presents our novel DL model, VDGCNTGA, by building an inside algorithm
to generate a virtual road graph to exploit hidden spatial dependencies under the real road
graph, for multi-step traffic speed prediction on large-scale road networks. It details how
VDGCNTGA generate a virtual road graph and extract dynamic- and hidden-spatial and
dynamic-temporal features for final prediction. Similar to Chapter 5, two large datasets
from different places are then described and used for comparison experiments and ablation
experiments to show results.

Chapter 7 presents a novel DL model, GCNT-Seq2Seq, based on the Sequence-to-Sequence
architecture with an embedded module, for long-term traffic prediction on large-scale road
networks. The used dataset for evaluating the GCNT-Seq2Seq model and comparing it to
several well-known existing DL models is also described. By the end, the results of our
proposed model and its competed existing models are analysed and discussed.

Finally, Chapter 8 concludes this thesis and lists several future research directions related
to this research work.
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Literature Review

2.1 Introduction

Traffic prediction research has evolved rapidly over the years. For our purpose here, it can
be divided into three distinct stages: 1) the first stage mainly employs statistical methods,
e.g., (Van Der Voort et al. 1996, Ahmed & Cook 1979, Ho & Xie 1998, Williams et al.
1998); 2) the second stage uses traditional ML methods, e.g., (Ghosh et al. 2007, Castro-
Neto et al. 2009, Zhang et al. 2013, Lippi et al. 2013); 3) the third stage utilises more
advanced DL methods, e.g., (Mikolov et al. 2010, Huang et al. 2014, Jia et al. 2016,
Toncharoen & Piantanakulchai 2018, Diehl et al. 2019). The transition from the first
to the second stage is due to the breakthrough in ML models with non-linear kernels
or activation functions that can efficiently analyse non-linear relations of traffic data in
time domain. This compensates for the disadvantage of previous statistical models which
largely failed to take into account non-linear relations of traffic data (Zhang 2003). With
the emergence of new sensor technologies, traffic data with more features can be col-
lected for improving the prediction accuracy. Following this, DL models that are able to
learn features from large high-dimensional datasets have been used for traffic prediction.
This promotes the methods of solving traffic prediction problem into the third stage and
overcomes the disadvantage of ML models that are shallow and often, insufficient for
analysing large high-dimensional traffic data.

This chapter reviews existing works for traffic prediction from all three stages in detail
after giving general traffic prediction problem formulation in Section 2.2. The first stage
based on statistical methods is described in Section 2.3, the second stage based on ML
methods is presented in Section 2.4 and the third stage which is also the current stage
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based on DL methods is detailed in the Section 2.5. In addition, public data sources and
performance evaluation methods are described in Section 2.6 and Section 2.7, respec-
tively. Finally, the summary will be presented in Section 2.8.

2.2 General Traffic Prediction Problem Formulation

The existing works for solving traffic prediction problems in literature generally considers
traffic data in Euclidean space or Non-Euclidean space (Monti et al. 2017). In Euclidean
space, traffic data from roadways or road networks is considered to be grid data. On the
other hand, in Non-Euclidean space, traffic data is considered as structured graph data and
road distances between detectors on the roadways or road networks are usually used to
calculate the weights of edges (Li et al. 2018). The section will describe traffic data used in
existing works including traffic flow or speed, road network data and external information
such as weather and road properties, and then give two common problem formulations.
One only uses traffic data and/or external information to solve traffic prediction problem
in Euclidean space while the other one uses both traffic data (and/or external information)
and road network data to solve the problem in Non-Euclidean space.

2.2.1 Traffic Data

In this thesis, traffic data refers to traffic flow and/or traffic speed. Traffic data from a road-
way and/or a road network with N sensors is represented as xt = {x1

t , x
2
t , . . . , x

i
t, . . . , x

N−1
t ,

xN
t }; xt ∈ RN , (i = 1, 2, 3, . . . , N), in which xi

t denotes the traffic data measured at
node i at tth time interval. Typically, a time interval can represent 5, 15, 30, 45 and 60
minutes (Bickel et al. 2007). Then X = {xt−T+1, xt−T+2, . . . , xt−1, xt};X ∈ RT×N ,
(T = 1, 2, 3, . . . ) gives the traffic data collected from N sensors in the network for
the past T time intervals. Conversely, the traffic data for the future is written as X′ =

{xt+1, xt+2, . . . , xt+t′ , . . . , xt+T′} ∈ RT ′×N where T ′ is the prediction horizon. Gener-
ally, traffic prediction problems can be categorised into short- (T ′ < 30 minutes) and
long-term (T ′ ≥ 30 minutes).

2.2.2 Road Network Data

Considering a road network represented by G = (V , E) where V is the set of nodes repre-
senting sensor locations or road segments with |V| = N . E is the set of edges representing
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physical connectivity between sensor locations or road segments. For general networks
like social networks, G can be represented by A ∈ RN×N , the N × N symmetric adja-
cency matrix, with its element Ai,j = 1 if there exists a link between node i and j and
0 otherwise. However, in road networks used for traffic prediction, G is represented by
Ã = (A + IN) ∈ RN×N where IN is the N ×N identity matrix because the future traf-
fic states of a node is influenced by its own current state. The degree matrix of graph G,
D ∈ RN×N is then defined as Di,i =

∑
j Ai,j , which sums the number of edges connected

to each node. Some existing works like (Li et al. 2018, Zhang, Li, Lin, Wang & He 2019)
use Ã, that only represents the physical connections between the node and its adjacent
nodes, to analyse spatial dependencies. Other existing works like (Cui et al. 2019, Zhao,
Song, Zhang, Liu, Wang, Lin, Deng & Li 2019) use Ãk = (A+ IN)

k, that represents the
physical connections between the node and its k − hop neighbours, in place of Ã.

2.2.3 External Information

The traffic system is a complex system that can be influenced by various external factors,
such as Points Of Interest (POIs)(such as high street, shopping malls and restructures),
incidents, weather, holidays, weekdays and weekends. For example, the distribution of
POIs around a road segment can affect traffic states by determining the visiting patterns
and the attractiveness of the road segment (Zhu et al. 2021). Therefore, for enhancing
the performances of models, those external factors are considered in some existing works
such as (Jia & Yan 2020, Sun, Yang, Han, Ma & Zhang 2020, Wang et al. 2021, Zhu et al.
2021). Here, we use E to contain those external information for formulating the traffic
prediction problem in Section 2.2.4.

2.2.4 Problem Formulation

Based on the traffic data, the graph information of the road network and the external in-
formation explained above, the traffic prediction problem defined in Euclidean space and
Non-Euclidean space in literature can be formulated as Eq. (2.1) and Eq. (2.2), respec-
tively.

X′ = F

(
X

)
or X′ = F

(
X;E

)
(2.1)
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X′ = F

(
X;G

(
V , E , Ã(orÃk)

))
or X′ = F

(
X;G

(
V , E , Ã(orÃk)

)
;E

)
(2.2)

where the objective is to learn the mapping function F (.) and compute the traffic data in
the next T ′ time intervals given the traffic data in the past T time intervals and/or external
information E and/or road network information G.

In addition, we also see two main approaches for addressing the traffic prediction problem
above: the direct prediction approach (cf. Figure 2.1 (a)) and the auto-regressive approach
(cf. Figure 2.1 (b)). The direct prediction approach, for instance adopted by (Zheng et al.
2020), uses observed traffic data to directly predict traffic states in the multiple future time
steps at the same time. The farther away from the observations the predicted traffic data is,
the larger the error tend to be. The auto-regressive approach, on the other hand, adopted
in (Zhang, Li, Lin, Wang & He 2019, Cui et al. 2019, Li et al. 2018), predicts traffic
data based on the short-temporal dependency. The error-prone predictions are included
as the inputs along with last prediction to make further predictions, which results in error
accumulations.

2.3 Statistical Models

Statistical models are based on statistical analysis of data and are very efficient tools
to find and analyse patterns from data. Based on those advantages, it has been intro-
duced for solving traffic prediction problems at the early stage. One of the earliest statis-
tic model used for short-term traffic prediction is the Auto-Regressive Moving Average
(ARMA) (Box et al. 1970). It considers the problem as a pure temporal process. Based
on ARMA model, (Ahmed & Cook 1979) further built the Auto-Regressive Integrated
Moving-Average (ARIMA) model for analysing freeway traffic time series data. 166
datasets from three places including Los Angeles, Minneapolis and Detroit are collected
to optimise parameters of ARIMA model for short-term traffic prediction. Both ARMA
and ARIMA include a general Auto-Regressive module (AR) making predictions using
previous traffic data and a general Moving Average (MA) module making predictions us-
ing the mean and previous errors. The difference is that ARMA is commonly used for
stationary data while ARIMA is not only utilised for stationary data but also for non-
stationary data by differentiating to remove the trend in a time series and then making it
stationary.
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(a)

(b)

Figure 2.1: (a) Traffic prediction with long-temporal dependencies. (b) Traffic prediction
with the error accumulation. (The colour indicates the prediction error, the darker the
larger.)

ARIMA has three important parameters: (1) p – the number of auto-regressive terms,
(2) d – the number of non-seasonal differences for converting data to be stationary and
(3) q – the number of lagged forecast errors in the prediction equation. For the short-
term traffic prediction, the input data is first processed to fulfil the stationary property by
differentiating the input d times. Then short-term temporal features are extracted from
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previous p time intervals with the number of lagged prediction errors q by using Eq. (2.3).

xi
t+t′ = c+ ϕ1x

i
t + ϕ2x

i
t−1 + · · ·+ ϕp−1x

i
t−(T−2) + ϕpx

i
t−(T−1) (2.3)

where ϕp is the parameter of the auto-regressive part of ARIMA, and c is a constant.

Motivated by the accuracy of traffic prediction achieved by ARMA and ARIMA, some
variants were further developed. For example, Van Der Voort et. al. (Van Der Voort
et al. 1996) combined a Kohonen map with ARIMA model (named KARIMA) for pre-
dicting short-term traffic flow, in which the Kohonen map is used as an initial classifier
and each class has an individually tuned ARIMA model associated with it. William et. al.

(Williams & Hoel 2003) argued that seasonal patterns could be exploited to improve pre-
diction accuracy, and proposed the Seasonal ARIMA (SARIMA) model for traffic flow
prediction.

In addition, ARIMA has also been combined with traditional ML algorithms and recent
popular DL algorithms for particular pattern analysis of traffic data. Li et. al. (Li et al.
2016) integrated ARIMA and Support Vector Regression (SVR) to build hybrid models
(named AS and SA) for short-term highway traffic flow prediction, in which ARIMA is
used to analyse short-term periodical traffic patterns. The results are compared to the
results from single ARIMA and SVR, and indicate that ARIMA is capable of improv-
ing traffic prediction accuracy when combined with SVR (Li et al. 2016). Mehdi et.

al. (Mehdi et al. 2019) combined ARIMA and the fuzzy regression modules to build a
Fuzzy Autoregressive Integrated Moving Average (FARIMA) model for traffic prediction
on cloud computing, in which ARIMA is also used to analyse short-term traffic patterns.
Another work that combines ARIMA and Neural Network (NN) modules to build a NN-
ARIMA model was developed in (Ma, Antoniou & Toledo 2020), in which ARIMA is
utilised to extract local-periodical patterns of traffic data. Furthermore, our work (Zheng
et al. 2021) proposed a joint temporal-spatial ensemble model, named ALLSCP, by in-
tegrating ARIMA, Long-Short Term Memory (LSTM), Stacked AutoEncoder (SAE) and
Capsule Neural Network (CAPSNET) for short-term traffic flow prediction. The function
of ARIMA in ALLSCP is similar to its in (Li et al. 2016, Mehdi et al. 2019, Ma, Antoniou
& Toledo 2020) for analysing short-term traffic patterns.
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2.4 Machine Learning Models

As discussed in Section 2.1, statistical models, including ARIMA and its various variants,
are capable of analysing short-term traffic patterns but could not capture long-term and
non-linear relationships in traffic data. Even in hybrid models that are built by combining
several modules based on their capabilities, statistical models are only considered as a
module to analyse one of traffic patterns like the short-term traffic pattern. To account for
the non-linearity in traffic data, ML models, that have been widely used for solving non-
linear prediction problems in various different fields such as in the chemical industry (Liu
et al. 2015, 2018), biology (Costello & Martin 2018), and modern manufacturing systems
(Chen et al. 2017), were then advocated. In this section, we will present ML models for
solving traffic prediction problem.

According to (Shalev-Shwartz & Ben-David 2014, Sun, Aljeri & Boukerche 2020), ML
models used for solving traffic prediction problems can be categorised into two groups:
1) regression models that learn the relationship of the dependent variables and the inde-
pendent variables and then use a curve or a line to fit them and 2) classification models
that calculate the similarities of the observed data and its targeted data and then use the
learned similarities to make multiple classifications as predictions. The following content
will explain those two groups, respectively.

2.4.1 Regression Models

The type of well-known regression models applied for traffic prediction is linear regres-
sion where predictions are achieved by considering it as a linear mapping between the
observed traffic data and its targeted traffic data. For example, (Hobeika & Kim 1994)
developed a linear regression model to predict traffic flow on a given road segment by
considering the strong effect of the upstream traffic states on the current location traffic
state. Authors in (Hobeika & Kim 1994) combined three prediction modules and each of
them was based on different traffic variables including upstream traffic flow, current traf-
fic flow and the average of historical traffic flow. These three modules were evaluated and
selected by a linear regression model for traffic prediction on three different prediction
horizons. Another work that uses a linear regression model to predict travel time based on
the linear relationship between future travel time and previous travel time was developed
in (Rice & Van Zwet 2004).

Linear regression models mentioned above (Hobeika & Kim 1994, Rice & Van Zwet
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2004) could not capture non-linear patterns in traffic flow. Therefore, researchers com-
bined linear regression models with other methods for traffic prediction in the later liter-
ature. For example, (Fei et al. 2011) joined a Bayesian inference framework into a linear
regression model to build a Bayesian inference-based Dynamic Linear Model (DLM) for
online short-term travel time prediction on a freeway stretch. DLM is one part of the
proposed method in (Fei et al. 2011) that considers the predicted freeway travel time as
the sum of the median of historical travel times, time-varying random variations in travel
time, and a model evolution error. The median is used to represent travel time patterns
while the variation represents unexpected fluctuations. Bayesian inference is used to re-
vise the state of a priori knowledge of travel time based on new available information.
Furthermore, (Okawa et al. 2017) built a traffic prediction model based on Convolved Bi-
Linear Poisson Regression on multiple inter-city roads, which aims to reduce the number
of model parameters. In addition, the stochastic variational Bayes method (Paisley et al.
2014) is utilised to solve the optimisation problem, which allows model parameters to be
updated online.

In summary, regression models have several disadvantages: 1) difficult to deal with long-
term traffic prediction problems; 2) hard to find a set of model parameters to represent
traffic patterns hidden in real traffic data; 3) learned parameters only suitable for a specific
road, not general for other roads; 4) only suitable for solving simple road traffic prediction
problem, not for roads with complex structures and richer traffic patterns. On the contrary,
for traffic prediction on simple roads or just road stations, regression models would be
efficient and applicable.

2.4.2 Classification Models

The two common classification models used for traffic prediction are K-Nearest Neigh-
bours (KNN) and Support Vector Machine (SVM). KNN can capture the spatial relation-
ship between road segments by calculating the similarities of historical traffic states in a
sensor with its neighbours. On the other hand, SVM avoids the disadvantages of solutions
easily fall into local optimum compared to other nonlinear prediction models. A variant
of SVM used for solving regression problem is named as SVR. The idea behind SVR is
that the traffic prediction problem is transformed into a linear regression problem in high
dimensional space by its kernel function.

(Zhang et al. 2013) proposed a KNN model for short-term traffic flow prediction on ur-
ban expressways, in which the original data is pre-processed and standardised to avoid the
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magnitude difference of the sample data and improve the prediction accuracy. Habtemichael
et. al. (Habtemichael & Cetin 2016) proposed an enhanced KNN model for short-term
traffic prediction by identifying similar traffic patterns using the weighted Euclidean dis-
tance. Another improved KNN model was developed in (Cai et al. 2016) to enhance pre-
diction accuracy based on spatial-temporal correlation. The authors used equivalent dis-
tances to replace the physical distances among road segments and then utilised a spatial-
temporal state matrix to describe the traffic state of a road segment. Finally, Gaussian
weighted euclidean distance is used to find the similarities of historical traffic states and
the current traffic state for prediction. To solve the negative effects of the uncontrollable
and unpredictable elements of special events on prediction, (Yu et al. 2019) built a Spe-
cial Event-based KNN (SEKNN) model, in which both euclidean distance and cosine
distance function are used to calculate the similarities of the defined benchmark state and
trend vectors.

An early work that introduced SVR into the traffic prediction topic was conducted in
(Ding et al. 2002) for traffic flow prediction on a given crossroad. SVR is commonly
considered as a kernel-based ML model. Therefore, different SVRs have been developed
by defining different kernels for traffic prediction. For example, both (Castro-Neto et al.
2009) and (Hong et al. 2011) use Radial Basis Function (RBF) as the kernel function of
SVR for traffic flow prediction. The difference is that SVR in (Castro-Neto et al. 2009) is
working online and could predict short-term traffic flow under both typical and atypical
situations and SVR in (Hong et al. 2011) uses the ant colony optimisation algorithm to
determine the values of its parameters. Furthermore, (Lippi et al. 2013) introduced two
seasonal kernel functions including seasonal RBF function and seasonal linear function
to SVR to facilitate SVR to make use of the seasonal information in the traffic records.

In summary, classification models could analyse nonlinear relationships of traffic data
compared to statistical models. However, they are shallow to analyse complex traffic pat-
terns hidden under road networks, especially for large-scale road networks with hundreds
of sensor stations or road segments.

2.5 Deep Learning Models

DL models used for traffic prediction can be categorised into two groups: individual and
hybrid DL models. The individual DL model only uses one type of DL model while the
hybrid DL model combines several types of DL models to build the hybrid model (Li
et al. 2021). We will review DL models based on those two groups in the next section.
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2.5.1 Individual Deep Learning Models

Lv et. al. (Lv et al. 2015) built a SAE model to learn generic traffic flow features and then
trained it in a greedy layer-wise fashion. SAE is a deep learning network built based on
multiple autoencoders as building blocks where each block has one input layer, one hidden
layer and one output layer. Another work, that is also built based on deep autoencoders
with symmetrical layers for the encoder and the decoder to learn temporal correlations of
a transportation network, was proposed in (Zhang, Yao, Hu, Zhao, Li & Hu 2019).

Following the success of Convolution Neural Network (CNN) in the area of image recog-
nition, it has been introduced to the traffic prediction area where traffic data is first trans-
formed into images and then learned by CNN. For example, (Jiang & Zhang 2018) con-
verted GPS data into images and built a DL model based on CNN to learn features from
the converted images for prediction. Another work that learns traffic as images was
(Zhang et al. 2017), in which the proposed model, ST-ResNet, employs convolution-
based residual networks to model nearby and distant spatial dependencies between any
two regions in a city. Considering three patterns of crowd traffic flow including temporal
closeness, period and trend, ST-ResNet is capable of analysing those patterns and then
fuses them for final prediction. Furthermore, (Kim et al. 2018) proposed a neural network
with capsules that could replace max pooling in CNN model to avoid losing important
information by locally taking the highest activation values, for traffic flow prediction.

Considering traffic data having definite temporal patterns, (Vinayakumar et al. 2017, Khan
et al. 2019, Ramakrishnan & Soni 2018) evaluated various recurrent neural networks in-
cluding simple Recurrent Neural Network (RNN), LSTM, Gated Recurrent Unit (GRU)
and Identity RNN (IRNN) for traffic prediction. In those works, authors consider mod-
elling traffic data as pure time series data and predict the future time series based on
previous time series with long-term dependencies.

In summary, individual DL models mentioned above could predict traffic states in the fu-
ture but could not fully exploit features that are helpful for improving prediction accuracy.
For example, features learned from traffic images by CNN only represent local relations
of traffic data due to the limitation of the kernel size in CNN layers. Besides, features
learned from various RNN only carry temporal relations of traffic data. However, traf-
fic data has not only spatial dependencies but also temporal dependencies, especially on
large-scale road networks.
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2.5.2 Hybrid Deep Learning Models

Single DL models presented in Section 2.5.1, such as RNN and its variants (LSTM and
GRU) (Fu et al. 2016), and CNN (Toncharoen & Piantanakulchai 2018), are unable to
fully analyse spatial-temporal dependencies of traffic data hidden in large-scale road net-
works. Following this, in recent literature, hybrid DL models are constructed by combin-
ing several individual DL models to improve prediction accuracy. Furthermore, (Yin et al.
2021a, Shi et al. 2019, Seo et al. 2017, Zhu et al. 2018) summarised that existing hybrid
DL models commonly consist of two types of modules for analysing spatial and tempo-
ral dependencies, respectively. Through reviewing the recent literature, hybrid DL models
that satisfy this condition commonly contain CNN or Graph Convolution Network (GCN)
for spatial dependency analysis and LSTM or GRU for temporal dependency analysis.

We present a summary of hybrid DL models in Table 2.1 according to their main con-
stituent models and further segregated chronologically by year of publication. From this,
we can classify them into three based on their choice of model for analysing spatial depen-
dencies: 1) CNN-based models, 2) GCN-based models, and 3) transformer-based models.
We also show the prediction task (either predicting traffic flow, speed and/or occupancy),
prediction horizon considered and the dataset(s) used in those works.
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We also create a taxonomy of these models which is shown in Figure 2.2. In the following,
we will detail our taxonomy.
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Convolution Neural Network-based Models

CNN has been applied in different fields including sentence classification (Chen 2015),
image classification (Krizhevsky et al. 2012), video classification (Karpathy et al. 2014)
and human action recognition (Ji et al. 2012). It extracts local spatial features via its
convolutional kernels. CNN was introduced into solving traffic prediction problems due
to its ability of processing spatial correlations (Lawrence et al. 1997). For example, (Ma
et al. 2017) exploited CNN for traffic speed prediction on large-scale road networks by
considering traffic data as images. However, due to CNN only focusing on spatial feature
extraction, (Ma et al. 2017) neglected the important contributions of temporal features
towards the final prediction. As such, LSTM and GRU are often combined with CNN
to form hybrid DL models to supplement the disadvantages of CNN for temporal feature
extraction (cf. Table 2.1).

From Figure 2.2, CNN-based models could be grouped into fixed CNN-based models and
dynamic CNN-based models based on the types of spatial-temporal feature analysis.

Fixed CNN-based models: Fixed CNN-based models consider the spatial-temporal de-
pendencies of traffic data being fixed via sharing parameters, which means the different
neighbouring sensors or road segments affect traffic state on the targeted sensor or road
segment in the same level. From the perspective of framework design, fixed CNN-based
models can also be categorised into two: paralleled and stacked.

1. Paralleled – CNN and LSTM (or GRU) are respectively used to process spatial
and temporal features and then their outputs are concentrated and sent to a fully-
connected layer for final prediction

2. Stacked – CNN is used to extract spatial features from original spatially-fused traffic
time series first and then its output is sent to LSTM (or GRU) as the input for the
temporal feature extraction and the final prediction

Adopting the paralleled framework, Wu et al. (Wu & Tan 2016) used a 1D CNN and
two LSTMs to build a hybrid DL model, named CLTFP. 1D CNN is used to exploit inner
spatial dependencies of the road network. One of LSTMs is used to capture short-term
temporal features from previous hours and the other is utilised to extract periodic features
from past days and weeks. The spatial, short-term temporal and periodic features are
fused into a feature vector and then sent to a regression layer to perform predicting. The
other two similar models (named U-Net and TreNet) were developed by Niu et al. (Niu
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et al. 2019) and Zhao et al. (Zhao, Lin & Xu 2019) respectively. Compared to (Wu &
Tan 2016, Niu et al. 2019, Zhao, Lin & Xu 2019) that directly combine CNN and LSTM
in the parallel way, Liu et al. (Liu et al. 2017) firstly combined CNN and LSTM to gen-
erate a Conv-LSTM module in the stacked way and then combined the Conv-LSTM and
Bi-LSTM in the parallel way for traffic flow prediction. Conv-LSTM is used for spatial-
temporal feature extraction and Bi-LSTM is utilised for periodic feature extraction. A
fully-connected layer as a predictor is used to generate final prediction by feeding the
concentration of the extracted spatial-temporal and periodic features. Considering the in-
fluence of exterior factors on traffic prediction, such as weather condition and the physical
characteristics of roads, Zheng et al. (Zheng et al. 2019) developed a model named DELA
for traffic flow prediction. This model not only includes an integrated model composed of
CNN and LSTM but also contains an embedding component for learning exterior factors
such as route structure information, weather conditions and date information.

For the stacked, two models (named SRCNs and MSTFLN) were developed by Yu et al.

(Yu et al. 2017) and Zhang et al. (Zang et al. 2018), respectively. Both models learn
traffic data as a series of static images by combining CNN and LSTM. SRCNs uses 2D
CNN instead of 1D CNN due to considering the drawback of 1D CNN failing to analyse
interactions of roads in the network. MSTFLN utilises an extra CNN for final prediction
apart from the combined modules used for the spatial-temporal feature extraction. To
analyse traffic state in details, Jin et al. (Jin et al. 2018) proposed a DL-based approach
named STRCNs to predict both inflow and outflow of crowds in each region of a city.
STRCNs consists of four modules: a basic neural network and three recurrent convolu-
tional network modules composed of CNN and LSTM. The basic neural network captures
external features and the three recurrent convolutional network modules focus on learning
both spatial and temporal dependencies in crowd flows corresponding to closeness, daily
influence and weekly influence, respectively. The four outputs from these modules are
merged together with different learnable weights before passing the tanh layer for final
prediction. Compared to (Yu et al. 2017, Zang et al. 2018, Jin et al. 2018) that predict
traffic data without considering the types of roads, Yang et al. firstly used a Spatial-
Temporal Correlation Algorithm (STCA) to identify and extract the critical road sections
and then developed a hybrid DL model (named CRS-ConvLSTM NN) based on CNN and
LSTM for traffic speed prediction on these critical road sections. To accelerate the speed
of training process, Duan et al. (Duan et al. 2018) used a greedy reinforcement policy
to train a deep hybrid model (named CNN-LSTM) based on CNN and LSTM. Essien
et al. (Essien et al. 2019) developed a stacked autoencoder, including an encoder based
on CNNs and a decoder based on Bi-LSTMs, for traffic flow and speed prediction. An-
other model (named STCNN) based on the encoder-decoder architecture was proposed in
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(He et al. 2019) for predicting long-term traffic flow. The encoder consists of a ConvL-
STM to learn the spatial-temporal traffic dependencies and a Skip-ConvLSTM to learn
the periodic traffic patterns. The decoder consists of another ConvLSTM for decoding the
spatial-temporal dependencies from the output of the encoder.

Dynamic CNN-based models:

Fixed CNN-based models consider that different neighbouring sensors or road segments
affect traffic state on the targeted sensor or road segment in the same level. The fact is
that different neighbouring sensors or road segments bring different effects for traffic state
on the targeted sensor or road segment. Similarly, traffic state in different previous time
intervals also bring different effects for traffic state in the future. Due to these reasons, the
attention mechanism, that represents a major breakthrough in the field of natural language
processing, has been introduced into defining different weights in the space and/or time
dimensions for analysing dynamic spatial-temporal dependencies. By dynamic CNN-
based models, we refer to models that has the ability to analyse dynamic spatial-temporal
dependencies.

For obtaining dynamic dependency in the space dimension, Wu et al. (Wu et al. 2018)
proposed a Deep Neural Network-Based Traffic Flow prediction model named DNN-BTF,
which uses the attention mechanism to learn from the traffic speed and flow and generate
dynamic weights first. Then, these weights are joined into traffic flow for generating a
near-term traffic flow matrix that is sent to the CNN and GRU modules for spatial and
temporal feature extractions, respectively.

For achieving dynamic dependency in the time dimension, Zhao et al. (Zhao, Qu, Zhao
& Jiang 2019) proposed an end-to-end DL approach (named WSTNet) based on wavelet
multi-scale analysis, which adopts the attention mechanism into LSTM for obtaining dif-
ferent weights relating to positions of the input sequences across the entire time intervals.
Compared to (Wu et al. 2018, Zhao, Qu, Zhao & Jiang 2019), WSTNet uses discrete
wavelet decomposition to decompose original traffic data into multilevel time-frequency
traffic sub-series at different time scales before sending to an integrated model based on
CNN and LSTM with attention mechanism.

For obtaining dynamic dependencies in both space and time dimensions, Yao et al. (Yao
et al. 2019) proposed a DL model, Spatial-Temporal Dynamic Networks (STDN), which
defines and addresses dynamic-spatial dependencies and dynamic-temporal dependencies
by a flow-gated local CNN and LSTM with a self-attention mechanism, respectively.
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Graph Convolution Neural Network-based Models

The CNN-based models in Section 2.5.2 consider road networks as regular grids and traf-
fic data with regular Euclidean structure. However, road networks are inherently irregular
and traffic data should be treated as non-Euclidean data (Ahmed et al. 2018). There-
fore, GCN with the capability of dealing with non-Euclidean structured data has been
introduced into the task of traffic prediction. Similar to CNN-based models, GCN-based
models can be also classified into two: fixed and dynamic, based on considering spatial-
temporal dependencies as fixed or dynamic.

Fixed GCN-based models: Commonly, stacked architecture is adopted for GCN-based
models that aim to achieve fixed spatial-temporal features towards final prediction. For
example, Zhao et al. (Zhao, Song, Zhang, Liu, Wang, Lin, Deng & Li 2019) proposed a
Temporal Graph Convolutional Network (named T-GCN) model. It combines GCN with
GRU for traffic speed prediction. GCN is used to learn complex topological structures
from the k − hop neighbourhood matrix for capturing spatial dependencies and GRU is
utilised to learn changes of traffic data along the time dimension for capturing temporal
dependencies. To enrich traffic information, Cui et al. (Cui et al. 2019) proposed a Traffic
Graph Convolutional Long Short-Term Memory Neural Network (named TGC-LSTM),
based on GCN and LSTM, to learn the interactions of roads in a large-scale road network
from all k−hop neighbourhood matrices. An L1-norm on graph convolution weights and
an L2-norm on graph convolution features are added to the loss function for enhancing
the interpretability of the model.

In addition, based on the breakthrough of the sequence-to-sequence (Seq2Seq) architec-
ture that is capable of dealing with the long-term sequence problems, Seq2Seq has been
integrated into hybrid DL models for analysing the long-term dependency. For exam-
ple, Li et al. (Li et al. 2018) developed a DL model based on Diffusion Convolutional
Recurrent Neural Network (DCRNN) under the Seq2Seq architecture for traffic speed
prediction, and achieved better performance on two large real-world datasets, when com-
pared to recurrent neural network with Fully Connected LSTM hidden units (FC-LSTM)
(Sutskever et al. 2014). Both the encoder and the decoder inside the Seq2Seq architec-
ture consist of GRUs embedded by diffusion convolutional process. The other two hybrid
models under the Seq2Seq architecture for traffic speed prediction were developed in
(Liao et al. 2018) and (Xie et al. 2019). The hybrid model in (Liao et al. 2018) incorpo-
rates the offline geographical and social attributes, spatial dependencies and online crowd
queries with a deep fusion. The model in (Xie et al. 2019) adds more temporal attributes
including date information on public holidays, working days, peak hours and off-peak
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hours for contributing to final prediction in the decoder of the Seq2Seq architecture. Pan
et al. (Pan et al. 2019) developed a deep-meta-learning based model named ST-MetaNet
under the Seq2Seq architecture to predict traffic in a road network. The encoder and
the decoder in ST-MetaNet have the same network structure that consists of four compo-
nents: 1) basic RNN for learning long range temporal dependencies, 2) Meta-knowledge
learner for learning the meta-knowledge of nodes and edges from node attributes and edge
attributes, respectively, 3) Meta-GAT for capturing diverse spatial correlations by individ-
ually broadcasting locations’ hidden states along edges, and 4) Meta-RNN for capturing
diverse temporal correlations associated with the geographical information of locations.

Dynamic GCN-based models:

Fixed GCN-based models address the traffic prediction problem as a fixed spatial-temporal
process. Similar to dynamic CNN-based models, dynamic GCN-based models treat the
traffic prediction problem as a dynamic spatial-temporal process via introduction of the
attention mechanism for considering the fact that different neighbouring sensors or road
segments and different previous time intervals individually affect the targeted sensor or
road segment and the future time intervals differently.

For applying the attention mechanism on the space dimension to extract dynamic spatial
dependency, our work in (Zheng et al. 2022) developed a model named SAGCN-SST,
which joins the attention mechanism into GCN layers for analysing dynamic spatial de-
pendencies and uses the Seq2Seq architecture for dealing with the long-temporal depen-
dency, for traffic speed prediction in large-scale road networks.

Using attention mechanism on the time dimension, Li et al. (Li, Xiong, Chen, Lv, Hu, Zhu
& Wang 2019) proposed a graph and attention-based long short-term memory network
(named GLA), to capture the spatial-temporal features of traffic flow data. GLA uses
GCN to mine the spatial relationships of traffic data, and then the output of GCN is fed
to LSTM with the soft attention mechanism for the dynamic temporal feature extraction.
Another model (named AGC-Seq2Seq-Att) which also joins the attention mechanism into
LSTM for dynamic temporal feature analysis, was developed in (Zhang, Li, Lin, Wang &
He 2019).

For both spatial and temporal dimensions, Do et al. (Do et al. 2019) proposed traffic
flow predictor with spatial and temporal attentions (named STANN) under the Seq2Seq
architecture. The original traffic data and the adjacency matrix in previous time intervals
are processed by the attention mechanism to generate the spatial attention matrix before
sending to the Seq2Seq architecture consisting of the convolutional GRU encoder and
decoder for the spatial-temporal feature extraction.
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Transformer-based Models

Inspired by the newly proposed transformer in (Vaswani et al. 2017) for efficiently mod-
elling long-range dependencies in natural language processing, researchers have intro-
duced the transformer architecture to replace CNN (or GCN) for spatial correlation anal-
ysis and LSTM (or GRU) for temporal dependency analysis. Self-attention-based trans-
former can directly learn dynamic spatial and temporal dependencies by distributing dif-
ferent weights on neighbours in space dimension and on previous time intervals in time
dimension for contributing to the targeted sensor or road segment. Besides, transformer
can exploit more hidden information in traffic data by defining multi-heads and accelerate
training phase by paralleling process. Xu et al. (Xu et al. 2020) developed a Spatial-
Temporal Transformer Networks (STTNs) to improve the accuracy of long-term traffic
prediction, which consists of spatial transformer for modelling dynamic spatial depen-
dencies with self-attention mechanism and temporal transformer for modelling dynamic
long-range temporal dependencies across previous time intervals. Another transformer-
based model (named GMAN) was developed under the Seq2Seq architecture in (Zheng
et al. 2020). Both encoder and decoder under the Seq2Seq architecture consist of multiple
spatial-temporal attention blocks to model the impact of the spatial-temporal factors on
traffic state. In addition, it also includes a spatial-temporal embedding to encode vertices
into vectors using the node2vec approach in (Grover & Leskovec 2016) for the vertex
representation learning.

2.5.3 Module Summary

Hybrid DL models reviewed in Section 2.5.2 have strong ability to exploit more features
in both space and time domains compared to single models. In this section, we will
summarise common modules used in these hybrid DL models and categorise them into
three groups based on their ability to extract features in space and/or time domain.

Modelling Features in Space Domain

Convolution Neural Network (CNN): Convolutional Neural Network (CNN) is a type
of neural networks inspired by biological processes where the neuron connectivity pattern
resembles the organisation of animal visual cortex (LeCun et al. 1995). It was initially
used for image recognition where each neuron extracts features only in a restricted region
of the image by the filters that are able to find relationships between neighbouring inputs.
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In terms of addressing traffic prediction problem, most existing works firstly integrate
historical traffic data into the shape of grid data based on the locations of sensors or road
segments, and then learn it like image data. The spatial features can be extracted by
implementing convolutional operation on the restricted region of the traffic image data by
Eq. (2.4).

CN = pool(ReLU(Wj
cnX+ bjcn)); j = 1, ..., C (2.4)

where Wj
cn ∈ Rc1×c2 is the parameter matrix of the jth filter with the kernel size c1× c2

and C is the number of filters. bjcn is the bias of the jth filter. ReLU is the activation
function, and pool is pooling layer. CN is the output of this CNN layer.

Graph Convolution Neural Network (GCN): Graph convolutional neural networks
(GCNs) were developed to analyse and learn non-Euclidean data in space domain, and
have been shown to achieved good performance for classification in citation networks
(Kipf & Welling 2017), syntax-aware neural machine translation (Bastings et al. 2017),
3D human pose regression (Zhao, Peng, Tian, Kapadia & Metaxas 2019) and traffic pre-
diction (Yu et al. 2018). GCNs used for solving traffic prediction problem include spectral
GCN, diffusion GCN, and traffic GCN. Briefly,

• Spectral GCN was developed in (Estrach et al. 2014), which implements convo-
lution operation on graph data from the spectral domain by computing the eigen-
decomposition of the graph Laplacian matrix L = (D − A) ∈ RN×N (Note that
some works use the normalised graph Laplacian matrix L = (IN −D−1

2AD−1
2 ) ∈

RN×N ). Based on this, the spectral GCN can be defined as Eq. (2.5):

SGC = (UgθU
T)X = Udiag(θ)UTX (2.5)

where U ∈ RN×N is the eigenvectors of L and UT is the transpose of U. gθ =

diag(θ) is the filter parameterised by θ ∈ RN and SGC ∈ RB×T×N is the output
of spectral GCN.

• Diffusion GCN was proposed in (Li et al. 2018) and performed on a directed graph.
Diffusion GCN models the bidirectional diffusion process, which enables the model
to capture the influence of upstream and downstream traffic. It can be defined as
Eq. (2.6) and Eq. (2.7):
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Xt∗G fθd =
K−1∑
k=0

(
θk,1(D

−1
o Aw)

k
+ θk,2(D

−1
I Aw

T)
k
)
xt

for t = 1, ...T

(2.6)

where Do and DI are the out-degree and in-degree diagonal matrices respectively,
and θk,1 ∈ RK and θk,2 ∈ RK are responding weight vectors. Aw is the weighted
adjacent matrix and Aw

T is the transpose of Aw. θd ∈ RK×2 is the parameters
for the filter, and (D−1

o Aw) and (D−1
I Aw

T) represent the transition matrices of the
diffusion process and the reverse one, respectively.

DGC = σ

( T∑
t=1

Xt∗G fθdt;t′

)
for t′ = 1, ...T ′ (2.7)

where DGC ∈ RB×T ′×N is the output of diffusion GCN and σ is the activation
function like Sigmoid or ReLU. fθdt;t′ are the filters and its parameters are θ ∈
RT ′×T×K×2.

• Traffic GCN in (Cui et al. 2019) directly conducts convolutional operation on the
road graph by Eq. (2.8).

GC = σ

(
(Wgc ∗ Ãk)X

)
(2.8)

where ∗ is the Hadamard product operator (i.e., element-wise matrix multiplication
operator). Wgc ∈ RN×N is a trainable weight matrix and GC ∈ RB×T×N is the
output of GCN. σ is the activation function like ReLU (Li & Yuan 2017).

Modelling Features in Time Domain

Long Short-Term Memory (LSTM): LSTM is an extension of the RNN model (Hochre-
iter & Schmidhuber 1997). Compared to RNN that has one part (i.e., the tanh layer),
LSTM consists of four parts: three gates (namely, input gate It, output gate Ot and forget
gate Ft) and a cell state (Ct). The forget gate Ft with a sigmoid layer σg firstly determines
the part of information in current traffic data xt and in the last hidden state ht−1 that needs
to be forgotten and updated to the cell state Ct via Eq. (2.9). To supplement the forgotten
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information by forget gate Ft, the input gate It with a sigmoid layer σg is used to decide
the information from current traffic data xt to be added into the cell state Ct via Eq. (2.10).
Then, the cell state Ct is updated using the tangent layer σC (cf. Eq. (2.12)) for integrating
the traffic information provided from the forget gate, the input gate and the last cell state
Ct−1. Meanwhile, the output gate with a sigmoid layer σg selects previous information
remembered by ht−1 and the current information xt by Eq. (2.11) for contributing to final
output. Finally, the predicted result is computed by combining remembered information
from the output gate Ot and the cell state Ct with a tangent layer σH by Eq. (2.13).

Ft = σg(WF × xt +UF × ht−1 + bF ) (2.9)

It = σg(WI × xt +UI × ht−1 + bI) (2.10)

Ot = σg(WO × xt +UO × ht−1 + bO) (2.11)

Ct = Ft ∗ Ct−1 + It ∗ σC(WC × xt +UC × ht−1 + bC) (2.12)

ht = Ot ∗ σH × (Ct). (2.13)

where WF,WI,WO and WC are the weight matrices of the forget gate, the input gate, the
output gate and the cell state respectively while bF , bI , bO and bC are the corresponding
bias for each gate and state. Furthermore, UF,UI,UO and UC are the weight vectors of the
last hidden state ht−1. σg is used to denote a sigmoid function (= 1

1+e−x ) in three gates and
the operator ∗ denotes Hadamard product. σC and σH are hyperbolic tangent functions
(tanh(x)) for the cell state and the final output.

Gated Recurrent Unit (GRU): GRU (Chung et al. 2014) is developed based on LSTM,
and it incurs shorter processing time and less Central Processing Unit (CPU) cycles. The
reason is that GRU combines LSTM’s forget and input gates into a single “update gate”,
and also merges the memory cell and hidden state. This makes GRU simpler than the
standard LSTM but still retain good performance. GRU consists of three parts: the update
gate zt, the reset gate rt and the hidden state ht. The update gate, zt, extracts the long-term
dependency of the traffic data. It decides how much information it needs to update from
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the input xt and the hidden state at the previous time interval ht−1 (cf. Eq. (2.14)).

zt = σ(Wz × xt +Uz × ht−1 + bz) (2.14)

The reset gate, rt, captures the short-term dependency of traffic features. It decides how
much information from the hidden state at the previous time interval is retained for up-
dating the current hidden state. It is computed in a similar manner as the update gate by
Eq. (2.15).

rt = σ(Wr × xt +Ur × ht−1 + br) (2.15)

Then, the input xt, the reset gate rt and the hidden state at the previous time interval ht−1

are used to activate the candidate hidden state h̃t via Eq. (2.16).

h̃t = tanh(Wh × xt +Uh × (rt ∗ ht−1) + bh) (2.16)

where Wz, Wr and Wh are the weight vectors of the update gate, the reset gate and the
candidate hidden state respectively while bz, br and bh are the corresponding bias for each
gate and state. Furthermore, Uz, Ur and Uh are the weight vectors of the hidden state at
the previous time interval ht−1 in the update gate, the reset gate and the candidate hidden
state, respectively. Finally, the current hidden state can be calculated using the update gate
zt, the hidden state at the previous time interval ht−1 and the current candidate hidden state
h̃t using Eq. (2.17).

ht = (1− zt) ∗ ht−1 + zt ∗ h̃t (2.17)

Sequence-to-Sequence Architecture:

The Sequence-to-Sequence (Seq2Seq) architecture was developed in (Sutskever et al.
2014) and has already been found to offer good performance in the area of natural lan-
guage processing. The architecture consists of an encoder and a decoder with a context
connecting the two. The encoder firstly encodes the input information into a context and
then it is decoded into the output by the decoder. For traffic prediction problem, it encodes
the spatially-fused time series using Eq. (2.18).
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he
t−te =

fencoder(h
e
0, xt−te), te = T

fencoder(h
e
t−te−1, xt−te), te ∈ 0, . . . , T − 1

(2.18)

where he
t−te is the hidden state in the encoder at (t− te)

th time interval. The initial hidden
state is he

0. The hidden state he
t−te−1 at (t− te − 1)th time interval and the spatially-fused

time series xt−te at (t− te)
th time interval are used to calculate the hidden state he

t−te at
(t− te)

th time interval.

The hidden state he
t (te = 0) at the tth time interval is considered as the context vector C

(cf. Eq. (2.19)) which encodes all information from the input X in the encoder.

C = he
t (2.19)

In the decoder, the context vector C as the initial hidden state hd
0 is decoded to the target

sequence. The hidden state hd
t+td−1 at (t+ td − 1)th time interval and the target traffic

speed xt+td at (t+ td)
th time interval are utilised to calculate the hidden state hd

t+td
at

(t+ td)
th time interval. The hidden state hd

t+td
at (t+ td)

th time interval in the decoder is
considered as the final prediction x̃t+td , td = 1, . . . , T ′.

Modelling Features in Space and/or Time Domain

Attention Mechanism:

To address translation accuracy as the length of an input sentence increases in field of
neural machine translation (Kalchbrenner & Blunsom 2013), Bahdanau et. al (Bahdanau
et al. 2015) developed an extension of the encoder–decoder model which learns to align
and translate jointly. This method solves the long-term dependencies by measuring the
similarity of the input at each observed position and the output at the targeted position.
Meanwhile, this approach has evolved and used to address long-term dependencies in
many areas such as video captioning (Yan et al. 2019), image classification (Wang et al.
2017), speech recognition (Chorowski et al. 2015), traffic flow prediction (Guo et al.
2019) and so on. For solving traffic prediction problem, the attention mechanism has usu-
ally been used for strengthening important features and weakening unimportant features
in space and/or time domains towards to final prediction. We elaborate below the working
principle of the attention mechanism in the decoder of the Seq2Seq architecture (Zhang,
Li, Lin, Wang & He 2019) as an example.
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The similarity of traffic data between observed time interval t and targeted time interval
t′, ut,t′ , is computed via a tanh function as Eq. (2.20).

ut,t′ = qT tanh

(
he
tWt,t′h

d
t′

)
; t = 1, 2, . . . , T (2.20)

where Wt,t′ is a trainable weight vector and qT represents the transposition or reshap-
ing operations that are utilised to adjust the dimensions. We then compute the attention
weights as probabilities (i.e., at,t′ ∈ [0.0, 1.0]) via a softmax function given in Eq. (2.21).

at,t′ = softmax

(
ut,t′

)
=

exp
(
ut,t′

)
∑T

t=1 exp
(
ut,t′

) (2.21)

After obtaining the attention weights at,t′ , it is used to map to hidden state he
t for achieving

targeted traffic state by Eq. (2.22).

xt′ =
T∑
t=1

at,t′ × he
t. (2.22)

Transformer: Transformer was proposed in the paper "Attention is All You Need",
which makes use of the self-attention mechanism under the encoder and decoder archi-
tecture and outperforms the Google Neural Machine Translation model in specific tasks
(Vaswani et al. 2017). Based on such success, transformer is applied into solving network-
wide traffic prediction problem by using self-attention mechanism to capture dynamic-
spatial and -temporal dependencies (e.g. (Xu et al. 2020) and (Zheng et al. 2020)). For a
single-head self-attention mechanism used to analyse dynamic-spatial dependencies as an
example, the input consists of queries Qs ∈ RN×dq of dimension dq, keys Ks ∈ RN×dk

of dimension dk, and values Vs ∈ RN×dv of dimension dv, and they are computed by
Eq. (2.23).

Qs = Ws
qxt

Ks = Ws
kxt

Vs = Ws
vxt

(2.23)

where Ws
q, Ws

k and Ws
v are learnable weight matrices for Qs, Ks, and Vs, respectively,
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and its random initial values are updated by the back propagation. After obtaining the
three high dimensional spatial features, dynamic-spatial dependencies Ss ∈ RN×N are
calculated by dot-product as Eq. (2.24)

Ss = softmax(
Qs(Ks)T√

dk
) (2.24)

where Ss is the learned dynamic dependency matrix and defined by how each sensor is
influenced by all the other sensors in the road network. Then the new spatial features
Ms ∈ RN×N are updated by Eq. (2.25).

Ms = SsVs (2.25)

Note that multiple spatial dependencies can be learned with multi-heads attention mecha-
nism by learning multiple pairs so as to reveal different hidden spatial dependencies from
various latent spaces. Furthermore, two feed-forward neural network layers with non-
linear activation are used to improve the prediction ability, and its output is added to the
input of the self-attention mechanism to build the residual connection for stable training
as Eq. (2.26).

Ys = ReLU(Ws
1ReLU(Ws

0M
s)) + xt (2.26)

where Ws
0 and Ws

1 are weight vectors of two feed-forward neural network layers. Similar
to the analysis of dynamic-spatial dependencies Ys, dynamic-temporal dependencies Yt

can be obtained by the same idea. To fuse dynamic-spatial and -temporal features, the
gated mechanism (cf. Eq. (2.27)) is introduced based on the gated mechanism in GRU
and the final output is calculated by Eq. (2.28).

z = Sigmoid(YsWzs +YtWzt + bz) (2.27)

x̃′t = z ∗ Ys + (1− z) ∗ Yt (2.28)

where Wzs and Wzt are weight matrices of the dynamic-spatial and -temporal features
respectively and bz is the bias term. z is the gate used to fuse both dynamic features. x̃′t is
the output at t′th time interval.
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2.6 Public Data Sources

2.6.1 List of Public Data Sources

In this section, we summarise well-known public data sources that are commonly used for
solving various traffic prediction problems including traffic flow, traffic speed and travel
time prediction problems, in literature. Besides, we also elaborate the three large datasets
of them that are used for our research aiming to predict traffic states on large urban road
networks.

• Caltrans Performance Measurement System (PeMS): The traffic data from PeMS
is collected in real-time from over 39,000 individual detectors across all major
metropolitan areas of the State of California. It includes traffic speed, flow, occu-
pancy, vehicle miles travelled (VMT), vehicle hours travelled (VHT) and Q (VMT/VHT).
The time interval in PeMS is 5 minutes (Caltrans n.d.). There are several public
traffic datasets from PeMS as follows.

1. PEMS03 (Song et al. 2020): This dataset is collected from 358 sensors with
the period of 1st of September and 30th of November in 2018.

2. PEMS04 (Song et al. 2020): This dataset is collected from 307 sensors with
the period of 1st of January and 28th of February in 2018.

3. PEMS07 (Song et al. 2020): This dataset is collected from 883 sensors with
the period of 1st of May and 31st of August in 2017.

4. PEMS08 (Song et al. 2020): This dataset is collected from 170 sensors with
the period of 1st of July and 31st of August in 2016.

5. PEMS-SF (Cuturi 2011): This dataset covers 15 months worth of daily data
from 1st of January in 2008 to 30th of March in 2009, and describes the occu-
pancy rate, between 0 and 1, of different car lanes of San Francisco Bay Area
freeways. The internal data is sampled every 10 minutes.

6. PEMS-BAY (Li et al. 2018): This traffic speed dataset is collected from 325
sensors in the Bay Area and covers 6 months of data ranging from 1st of
January to 3th of May in 2017.

• Highways of Los Angeles: One of traffic datasets collected from loop detectors
in the highways of Los Angeles is named METR-LA (Li et al. 2018). This dataset
includes traffic speed from 207 sensors ranging from 1st of March to 30th of June
in 2012.
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• Seattle area traffic data: The traffic dataset collected from freeways of I-50, I-405,
I-90 and SR520 in Seattle area is named LOOP-SEATTLE (Cui et al. 2018, 2019).
It describes traffic speed data from 323 loop detectors over the entirely of 2015 at a
5-minute time interval.

• UK traffic data: This data source provides average journey time, traffic speed and
flow information for 15-minute periods since April 2015 on all motorways and “A”
roads managed by Highways England, known as the Strategic Road Network, in
England (England n.d.).

• Beijing traffic data: This is a large-scale real-world traffic speed prediction dataset
(named Q-traffic-dataset) collected through Baidu map. It consists of three
sub-datasets: 1) query sub-dataset recording the starting timestamp, coordination
of the starting location and the destination, and the estimated travel time; 2) traffic
speed sub-dataset recording traffic speed from 15,073 road segments covering ap-
proximately 738.91 km; 3) road network sub-dataset recording the topology of the
road network (Liao et al. 2018).

• NYC traffic data: This dataset collected from taxi trips in New York City includes
pick-up and drop-off dates/times, pick-up and drop-off locations, trip distances
itemised dares, rate types, payment types and driver-reported passenger counts from
2009 to now (Government n.d.).

• San Francisco taxi traffic data: This dataset contains mobility traces of taxi cabs
in San Francisco and is collected from about 500 taxis over 30 days. It can be used
for tasks like NYC traffic data (Michal et al. n.d.).

• Traffic data from the Illinois Department of Transportation: This system pro-
vides traffic flow, speed and travel time, and can be used for tasks like UK traffic
data (webmaster n.d.).

• DiDi traffic data: DiDi GAIA data open program provides real-world traffic data
including travel time index, travel and trajectory datasets (Alumni n.d.).

2.6.2 Three Public Datasets Used in Our Research

PEMS-BAY

The PEMS-BAY dataset is collected from California Transportation Agencies (CalTrans)
Performance Measurement System (PeMS) (Chen 1994) and mentioned in Section 2.6.1.
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It contains traffic speed data from 325 sensor stations in the Bay Area. The locations of
loop detectors from this road networks is presented in Figure 2.3. This dataset covers
traffic measurements for a period of six months between the 1st of January and 30th of
June in 2017. The time interval for the data is 5 minutes and the total number of observed
traffic data points is 16,937,700 (= 52,116 × 325).

Figure 2.3: Locations of loop detectors in PEMS-BAY dataset.

LOOP-SEATTLE

The LOOP-SEATTLE dataset is collected from inductive loop detectors deployed on four
connected freeways (i.e. I-5, I-405, I-90 and SR-520) in the Greater Seattle Area, and the
locations of the loop detectors are presented by the red pins in Figure 2.4. This dataset
records traffic information from 323 detectors over the entirety of year 2015 at a 5-min
time interval. The unweighted and non-directional graph is used to represent this road
network.
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Figure 2.4: Locations of loop detectors in LOOP-SEATTLE dataset.

METR-LA

The METR-LA dataset is collected from loop detectors in the highways of Los Angeles
County (Jagadish et al. 2014). Similarly, the locations of detectors in this road network
are shown via the red pins in Figure 2.5. It includes 207 detectors and covers 4 months
of traffic speed data from the 1st of March to the 30th of June in 2012. In this dataset, a
non-directional graph with edge weights is used to construct the adjacency matrix. The
pairwise road distances between detectors are first computed and then a thresholded Gaus-
sian Kernel (Shuman et al. 2013) is used to build the adjacency matrix. The edge weights
are calculated by Eq. (2.29) below:

Wi,j =

exp(−dist(i,j)2

2σ2 ), if dist(i, j) < dthreshold

0, otherwise
(2.29)

where Wi,j is the edge weight between node i and node j, and dist(i, j) represents the
actual physical road distance between node i and node j in the road network. The standard
deviation of the distances is denoted by σ and dthreshold is the threshold.

Table 2.2 provides the basic statistics of all three datasets including maximum (Max),
minimum (Min), mean value (Mean), standard deviation (Std) and variance (Var) of traf-
fic speed data as well as the size of dataset (in MByte). From the table, we note that
METR-LA has higher traffic fluctuations with larger standard deviation and variance than
PEMS-BAY followed by LOOP-SEATTLE.
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Figure 2.5: Locations of loop detectors in METR-LA dataset.

Table 2.2: Characteristics of three public traffic speed (miles/hour) datasets.

Dataset Max Min Mean Std Var Size

PEMS-BAY 85.10 0.00 62.62 8.56 85.41 135.90 MB

LOOP-SEATTLE 158.19 0.74 56.57 11.43 147.25 274.40 MB

METR-LA 70.00 0.00 53.72 19.19 374.85 57.00 MB

2.7 Performance Evaluation Methods

Three conventional performance metrics commonly are used to evaluate the models or
approaches of traffic prediction in literature (Tan et al. 2009, Huang et al. 2014, Lv et al.
2015), namely Mean Absolute Error (MAE), Root-Mean Square Error (RMSE) and Mean
Absolute Percentage Error (MAPE). They are computed as Eq. (2.30), Eq. (2.31) and
Eq. (2.32), respectively.

MAE =
1

N × T ′ ·
N∑
i=1

T ′∑
t=1

|xi
t − x̃i

t| (2.30)
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RMSE =

 1

N × T ′ ·
N∑
i=1

T ′∑
t=1

(xi
t − x̃i

t)
2


1
2

(2.31)

MAPE =
1

N × T ′ ·
N∑
i=1

T ′∑
t=1

|xi
t − x̃i

t|
xi
t

× 100%. (2.32)

where MAE presents the average absolute difference between the real and predicted traffic
data. It is used to measure absolute prediction error. RMSE is the standard deviation of
the residuals, which is the difference between the real and predicted traffic data. MAPE
is the percentage of MAE to the real traffic data and is utilised to measure the prediction
error. Furthermore, some existing works, such as (Lv et al. 2015, Huang et al. 2014), also
define the accuracy of traffic prediction as (100−MAPE)%.

2.8 Summary

In this chapter, we first discussed the general formulation of the traffic prediction problems
solved in literature and then review their solutions based on their methodologies. Models
from those solutions could be categorised into three groups including statistical models,
ML models and DL models. Therefore, we review existing works from the perspectives
of these three groups.

The latest technology used for solving traffic prediction problem is based on DL, specif-
ically hybrid DL models. We review and explain the latest hybrid DL models that are
grouped into three: CNN-based, GCN-based and Transformer-based models. Besides,
we also summarise modules used in hybrid DL models based on its function on extracting
different types of features for final prediction.

Furthermore, we also review and list public data sources that have been used for various
traffic prediction tasks such as traffic flow, speed, travel time and so on. Three of public
datasets have been explained in greater detail and used in our research work here. Finally,
we present the performance evaluation methods used in literature.
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Spatial-Temporal Feature-based
Short-Term Traffic Flow Prediction on
Linear Roadways

3.1 Introduction

This chapter focuses on solving the short-term traffic flow prediction problem on linear
roadways (i.e., segment of road without intersections or junctions), and the aim is to
predict the number of vehicles in a targeted region on linear roadways over a short time
interval. Traditionally, short-term traffic flow prediction problem on linear roadways was
addressed as a pure temporal process. Recently, spatial information related to the road
network has been found to be important in improving traffic prediction accuracy (Lv et al.
2015, Wu & Tan 2016). Therefore, we consider the problem as a joint temporal and
spatial process.

The literature reviewed in Chapter 2 indicates (1) better quality data (in volume and gran-
ularity), (2) combinations of prediction models and (3) joint consideration of temporal
and spatial data all contribute to better short-term traffic flow prediction. In this chapter,
we exploit all these three elements and develop a new ensemble model (EM) to predict
short-term traffic on linear roadways based on three modules, namely long short term
memory (LSTM), deep autoencoder (DAE) and convolution neural network (CNN). For
building EM model, we consider both memory-based and memory-less models due to
aiming to extract both temporal and spatial features for traffic prediction. Memory-based
model of LSTM is used to remember important temporal information from historical data
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while two memory-less models of DAE and CNN are utilised to analyse spatial patterns
of historical data.

The rest of this chapter is organised as follows. We elaborate our approach for spatial-
temporal feature-based short-term traffic flow prediction on linear roadways, including the
problem definition, the architecture of our proposed model and its constituent modules,
in Section 3.2. Furthermore, real-world traffic data collected from two different locations
used in the evaluation of our model is described in Section 3.3 while the performance of
our model compared against several existing models are shown in Section 3.4. Finally,
Section 3.5 summarises our research work for short-term traffic flow prediction on linear
roadways.

3.2 Methodology

In this Section, we show our approach for solving the short-term traffic flow prediction on
linear roadways, which includes the problem definition, the input matrix, the architecture
of our novel EM and its individual modules.

3.2.1 Problem Definition

Considering a linear roadway with a set of monitoring locations (e.g., loop detectors), let
xi
t be the number of vehicles recorded (i.e., traffic flow) at the ith observation location

at the (t − 1, t] time interval. The full traffic flow information across a linear roadway
over a period can then be described with a sequence xi

t : ∀i, t. The problem is then to
predict the traffic flow at location i at the (t+∆) time interval given the set of xi

t and the
prediction horizon (∆) (Manual 2000). Typically, the time interval could be 15, 30, 45,
and 60 minutes (Lv et al. 2015).

Furthermore, we also consider vehicle speed as another indicator for the future traffic
flow. In fact, (Zhao et al. 2014) found that there exists a non-linear relationship between
traffic flow and vehicle speed. As such, we also use vehicle speed data as input to our
problem. We denote average vehicle speed at tth time interval at location i as sit.
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3.2.2 Input Matrix

As prior mentioned in Section 3.2.1, our approach takes both the raw data of traffic flow
(xi

t) and average vehicle speed (sit) over time at different locations as input. These in-
puts are first de-noised via a moving average (MA) filter producing the pre-processed
traffic data on traffic flow (x̂i

t = (
∑n

j=0 x
i
t+j)/(n + 1);∀i) and vehicle speed (ŝit =

(
∑n

j=0 s
i
t+j)/(n+ 1); ∀i).

The outputs of MA filter (both x̂i
t and ŝit) are then integrated into a single matrix, At with

a number of features. Specific to our work here, we extract 36 features from the input
data (including for example traffic flow, traffic flow differences and speed at different
observation stations over time) as shown in Table 3.1. The traffic flow, traffic speed and
traffic flow difference of i− 2, i− 1, i, i+1 and i+2 in three previous time intervals are
used to predict traffic flow at i at t+∆. We consider ∆ = 15 minutes here. For example,
from Table 3.1, xi−1

t−1 and si−1
t−1 are respectively the traffic flow and traffic speed in the time

interval t− 1 of station i− 1. δi−1
t−1 is the traffic flow difference between the time interval

t− 1 and the time interval t− 2.

3.2.3 The Architecture of EM

To account for both temporal and spatial effects on traffic flow, the framework of our pre-
diction model (hereafter simply referred to as the Ensemble Model (EM)) is designed to
draw insights from both sequential and spatial data and their correlation to make its pre-
diction. To this end, we exploit specific prediction capabilities of three modules, namely
the long-short term memory (LSTM), deep autoencoder (DAE) and convolution neural
network (CNN). Specifically, we use the long memory property of LSTM to extract tem-
poral features of traffic conditions. In fact, LSTM has already been found to be effective
in dealing with sequential data (Hochreiter & Schmidhuber 1997). Furthermore, (Finn
et al. 2016) have found that DAE has good capability in extracting global spatial features
while in (Yao et al. 2018), CNN is found to be well-suited in relation to local spatial
features. As such, we also integrate both DAE and CNN into our EM model.

Figure 3.1 shows the architecture of our EM. We can directly use our input matrix At for
DAE module while, for LSTM and CNN modules, we first need to reshape their respective
input to the required data input dimensions (in our case, 1×36 and 6×6×1 respectively).
The three outputs from the individual modules are used as three separate inputs for EM
hidden layers. These hidden layers have the same number of neural units and are used to
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map the outputs of the three individual modules to the same dimensions. This guarantees
every module provides the same number of features for the softmax layer. This ensures
that each module’s output is equally treated in the next EM layer. The three outputs from
respective hidden layer are merged (as Bt) before being fed to the softmax layer as the
final predictor.

Figure 3.1: The architecture of our EM model.

3.2.4 Individual Modules

LSTM Module

The explanation of LSTM module can be found in Chapter 2.5.3.

DAE Module

Deep AutoEncoder (DAE) is an unsupervised learning technique that is capable of learn-
ing non-linear relationship of data (Zhang, Yao, Hu, Zhao, Li & Hu 2019). Figure 3.2
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presents the architecture of the DAE module used in our work for short-term traffic flow
prediction in linear roadways. It consists of an encoder for encoding the input matrix At

into a context and a decoder for decoding the encoded context to the learned features Āt.
Note that a non-linear activation function is used in each layer for capturing non-linear
relationships of traffic data.

Figure 3.2: The architecture of DAE module.

CNN Module

The explanation of CNN module can be found in Chapter 2.5.3.

3.3 Data Description

To evaluate our EM, we choose two roadways: one in California (cf. Figure 3.3) and the
other in London (cf. Figure 3.4). We focus on the traffic in one direction of the roadways.
Specifically, we use the relevant data of five observation points along each chosen road
and the objective is to predict the short-term traffic flow at the third observation points
(i.e., the middle of the five points). The two observation points before and after the tar-
geted location for prediction are taken into account for their spatial relevance.

The traffic data in California (hereafter referred to as “California-data”) is collected from
the California Department of Transportation (Caltrans) (Caltrans n.d.). The traffic data is
collected every 30 seconds from more than 45,119 detectors in over 16,000 traffic stations,
and aggregated into 5-min interval each for every station. The California-data we use
covers the weekdays of the first three months of 2017.
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Meanwhile, the traffic data in London (hereafter referred to as “London-data”) is collected
from the Highways England (England n.d.). For London, the traffic data is aggregated into
15-min interval each for every station. The chosen road is one near Heathrow airport and
known to be prone to traffic congestion. This is as opposed to the California roadway
which has comparatively much lower traffic flow. The two chosen roadways thus are
chosen to represent two different traffic characteristics. We use the traffic data collected
in the first three months in 2018 for London-data. In both cases, we use the first two
months of the data for training and the third month for testing.

We show sample raw data from both datasets in Figure 3.5. Visually, especially in Fig-
ure 3.5(a), we already can see a relationship between traffic flow and traffic speed in which
they are inversely proportional to each other (i.e., when traffic volume is high, the traffic
speed recorded drops). This corroborates with the finding in (Zhao et al. 2014) which also
found a non-linear relationship between traffic flow and traffic speed.

Figure 3.3: Five observation points for the chosen road in California. We predict the
traffic flow at location ID1114721.

54



Chapter 3

Figure 3.4: Five observation points for the chosen road in London. We predict the traffic
flow at location MA/2248A.

Figure 3.5: Raw traffic flow and traffic speed data in 24 hours for (a) California-data with
1 unit time interval = 5 mins and (b) London-data with 1 unit time interval = 15 mins.
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3.4 Experiments

3.4.1 Model Setting

To achieve the best prediction accuracy of our EM, there are five parameters that we need
to tune:

1. Number of data points, n: Used in the MA filter to denoise. A suitable n can
remove noise for providing accurate prediction, but large n can result in data dis-
tortion. For this parameter, we search the optimal value within the range 2 and 12
with unit step size.

2. Memory units: Used in the LSTM module to memorise historical traffic data. Too
much memory units can result in over-fitting, which means the model obtains high
accuracy on training data but low accuracy on testing data. For this parameter, we
search the optimal value within the range 1 and 101 (step size = 5).

3. Number of layers: Used in the DAE and CNN modules. The number of layers in
the DAE module means the number of hidden layers, and in the CNN module means
the number of the convolutional layers and pooling layers. For both modules, more
layers can capture more information from input, but it costs more time. We search
the optimal number of layers between 1 and 6.

4. Batch size: Used in the EM model. It refers to the number of training samples
utilised in one iteration. A large batch size requires less memory than small batch
size. It also helps update the network’s parameters more frequently. For this pa-
rameter, we search the optimal value within the range 32 and 1024 (step size =
32).

5. Epoch: Used in the EM model to update weights on the whole training data. Few
epochs can result in under-fitting while the converse results in over-fitting. We
search the optimal epoch size between 1 and 501 (step size = 50).

We follow the grid search method described in (Everaers & Kremer 1994) to explore and
search for the optimal parameter combinations. In our case here, the number of possible
parameter combinations in our model is (number of data × memory units × number of
layers × batch size × epoch) which results in (11 × 21 × 6 × 6 × 33 × 11) = 3,018,708
combinations.
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3.4.2 Results and Discussion

To evaluate our proposed EM model, we compare our EM against the three individual
constituent modules (i.e., LSTM, DAE and CNN separately in isolation) in our proposed
EM model, two existing ensemble models, namely the Data Aggregation (DA) approach
(Tan et al. 2009) and the CNN-LSTM traffic flow prediction (CLTFP) model (Wu & Tan
2016), and an integration of DA and CLTFP. In addition, three metrics mentioned in
Chapter 2.7 including MAE, MAPE and RMSE are used for evaluating models.

We first compare the prediction of our EM against real traffic flow (raw data). Figure 3.6
presents the predicted traffic flow for the California-data and London-data over the period
of one week from our proposed EM model and the real traffic flow. Overall, EM can
efficiently predict the trend of the traffic flow changes, following the clear diurnal pattern
of the roadways. However, on close inspection, we note that sudden and rapid fluctuations
at short time interval present a much harder task for EM (e.g., the spikes at peak times).

Table 3.2 presents the results achieved by the considered models on the California-data
and London-data. We also compute and present the (1-MAPE)% results in Figure 3.7.

Table 3.2: Comparison of all models for both linear roadways

Model California-data London-data
Name MAE MAPE RSME MAE MAPE RSME

DAE 14.69 0.0973 31.66 89.68 0.1805 128.33

CNN 13.01 0.0880 24.52 62.20 0.1311 90.77

LSTM 11.44 0.0845 19.76 110.42 0.2968 167.87

DA 70.84 0.0460 80.66 348.04 0.1350 487.98

CLTFP 6.51 0.0436 10.75 41.13 0.0886 55.09

DA+CLTFP 5.23 0.0396 9.21 42.36 0.0763 43.02

EM 4.10 0.0255 16.86 27.59 0.0514 38.59

Comparing among the individual modules (i.e., LSTM, DAE and CNN), we found that
LSTM performs the best for predicting the traffic in California though the three modules
offers very similar accuracy (only 1.28% accuracy difference between the best and worst).
However, when dealing with highly congested roadway (i.e., the London-data), LSTM
performs significantly worse at 70.32% accuracy as opposed to 81.95% and 86.89% ac-
curacy achieved by DAE and CNN respectively. This implies the importance of spatial
information in short-term traffic prediction which LSTM does not consider. Another rea-
son for this large difference in prediction accuracy may be because of large variance in the
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Figure 3.6: EM Prediction vs. real traffic (raw data) at the middle station over one week
period: (top) California-data and (bottom) London-data.

London-data. For congestion prone roadway, CNN achieved the best prediction (≈ 5%

better than DAE).

The DA, CLTFP and DA+CLTFP models exhibit better results than any of the single
model above for both cases. Both of them achieved approximately 95.5% accuracy (≈
4.5% better than the single models). This corroborates the past findings that ensemble
approaches can produce better predictions than single models. Nevertheless, the absolute
error of the DA model is higher than the CLTFP model. This may be due to the fact
that the constituent modules of DA, which are MA, ES and ARIMA, can only capture
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Figure 3.7: (1-MAPE)% on California-data (left) and London-data (right). Our EM model
achieves the best accuracy for both cases.

temporal features of the data while on the other hand, CLTFP uses two LSTM modules for
extracting temporal and periodic features and additionally, a CNN module for extracting
spatial features. Taking the advantages of both DA and CLTFP, prediction accuracy of
DA+CLTFP is higher than both DA and CLTFP.

Our EM model achieves the best accuracy amongst all the competing models for both
smooth (California) and congestion prone (London) linear roadways. For California,
EM achieves 97.45% accuracy (i.e., 7.18% and 1.41% better than the worst (DAE) and
the next best competitor (DA+CLTFP) respectively). The performance improvement
achieved by EM is even higher for busy roadway in London whereby EM obtained 94.86%
accuracy (i.e., 24.54% and 2.49% better than the worst (LSTM) and the next best com-
petitor (DA+CLTFP) respectively).

The two chosen linear roadways exhibit different traffic characteristics. The California
roadway has comparatively lower traffic flow and thus less congestion prone while the
London roadway is busier with higher traffic fluctuation. From our results, all models
are better at predicting the traffic flow for California but perform significantly worse for
London. The most affected model is LSTM when its prediction falls from 91.55% to
70.32% while DA+CLTFP’s performance, the second best model, worsens by ≈ 3.67%.
Our EM model on the hand is the least affected with only 2.59% accuracy degradation.
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This suggests that our EM approach, while being consistently more accurate than others,
it is also more robust against changes.

3.5 Chapter Summary

In this chapter, we address the problem of short-term traffic flow prediction problem on
linear roadways. Owing to the various smart city initiatives, the problem has received
renewed attention. Coupled with the increasing uptake of IoT technology and monitoring
platforms offering better quality monitoring data, we develop a new ensemble model (EM)
that predicts short-term traffic flow on linear roadways taking into account both temporal
and spatial traffic information.

To this end, our EM proposal exploits three modules, including LSTM, DAE and CNN
to make our predictions. We compare our proposal against its constituent modules, two
existing ensemble models in the literature, namely DA and CLTFP, and an integration
of those two existing ensemble models, DA+CLTFP, in predicting traffic at two linear
roadways (located in California and London) exhibiting different characteristics (stable
vs high variance).

Our EM achieved the highest accuracy among the seven considered models, computing
97.45% on California-data and 94.86% on London-data prediction accuracy. Our results
also show that EM is not only accurate but also the most robust, recording the least accu-
racy degradation when making predictions for the more challenging London-data.
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Global- and Local-Spatial with Short-,
Medium- and Long-Temporal
Feature-based Short-Term Traffic Flow
Prediction on Intersections

4.1 Introduction

This Chapter focuses on solving the short-term traffic flow prediction problem at inter-
sections. The aim is to predict the number of vehicles in a targeted region over a short
time interval. Compared to Chapter 3 where we solve short-term traffic flow prediction in
linear roadways based on 1) better quality data (in volume and granularity), 2) combina-
tions of prediction models and 3) joint consideration of temporal and spatial data, patterns
or characteristics of traffic flow at intersections are more complex, especially for major
intersections with multiple entrances and exits. Therefore, more detailed information and
features should be considered for providing high prediction accuracy. The considered
features in this chapter include 1) short-, 2) medium-, and 3) long-term temporal features
as well as 4) global- and 5) local-spatial features. Taking these features into account, we
develop a novel model based on both memory-based and memory-less approaches, named
ALLSCP, for short-term traffic flow prediction at intersections.

The contributions for this chapter are as follows:

• Our ALLSCP model extracts short-, medium- and long-term temporal as well as
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global and local spatial features to compute the final prediction.

• We consider real-world traffic flows at road segments with the intersection at two
locations (i.e., Los Angeles and London).

• The literature has found that traffic flow is also correlated with vehicle speed (e.g.,
(Zhao et al. 2014)). In our work, both metrics are taken as input to our model.

• We conduct comparative study across other well-known existing machine/deep learn-
ing models and other hybrid ones against our model and found that ALLSCP per-
forms better than the rest and also robust in different scenarios.

The rest of this chapter is organised as follows. We define the problem solved in our
approach and detail the temporal-spatial input generation, our novel ALLSCP model, its
architecture and constituent modules in Section 4.2. We compare the performance of our
proposed model against existing models in Section 4.4 using real traffic data described in
Section 4.3 before concluding our work in Section 4.5.

4.2 Methodology

For solving the short-term traffic flow prediction at intersections and providing high pre-
diction accuracy, we firstly define the problem, and then design the input matrices based
on the characteristics of traffic flow and speed data and the framework based on the
advantages of individual modules. The following sections explain the problem defini-
tion (cf. Section 4.2.1), the input matrix generation (cf. Section 4.2.2) and our proposed
ALLSCP model (cf. Section 4.2.3) in detail.

4.2.1 Problem Definition

Considering a road segment of interest with m observation stations located at differ-
ent points, each station continuously monitors the traffic flow (i.e., vehicle count) and
the average vehicle speed at a fixed time interval. Let traffic flow and average traf-
fic speed of the ith station at time interval t be xi

t and sit respectively. Then the se-
quences for the traffic flow and speed can be written as xi = {xi

1, x
i
2, . . . , x

i
t, . . . , x

i
T}

and si = {si1, si2, . . . , sit, . . . , siT} where t = 1, 2, 3, . . . , T and i = 1, 2, 3, . . . ,m. We
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consider both traffic flow and speed as input since we found in our datasets a linear rela-
tionship between the two (i.e., when traffic volume is high, traffic speed recorded drops)
which corroborates the findings in (Van Aerde & Rakha 1995, Zhao et al. 2014).

Generally, traffic flow and speed data are collected from sensors installed on the roadsides
with k minutes as a time interval (e.g., 5 minutes in (Caltrans n.d.) and 15 minutes in
(England n.d.)). Here, we use k = 15 minutes whereby we manually integrate three
intervals of traffic flow and speed from (Caltrans n.d.) into the same time interval as in
(England n.d.) to ensure the uniformity of experiments.

Assume that station i∗ is the selected station. Then, given previous measured traffic flow
and speed at i∗ and its neighbouring stations at the tth time interval, the aim is to predict
future traffic flow, x̂i∗

t+∆, at station, i∗, for the (t+∆)th time interval where ∆ is the
prediction horizon which is typically equal to 1, 2, 3, or 4 time intervals (Lv et al. 2015).

Due to the problem solved at intersections, we consider consecutive stations along road
segments that meet or cross at the junction. Details of experiment are given in Section 4.3.

4.2.2 Temporal-Spatial Input Matrix Generation

Three types of temporal features (short-, medium- and long-term temporal features) and
two spatial features (global and local spatial features) are extracted from real world traffic
data. In (Tan et al. 2009), it is indicated that the current traffic flow is not only related to
the traffic flow in the several previous time intervals but also related to traffic conditions
at the same time in previous days and even weeks. Thus, we define: (1) traffic data
in the several previous time intervals as short-term temporal features, (2) traffic data at
the same time interval in the previous days as medium-term temporal features and (3)
traffic data at the same time interval in previous weeks as long-term temporal features.
Correspondingly, three temporal vectors, the time-interval temporal vector Ti

t, the daily
temporal vector Di

t and the weekly temporal vector Wi
t, are generated from original traffic

flow data as follows: Eq. (4.1), Eq. (4.2), and Eq. (4.3) respectively.

Ti
t = {xi

t−(k1−1), x
i
t−(k1−2), . . . , x

i
t−2, x

i
t−1, x

i
t} (4.1)

Di
t = {xi

(t+∆)− 24×60
k

×k2
, xi

(t+∆)− 24×60
k

×(k2−1)
, . . . , xi

(t+∆)− 24×60
k

×2
, xi

(t+∆)− 24×60
k

×1
} (4.2)
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Wi
t = {xi

(t+∆)− 7×24×60
k

×k3
, xi

(t+∆)− 7×24×60
k

×(k3−1)
,

. . . , xi
(t+∆)− 7×24×60

k
×2
, xi

(t+∆)− 7×24×60
k

×1
}

(4.3)

Traffic measurements obtained from neighbouring stations could also be used to improve
the prediction accuracy (Lv et al. 2014). Thus, we define the difference of traffic data
between the targeted station and all its neighbouring stations as global spatial features.
Furthermore, we define the difference of traffic data between adjacent stations in the
neighbourhood as local-spatial features. As such, to capture spatial-temporal traffic re-
lationships in the transportation network, we generate Eq. (4.4) in which m is the number
of all stations and n is the number of previous time intervals before the (t+∆)th. In TSt,
besides xi

t and sit, we also include the traffic flow and speed changes as additional features.
Specifically, we follow (Blandin et al. 2012) and define the traffic flow and speed changes
at the ith station between time interval t and (t−1) as δixt = xi

t−xi
t−1 and δist = sit− sit−1

respectively. In this matrix, the information of the traffic flow, traffic speed, traffic flow
difference and traffic speed difference in rows along the time dimension as temporal fea-
tures, and the same information in columns along the space dimension corresponding to
m neighbouring stations is regarded as spatial features.

4.2.3 The ALLSCP Model

Our novel model, named ALLSCP, exploits the strengths of several modules in captur-
ing specific types of temporal and spatial features that contribute to the final prediction.
Figure 4.1 shows the architecture of ALLSCP. Vectors Ti

t, D
i
t, W

i
t and Matrix TSt are

utilised for short-, medium-, long-term temporal as well as global and local spatial feature
extraction by specific modules as follows:

Short-term Temporal Feature Extraction

In our model, Ti
t is used to extract short-term temporal features. We exploit a memory-

based model, ARIMA, for this purpose. The key idea is that while ARIMA does not
consider the non-linearity of traffic data and inherently assumes that traffic data to be lin-
early correlated with time, changes of traffic status over very short duration are continuous
and can be considered as linear. As such, we use ARIMA model to analyse short-term
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TSt =



x1
t−(n−1) . . . x1

t s1t−(n−1) . . . s1t δ1xt−(n−2) . . . δ1xt
δ1st−(n−2) . . . δ1st
x2
t−(n−1) . . . x2

t s1t−(n−1) . . . s2t δ2xt−(n−2) . . . δ2xt
δ2st−(n−2) . . . δ2st

...
...

...
...

...
...

...
...

...
...

...
...

xi
t−(n−1) . . . xi

t sit−(n−1) . . . sit δixt−(n−2) . . . δixt
δist−(n−2) . . . δist

...
...

...
...

...
...

...
...

...
...

...
...

xm
t−(n−1) . . . xm

t smt−(n−1) . . . smt δmx
t−(n−2) . . . δmx

t

δms
t−(n−2) . . . δms

t



(4.4)

Figure 4.1: The architecture of the ALLSCP model.

temporal features and for longer temporal features, we propose to use LSTM (cf. Sec-
tion 4.2.3). ARIMA is widely used as a statistical model for the prediction of time series
data. It requires time series data to be stationary or stationary after differentiating (Jensen
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1990). Traffic flow is a periodic time series and usually has slight changes in a very short
time interval. Thus, traffic flow is considered as stationary time series and this is also why
many existing works used ARIMA for short-term traffic flow prediction (e.g., (Ahmed
& Cook 1979, Van Der Voort et al. 1996, Lee & Fambro 1999) and (Williams & Hoel
2003)). There are three important parameters: (1) p – the number of autoregressive terms,
(2) d – the number of non-seasonal differences for converting data to be stationary and
(3) q – the number of lagged forecast errors in the prediction equation. Firstly, we en-
sure our input data fulfil the stationary property by differentiating the input d times. Then
short-term temporal features are extracted from previous p time intervals with the number
of lagged prediction errors q. Next, short-term temporal features are extracted from the
vector Ti

t in the ARIMA module using Eq. (4.5).

xi
t+∆ = c+ ϕ1x

i
t + ϕ2x

i
t−1 + · · ·+ ϕp−1x

i
t−(k1−2) + ϕpx

i
t−(k1−1) (4.5)

where ϕp is the parameter of the autoregressive part of ARIMA, and c is a constant.

As a part of input for the final prediction, the output from ARIMA is formatted to be in the
same dimension with other features via the ensuing TSEM hidden layer (see Figure 4.1).

As discussed Chapter 2, ARIMA does not capture non-linear relationship. For this, we
use the following modules to capture the non-linear relationship in traffic flow.

Medium- and Long-term Temporal Feature Extraction

We use a memory-based model, LSTM, which is capable of learning long-term rela-
tionship from historical data (Ma et al. 2015), to extract medium- (daily) and long-term
temporal (weekly) features from Di

t and Wi
t, respectively. LSTM is an extension of the

RNN (Hochreiter & Schmidhuber 1997). Compared to RNN that has only one part (i.e.,
the tanh layer). LSTM consists of four parts: three gates (namely, input gate It, output
gate Ot and forget gate Ft) and a cell state (Ct).

Taking Di
t as an example on how the LSTM module extracts medium-temporal features

in our framework, the forget gate Ft with a sigmoid layer, σg, firstly determines the part
of information in current traffic flow xi

t and in the last hidden state, Ht−1 that it needs
to forget and update it to the cell state, Ct, via Eq. (4.6). To supplement the forgotten
information by forget gate Ft, the input gate, It, with a sigmoid layer σg is used to de-
cide the information from current traffic flow xi

t to be added into the cell state Ct via Eq.
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(4.7). Then, the cell state, Ct, is updated using the tangent layer σC (cf. Eq. (4.9),) for
integrating the traffic flow information provided from the forget gate, the input gate and
the last cell state Ct−1. Meanwhile, the output gate with a sigmoid layer σg selects pre-
vious information remembered by Ht−1 and the current information xi

t by Eq. (4.8) for
contributing to the final output. Finally, the predicted result is computed by combining
remembered information from the output gate Ot and the cell state Ct with a tangent layer
σH by Eq. (4.10).

Ft = σg(WF × xi
t + UF ×Ht−1 + bF ) (4.6)

It = σg(WI × xi
t + UI ×Ht−1 + bI) (4.7)

Ot = σg(WO × xi
t + UO ×Ht−1 + bO) (4.8)

Ct = Ft ∗ Ct−1 + It ∗ σC(WC × xi
t + UC ×Ht−1 + bC) (4.9)

Ht = Ot ∗ σH × (Ct). (4.10)

where WF ,WI ,WO and WC are the weights of the forget gate, the input gate, the output
gate and the cell state respectively while bF , bI , bO and bC are the corresponding bias for
each gate and state. Furthermore, UF , UI , UO and UC are the weights of the last hidden
state Ht−1. We use σg to denote a sigmoid function (= 1

1+e−x ) in three gates and the
operator ∗ to denote Hadamard product. σC and σH are hyperbolic tangent functions
(tanh(x)) for the cell state and the final output. In our case, one LSTM module, for
extracting medium-temporal features from Di

t, has k2 memory units and another LSTM
module, for extracting long-temporal features from Wi

t, has k3 memory units. This means
we use traffic flow in k2 time intervals in previous days and in k3 time intervals in previous
weeks to extract medium- and long-temporal features.
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Global-Spatial Feature Extraction

The input matrix TSt that records historical traffic flow at the targeted station and their
neighbouring stations is used to extract global spatial features by utilising the Stacked
Autoencoder (SAE) considered as a memory-less module in our framework as shown
in Figure 4.1. The SAE neural network (Singh & Mohan 2018), as an unsupervised
learning algorithm, can learn features from high dimension data and then encode it into
low dimension data. If a predictor (e.g., a logistic regression layer (Menard 2002) or a
softmax layer (Dunne & Campbell 1997)) is added on the top of SAE model, it can be
used for prediction problems. The SAE module in our framework includes one input layer
and ns hidden layers for global spatial feature extraction. It first takes the input matrix
TSt into the SAE module via the input layer. Then, it encodes the output of the input
layer to the 1st hidden layer representation y1(TSt) via Eq. (4.11) and finally it decodes
the representation y1(TSt) back into a reconstruction z1(TSt) calculated via Eq. (4.12).
The shape of the input matrix TSt is (4n− 2)×m, i.e., the input layer has (4n− 2)×m

neural units without any weighted inputs. The number of neural units in the hidden layers
is set as nu that is decided by the grid search detailed in (Everaers & Kremer 1994) from a
limited range. We consider logistic sigmoid function for each hidden layer for extracting
global spatial features from the input matrix TSt by the fully connection between layers.

y1(TSt) = G

(
w1 ×TSt + b1

)
(4.11)

z1(TSt) = Z

(
w2 × y(TSt) + b2

)
(4.12)

where G is the logistic sigmoid function as an encoder, w1 is the weight vector of the
encoder, and b1 is the bias vector. Correspondingly, Z is the logistic sigmoid function as
a decoder, and w2 and b2 are respectively the weight vector and the related bias of the
decoder.

Local-Spatial Feature Extraction

We extract local-spatial features via a memory-less module, CAPSNET. Compared to
SAE that extracts global-spatial features via full connection between layers, CAPSNET
focuses on local-spatial features via the local connections implemented by the kernel func-
tions in convolutional layers. For example, if the kernel size was set as 3 × 3, convolu-
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tional value only includes features of three continuous points inside the kernel. This can
be considered as the local feature. Capsule network (Sabour et al. 2017) is based on CNN.
CAPSNET is characterised by “capsules” in vector form. When extracting local features
in images, important local information that the capsules detect is encapsulated in a vector
form. The length of an output vector encodes the probability of a feature and the direc-
tion of the vector encodes the gesture of features, such as rotation angle and direction.
Compared to CNN, CAPSNET can effectively extract more detailed local-spatial features
because of the vector form. Here, the input matrix TSt is regarded as a image matrix in
our CAPSNET module, and its shape is (4n− 2)×m.

Our CAPSNET module consists of two convolutional layers and a fully connected layer,
TrafficCaps. The first convolutional layer is the same as the convolutional layer in con-
ventional CNN layers. It is used to extract spatial features of traffic flow between neigh-
bouring stations. The ReLU function (cf. Eq. (4.13)) is used as the activation function
in this layer. The second convolutional layer is the primary capsule layer to capture the
local-spatial features and used for converting the single scalar output of the first convolu-
tional layer into vector form with a dimension of 8 by “capsules”. Finally, the TrafficCaps
layer extracts the spatial relationship between the local-spatial features obtained from pri-
mary capsules and outputs the features to a set of advanced capsules with a dimension of
16. Eq. (4.14) is the novel nonlinear “squashing” activation function for the vector form
of capsules used in the primary convolutional and TrafficCaps layers.

ReLU(x) =

x, if x > 0

0, if x ≤ 0
(4.13)

vj =
||sj||2

1 + ||sj||2
sj

||sj||
(4.14)

where vj and sj are the output and input vector of capsule j respectively. The final output
of the module is a vector.

Final Prediction

After extracting short-, medium-, long-term temporal as well as global and local spatial
features, we use a fully-connected layer as a predictor in our framework for the final short-
term traffic flow prediction in intersections. In addition, on the top of the fully-connected
layer, there are two hidden layers (namely TSEM hidden layer and Merging layer). The
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function of the TSEM hidden layer is to convert outputs from five modules into the re-
lated tensors of the same dimension: y1t+∆ from the ARIMA module for short-term tem-
poral features, y2t+∆ and y3t+∆ from the LSTM module for medium- (daily) and long-term
(weekly) temporal features, y4t+∆ from the SAE module for global-spatial features and
y5t+∆ from the CAPSNET module for local-spatial features. Then the following mergence
layer concatenates the five outputs (y1t+∆, y2t+∆, y3t+∆, y4t+∆, y5t+∆) in the last dimension
and generates temporal and spatial-fused features as Eq. (4.15). The fully-connected layer
matches the temporal and spatial-fused features Yt+∆ to the output.

Yt+∆ = {y1t+∆, y
2
t+∆, y

3
t+∆, y

4
t+∆, y

5
t+∆}. (4.15)

The loss function employed to assess our model is the Mean Squared Error (MSE) and
the optimiser Adam (Kingma & Ba 2014) is utilised to minimise the loss function MSE.
The grid search method (Everaers & Kremer 1994) is used to find the optimal parameter
combinations in the limited range detailed in Section 4.4.1. In addition, following the
convention in the literature, we use 70% of each dataset for training, 20% for validation
and 10% for testing.

4.3 Data Description

In our experiments, we use real-world traffic data collected from intersection road seg-
ments at two locations: Los Angeles, USA and London, United Kingdom. The Los An-
geles traffic data is collected from the California Department of Transportation (Caltrans)
(PeMS) (Caltrans n.d.). PeMS aggregates traffic data into 5-min interval for every station.
Meanwhile, the London traffic data is collected from the Highways England (England
n.d.) where the traffic data is aggregated into 15-min interval each for every station. For
both, we use data period between January and June 2018. As prior mentioned, we use
15-min interval for both locations to ensure the uniformity of experiments. We choose
roadways prone to heavy congestion and frequent incidents.

In addition, we also collect traffic data from two linear roadways in Los Angeles, USA
and London, United Kingdom to show the generality and robustness of the performance
of our novel ALLSCP model on different types of roadways.
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4.3.1 Data Collection from Linear Roadways

For linear roadway in Los Angeles, traffic data is collected from roadway 605 shown in
Figure 4.2 while, for London, traffic data is collected on the M4 motorway shown in Fig-
ure 4.3. Hereinafter, we label our two datasets from linear roadways as follows: L-Los
in Los Angeles and L-London in London. Specifically, data from five observation sta-
tions are used to predict the traffic flow at the third observation station (i.e., the middle of
the five stations). Figure 4.2 shows the five observation stations labelled as al, bl, cl, dl
and el, and we predict short-term traffic flow at station cl. Thus, the number of observa-
tion stations inside of temporal-spatial matrix TSt, m = 5. The two observation stations
before and after station cl are taken into consideration for spatial features.

Figure 4.2: Five observation stations for the chosen road in Los Angeles. We predict the
traffic flow at station cl.

Figure 4.3: Five observation stations for the chosen road in London. We predict the traffic
flow at station cl.
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Figure 4.4 and Figure 4.5 show the real traffic flow and speed data in a randomly se-
lected week from L-Los and L-London, respectively. It is obvious that traffic flow
and speed have daily period. On both datasets, traffic speed becomes lower when traf-
fic flow is higher, which means the traffic flow data has very close relationship with the
traffic speed data. Besides, figures show traffic flow is larger and traffic speed is lower
from L-Los, compared to the data from L-London. Both traffic flow and speed have
larger and more frequent fluctuations from L-Los, which indicates the traffic situations
are worse in L-Los.

Figure 4.4: Real traffic flow and speed data in a randomly selected week from L-Los.
The x-axis and y-axis represent time and traffic flow (top) and/or speed (bottom), respec-
tively. The unit of traffic flow is the number of vehicles and the unit of traffic speed is
"miles/hour".

4.3.2 Data Collection from Intersections

For intersections in Los Angeles, we focus on the junction between road 605 and 105.
Eight contiguous observation stations are utilised to predict two targeted stations. Fig-
ure 4.6 shows the eight selected observation stations (labelled as ai, bi, ci, di, ei, fi, gi,
hi). We consider the traffic flow in the direction from ai moving towards di, fi and hi.
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Figure 4.5: Real traffic flow and speed data in a randomly selected week from
L-London. The x-axis and y-axis represent time interval and traffic flow (top) and/or
speed (bottom), respectively. The unit of traffic flow is the number of vehicles and the
unit of traffic speed is "miles/hour". A time interval is considered as 15 minutes and a
week has 7×24×60

15
= 672 time intervals.

Our aim is to predict short-term traffic flow at ei and gi. The number of observation sta-
tions inside of temporal-spatial matrix TSt, m is 8. Compared to the previous case for
linear roadway, the difference is that the data at the exit and entrance corresponding to
the current direction is considered into prediction. This is important as drivers may avoid
congested road segments by exiting at the junction and return back further down the road.
For example, in Figure 4.6, if bi and/or gi is congested, drivers approaching hi from ai can
choose to exit to ci or ei rather than going directly from ai to hi. Correspondingly, similar
intersection scenario is considered for London, and we collect the data at the junction be-
tween M4 and M25 displayed in Figure 4.7. Hereinafter, we label our two datasets from
intersections as follows: I-Los in Los Angeles and I-London in London.

Figure 4.8 and Figure 4.9 show the real traffic flow and speed data in a randomly selected
week from I-Los and I-London, respectively. For intersections, the patterns of traffic
data can be found similar to these for linear roadways in Chapter 3.3. For example, when
the traffic flow is higher, the traffic speed is lower, and both traffic flow and speed have a
daily pattern.
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Figure 4.6: Eight observation stations for the chosen road in Los Angeles. We predict the
traffic flow at station: ei and gi.

Figure 4.7: Eight observation stations for the chosen road in London. We predict the
traffic flow at stations: ei and gi.
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Figure 4.8: Real traffic flow and speed data in a random selected week from I-Los.
The x-axis and y-axis represent time and traffic flow (top) and/or speed (bottom), respec-
tively. The unit of traffic flow is the number of vehicles and the unit of traffic speed is
"miles/hour". Traffic flow with red box is for the weekend.

4.3.3 Relations of Traffic Flow and Speed

Table 4.1 presents the characteristics of traffic flow and speed from four datasets, includ-
ing maximum (Max), minimum (Min), mean (Mean), standard deviation (Std), variance
(Var) and size (KB). The names of datasets with subscript f and s describe the traffic flow
data and the traffic speed data from the related datasets, respectively. For intersections,
based on the larger standard deviations and variances of traffic flow from I-Los, traffic
fluctuations for I-Los is more complicated than I-London. However, in terms of traf-
fic speed, I-Los, with smaller standard deviation and variance, appears to be less com-
plicated than I-London. This phenomenon probably results from the different physical
characteristics of roadways in the United States and the United Kingdom. For linear road-
ways, the standard deviations and variances of both traffic flow and speed from L-Los

are larger than those from L-London, which indicate that L-Los is more complicated
than L-London.

Figure 4.10 and Figure 4.11 present the relationships between traffic flow and speed in
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Figure 4.9: Real traffic flow and speed data in a randomly selected week from
I-London. The x-axis and y-axis represent time interval and traffic flow (top) and/or
speed (bottom), respectively. The unit of traffic flow is the number of vehicles and the
unit of traffic speed is "miles/hour". A time interval is considered as 15 minutes and a
week has 7×24×60

15
= 672 time intervals.

Table 4.1: Characteristics of four types of datasets

Dataset Max Min Mean Std Var Size (KB)

L-Losf 2186.00 155.00 1318.74 555.54 308627.53 1358

L-Londonf 1750.00 0.00 814.87 494.30 244331.83 1328

I-Losf 2484.00 71.00 971.62 613.02 375788.54 2172

I-Londonf 1773.00 0.00 863.27 503.25 253257.98 2124

L-Loss 76.43 13.17 61.20 8.94 79.91 1358

L-Londons 77.00 0.00 63.15 6.25 39.06 1328

I-Loss 74.93 11.17 65.89 7.03 49.48 2172

I-Londons 69.00 0.00 51.92 15.23 231.93 2124

intersections and in linear roadways, respectively. The x-axis describes traffic flow and
the y-axis represents traffic speed. It shows a non-linear relation exists between traffic
flow and speed. In fundamental relations of traffic flow (Mathew & Rao 2006), the re-
lationships of traffic flow and speed can be presumed that the traffic flow is zero either
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because there is no vehicles or there are too many vehicles without mobility.This assump-
tion fits the relationships of traffic flow and speed shown in Figure 4.10 and Figure 4.11.
The traffic speed decreases while the traffic flow increases when the traffic speed is higher
than the averaged speed. However, the traffic speed increases as the traffic flow increases
when the traffic speed is lower than its average.

(a) I-Los (b) I-London

Figure 4.10: Relations of traffic flow and speed from I-Los (a) and I-London (b).
The x-axis and the y-axis represent traffic flow and speed, respectively. The unit of traffic
flow is the number of vehicles and the unit of traffic speed is "miles/hour". The red line
represents the average of traffic speed.

(a) L-Los (b) L-London

Figure 4.11: Relations of traffic flow and speed from L-Los (a) and L-London (b).
The x-axis and the y-axis represent traffic flow and speed, respectively. The unit of traffic
flow is the number of vehicles and the unit of traffic speed is "miles/hour". The red line
represents the average of traffic speed.
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4.3.4 Data Preparation

To test our model from different dimension, processed datasets generated by Hodrick
Prescott (HP) filter (Maravall et al. 2001) is also used to evaluate our model. HP filter is a
type of data-smoothing technique to remove short-term fluctuations and reveal long-term
trend. For using HP filter to denoise and smooth data, the traffic flow (or speed) in our
work is decoded into two parts: a trend component τxit (or τsit) and a cyclical part cxit (or
cs

i
t), by Eq. (4.16) and Eq. (4.17). τx

i
t and τs

i
t are the trend components of traffic flow

and speed, and cx
i
t and cs

i
t are the cyclical parts of traffic flow and speed. These trend

components and cyclical parts are optimised by Eq. (4.18) and Eq. (4.19), and then used
to calculate processed traffic flow (xi

t) and speed (sit) by Eq. (4.20) and Eq. (4.21).

xi
t = τx

i
t + cx

i
t (4.16)

sit = τs
i
t + cs

i
t (4.17)

min
τ

 T∑
t=1

(xi
t − τx

i
t)

2
+ λ

T−1∑
t=2

[
(τx

i
t+∆ − τxt)− (τxt − τxt−1)

]2 (4.18)

min
τ

 T∑
t=1

(sit − τs
i
t)

2
+ λ

T−1∑
t=2

[
(τs

i
t+∆ − τst)− (τst − τst−1)

]2 (4.19)

xi
t = τx

i
t + cx

i
t (4.20)

sit = τs
i
t + cs

i
t (4.21)

where λ is the signal-to-noise ratio. A reasonable λ can remove noise for providing
accurate prediction, but too large or too small a λ value can result in data distortion.
Hereafter, pre-processed (or de-noised) datasets corresponding to original datasets are la-
beled as PI-Los, PI-London, PL-Los and PL-London. Figure 4.12, Figure 4.13,
Figure 4.14 and Figure 4.15 present the pre-processed traffic flow and speed for I-Los,
I-London, L-Los and L-London, respectively. Compared to real data shown in Fig-
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ure 4.8, Figure 4.9, Figure 4.4 and Figure 4.5, sharp changes resulted from noises or
incidents are removed and data becomes more smoothing.

Figure 4.12: Pre-processed traffic flow and speed in a randomly selected week from
PI-Los. The x-axis and y-axis represent time and traffic flow (top) and/or speed (bot-
tom), respectively. The unit of traffic flow is the number of vehicles and the unit of traffic
speed is "miles/hour". Traffic flow with red box is from the weekend.

4.4 Experiments

4.4.1 Model Setting

For achieving the best results, the ALLSCP parameters that we need to tune are as follows:

1. Parameters in the temporal-spatial input matrix: By analysing the autocorrela-
tion function (ACF) and partial autocorrelation function (PACF) of traffic flow se-
quences, we set k1 in Ti

t to 9 as we found traffic flow in the next time interval highly
depends on traffic flow in 9 previous time intervals. Both k2 in the daily temporal
matrix Di

t and k3 in the weekly temporal matrix Wi
t are set to 7, taking into account
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Figure 4.13: Pre-processed traffic flow and speed in a randomly selected week from
PI-London. The x-axis and y-axis represent time interval and traffic flow (top) and/or
speed (bottom), respectively. The unit of traffic flow is the number of vehicles and the
unit of traffic speed is "miles/hour". A time interval is considered as 15 minutes and a
week has 7×24×60

15
= 672 time intervals.

7 previous days and weeks respectively. The number of previous time intervals
n and the number of stations m in the TSt are respectively set as 3 and 8 in the
intersections and 3 and 5 in the linear roadways (See Section 4.3).

2. Parameters in the ARIMA module: Lag order, p, differentiating times, d, and
moving average window, q are respectively set to 9 (equal to k1), 1 and 0, which
are decided by analysing the autocorrelation coefficient and partial autocorrelation
coefficient of matrix Ti

t.

3. Parameters in the LSTM module: The parameters needed to tune in our LSTM
modules are memory units nd for the input matrix Di

t and nw for the input matrix
Wi

t. Based on the number of time intervals defined in the input matrix Di
t and Wi

t,
we set nd = k2 and nw = k3.

4. Parameters in the SAE module: For SAE, we search the optimal number of hidden
layers ns between 1 and 6, and the number of neurons nsu in each of hidden layers
from 200 to 400 (step size = 50). More layers can capture more information from
input, but it costs more time.
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Figure 4.14: Pre-processed traffic flow and speed in a randomly selected week from
PL-Los. The x-axis and y-axis represent time and traffic flow (top) and/or speed (bot-
tom), respectively. The unit of traffic flow is the number of vehicles and the unit of traffic
speed is "miles/hour".

5. Parameters in the CAPSNET module: The parameters for CAPSNET is given
in Table 4.2. There are four layers including two conventional convolutional lay-
ers, one primary capsule layer (namely PrimaryCaps) and one traffic capsule layer
(namely TrafficCaps). The two conventional convolutional layers are used to cap-
ture the temporal-spatial features of short-term traffic flow, in which the kernel
size in both conventional convolutional layers and activation function are respec-
tively 3 × 3 and “ReLU”. Convolution operations are performed with 2 as the
stride and zero padding. The PrimaryCaps layer is a convolutional layer with 128
channels with 3 × 3 kernel size. It has 16 (128/8) capsules and each capsule is
an 8-dimensional vector. The difference when compared to conventional convo-
lutional layers is that the activation function in this layer is “Squashing” function
(cf. Eq. (4.14)) rather than “ReLU”. This activation function is also used in the Traf-
ficCaps layer with 16 advanced capsules and each of capsules has a 16-dimensional
vector. The advantage of using this in our work is that it produces output in a vec-
tor consisting of 16 values to allow us taking more traffic information than a scalar
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Figure 4.15: Pre-processed traffic flow and speed in a randomly selected week from
PL-London. The x-axis and y-axis represent time interval and traffic flow (top) and/or
speed (bottom), respectively. The unit of traffic flow is the number of vehicles and the
unit of traffic speed is "miles/hour". A time interval is considered as 15 minutes and a
week has 7×24×60

15
= 672 time intervals.

value obtained by other activation functions.

Table 4.2: Parameter Setting in the CAPSNET module

Layer name Parameter Activation

Convolution (3, 3, 64) ReLU

PrimaryCaps (3, 3, 128) Squashing

Capsule dimension = 8

TrafficCaps Advanced capsule = 16 Squashing

(Fully connected) Capsule dimension = 16

(Flattened) 256

4.4.2 Results and Discussion

We compare the performance of our ALLSCP against a time-series prediction model
(ARIMA), a simple machine learning model (SVR), four deep learning models (LSTM,
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SAE, CNN and CAPSNET) and two ensemble models (DA and CLTFP) on intersections
and also linear roadways.

Linear Roadways

(a) (b)

(c) (d)

Figure 4.16: Real traffic flow (black) and predicted traffic flow predicted by our ALLSCP
(blue) and other two existing ensemble models (other colours) in different traffic situations
for L-Los. Notes that each sub-figure shows a different traffic situation. Red boxes in
sub-figures show obvious difference between ALLSCP and other two existing models.

We compare the original traffic flow against the predicted traffic flow from ALLSCP and
other two existing ensemble models (CLTFP ad DA) for L-Los in Figure 4.16 and
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(a) (b)

(c) (d)

Figure 4.17: Real traffic flow (black) and predicted traffic flow predicted by our ALLSCP
(blue) and other two existing ensemble (other colours) models in different traffic situations
for L-London. Notes that each sub-figure shows a different traffic situation. Red boxes
in sub-figures show obvious difference between ALLSCP and other two existing models.

L-London in Figure 4.17 under different traffic situations. Figure 4.16(a) and Fig-
ure 4.17(a) present the traffic flow over a 24-hour period with normal traffic condition
from L-Los and L-London respectively, while Figure 4.16(b) and Figure 4.17(b) show
the traffic flow over a 24-hour period with an abnormal traffic situation (i.e., with various
traffic incidents). In addition, Figure 4.16(c) and Figure 4.17(c) show the traffic flow dur-
ing rush hours over a period of 12 hours, and Figure 4.16(d) and Figure 4.17(d) show the
off-peak time over a period of 8 hours. Especially for Figure 4.16(c) and Figure 4.16(c)
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during rush hours, our model can both capture sudden changes as well as finer traffic
changes. Red boxes in all sub-figures show obvious differences between ALLSCP and
other two existing ensemble models. Overall, ALLSCP captures the traffic flow changes,
following closely the diurnal pattern exhibited in road traffic, even under abnormal traffic
conditions.

Figure 4.18 shows the accuracy (i.e., (100% − MAPE)) of the models across L-Los,
PL-Los, L-London and PL-London datasets. For all cases, our ALLSCP achieves
the best accuracy. Specifically for cases using original traffic data, ALLSCP achieves
accuracy of 93.86% and 95.05% for Los Angeles and London respectively while the
rest of the models on average only achieve accuracy of 91.84% and 92.59%. Amongst
the considered models, DA and CAPSNET are the second best models for L-Los and
L-London respectively with a performance gap of 1.11% and 1.78% when compared to
ALLSCP. On the other end of the spectrum, the worst performing model for both cases
are CNN as it is only capable of capturing local-spatial features. Furthermore, when we
use de-noised data, ALLSCP’s accuracy further improved to 98.16% (4.3% improvement)
and 97.50% (2.45% improvement) for PL-Los and PL-London respectively. DA re-
mains to be the closest rival for prediction on Los Angeles traffic with 96.88% accuracy.
However, for London, CNN’s prediction accuracy improves significantly to become the
second best (95.83%). LSTM which mainly focuses on temporal feature extraction is
the worst performer when using de-noised London data, indicating the traffic pattern near
Heathrow airport is more complex. In fact, we note that while for Los Angeles, all models
achieve improved accuracy, this is not the case for London when the prediction accuracy
for ARIMA, LSTM, SAE and SVR worsened, again mainly due to the higher volatility in
traffic near Heathrow airport. Our ALLSCP model achieves overall higher prediction ac-
curacy due to its ability to capture different temporal (short, medium and long) and spatial
(global and local) features. For instance, we exploit CAPSNET’s feature on encapsulat-
ing important information related to local features into a vector form that can carry more
information than a scalar value. From our results, this encapsulation alone is not suffi-
cient but using our ensemble model, we achieve better accuracy. Moreover, due to the
periodic properties of traffic data, the carefully designed input (including short, medium
and long temporal traffic data on the targeted station and on its neighbouring stations) also
contributes to the enhancement of the prediction accuracy.

Table 4.3 presents the MAE, MAPE and RMSE achieved by all models on L-Los,
PL-Los, L-London and PL-London. Between a statistic model and a simple ma-
chine learning model (i.e., ARIMA and SVR), SVR performs better. This is mainly due to
the non-linear relationship between traffic flow in different time intervals which ARIMA
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Figure 4.18: (100% − MAPE) achieved on L-Los (left), PL-Los (middle-left),
L-London (middle-right) and PL-London (right) collected from linear roadways.
ALLSCP achieves the best accuracy for all cases.

fails to take into account whereas SVR with a non-linear kernel function (i.e., RBF ker-
nel function) is capable of mapping a non-linear vector to a high dimensional feature
space for conducting linear regression. Meanwhile, the four deep learning models (i.e.,
LSTM, SAE, CNN and CAPSNET) generally achieve better predictions compared to sim-
ple machine learning models. For instance, LSTM focusing on time-series data using the
cell state to store information on long-term dependencies of traffic data outperforms both
ARIMA and SVR. For the SAE model, full connection is used between hidden layers.
Therefore, it missed the contribution of local features for traffic prediction. Compared
to SAE model, CNN can capture local-spatial feature for obtaining better result because
of convolutional kernels. Based on CNN, CAPSNET converts scalar values representing
features into a vector form to obtain more detailed information for traffic prediction. This
is the reason that CAPSNET model obtains best results, especially on PL-Los (96.71%)
and PL-London (95.64%). This implies the importance of spatial information for traffic
prediction. Furthermore, between the two ensemble models (CLTFP and DA), MAPE
of DA model is lower on four datasets, and the other two metrics (MAE and RMSE) of
CLTFP model are lower except on PL-London. DA model mainly depends on temporal
feature extraction for prediction while CLTFP model extracted temporal-spatial features
for the final prediction. This again indicates the importance of simultaneously taking
the temporal and spatial features on the problem of traffic prediction. Finally, while our
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ALLSCP consistently achieves the best accuracy, CLTFP relegates it to second best in
some cases for MAE and RMSE.

Intersections

For intersections, ALLSCP achieves the best accuracy across both original and pre-processed
datasets at different locations (i.e., at ei and gi). We present the (100%−MAPE) results
for ei in Figure 4.191. ALLSCP achieves an average of 95.53% accuracy for both ei and
gi across all datasets while the average achieved accuracy by the other eight models is
91.10%. SAE seems particularly challenged for Los Angeles datasets with significantly
lower accuracy achieved compared to other models (even dipping below 70% accuracy
for gi for I-Los). The main reason for this is that SAE model uses unsupervised learning
method to reduce feature dimensions to obtain important hidden information instead of
original data. Furthermore, we see a general trend of improved accuracy achieved when
pre-processed datasets are used. For instance, we see a 12.57% improvement in accuracy
for SAE for PI-Los compared to I-Los. This implies de-noised data offer better input
for short-term traffic predictions.

Figure 4.19: (100% − MAPE) for ei on I-Los (left), on PI-Los (middle-left), on
I-London (middle-right), and on PI-London (right). ALLSCP achieves the best ac-
curacy for four cases.

1We omit the plot for gi as it is qualitatively similar.
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Table 4.4 and Table 4.5 respectively present the prediction results of stations ei and gi.
We observe cases where CLTFP achieves lower prediction error in terms of MAE and
RMSE when compared to ALLSCP. Our results thus suggest that CLTFP is capable of
reducing errors in absolute terms while appears to be less accurate with relative errors
when ALLSCP performs better. This could be due to the fact that for CLTFP ensemble
model, it exploits both LSTM and CNN models as constituent models while for ALLSCP,
we proposed to use CAPSNET in place of CNN which as prior mentioned represents
features in vector form rather than scalar values.

Ablation Experiment Results of the Proposed Model

We conduct ablation experiments by removing one module one at a time, and then com-
pare it to our full proposed model. Five variants of ALLSCP including 1) LLSCP by
removing ARIMA module for short-term temporal feature analysis, 2) A-LSCP by remov-
ing LSTM module for medium-term temporal feature analysis, 3) AL-SCP by removing
LSTM for long-term temporal feature analysis, 4) ALLCP by removing SAE for global
spatial feature analysis and 5) ALLS by removing CAPSNET for local spatial feature
analysis, are used for ablation experiments on four raw datasets.

Table 4.6 shows results of ablation experiments on two datasets (L-Los and L-London)
from linear roadways. Overall, ALLSCP outperforms its five variants. On L-Los,
LLSCP performs the worst. This indicates that ARIMA used for short-term temporal
feature analysis is the most important module in our ALLSCP. The second worst variant
is ALLS, which means CAPSNET used for analysing local spatial features is also very
important for short-term traffic prediction and its importance only inferiors to ARIMA.
Among five variants, AL-SCP achieves best results, followed by A-LSCP and ALLCP.
This indicates that, for short-term traffic prediction, LSTM for long-term temporal fea-
ture analysis is less important than other four modules. Similar results can be found on
L-London. Therefore, on linear roadways, the importance ranking of modules from
most to less in our ALLSCP is {ARIMA, CAPSNET, SAE, LSTM for medium-term tem-
poral feature analysis, LSTM for long-term temporal feature analysis}. It shows that the
short-term temporal and local spatial features are two most important features for short-
term traffic prediction on linear roadways.

Table 4.7 presents ablation experimental results on two datasets (I-Los and I-London)
from intersections. All models show better results on intersections than on linear road-
ways, and our proposed model, ALLSCP, still achieves the best performance. The reason
for this is that more features in TSt from intersections can be used for improving pre-
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Table 4.6: The results of ablation experiments on linear roadways.

L-Los L-London

Model MAE MAPE RMSE MAE MAPE RMSE

LLSCP 83.08 0.0741 108.79 42.97 0.0723 107.89

A-LSCP 73.37 0.0664 97.02 38.57 0.0545 95.99

AL-SCP 71.71 0.0645 95.16 36.35 0.0496 95.11

ALLCP 73.66 0.0665 97.49 41.13 0.0556 100.26

ALLS 78.22 0.0693 104.68 57.78 0.0802 119.21

ALLSCP 71.64 0.0614 95.08 36.29 0.0495 95.08

diction accuracy. Among five variants, ALLS obtains the worst results, which indicates
that CAPSNET module, that is responsible of analysing local spatial features, takes most
important position in ALLSCP. AL-SCP is the best variant and its performance is very
close to ALLSCP, which means LSTM used for long-term temporal feature analysis is
less important than other four modules. Overall, the importance ranking of modules from
most to less in our ALLSCP on intersections is {CAPSNET, ARIMA, SAE, LSTM for
medium-term temporal feature analysis, LSTM for long-term temporal feature analysis}.
It shows that the local spatial and short-term temporal features are two most important
features for short-term traffic prediction on intersections, and the local and global spatial
features become more important than on linear roadways.

Prediction Stability and Robustness

We have shown that ALLSCP is consistent in making the best prediction accuracy for
different scenarios. Hence, ALLSCP behaves stably over the different prediction scenar-
ios. We also observe that generally, models perform better using pre-processed datasets
when compared to using raw traffic data. For instance, the average accuracy of ALLSCP
improves from 94.46% to 97.83% on linear roadways and from 92.76% to 98.29% on
intersections.

We proceed to compare the improvement of (100% − MAPE) between raw and pre-
processed data. We present the results in Table 4.8. All models with convolutional lay-
ers (i.e., CNN, CLTFP, CAPSNET, ALLSCP) achieve improved accuracy after removing
noises using HP filter. This is due to the use of convolutional operator that is commonly
used to extract edge features in image recognition applications. In our case for traffic
flow, the edge feature corresponds to the difference of traffic flow between two continuous
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time intervals. Sudden changes (e.g., due to traffic accidents) causes unbalanced learn-
ing (Pang et al. 2019) and negatively affects the prediction. Pre-processing data smooths
and reduces the differences between two intervals to enable us to obtain better results.
DA also achieves improvement since DA is fed with more detailed temporal information
(e.g., hourly, daily and weekly).

Table 4.8: Accuracy improvement when comparing raw data against de-noised data for
different models.

Model L-Los L-
London

I-Los I-Los I-
London

I-
London

Vari-

(ei) (gi) (ei) (gi) ance

ARIMA 2.22 -1.47 0.77 1.67 0.55 1.36 1.38

LSTM 0.82 -3.49 1.35 1.48 0.39 0.31 2.83

SAE 1.93 -0.59 2.36 12.57 6.84 0.33 30.41

CAPSNET 4.52 2.37 1.95 7.10 6.59 5.78 3.92

CNN 4.82 4.49 6.52 9.92 7.43 6.68 3.22

SVR 2.44 -0.40 1.05 2.04 0.33 0.15 1.04

CLTFP 4.67 0.20 5.56 6.01 7.46 5.59 5.14

DA 4.13 1.82 0.59 1.38 10.65 0.29 12.81

ALLSCP 4.30 2.45 3.24 5.69 6.55 5.90 2.20

From Table 4.8, we see that when comparing using raw and de-noised data, ALLSCP
is among the models achieving the best improvements (average improvement = 4.69%).
CNN achieves the highest improvements when using de-noised datasets with an average
improvement of 6.64% though as we have shown before, its accuracy is much worse than
ALLSCP. Furthermore, ARIMA, LSTM and SVR only achieve minimal improvements
(i.e., below 1%). Along with SAE, these models even achieve worse performance using
de-noised datasets for linear roadways in London. In terms of prediction stability (from
the perspective of variance of the prediction improvements), SVR is the most stable with
lowest variance among all models (i.e., only 1.04). The second lowest variance is achieved
by ARIMA (i.e., 1.38) followed closely by our ALLSCP with variance of 2.20. Although
the variances of SVR and ARIMA on all datasets are lower than ALLSCP, the prediction
accuracy of ALLSCP is consistently higher than those two models. Therefore, consid-
ering both the prediction accuracy and the variance of improvements on all datasets, our
ALLSCP is more stable, robust and accurate.
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4.5 Chapter Summary

In this chapter, we present a novel model for addressing the problem of short-term traffic
flow prediction on intersections; a problem that has received renewed attention due to
the development of smart city visions. Taking into account five important features: 1)
short-term temporal features, 2) medium-term temporal features, 3) long-term temporal
features, 4) global spatial features, and 5) local spatial features, our model exploits the
strengths of four modules, namely ARIMA, LSTM, SAE and CAPSNET to make our
predictions.

We examine our proposed model, ALLSCP, across intersections at two different locations
(Los Angeles and London) where frequent congestion and accidents are expected. Mean-
while, we also validate our proposed model on two linear roadways at these two locations
again for showing the generality of our model. We use both raw traffic data as well as
pre-processed (i.e., de-noised) data, and compare our ALLSCP against existing models
in the literature including its constituent modules, two single models (namely SVR and
CNN) and two existing ensemble models in the literature (namely DA and CLTFP).

Our ALLSCP model achieved the highest accuracy among the nine considered models,
achieving an average of 96.14% and 95.53% accuracy for linear and intersection road-
ways respectively while on average, the other competing models achieved 93.10% and
91.10% for the corresponding scenarios. Our results show that ALLSCP model is not
only accurate but also the most robust, recording the least accuracy degradation when
making predictions for the more challenging data with frequent congestion and accidents.
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Dynamic Spatial-Temporal
Feature-Based Multi-Steps Traffic
Speed Prediction on Large-Scale Road
Networks

5.1 Introduction

In this chapter, we turn our attention to the road network as a whole, i.e., instead of
focusing on specific road segment (either linear as studied in Chapter 3 or intersection
as studied in Chapter 4), we are now considering the entire road network. Traffic speed
prediction on large-scale road networks is known to be a more challenging task with
complex inter-dependencies temporally and spatially. Both traffic speed and flow data
exhibit such patterns and characteristics. For example, temporally, it is found that there
is non-linear temporal dynamics of traffic speed over time depending on the changing
road conditions (e.g., (Zhang 2003)). Furthermore, traffic speed data also show periodic
patterns (e.g., weekly and seasonal changes). Thus, current traffic speed on a location
depends not only on the immediate previous epochs but may also correlate with longer
periodic patterns or trends. Hence, both long- and short-temporal dependencies in traffic
time sequences should be taken into account when making traffic speed predictions.

Since road networks are inherently spatial networks, the traffic speed within the network
logically depends on the topological structure of the road interconnections. Local spa-
tial dependency can be seen from observing that the traffic speed at one road segment is
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affected by both its immediate upstream and downstream road segments. Furthermore,
since the vehicles are travelling within the same physical road network, the traffic con-
dition of different road segments across the network are inter-dependent. This can be
exemplified in various gridlock phenomena taking place in urban cities during peak hours
whereby congestion at one road segment quickly cascade and spread to other locations.

Early attempts on traffic speed prediction focus on temporal dependencies of traffic over
time. Both long- and short-term dependencies in traffic time sequences were studied. Spa-
tial dependencies were later jointly considered, initially focusing on capturing dependen-
cies from immediate upstream and downstream road segments and more recently, taking
into account the influence of the entire road network topology. However, the literature has
mostly considered that the physical road network topology (i.e., the road segments and
their connectivity) is fixed and neighbouring nodes contribute equally to the future traffic
status of the targeted node (we refer this as fixed spatial dependency).

In this chapter, we argue that each neighbouring node is distinct and has different influence
to the targeted node (i.e., the degree of the spatial dependency varies from one neighbour
to another). In the space dimension, intuitively, closer neighbouring nodes have stronger
influence while traffic status at road segments further away gradually have less impact.
However, this relationship is not strict as it also depends on the local connectivity of the
different neighbouring nodes and it is possible to have a node further away having greater
influence on the targeted node. In the time dimension, a congestion lasting longer period
should have wider spatial impact and thus, a road segment will be more influenced by
neighbouring nodes further away if the network suffers comparatively long congestion
period and vice versa. As such, we assert that capturing and quantifying such dynamic

spatial dependency is important to further improve traffic prediction accuracy.

Building on the most recent developments in deep learning, we thus develop a novel pre-
diction model, named SAGCN-SST (Self-Attention Graph Convolutional Network with
Spatial, Sub-spatial and Temporal blocks), and address multi-step traffic speed prediction
problem for large-scale road networks. Apart from considering fixed spatial and long
temporal dependencies, the learning architecture in our SAGCN-SST is designed to also
simultaneously capture the dynamic spatial dependency for both short- and long-term
traffic prediction. We join a self-attention mechanism into our graph convolutional layers
to capture how different neighbouring nodes contribute to the future traffic status of the
targeted node. In our framework, we use parallel sub-blocks for different neighbourhoods,
avoiding increasing model depth and complexity. We validate our proposed framework
using two real-world traffic datasets from large-scale road networks (Seattle and Los An-
geles) and also conduct a comparative study across well-known existing models in the
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recent literature. The results indicate our SAGCN-SST performs better than other leading
models in literature.

The rest of this chapter is organised as follows. We first define our traffic prediction prob-
lem and then detail the design rationale and the architecture of our novel deep learning
framework in Section 5.2. Section 5.3 describes two real-world datasets collected from
large-scale road networks while Section 5.4 evaluates our SAGCN-SST and compares it
with well-known existing models in the recent literature on these two datasets. Finally,
we summary our work in Section 5.5.

5.2 Methodology

5.2.1 Problem Definition

Road Network Representation

Graph theory is an effective tool to capture spatial features of data by analysing the con-
nectivity between detectors or road segments (May 1990). In this chapter, we model the
road network as an undirected graph since the traffic speed depends on its downstream
while traffic congestion propagates upstream (Long et al. 2008) and the datasets used in
this chapter includes traffic congestion events.

Considering a road network represented as G = (V , E) where V is the set of nodes repre-
senting sensor locations or road segments with |V| = N . E is the set of edges representing
physical connectivity between road segments. G can be represented by A ∈ RN×N , the
N × N symmetric adjacency matrix, with its element Ai,j = 1 if there exists a link be-
tween node i and j and 0 otherwise. The degree matrix of graph G, D ∈ RN×N is then
defined as Di,i =

∑
j Ai,j , which sums the number of edges connected to each node.

The future traffic status of a node is influenced by its own current status. For this, we
further define Ã = (A+ I) ∈ RN×N where I is the N ×N identity matrix. This accounts
for the fact that each node is also self-influenced. As such, the trace tr(Ã) =

∑N
i=1Ai,i =

N . Ã only describes the connectivity of neighbours one hop away from each node (i.e.,
1 − hop neighbourhood). We further introduce the notion of k − hop neighbourhood to
represent the set of nodes that are reachable within k hops from the targeted node. We
define the k − hop neighbourhood matrix as Ãk ∈ RN×N . The reason for introducing
the k − hop matrix is to account for the fact that traffic congestion not only propagate to
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its immediate upstream and downstream road segments but also often spread in a certain
area in the network (Nguyen et al. 2016).

Traffic information

Let vit denotes the traffic speed measured at node i at tth time interval. Typically, a time
interval can represent 5, 15, 30, 45 and 60 mins (Bickel et al. 2007). In this chapter, we use
5-min time interval. Given a large-scale road network, the traffic speed on N detectors is
then written as vt = {v1t , v2t , . . . , vit, . . . , vN−1

t , vNt }; vt ∈ RN , (i = 1, 2, 3, . . . , N). Then
V = {vt−T+1, vt−T+2, . . . , vt−1, vt};V ∈ RT×N , (T = 1, 2, 3, . . . ) gives the traffic speed
collected from N detectors in the network for the past T time intervals. Conversely, the
traffic speed for the future is written as V′ = {vt+1, vt+2, . . . , vt+T′} ∈ RT ′×N where T ′

is the prediction horizon. Generally, traffic prediction problems can be categorised into
short- (T ′ < 30 mins) and long-term (T ′ ≥ 30 mins). Since we are addressing multi-step
prediction problem, our solution covers both timescales whereby T ′ = {1, 3} for short-
term and T ′ = {6, 9, 12} for long-term traffic speed prediction corresponding to {5, 15}
mins and {30, 45, 60} mins respectively (Min & Wynter 2011).

Problem Formulation

Given past traffic speed, V and the road network G, our aim is to predict traffic speed, V′,
in the future T ′ time intervals. The problem can then be represented as in Eq. (5.1).

V′ = F

(
V;G

(
V , E , Ãk

))
(5.1)

where the objective is to learn the mapping function F (.) and compute the traffic speed in
the next T ′ time intervals given the traffic speed in the past T time intervals and network
information including the different k neighbourhood matrices as input.

5.2.2 Design Overview

Figure 5.1 presents the overall learning architecture of our SAGCN-SST framework. It
consists of three main blocks:
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• Input block – This block is responsible for preparing the raw traffic and graph data
into a trainable format as input to the spatial block.

• Spatial block – This block extracts both fixed and dynamic spatial features. Based
on GCN, a memory-less model, we construct k−hop neighbourhoods for each node
in the network and utilise a self-attention mechanism to learn the degree of influence
of different individual neighbour to the targeted node. The k spatial features ex-
tracted in this block is concatenated (i.e., SAGCN = {SAGCN1,SAGCN2, . . . ,

SAGCNk}) as input to the temporal block.

• Temporal block – This block then captures the temporal features. Its inputs in-
clude the k spatial features and V′. It aims to obtain the long-temporal relationship
of the past and future data. Specifically, we propose to integrate a memory-based
sequence-to-sequence model within an encoder-decoder architecture (Sutskever et al.
2014) for extracting the long-temporal dependency of the traffic speed. The output
of this block is the final prediction.

5.2.3 Input Block

The two input data are the past traffic speed measurements and the road network graph
data. The traffic speed data is V = {vt−T+1, vt−T+2, . . . , vt};V ∈ RT×N×B×F where B

and F represent the batch size and the number of considered traffic features respectively.
In this chapter, without loss of generality, traffic feature only consists of traffic speed.
Therefore, F = 1.

The road network graph data refers to the k−hop neighbourhood matrices, {Ã1, Ã2, . . . ,

Ãk}. Since we only need the connectivity information of nodes within the neighbourhood
rather than the actual hop distance to the neighbours, we follow (Cui et al. 2019) and clip
all elements in Ãk to be within {0,1}. We can then rewrite the k − hop neighbourhood
matrix Ãk hereafter as follows:

Ãk = Ci(Ãk) (5.2)

where Ci(.) is the clip function such that Ãk
i,j = min

(
Ãk

i,j, 1
)

. Note that when k = 1,

Ã1 = Ã reverts back to the adjacency matrix itself describing the connectivity relation-
ship of nodes in the 1−hop neighbourhood. All spatial features from k−hop neighbour-
hoods are concatenated as a matrix vector SAGCN ∈ RB×T×N×k.
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Figure 5.1: Our novel deep learning framework, SAGCN-SST.
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5.2.4 The Spatial Block

The spatial block is composed of k parallel sub-spatial blocks corresponding to k differ-
ent neighbourhoods (see Figure 5.1). Each sub-spatial block consists of m graph convolu-
tional blocks (GCN blocks) where each GCN block comprises a graph convolutional layer
with self-attention mechanism (Veličković et al. 2018) (namely Self-AGCN) and a feed
forward neural network (FFNN) layer. The last GCN block is followed by an additional
Self-AGCN layer. At the end of parallel sub-spatial blocks, the k spatial features (i.e.,
SAGCN1, SAGCN2, . . . , SAGCNk) corresponding to k different neighbourhoods
are passed to the temporal block for extracting temporal features.

Figure 5.2 illustrates the working principle of the mth Self-AGCN layer on the k − hop

neighbourhood where it has nk nodes. For example, traffic speed of node 1 in Figure 5.2,
as the targeted node, is affected by other (nk − 1) nodes differently. As such, we need
to quantify and compute the different weights of these neighbours with respect to the
targeted node (i.e., (a1−1, a1−2, . . . , a1−nk

) (namely, attention weights)). To achieve this,
the convolutional operation (i.e., Eq. (5.3)) is first conducted on the graph of the road
network for fixed spatial feature extraction:

GCm;k
t =

(
Wgcm;k

t
∗ Ãk

)
vt (5.3)

where ∗ is the Hadamard product operator, vt ∈ RN is the traffic speed at the tth time
interval. Wgcm;k

t
∈ RN×N is a trainable weight matrix in the mth Self-AGCN layer on

the k − hop neighbourhood. The output matrix GCm;k
t ∈ RN represents the fixed spatial

features at current time interval.

As prior mentioned, each neighbouring node contributes differently to the future traffic
status of a targeted node due to its distance as well as its own spatial neighbourhood in
relation with the targeted node. Intuitively, traffic status of a targeted node within a road
network is more heavily influenced by their immediate adjacent neighbours and less af-
fected by nodes further away. However, this is not strictly so. Moreover, traffic volume in
a road network also affects the influence of neighbouring nodes. For instance, neighbour-
ing nodes may not have strong influence on the targeted node in a relatively quiet road
network with low traffic flow. Conversely, in a congestion-prone road network, the traffic
status of neighbouring nodes will have impact on the future status of the targeted node. In
fact, neighbouring nodes will have increasing influence as the congestion period length-
ens. To extract such dynamic spatial features, we apply the self-attention mechanism at
each GCN block to compute the contribution of each node in the k − hop neighbourhood
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Figure 5.2: The graph convolutional layer with self-attention mechanism where the con-
tribution of each neighbouring node to the future traffic status of the targeted node 1 is
computed and represented via an attention weight.

and assign a weight to these neighbouring nodes. The weight is computed based on the
similarity between the neighbouring node and the targeted node. Specifically, the similar-
ity of traffic data between two nodes i and j, um;k

t (i, j) ∈ RN×nk , is computed via a tanh
function as follows:

um;k
t (i, j) = qT tanh

(
GCm;k

t (i)Wm;k
f GCm;k

t (j)

)
;

j = 1, 2, . . . , nk

(5.4)

where Wm;k
f ∈ RN×N is a trainable weight matrix and qT represents the transposition

or reshaping operations that are utilised to adjust the dimensions. We then compute the
attention weights as probabilities (i.e., am;k

t (i, j) ∈ [0.0, 1.0]) via a softmax function
given in Eq. (5.5).
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am;k
t (i, j) = softmax

(
um;k
t (i, j)

)

=
exp
(
um;k
t (i, j)

)
∑nk

j=1 exp
(
um;k
t (i, j)

) (5.5)

After obtaining the attention weights am;k
t (i, j) ∈ RN×nk , it is used to map to fixed spatial

traffic feature GCm;k
t (i) for achieving dynamic spatial traffic feature SGCm;k

t ∈ RN .

SGCm;k
t =

nk∑
j=1

am;k
t (i, j)GCm;k

t (i) (5.6)

Each Self-AGCN layer is followed by a FFNN layer for improving the prediction ability
on learned traffic features. This layer consists of a tanh layer as given in Eq. (5.7) and a
dropout layer as given in Eq. (5.8).

SGCm;k
tanh;t = tanh(SGCm;k

t ) (5.7)

SGCm;k
drop;t = dropout(SGCm;k

tanh;t) (5.8)

Compared to (Kipf & Welling 2017) which uses a ReLU layer and a dropout layer, we
propose to use a tanh layer in place of the ReLU layer. The main reason is that ReLU

function de-activates negative values and only retains positive values. As such, it may
miss some important information hidden behind negative values.

5.2.5 The Temporal Block

For temporal feature extraction, we propose to use the sequence-to-sequence architecture
(Sutskever et al. 2014) which has already been found to offer good performance in the
area of natural language processing. The architecture consists of an encoder and a decoder
with a context C ∈ RB×N connecting the two (see Figure 5.1).

The encoder takes the SAGCN produced by the spatial block as the input. It encodes
the spatially-fused time series using the following:
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he
t−te =

fencoder(h
e
0,SAGCNt−te), te = T

fencoder(h
e
t−te−1,SAGCNt−te), te ∈ 0, . . . , T − 1

(5.9)

where he
t−te ∈ RB×N is the hidden state in the encoder at (t− te)

th time interval. The
initial hidden state is he

0. The hidden state he
t−te−1 ∈ RB×N at (t− te − 1)th time interval

and the spatially-fused feature SAGCNt−te ∈ RN×k at (t− te)
th time interval are used

to calculate the hidden state he
t−te at the (t− te)

th time interval.

The hidden state he
t (te = 0) at the tth time interval is the context vector C which encodes

all information from the input SAGCN in the encoder.

C = he
t (5.10)

In the decoder, the context vector C as the initial hidden state hd
0 ∈ RB×N is decoded

to the target sequence. The hidden state hd
t+td−1 at (t+ td − 1)th time interval and the

target traffic speed vt+td at (t+ td)
th time interval are utilised to calculate the hidden state

hd
t+td

at the (t+ td)
th time interval. The hidden state hd

t+td
at the (t+ td)

th time interval
in the decoder is the final prediction ṽt+td .

The fencoder and fdecoder functions are two GRU modules (Chung et al. 2014). While
GRU is based on LSTM, it incurs shorter processing time and less central processing unit
(CPU) cycles. The reason is that GRU combines LSTM’s forget and input gates into a
single “update gate”, and also merges the memory cell and hidden state. This makes GRU
simpler than the standard LSTM but still efficient. Figure 5.3 depicts the working process
and data flow in a recycled unit of the GRU module. GRU consists of three parts: the
update gate zt, the reset gate rt and the hidden state he

t . The update gate, zt, extracts the
long-term dependency of the data. It decides how much information it needs to update
from the input SAGCNt and the hidden state at the previous time interval he

t−1 (see
Eq. (5.11)).

zt = σ(Wz × SAGCNt +Uz × he
t−1 + bz) (5.11)

The reset gate, rt, captures the short-term dependency of traffic features. It decides how
much information from the hidden state at the previous time interval is retained for up-
dating the current hidden state. It is computed in a similar manner as the update gate by
Eq. (5.12).
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Figure 5.3: Gated Recurrent Unit

rt = σ(Wr × SAGCNt +Ur × he
t−1 + br) (5.12)

Then, the input SAGCNt, the reset gate rt and the hidden state at the previous time
interval he

t−1 are used to activate the candidate hidden state h̃e
t via Eq. (5.13).

h̃e
t = tanh(Wh × SAGCNt +Uh × (rt ∗ he

t−1) + bh) (5.13)

where Wz, Wr and Wh are the weights of the update gate, the reset gate and the candi-
date hidden state respectively while bz, br and bh are the corresponding bias for each gate
and state. Furthermore, Uz, Ur and Uh are the weights of the hidden state at the previ-
ous time interval he

t−1 in the update gate, the reset gate and the candidate hidden state,
respectively. Finally, the current hidden state can be calculated using the update gate zt,
the hidden state at the previous time interval he

t−1 and the current candidate hidden state
h̃e
t using Eq. (5.14).

he
t = (1− zt) ∗ he

t−1 + zt ∗ h̃e
t (5.14)
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5.2.6 Loss Function

To train our SAGCN-SST model, the RMSprop optimiser (Tieleman & Hinton 2012) is
used to minimise the error between the real and predicted traffic. It restricts the oscilla-
tions in the vertical direction. The learning rate can be adjusted to take larger steps in
the horizontal direction for faster convergence compared to Gradient Descent Optimiser
(Bottou 2010).

Mean Square Error (MSE) in Eq. (5.15) as loss function is adopted to train our model as
it learns faster than Mean Absolute Error (MAE).

Loss = L(vt, ṽt) =
1

N

N∑
i=1

(vit − ṽit)
2 (5.15)

where L(.) is the MSE loss function. It calculates the residual error between the real
traffic data vit and the predicted traffic data ṽit.

5.3 Data Description

To train and test our proposed framework, two real-world datasets from large-scale road
networks are utilised: hereafter labelled as LOOP-SEATTLE (Cui et al. 2019) and METR-LA
(Li et al. 2018). The detailed information about those two datasets can be found in Chap-
ter 2.6.2.

5.4 Experiments

5.4.1 Parameter settings

In our SAGCN-SST model, there are several parameters that need to be set for achieving
accurate predictions. The parameters mainly relate to the training process. Specifically,
the parameters are the learning rate r, batch size B, observed time intervals T , targeted
time intervals T ′ and the number of epochs. We follow (Zang et al. 2018, Cui et al. 2019)
and set the learning rate r, batch size B and observed time intervals T as 10−3, 40 and
10 respectively. As prior mentioned, since we are addressing multi-step traffic prediction
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problem, we set the targeted time intervals T ′ as 1, 3, 6, 9 and 12, corresponding to 5, 15,
30, 45 and 60 mins as prediction horizons respectively (Li et al. 2018, Yu et al. 2018). To
find the number of epochs, we use stop early strategy in which the training process will
be stopped when the training loss continues to decrease in 10 epochs while the validation
loss increases. This avoids the problem of over-fitting.

Finally, we follow the convention and use 70% of the data for training, 20% for validation
and 10% for testing. All experiments are conducted on a GeForce GTX 1080 Ti GPU
with 11 GB physical memory, and Pytorch is used to program this work.

5.4.2 Performance Evaluation of SAGCN-SST

To evaluate our proposed SAGCN-SST, we first conduct experiments with different num-
ber of GCN blocks (within the m = [1..6] interval) for T ′ = 1 (i.e., prediction for 5 mins
in advance) for the 1− hop neighborhood (i.e., k = 1). Table 5.1 presents the prediction
results achieved by our SAGCN-SST model for both LOOP-SEATTLE and METRA-LA
datasets.

Table 5.1: Results of SAGCN-SST with m = [1..6] GCN blocks for LOOP-SEATTLE
and METR-LA

LOOP-SEATTLE (T ′ = 1) METR-LA (T ′ = 1)

Layers MAE MAPE RMSE MAE MAPE RMSE

m = 1 0.8435 1.98 1.1175 0.9858 2.05 1.4051

m = 2 0.8186 1.91 1.0851 0.9672 2.01 1.3638

m = 3 0.8031 1.89 1.0686 0.9134 1.90 1.2894

m = 4 0.8181 1.92 1.0872 0.9499 1.98 1.3471

m = 5 0.8219 1.96 1.2140 0.9353 1.93 1.3209

m = 6 0.8102 1.89 1.0759 0.9340 1.93 1.3144

For LOOP-SEATTLE, our SAGCN-SST model achieves MAPE below 2% for m between
1 and 6. The lowest MAPE is achieved (i.e., 1.89%) when SAGCN-SST has 3 and 6
GCN blocks. In these two cases (i.e., m = 3 and m = 6), the errors in MAE and
RMSE for m = 3 are lower. Furthermore, considering that having a deeper model with
more GCN blocks costs more in terms of physical memory and GPU cycles, incurs longer
running time, and may even result in over-fitting, we set m = 3 in the ensuing experiments
for LOOP-SEATTLE. For METR-LA, the best result (i.e., MAPE = 1.90%) is achieved
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when m is also set as 3. In addition, the average MAE and RMSE for both datasets are
respectively below 1.00 and 1.50. Compared to results achieved from LOOP-SEATTLE,
these three types of errors obtained from METR-LA are larger. This indicates that traffic
pattern in METR-LA is more complex.

Next, we proceed with experiments for multi-step traffic speed prediction with prediction
horizon, T ′ = {1, 3, 6, 9, 12} with different neighbourhoods (i.e., k = [1..5]) on both
datasets. The results are summarised in Table 5.2. For LOOP-SEATTLE, our SAGCN-
SST consistently achieves MAPE less than 2% for the different k − hop neighbourhoods
across all prediction horizons. This indicates that longer prediction horizons (i.e., T ′ =

{6, 9, 12}) do not affect SAGCN-SST’s prediction performance. This is mainly due to
our design which integrated the sequence-to-sequence architecture in our temporal block
that effectively captures long-temporal dependency of the data. Figure 5.4 (a) presents the
best prediction results achieved on LOOP-SEATTLE for different neighbourhoods (i.e.,
k = {1, 2, 3, 4, 5}) over different prediction horizons (T ′ = {1, 3, 6, 9, 12}). It is clear that
short-term predictions mainly depend on adjacent neighbours while long-term predictions
need to take into account the influence on a wider neighbourhood. Specifically, for T ′ =

1 and 3, the best results are obtained when k is equal to 1 and 2, respectively. In contrast,
for T ′ = {6, 9, 12}, the best performances are achieved when k is higher (i.e., when k =

5, 4 and 5, respectively).

The observations are quite different for the METR-LA dataset. The best predictions
are always obtained when k = 1 (see Figure 5.4(b)). This is due to the different na-
ture of the traffic patterns in the two datasets. Specifically, we observe that conges-
tion duration in LOOP-SEATTLE tends to be significantly longer than that recorded in
METR-LA. We use Figure 5.5 and Figure 5.6 to exemplify this. The figures show the
real (black solid line) and predicted (red dashed line) traffic speed from two randomly
selected detectors retrieved from LOOP-SEATTLE (cf. Figure 5.5) and METR-LA (cf.
Figure 5.6), respectively. From figures, we see that the traffic congestion duration is 120
mins (= (150− 126)× 5) on METR-LA while for LOOP-SEATTLE, the congestion lasts
for 330 mins (= (181−115)×5). From these observations from the two datasets, we can
see that higher k (i.e., considering wider neighbourhood) offers better prediction accuracy
for traffic congestion that tends to last longer (i.e., long-term prediction) and vice versa.

In Figure 5.5 and Figure 5.6, prediction horizon T ′ increases in the range {1, 3, 6, 9, 12}
from top to bottom. From the figure, it is clear that our model is able to accurately
predict traffic speed across the entire duration including during peak hours (traffic speed
is lower) and off-peak hours (traffic speed is higher). Specifically for more challenging
tasks T ′ = {6, 9, 12} compared to T ′ = {1, 3}, SAGCN-SST can not only accurately
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Table 5.2: Results of SAGCN-SST on k − hop neighbourhoods for both datasets

Model LOOP-SEATTLE METR-LA

Name MAE MAPE RMSE MAE MAPE RMSE

(a) 5-min future prediction (T’=1)

k=1 0.8156 1.90 1.0802 0.9256 1.92 1.3090

k=2 1.0562 2.55 1.4301 1.0494 2.18 1.5103

k=3 0.8320 1.96 1.1041 1.0091 2.11 1.4417

k=4 0.8021 1.90 1.0735 1.0706 2.23 1.5290

k=5 0.8277 1.94 1.1012 1.0375 2.14 1.4714

(b) 15-min future prediction (T’=3)

k=1 0.8627 2.03 1.1528 0.9392 1.93 1.3260

k=2 0.8280 1.96 1.0982 1.0085 2.12 1.4313

k=3 0.8702 2.08 1.1692 1.0619 2.21 1.5153

k=4 0.8453 2.02 1.1300 1.0295 2.12 1.4467

k=5 0.8643 2.05 1.1540 1.0468 2.16 1.4894

(c) 30-min future prediction (T’=6)

k=1 0.8500 2.02 1.1310 0.9242 1.91 1.3049

k=2 0.8767 2.08 1.1585 1.0471 2.19 1.5045

k=3 0.8745 2.07 1.1618 1.0023 2.08 1.4239

k=4 0.8651 2.04 1.1469 1.0488 2.17 1.4849

k=5 0.8332 1.97 1.1147 1.0577 2.21 1.5047

(d) 45-min future prediction (T’=9)

k=1 0.8358 1.99 1.1197 0.9198 1.93 1.2976

k=2 0.8432 2.01 1.1287 1.0640 2.20 1.5159

k=3 0.8507 2.01 1.1332 1.0569 2.20 1.5159

k=4 0.8221 1.94 1.0921 1.0256 2.12 1.4603

k=5 0.8344 1.96 1.1082 1.0671 2.25 1.5244

(e) 60-min future prediction (T’=12)

k=1 0.8613 2.03 1.1459 0.9033 1.86 1.2701

k=2 0.8577 2.03 1.1422 1.0399 2.19 1.4726

k=3 0.8382 2.00 1.1129 1.0510 2.19 1.4896

k=4 0.8271 1.97 1.1065 1.0671 2.25 1.5182

k=5 0.8266 1.96 1.0985 0.9890 2.04 1.3956
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(a)

(b)

Figure 5.4: Relationship of k − hop neighbourhoods and the prediction horizon with
accuracy from SAGCN-SST model on LOOP-SEATTLE (a) and METR-LA (b). The x-
axis represents the prediction horizon and the y-axis is the (100%-MAPE) which means
the prediction accuracy.
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follow the overall trends but also capture the details of rapid fluctuations.

Figure 5.7 and Figure 5.8 visualise the real (sub-figure (a)) and predicted (sub-figure (b))
traffic speed at a randomly selected time interval from our SAGCN-SST model on the
road network of LOOP-SEATTLE and METR-LA, respectively. From the figures, it can
be observed that the real traffic on the road network are closely predicted across the entire
map and thus, further validating the capability of our SAGCN-SST model in computing
accurate predictions on large-scale road networks. Furthermore, both Figure 5.7 and Fig-
ure 5.8 also show that very low or high traffic speed are recorded on several continuous
detectors for both road networks. It indicates that traffic state recorded by a detector is
influenced by its neighbours. This information should be considered in traffic predic-
tion models. Our SAGCN-SST, that defines k − hop neighbourhoods for each detector
and analyses spatial features from its neighbourhood, captures exactly this information to
achieve accurate predictions.

Let the residuals of traffic speed predictions be defined as (vit − ṽit). Considering that the
residual as an indicator on whether the results of a model are statistically correct, we show
in Figure 5.9 and Figure 5.10 the residuals of traffic speed predictions by our proposed
model on both datasets. For both datasets with 5 mins as prediction horizon (top row of the
figure), we see that the residual distributions follow normal distributions with zero means.
For longer prediction horizons (i.e., 30 and 60 mins), while the residual distributions still
resemble that of a normal distribution, the means shift away from zero. This is because
longer prediction horizons are less impacted by historical traffic data compared to short
prediction horizons. The residual’s normal distributions in Figure 5.9 and Figure 5.10
again suggests that our proposed model is capable of capturing dynamic spatial-temporal
features and provide more accurate predictions.

5.4.3 Comparison Study

We compare our proposed model, SAGCN-SST, to well-known existing models in re-
cent literature. The chosen representative models from the state-of-the-art adopt one of
four different approaches to treat traffic prediction problem. These four approaches re-
spectively consider traffic prediction as 1) a temporal, 2) a spatial, 3) a spatial-temporal
and 4) a fixed spatial dynamic-temporal process. The seven models that are used for our
comparison study based on the aforementioned approaches are the following:

1. Gate Recurrent Unit (GRU) (Chung et al. 2014): See Section 5.2.5 for details.
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Figure 5.5: Real and predicted traffic speed (miles/hour) in a day with 288 (=
24h∗60mins

5mins
) time intervals from SAGCN-SST on LOOP-SEATTLE with a time interval

= 5 mins.
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Figure 5.6: Real and predicted traffic speed (miles/hour) in a day with 288 (=
24h∗60mins

5mins
) time intervals from SAGCN-SST on METR-LA with a time interval = 5 mins.
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(a)

(b)

Figure 5.7: Visualisation of real (a) and predicted (b) traffic speed at a randomly selected
time interval on the road network of LOOP-SEATTLE. Darker colour represent lower
traffic speed.
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(a)

(b)

Figure 5.8: Visualisation of real (a) and predicted (b) traffic speed at a randomly selected
time interval on the road network of METR-LA. Darker colour represent lower traffic
speed.
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prediction horizon = 5 mins

prediction horizon = 30 mins

prediction horizon = 60 mins

Figure 5.9: The prediction residuals of our proposed model on LOOP-SEATTLE. From
top to bottom, the prediction horizons are 5, 30 and 60 mins, respectively. The x-axis
represents the residuals (i.e., vit − ṽit) and the y-axis represents the probability density of
the residuals.
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prediction horizon = 5 mins

prediction horizon = 30 mins

prediction horizon = 60 mins

Figure 5.10: The prediction residuals of our proposed model on METR-LA. From top to
bottom, the prediction horizons are 5, 30 and 60 mins, respectively. The x-axis represents
the residuals (i.e., vit−ṽit) and the y-axis represents the probability density of the residuals.
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2. Graph Convolutional Network (GCN) reported in (Zhang, Li, Lin, Wang & He
2019) consists of two graph convolutional layers, and each layer is followed by
a ReLU and a dropout layer. Another work following this approach is Graph
Convolutional Network with self-attention mechanism (namely SAGCN) which is
treated as a sub-spatial block in our SAGCN-SST model.

3. CNN-LSTM (also known as SRCNs in (Yu et al. 2017)) consists of deep convo-
lutional neural networks (DCNNs) and LSTMs. DCNNs are used to capture the
spatial dependency of network-wide traffic and LSTMs are utilised to learn the
temporal dynamics. T-GCN (Zhao, Song, Zhang, Liu, Wang, Lin, Deng & Li 2019)
combines GCN and GRU. GCN captures the spatial dependency and GRU focuses
on learning the temporal dependency. TGC-LSTM (Cui et al. 2019) consists of
GCN and LSTM corresponding to capture spatial and temporal features, respec-
tively. An L1-norm on the graph convolution weights and an L2-norm on the graph
convolution features are added to the loss function for enhancing the interpretability
of the model.

4. AGC-Seq2Seq-Attn model in (Zhang, Li, Lin, Wang & He 2019) includes two
parts: the graph convolutional network and the sequence-to-sequence architecture
consisting of an encoder and a decoder with the attention mechanism. Two GRUs
are used to build the encoder and the decoder. The graph convolution operation is
firstly utilised to capture the spatial characteristics based on the topology of the un-
derlying road network, and then its output is treated as the input of the encoder that
encodes the spatially-fused time series to a context vector. After that, the context
vector is decoded to the target multi-step outputs in the decoder with the attention
mechanism. Another work following this approach is the Seq2Seq-Attn model re-
ported in (Zhang, Li, Lin, Wang & He 2019), and the main difference between
Seq2Seq-Attn and AGCN-Seq2Seq-Attn (Zhang, Li, Lin, Wang & He 2019) is the
graph convolution layer.

Table 5.3: Comparison of all models for both datasets

Model LOOP-SEATTLE METR-LA

Name MAE MAPE RMSE MAE MAPE RMSE

(a) 5-min future prediction (T’=1)

GRU 3.0796 8.10 4.5349 3.3181 7.87 5.2300

GCN 3.7696 11.00 5.8426 4.1113 10.00 6.4648

119



Chapter 5

SAGCN 3.6297 10.38 5.4396 4.1258 9.86 6.3436

CNN-LSTM 3.0753 8.19 4.5690 3.2930 7.88 5.3107

T-GCN 3.3568 9.07 4.9371 3.8915 9.77 6.2140

TGC-LSTM 3.0007 7.90 4.4650 3.5857 8.31 5.5387

Seq2Seq-Attn 1.1724 2.75 1.5625 1.0344 2.10 1.4552

AGCN-Seq2Seq-Attn 1.2167 2.86 1.6378 1.2690 2.63 1.8230

SAGCN-SST 0.8156 1.90 1.0802 0.9256 1.92 1.3090

(b) 15-min future prediction (T’=3)

GRU 3.5166 9.86 5.3336 3.8002 9.28 5.9989

GCN 3.9293 11.82 6.1877 4.4120 10.92 6.8530

SAGCN 3.8825 11.74 5.9793 4.3333 10.59 6.7672

CNN-LSTM 3.4752 9.77 5.3258 3.8441 9.42 6.1117

T-GCN 3.6482 10.36 5.5533 4.3111 10.97 6.7720

TGC-LSTM 3.4051 9.51 5.2335 3.7832 9.25 6.0438

Seq2Seq-Attn 1.1577 2.69 1.5352 1.0419 2.13 1.4614

AGCN-Seq2Seq-Attn 1.2134 2.82 1.6206 1.2925 2.67 1.8408

SAGCN-SST 0.8280 1.96 1.0982 0.9392 1.93 1.3260

(c) 30-min future prediction (T’=6)

GRU 3.9625 11.73 6.0602 4.4496 10.92 6.8299

GCN 4.1249 12.62 6.5210 4.9551 12.24 7.4193

SAGCN 4.1371 12.63 6.4485 4.6797 11.63 7.1876

CNN-LSTM 3.8874 11.55 6.0237 4.3388 10.90 6.8113

T-GCN 3.9805 11.54 6.1095 4.6214 11.44 7.1553

TGC-LSTM 3.8570 11.17 5.9748 4.4771 11.03 6.9709

Seq2Seq-Attn 1.2281 2.87 1.6327 0.9741 1.97 1.5757

AGCN-Seq2Seq-Attn 1.2438 2.89 1.6425 1.2431 2.57 1.7826

SAGCN-SST 0.8332 1.97 1.1147 0.9242 1.91 1.3049

(d) 45-min future prediction (T’=9)
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GRU 4.2900 13.04 6.5693 4.9017 12.03 7.4453

GCN 4.2786 13.00 6.7792 5.2008 12.94 7.7243

SAGCN 4.2671 12.80 6.6604 5.1772 12.75 7.7956

CNN-LSTM 4.0928 12.73 6.4350 4.7360 12.25 7.3165

T-GCN 4.2564 12.67 6.5664 4.9924 12.53 7.5092

TGC-LSTM 4.0914 12.51 6.4900 4.6058 11.84 7.2901

Seq2Seq-Attn 1.2129 2.83 1.6082 1.5080 3.19 2.1990

AGCN-Seq2Seq-Attn 1.2002 2.82 1.6132 1.2759 2.61 1.8303

SAGCN-SST 0.8221 1.94 1.0921 0.9198 1.93 1.2976

(e) 60-min future prediction (T’=12)

GRU 4.5500 14.42 6.9905 5.1421 12.86 7.6679

GCN 4.4920 14.44 7.1989 5.4567 13.69 8.1325

SAGCN 4.4873 13.67 7.0132 5.2514 13.11 8.0610

CNN-LSTM 4.3054 13.38 6.7549 5.0391 12.67 7.7585

T-GCN 4.5414 13.90 7.0176 5.1833 13.02 7.7762

TGC-LSTM 4.3459 13.44 6.9132 5.0078 12.73 7.7247

Seq2Seq-Attn 1.1607 2.70 1.5469 0.9079 1.82 1.2839

AGCN-Seq2Seq-Attn 1.2172 2.85 1.6270 1.3181 2.73 1.8674

SAGCN-SST 0.8266 1.96 1.0985 0.9033 1.86 1.2701

Table 5.3 presents achieved results of all chosen models for T ′ = {1, 3, 6, 9, 12} on both
datasets while Figure 5.11 shows the corresponding accuracy for T ′ = {1, 3} and T ′ =

{6, 9, 12}. From Table 5.3 and Figure 5.11, the following attributes can be observed with
regards to the different approaches to resolve the traffic prediction problem.

1. The three types of errors achieved by GRU increase when the prediction horizon is
longer, as shown in Table 5.3. For example, from T ′ = 1 to T ′ = 12, the MAE,
MAPE and RMSE of GRU on LOOP-SEATTLE increase from 3.0796, 8.10%
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(a)

(b)

Figure 5.11: Comparison of prediction accuracy (100%-MAPE) on short- and long-term
prediction tasks for all models on LOOP-SEATTLE (a) and METR-LA (b).
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and 4.5349 to 4.5500, 14.42% and 6.9905 respectively. The same applies to the
METR-LA dataset. This indicates that GRU, which mainly works for the temporal
feature extraction, can offer higher prediction accuracy for short-term prediction
while the performance deteriorates when the prediction horizon is longer.

2. From Table 5.3, GCN and SAGCN are the two worst performing models. This is
due to the fact that GCN and SAGCN are generally used to capture spatial features.
They are unable to capture temporal features. Compared to GRU that presents
a large increase of MAE, MAPE and RMSE from T ′ = 1 to T ′ = 12 on both
datasets, GCN and SAGCN models only present a small increase. For example, on
LOOP-SEATTLE, the MAPEs of GCN and SAGCN increase by 3.44% and 2.29%,
respectively, while the MAPE of GRU grows by 6.32%. The reason is that the spa-
tial feature starts to play an increasingly more important role when the prediction
horizon is longer. In addition, on both datasets, SAGCN performs slightly better
than GCN for the same prediction horizon. This is because the self-attention mech-
anism in SAGCN is able to derive the different contributions of neighbouring nodes
via distribution of different weights to each of them.

3. Spatial-temporal models (including CNN-LSTM, T-GCN and TGC-LSTM) achieve
better performances on both datasets compared to spatial models (i.e., GCN and
SAGCN). For example, for T ′ = 1, the average MAE, MAPE and RMSE of spatial-
temporal models on LOOP-SEATTLE are 3.1443, 8.39% and 4.6570, respectively,
while the average MAE, MAPE and RMSE achieved by spatial models are 3.6997,
10.69% and 5.6411, respectively. This is due to the fact that CNN-LSTM, T-GCN
and TGC-LSTM are able to capture both spatial and temporal features for their final
prediction while GCN and SAGCN only rely on extracting spatial features. This
phenomenon is more obvious for short-term prediction. For instance, for T ′ = 1,
the average MAE, MAPE and RMSE of CNN-LSTM, T-GCN and TGC-LSTM
decrease by 0.5554, 2.30% and 0.9841, respectively, compared to the average MAE
(3.6997), MAPE (10.69%) and RMSE (5.6411) of GCN and SAGCN. For T ′ = 12,
the three types of errors only decrease by 0.0921, 0.48% and 0.2109, respectively,
compared to GCN and SAGCN with 4.4897, 14.06% and 7.1061 of these errors.
This is because the spatial feature starts to play an increasingly more important role
when the prediction horizon is longer. Similar observations can also be found in
METR-LA.

4. Seq2Seq-Attn and AGCN-Seq2Seq-Attn perform better than CNN-LSTM, T-GCN
and TGC-LSTM. Their MAE, MAPE and RMSE over all different prediction hori-
zons on two datasets are less than 1.5080, 3.19% and 2.1990, respectively. The
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accuracy for short-term prediction by Seq2Seq-Attn and AGCN-Seq2Seq-Attn are
similar for long-term prediction. Between Seq2Seq-Attn and AGCN-Seq2Seq-
Attn, the results achieved by Seq2Seq-Attn are slightly better. This observation
does not agree with the results reported in (Zhang, Li, Lin, Wang & He 2019)
where the reversed is observed. The main reason for this phenomenon is that
AGCN-Seq2Seq-Attn is a more complex model that requires large datasets and
higher number of features for achieving better results. In (Zhang, Li, Lin, Wang &
He 2019), AGCN-Seq2Seq-Attn is tested utilising several features including max-
imum, minimum and median of traffic speed as opposed to our experiments here
where despite similar size datasets, only use the original traffic speed as the sole fea-
ture. Therefore, Seq2Seq-Attn performs slightly better than AGCN-Seq2Seq-Attn
in our work.

5. Our SAGCN-SST model achieves the best results on both datasets over all different
prediction horizons with an average MAPE less than 2% (i.e., prediction accuracy
> 98%). In addition, the MAE and RMSE are 0.8156 and 1.0802, respectively.
The closest rivals are Seq2Seq-Attn and AGCN-Seq2Seq-Attn. These models con-
sider the dynamics on temporal feature extraction by taking attention mechanism
in the decoder of the sequence-to-sequence architecture. On the other hand, our
SAGCN-SST considers the dynamic process on spatial feature extraction by adopt-
ing self-attention mechanism on the graph convolutional layer that can more ef-
fectively capture the dynamic spatial dependency between the targeted node and
their neighbours in different neighbourhoods. The experimental results in this sec-
tion also indicate that adopting self-attention mechanism on the graph convolutional
layer is more efficient than including it in the decoder of the sequence-to-sequence
architecture for traffic prediction. For example, comparing with less than 2% of
MAPE achieved by SAGCN-SST, Seq2Seq-Attn and AGCN-Seq2Seq-Attn only
obtain less than 3% of MAPE.

In addition, our SAGCN-SST can obtain accurate predictions with small number
of features. Between AGCN-Seq2Seq-Attn and SAGCN-SST, our SAGCN-SST
model obtains the higher prediction accuracy (> 98%) compared to the 97% accu-
racy achieved by the AGCN-Seq2Seq-Attn when the experiments are conducted on
the same datasets. The main reason is that sub-spatial blocks in SAGCN-SST are
paralleled, rather than stacked. This avoids increasing the depth of our model so as
to improves scalability and avoid over-fitting at the early stage of training.

Overall, models can achieve more accurate predictions when the traffic prediction prob-
lem is treated as a dynamic spatial-temporal process as opposed to considering the prob-
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lem as 1) a temporal, 2) a spatial or 3) a spatial-temporal and 4) a fixed spatial dynamic-
temporal process. This can be clearly observed in Figure 5.11 where SAGCN-SST,
Seq2Seq-Attn and AGCN-Seq2Seq-Attn perform significantly better than the other six
models. From the results, we also see that our SAGCN-SST, that is able to capture dy-
namic spatial features, achieves the best results for both short- and long-term predictions.
For T ′ = {1, 3}, the next best batch of models are GRU, CNN-LSTM, T-GCN and TGC-
LSTM, followed by GCN and SAGCN. This is because GRU, CNN-LSTM, T-GCN and
TGC-LSTM are able to capture temporal features, which play a more important role for
short-term prediction. For T ′ = {6, 9, 12}, CNN-LSTM, T-GCN and TGC-LSTM still
forms the group of models offering the next best results, followed by GRU that has per-
formance similar to GCN and SAGCN, but the difference between all models is smaller
than for T ′ = {1, 3}. This can be attributed to the increased importance of spatial features
in longer prediction horizons.

5.5 Chapter Summary

In this Chapter, we present a novel deep learning model, namely SAGCN-SST, for ad-
dressing multi-step traffic speed prediction problem on large-scale road networks. We
claim that the influence of different neighbouring road segments towards the future traffic
state of a specific road segment of interest are unique and should be considered into the
prediction process.

Considering traffic speed prediction as a dynamic spatial-temporal process, our model
takes advantage of graph convolutional networks, the graph convolutional layer with self-
attention mechanism and the sequence-to-sequence architecture, respectively for the fixed
spatial, dynamic spatial and long-temporal feature extractions, to make our predictions.
We examine our proposed model, SAGCN-SST, on two real-world large-scale road net-
works: LOOP-SEATTLE and METR-LA. Traffic congestion frequently occurs for a short
duration in METR-LA and for longer duration in LOOP-SEATTLE.

We compare our SAGCN-SST against well-known models in recent literature includ-
ing: 1) one model treating traffic prediction as a temporal process (i.e., GRU), 2) two
models treating traffic prediction as a spatial process (i.e., GCN and SAGCN), 3) three
models treating treating traffic prediction as a spatial-temporal process (i.e., CNN-LSTM,
T-GCN and TGC-LSTM), and 4) two models treating traffic prediction as fixed spatial
dynamic temporal process (i.e., Seq2Seq-Attn and AGCN-Seq2Seq-Attn). Our SAGCN-
SST model achieves the highest accuracy among all competing models for both short- and
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long-term predictions. The average MAE, MAPE and RMSE on both datasets with fre-
quent traffic congestion and accidents are less than 1.0, 2.0% and 1.4, respectively, which
translate to prediction accuracy being higher than 98.0%. This results show our SAGCN-
SST model is not only accurate but also robust, recording similar accuracy when making
predictions for different prediction horizons including the more challenging long-term
prediction.
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Virtual and Dynamic Spatial-Temporal
Feature-based Multiple-Steps Traffic
Speed Prediction on Large-Scale Road
Networks

6.1 Introduction

The most recent works including our previous approach presented in Chapter 5, that com-
monly use GCN to extract spatial dependencies of traffic on road networks, usually con-
sider actual physical road connections between road segments. This requires topological
data of the road network (conventionally represented by an adjacency matrix). Since
the adjacency matrix only contains information regarding connections between adjacent
neighbours, k − hop matrix built based on the adjacency matrix is sometimes used to
extract connectivity information within a local neighbourhood. These do not comprehen-
sively encode the complex spatial dependencies hidden within the road network. There
are different types of road with different features (e.g., speed limit, number of lanes, ex-
istence of traffic lights or roundabouts). For example, in United Kingdom, urban roads
are categorised into three types: general roads, roads with traffic lights and roads with
roundabouts. Generally, traffic state at a road segment near a traffic light (or roundabout)
has correlation with the traffic states on other road segments with traffic lights (or round-
abouts). Sensors deployed near these road features may not be directly connected but
could have correlation among them. Therefore, the adjacency matrix or k − hop matrix
are insufficient to fully describe the complex spatial dependencies in the road network.
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To account for these problems, we propose a novel deep learning model named, Virtual
Dynamic Graph Convolution Network and Transformer with Gate and Attention mecha-
nisms (VDGCNTGA) for addressing traffic prediction on large-scale road networks. The
main contributions of this chapter are as follows:

• Our VDGCNTGA model makes predictions using a virtual dynamic road network
updated after each batch based on the Self-Attention mechanism. This idea is in-
spired by the application of GCN on solving classification problems (Mondal et al.
2020). Instead of purely relying on the actual physical road topology (as that rep-
resented by adjacency matrix or k − hop matrix), we consider a certain number of
randomly selected samples of traffic data for each node once. We then treat the his-
torical traffic data in those samples as the node features to analyse the relations of
each node to others on the network for generating and updating the virtual dynamic
graph. Not only can this method capture dynamic and hidden correlations among
road segments across the network, it also allows the model to learn a more gener-
alised graph because the relationships of nodes are learned from randomly selected
samples of historical traffic data (cf. Section 6.2.2).

• We exploit the attention mechanism of the transformer technology (Vaswani et al.
2017) to capture dynamic and hidden spatial and temporal features from historical
traffic data. We further employ graph convolution neural network to correct the
learned dynamic spatially-fused features from transformers on the updated dynamic
graph (cf. Section 6.2.3).

• We compare our VDGCNTGA model against seven well-known existing models
using two real-world large-scale road traffic datasets. In addition, we conduct ab-
lation experiments to further gain insights into the characteristics of our model by
systematically evaluating it with removal of individual constituent module.

The rest of this chapter is organised as follows. First, we define our traffic prediction
problem and detail the design rationale and the architecture of our virtual dynamic graph
convolution network and transformer with gate and attention mechanisms (VDGCNTGA)
framework in Section 6.2. We then evaluates our proposed model and compares it with
seven well-known existing models in recent literature on two real-world large-scale road
network datasets, and also conduct ablation experiments to understand and gain insights
of our model in Section 6.4. Finally, we summary our work in Section 6.5.
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6.2 Methodology

6.2.1 Problem Formulation

Considering a road network with a set of N geographically distributed sensors, let xi
t

denote the traffic speed measured at node i at tth time interval. The traffic speed data is
written as xt = {x1

t , x
2
t , . . . , x

i
t, . . . , x

N−1
t , xN

t };xt ∈ RN . Typical time interval, m, could
be 5, 15, 30, 45 and 60 minutes (Bickel et al. 2007). The datasets used for our experiments
are with m = 5 minutes. We then define XT and XD as the traffic speed data collected
from N sensors for T previous time intervals and the same time interval with the targeted
time interval in D previous days, respectively. They are formulated as follows:

XT = {x1, x2, . . . , xt, . . . , xT};

XT ∈ RT×N , T = 1, 2, 3, . . .
(6.1)

XD = {X(T+T ′)− 24×60
m

×D, X(T+T ′)− 24×60
m

×(D−1), . . . ,

X(T+T ′)− 24×60
m

×2, X(T+T ′)− 24×60
m

×1};

XD ∈ RD×T ′×N , D = 1, 2, 3, . . . , T ′ = 1, 2, 3 . . .

(6.2)

In a similar manner, future traffic data is denoted as XT+T ′ = {xT+1, xT+2, . . . , xT+t′ , . . . ,

xT+T ′} ∈ RT ′×N where T ′ is the prediction horizon. In this chapter, we consider multi-
interval predictions where T ′ = {1, 2, 3, . . . , 12} corresponding to {5, 10, 15, . . . , 60}
minutes. These are common values used in the literature (e.g., (Li et al. 2018, Cui et al.
2019)).

Conventionally (e.g., (Cui et al. 2020, Zhang, Li, Lin, Wang & He 2019)), the road graph
is represented as G = (V , E) where V is the set of nodes representing road segments or
sensor locations with |V| = N and E is the set of edges representing connectivity between
road segments. G can be represented by A ∈ RN×N , the N × N symmetric adjacency
matrix, with its element Ai,j = 1 if there exists a link between node i and j, otherwise
Ai,j = 0. Since future traffic state of a node is influenced by its own current state, G can
then be written as A0 = (A + IN) ∈ RN×N where IN is the N × N identity matrix.
However, in our work, instead of purely using physical road connectivity, we advocate
the use of virtual dynamic road graph (cf. Section 6.2). The virtual dynamic road graph

129



Chapter 6

generated by the Self-Attention Block in our model is represented by Avd ∈ RN×N .
Considering that traffic speed has both short- and long-term temporal patterns (Shi et al.
2020), the timestamps of traffic data XT , including the time interval of a day and the
day of a week, are defined as external features (i.e., TT ′ = {tT , tD};TT ′ ∈ R(T+T ′)×2,
tT = {t1, . . . , tt, . . . , tT , tT+1, . . . , tT+t′ , . . . , tT+T ′} ∈ RT+T ′

; tt = 1, 2, . . . , 24×60
m

and
tD = {td1 , . . . , tdt , . . . , tdT , tdT+1

, . . . , tdT+t′
, . . . , tdT+T ′} ∈ RT+T ′

; tdt = 1, 2, 3, 4, 5, 6, 7,
respectively) and are used to embed external temporal features. The timestamps of traffic
data XD are defined as TDT ′ ∈ RD×(T+T ′)×2 in a similar manner. Based on traffic speed
data and the road graph information, the traffic prediction problem considered here can
be formulated as following.

X̃T+T ′ = F
(
XT ;XD;TT

′;TDT ′;G(V , E , A0)

)
(6.3)

where the objective is to learn the mapping function F(.) and then use the learned F(.)

to compute the traffic speed in the next T ′ time intervals based on traffic speed data in T

previous time intervals and in the same time interval with the targeted time interval from
D previous days, their timestamps and the virtual road graph information.

6.2.2 VDGCNTGA Workflow

Figure 6.1 presents the workflow of our VDGCNTGA model for network-wide traffic
prediction given a road map. It predicts traffic in the next T ′ time intervals using historical
traffic data. It consists of two main phases (i.e., training and testing phases) with each
phase taking slightly different inputs.

In the training phase, VDGCNTGA takes five inputs:

1. historical traffic data for T time intervals, XT ∈ RB×T×N (Note that XT is for-
matted to RB×T×N for the training process and the same operation applies to other
inputs. B is the batch size.),

2. historical traffic data in the same time interval with the targeted time interval from
past D days, XD ∈ RB×D×T ′×N ,

3. the timestamps of time intervals in a day and days in a week, TT ′ ∈ RB×(T+T ′)×2

and TDT ′ ∈ RB×(T+T ′)×2D,
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4. pre-embedded physical spatial matrix based on the original road graph, G(V , E , A0),

5. virtual dynamic spatial matrix, Avd ∈ RN×N .

Figure 6.1: The workflow of the VDGCNTGA model for multi-interval traffic predictions.

Particularly, the virtual dynamic spatial matrix, Avd, is updated after each batch in the
training phase by a Self-Attention-Block. This enables VDGCNTGA to learn the dy-
namic and hidden spatial dependencies of road segments across the network. This Self-
Attention-Block maps and learns the relationships between historical traffic data XT and
XT+T ′ via the following:

Avd = Softmax

(
Reshape(XT )

(
Reshape(XT+T ′)

)⊺
)

(6.4)

where Reshape(.) is used to reshape RB×T (orT ′)×N into RN×BT (orBT ′) so as to obtain
the virtual dynamic spatial matrix Avd ∈ RN×N . This operation enables each node to
build the relationships with others through BT features from B samples. It results in the
learned spatial matrix that is (1) dynamic as it is updated after each batch in the process
and (2) general as the learned spatial matrix is not specific to any time interval due to fact
that we use randomly selected B samples rather than particular fixed time intervals.

After the training phase, the spatial dependencies of road segments on the network would
have been learned and encoded in the weight and bias matrices of Avd. When the trained
VDGCNTGA model is tested, the virtual dynamic spatial matrix, Avd, is replaced by the
identity matrix, IN ∈ RN×N . This is to restore the learned spatial matrix so as to avoid
information leakage and thus ensuring model predictions are made only based on learned
features and historical traffic data.
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6.2.3 VDGCNTGA Model Architecture

Since VDGCNTGA uses the same internal structure to extract features from XT and
XD, we will only detail in the following the internal structure for XT as depicted in Fig-
ure 6.2. It consists of three main blocks, i.e., two Spatial and Temporal Transformer
blocks (STTras-Blocks), each consisting of a Spatial Transformer (STm), a Temporal
Transformer (TTm) and a Spatial-Temporal Fusion (STF) module, and a Dynamic Graph
Convolution Network Block (DGCN-Block), connected between the two STTras-Blocks.
STm and DGCN-Block are considered as memory-less parts while TTm is considered as
a memory-based part. The STTras-Blocks are used for spatial and temporal feature analy-
sis. The DGCN-Block is for dynamic spatial feature analysis as well as for correcting the
learned spatially-fused feature from the first STTras-Block. In addition, VDGCNTGA
also includes two additional embedding modules, namely Spatial Embedding (SEm) for
spatial matrix (Es) embedding based on the physical road network, A0, and Temporal
Embedding (TEm) for temporal matrix (TT and TT ′) embedding based on the timestamps
of traffic data, TT ′. The Self-Attention block is included only in the training phase for
updating the virtual dynamic spatial matrix Avd which takes place after each batch.

The embedded spatial matrix, Es, is generated by SEm using the physical road graph,
A0, while the embedded temporal matrices, TT and TT ′ , are generated by TEm using the
timestamps of the historical and targeted traffic data TT ′. XT and Es are sent to STm in
the first STTras-Block for spatial feature learning while XT and TT are fed to its TTm
for historical temporal feature learning. Both learned spatial and temporal features are
fused in STF based on the gate mechanism in GRU (Fu et al. 2016). Then the output
with the virtual dynamic spatial matrix, Avd, are sent to the DGCN-Block for further dy-
namic spatial feature analysis and learned spatially-fused feature correction. The output of
DGCN-Block, Avd, Es and TT ′ , are further fed into the second STTras-Block for learning
dynamic spatial and temporal features by aligning the learned features from DGCN-Block
with virtual dynamic spatial matrix Avd in STm and with the targeted temporal embed-
ding matrix TT ′ in TTm. Finally, the fused dynamic spatial-temporal features from STF
are sent to a Fully-Connected Layer for the final prediction. We detail the operations of
each VDGCNTGA block and module next.

SEm

This module embeds the physical road network into a spatial matrix Es using the node2vec
algorithm (Grover & Leskovec 2016). It maps nodes within the road network to a low-
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Figure 6.2: Internal structure of the VDGCNTGA model.
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dimensional space while keeping the relationships of nodes to their neighbours. In our
work, the physical road network, A0 ∈ RN×N , is learned and mapped as Es ∈ RN×F ;F <

N by a biased random walk procedure, which provides a flexible neighbourhood size to
each node for learning richer representations.

TEm

This module aims to embed the timestamps of historical and targeted traffic data as exter-
nal temporal features. It consists of an encoding layer and a fully-connected layer. The
encoding layer applies the One-Hot Encoding technique (Karthiga et al. 2021) to embed
TT ′ ∈ RB×(T+T ′)×2 as TT ′

em ∈ RB×(T+T ′)×295 where 295 is the sum of 288 (i.e., the
time-interval timestamps in a day) and 7 (i.e., the number of daily timestamps in a week).
Therefore, one value in the third dimension used to present the time-interval timestamp
from TT ′ is embedded into a vector with the length of 288 while the other one for the
daily timestamp is embedded into a vector with the length of 7. Both embedded vectors
are concatenated into one. After that, TT ′

em is sent to a fully-connected layer before be-
ing split into TT ∈ RB×T×F as historical-external temporal features and TT ′ ∈ RB×T ′×F

as targeted-external temporal features where F is the number of embedded features in the
Fully-connected layer.

STTras-Block

This block aims to analyse dynamic spatial and temporal features. Its internal structure is
shown in Figure 6.3. It consists of three modules: STm, TTm and STF.

STm (dark blue box at the upper left corner in Figure 6.3) is responsible for dynamic spa-
tial feature extraction. It consists of two main types of layers: Fully-Connected Layer and
Spatial Attention Layer. First, the input XT passes a Fully-Connected layer for embedding
more features as XSTm;fc1

T ∈ RB×T×N×F . Then the embedded spatial matrix Es is joined
into XSTm;fc1

T by the function, (XSTm;Es
T = XSTm;fc1

T + Es;X
STm;Es
T ∈ RB×T×N×F ) so

as to enable the traffic input to carry spatial dependencies of road segments. To obtain
more information, XSTm;fc1

T and XSTm;Es
T are concatenated as XSTm;cl

T ∈ RB×T×N×2F

for generating (1) Queries, QS ∈ RB×T×N×(h×dsq), (2) Keys, KS ∈ RB×T×N×(h×dsk) and
(3) Values, V S ∈ RB×T×N×(h×dsv) through three Fully-Connected layers with ReLU acti-
vation functions using the following equations:

134



Chapter 6

Figure 6.3: The STTras-Block with its constituent modules including (1) STm (the left
dark blue box), (2) TTm (the right yellow box) and (3) STF (the bottom grey box)

QS = ReLU(ws
qX

STm;cl
T )

KS = ReLU(ws
kX

STm;cl
T )

V S = ReLU(ws
vX

STm;cl
T )

(6.5)

where ws
q , ws

k and ws
v are learnable weight matrices and dsq, d

s
k and dsv are embedded spatial

features of each sensor or road segment for QS , KS and V S , respectively. h is the number
of heads.
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After obtaining the three high dimensional spatially-fused features (QS , KS and V S),
dynamic-spatial dependencies SS ∈ RB×T×N×F are calculated by a Spatial Attention
layer, given by

SS = Softmax

Avd

(
QS(KS)

⊺
)

√
dsk

V S (6.6)

where QS(KS)
⊺ ∈ RB×T×N×N represents the relationship of each road segment to others

in the network and Avd is used to correct this spatial relationship. ⊺ stands for matrix
transpose operation. Note that the correction of the spatial relationship should be done
before multiplying a scaled dot-product attention 1√

dsk
. Otherwise, the dot-products grow

larger again in magnitude, which could push the Softmax function into regions where it
has extremely small gradients (Vaswani et al. 2017). In addition, Avd is set as "None”
in the first STTras-Block to learn the initial physical-spatial dependencies. In order to
explore interactions among latent features, a Fully-Connected layer with ReLU activation
function is used for computing dynamic spatial features SS

output ∈ RB×T×N×F with the
residual connection, which is formulated as follow:

SS
output = ReLU(ws

oS
S) +XSTm;fc1

T (6.7)

where ws
o is the learnable weight matrix and SS

output is the output of STm.

TTm (yellow box at the upper right corner in Figure 6.3) is responsible for dynamic
temporal feature extraction. Similar to STm, it also consists of two main types of layers:
Fully-Connected Layer and Temporal Attention Layer. Existing works (e.g., (Cui et al.
2019, Zhang, Li, Lin, Wang & He 2019, Zhao, Song, Zhang, Liu, Wang, Lin, Deng &
Li 2019)) either used GRU or LSTM to capture temporal features due to their abilities in
analyzing long-term dependency using recurrent units to deliver temporal features from
the current time interval to the next time interval. However, the transformer-based models
use the attention mechanism to distribute different weights to traffic data from previous
time intervals so as to contribute to traffic data in the future time intervals.

The inputs required by TTm are the historical traffic data, XT , and the historical-external
temporal features, TT . Note that TT is replaced by the future-external temporal features,
TT ′ , in the second STTras-Block. This design aims to learn the historical-external tempo-
ral features first and then align with the future-external temporal features, TT ′ , to improve
the prediction performance. The first Fully-Connected layer is used to embed more fea-
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tures into XT as XTTm;fc1
T ∈ RB×T×N×F , and then an Added layer enables the embedded

features to be enhanced by the historical-external temporal features through the func-
tion of XTTm;TT

T = XTTm;fc1
T + unsqueeze(TT );X

TTm;TT

T ∈ RB×T×N×F . The function
unsqueeze(.) is used to expand an additional dimension to match the format of XTTm;fc1

T .
To correct the embedded features and obtain more information, XTTm;fc1

T and XTTm;TT

T

are concentrated as XTTm;cl
T ∈ RB×T×N×2F before being sent to three Fully-Connected

layers for generating (1) Queries QT ∈ RB×N×T×(h×dtq), (2) Keys KT ∈ RB×N×T×(h×dtk)

and (3) Values V T ∈ RB×N×T×(h×dtv) by Eq. (6.8).

QT = ReLU(wt
qX

TTm;cl
T )

KT = ReLU(wt
kX

TTm;cl
T )

V T = ReLU(wt
vX

TTm;cl
T )

(6.8)

where wt
q, w

t
k, wt

v are learnable weight matrices for QT , KT and V T , respectively while
dtq, d

t
k and dtv are the corresponding embedded temporal features of each time interval.

After achieving the three high dimensional temporally-fused features (QT , KT and V T ),
dynamic-temporal dependencies ST ∈ RB×N×T×F are calculated by a Temporal Atten-
tion layer as given in Eq. (6.9).

ST = Softmax

QT (KT )
⊺√

dtk

V T (6.9)

where QT (KT )
⊺ ∈ RB×N×T×T represents the relationship of each time interval to all

others. We follow (Xu et al. 2020) to set dtq = dtk = dtv = 8. Furthermore, a Fully-
Connected layer with ReLU activation function is used to generate dynamic temporal
features ST

output ∈ RB×N×T×F with the residual connection via Eq. (6.10).

ST
output = ReLU(wt

oS
T ) + (XTTm;fc1

T )
⊺

(6.10)

where wt
o is the learnable weight matrix and ST

output is the output of TTm.

STF fuses dynamic-spatial and dynamic-temporal features (SS
output and ST

output) into SST ∈
RB×T×N×F based on the gate mechanism of GRU (Fu et al. 2016). First, the dynamic-
spatial features SS

output are added to the dynamic-temporal features ST
output after pass-

ing a Fully-Connected layer with Tanh activation function (as given in Eq. (6.11)).
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Then, the gate mechanism (cf. Eq. (6.12)) is used for calculating the output of STF,
SST
G ∈ RB×T×N×F .

SST =Tanh
(
wssS

S
output + wst(S

T
output)

⊺
)

(6.11)

SST
G =SST × SS

output + (1− SST )× ST
output (6.12)

where wss and wst are learnable weight matrices of SS
output and ST

output respectively.

DGCN

This block aims to correct the learned spatial relationships of sensors or road segments
by conducting the convolutional operation on the virtual dynamic spatial matrix Avd and
then joining the corrected spatial relationships into SST

G . It consists of a GCN layer
with ReLU activation function and a Batch Normalization layer. The inputs of this block
are the updated virtual dynamic spatial matrix Avd and SST

G . The output of this block,
GCNd ∈ RB×T×N×F , representing the corrected spatially-fused features, is computed
via Eq. (6.13).

GCNd = BatchNorm

(
ReLU

(
(wdgcn ∗ Avd

+bdgcn)S
ST
G

))
+ SST

G

(6.13)

where wdgcn ∈ RN×N is the parameter matrix while bdgcn ∈ RN is the related bias.
BatchNorm(.) is the batch normalization and ∗ is the Hadamard product operator.

6.3 Data Description

To evaluate our VDGCNTGA model, two real-world datasets from large-scale road net-
works, labelled as PEMS-BAY and METR-LA (Li et al. 2018), are used. The detailed
information about those two datasets can be found in Chapter 2.6.2.
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6.4 Experiments

6.4.1 Parameter Study

For VDGCNTGA to obtain accurate predictions, there are three types of parameters
needed to be set and learned: (1) parameters for the input preparation, (2) hyper-parameters
for our VDGCNTGA model and (3) parameters for training. We set and learn those pa-
rameters as follows:

(1) For the input preparation, the parameters include historical time intervals T , tar-
geted time intervals T ′, previous days D and batch size B. We follow (Li et al.
2018, Guo et al. 2019) and set historical time intervals T , targeted time intervals
T ′, and previous days D as 12, 12 and 1, respectively. For setting batch size B, we
experimentally find the best value as it refers to the number of features (=B × T )
used to update the virtual dynamic spatial matrix Avd and directly affects the per-
formance of our VDGCNTGA. If B is too large, it would bring too many features
when updating the virtual dynamic spatial matrix. On the other hand, if it is too
small, it would not maximise the generalisation of the learned virtual dynamic spa-
tial matrix. We show this in Figure 6.4 which shows the relationships of batch size
and MAE for both PEMS-BAY (blue line with dot marker using left y-axis) and
METR-LA (black line with star marker using right y-axis). For METR-LA, the low-
est average MAE is achieved when B is equal to 17 while, for PEMS-BAY, B is
23. The reason of requiring larger B for PEMS-BAY is that PEMS-BAY contains
325 sensors and needs more features (=B×T ) to update the virtual dynamic spatial
matrix Avd, compared to 207 sensors in METR-LA.

(2) For the proposed model, hyper-parameters include the number of multi-heads h

and the number of embedding features {dtq, dtk, dtv, dsq, dsk, dsv}. We follow (Zheng
et al. 2020) to set both the number of embedding features and the number of multi-
heads to 8. Therefore, the number of the embedded features F from the first Fully-
Connected layer in both STm and TTm is equal to 64 (= 8 × 8). In addition,
the total number of parameters for PEMS-BAY and METR-LA are 298,849 and
235,955, respectively. Again, more parameters are required for PEMS-BAY due to
the higher number of sensors, resulting in more parameters in DGCN-Block.

(3) For the training phase, parameters include learning rate, r and the number of epochs,
e. Setting the learning rate to a small value will typically make a training algorithm
converge slowly and conversely, using a large value for learning rate may make the
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algorithm to diverge. Using experimental methods to find the best learning rate is
usually time consuming. In our work, we use the Cyclical Learning Rates (CLR)
method (Smith 2017) to optimize the learning rate. Based on this, the optimized
learning rate is 1.12e−03. In addition, we use stop early strategy to find the number
of epochs. Specifically, the stop early strategy will stop the training process when
the training loss continues to decrease in 10 consecutive epochs while the valida-
tion loss increases. This avoids the problem of over-fitting. Figure 6.5 presents the
relationships of training loss, validation loss and the number of epochs. The x-axis
represents the number of epochs and the y-axis gives the MAE loss (left y-axis for
training loss and right y-axis for validation loss). Due to the stop early strategy, the
training process stops at epoch 13 for PEMS-BAY and at epoch 12 for METR-LA
where the validation losses are the lowest.

Considering that Adam (Kingma & Ba 2014) has been shown to be very efficient for
optimising parameters of deep learning models, we have used Adam as the Optimiser
in this work. Finally, we follow the convention (e.g., (Zheng et al. 2020)) and use 70%
of the dataset for training, 10% for validation and 20% for testing. All experiments are
conducted on a machine equipped with a GeForce RTX 2080 Ti GPU card with 11 GB
Memory and 1545MHz Boost Clock and PyTorch is used to implement this work.

Figure 6.4: The relationship of batch size and MAE for both datasets.

6.4.2 Analysis of the VDGCNTGA Model

To gain insights into the performance and behaviour of VDGCNTGA, we conducted the
following evaluations: (1) Comparison against ground truth data, (2) parameter visualisa-
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(a)

(b)

Figure 6.5: The relationship of training and validation MAE losses with the number of
epochs.

tion and (3) ablation experiment.

Comparison against Ground Truth Data

Figure 6.6 and Figure 6.7 show the real and predicted traffic states by VDGCNTGA in
a day from two randomly selected sensors in PEMS-BAY and METR-LA, respectively.
The prediction horizons are 5-min, 15-min, 30-min, 45-min and 60-min from top to bot-
tom, respectively. The locations of these two selected sensors are shown in Figure 6.8
and Figure 6.9 with blue pointers (pointer 400030 for PEMS-BAY and pointer 773869

141



Chapter 6

for METR-LA). In Figure 6.7, we indicated serious missing data in the METR-LA dataset
with shaded area (e.g., traffic speed continues to be Nan between 2012-03-02 10:20:00
and 2012-03-02 11:10:00.) and, even so, VDGCNTGA can still predict traffic states and
follow the trend over time. Besides, both real and predicted traffic speed figures also
show that the predictions of our VDGCNTGA are more accurate on PEMS-BAY com-
pared to METR-LA. From 5-min to 60-min prediction, the predictions are increasingly
less accurate but overall, still follow the trend of changes over time.

Figure 6.8 and Figure 6.9 compare the real (top sub-figures) and predicted (bottom sub-
figures) traffic speed by our VDGCNTGA model on PEMS-BAY and METR-LA, respec-
tively. From the figures, we see close agreements between the real and the predicted traffic
speed for both sets of sensors across the two road networks. This suggests that VDGC-
NTGA is capable of offering accurate predictions on large-scale road networks. Besides,
both map figures also show that the very low or high traffic speed happens on several
continuous sensors for both road networks. It indicates that traffic states at one location
are influenced by its neighbours. Meanwhile, similar traffic speed at a time interval can
be observed at sensors which are far away from each other. It indicates that traffic states
may exist hidden network-wide spatial dependencies. Our model takes such dependency
into consideration by generating a virtual dynamic road graph that describes the hidden
and dynamic connections between road segments with respect to traffic states.

Parameter Visualization

In this section, we visualise and compare the learned spatial weights computed by our
VDGCNTGA model against the physical road network to reveal the hidden spatial de-
pendency. Figure 6.10 and Figure 6.11 show the adjacency matrix A0 of the physical road
network and the learned spatial weights, wdgcn (cf. Eq. (6.13)), from the DGCN-Block of
VDGCNTGA model for historical traffic in previous time intervals, XT and in the same
time interval with the targeted time interval from previous days, XD on PEMS-BAY and
METR-LA, respectively. For clarity, only the first 100 sensors are shown. Both x- and
y-axis present the sensor ID. The colour describes the spatial dependency relationship
(darker = more relevant). By comparing the sub-figure (b) against the sub-figure (c) in
both Figure 6.10 and Figure 6.11, we see that the targeted traffic data is more dependent
on T previous time intervals than on the same time interval from D previous days (i.e.,
darker shades in sub-figure (b) from both Figure 6.10 and Figure 6.11). In addition, the
principal diagonals of the spatial weight matrices have significantly darker shade, indicat-
ing that traffic states are strongly related to its own historical traffic states. This is more
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PEMS-BAY

Figure 6.6: Real (black line) and predicted (red line) traffic speed (miles/h) in a week
with 288 (= 1days∗24hours∗60mins

5mins
) time intervals by VDGCNTGA on PEMS-BAY with a

time interval = 5 mins. The x-axis represents the time and the y-axis is traffic speed. The
prediction horizons are 5-min, 15-min, 30-min, 45-min and 60-min from top to bottom,
respectively.

obvious in sub-figure (c) from both Figure 6.10 and Figure 6.11 since historical traffic
states from neighbours in previous days have less impacts on traffic state in the targeted
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METR-LA

Figure 6.7: Real (black line) and predicted (red line) traffic speed (miles/h) in a week
with 288 (= 1days∗24hours∗60mins

5mins
) time intervals by VDGCNTGA on METR-LA with a

time interval = 5 mins. The x-axis represents the time and the y-axis is traffic speed. The
prediction horizons are 5-min, 15-min, 30-min, 45-min and 60-min from top to bottom,
respectively.

sensor. Between the two road networks, sub-figure (b) for PEMS-BAY is darker than
the sub-figure (b) for METR-LA. It indicates that the spatial dependencies of sensors in
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(a) Recorded real traffic speed

(b) Predicted traffic speed

Figure 6.8: Visualisation of real (top sub-figures) and predicted (bottom sub-figures) traf-
fic speed at a time interval on the road network of PEMS-BAY. The lower traffic speed,
the darker colour.
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(a) Recorded real traffic speed

(b) Predicted traffic speed

Figure 6.9: Visualisation of real (top sub-figures) and predicted (bottom sub-figures) traf-
fic speed at a time interval on the road network of METR-LA. The lower the traffic speed,
the darker the colour.

PEMS-BAY are more significant than METR-LA. In addition, from spatial weight matri-
ces, some sensors, which are far away from the targeted sensor, still generate important
impacts on the targeted sensor. It shows that traffic states of non-adjacent sensors affect
each other.
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(a) Adjacency matrix A0 (b) Learned dynamic spatial weights for XT

(c) Learned dynamic spatial weights for XD

Figure 6.10: The adjacency matrix A0 and learned dynamic spatial weight matrices for
XT and XD are shown on {(a), (b), (c)} for PEMS-BAY. These matrices show the spatial
dependencies of the first 100 sensors on both datasets. The colour indicates the spatial
dependency relationship, the darker the more relevant.

Ablation Experiment

We further analyse and study our VDGCNTGA model via ablation experiments to study
the contribution and importance of each block towards to the final prediction. For this,
we create three variants that are built by removing one module from the proposed VDGC-
NTGA as follows.

• GCNTG: This variant uses the adjacency matrix A0 instead of the virtual dynamic
spatial matrix Avd generated by the Self-Attention Block in the training phase.
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(a) Adjacency matrix A0 (b) Learned dynamic spatial weights for XT

(c) Learned dynamic spatial weights for XD

Figure 6.11: The adjacency matrix A0 and learned dynamic spatial weight matrices for
XT and XD are shown on {(a), (b), (c)} for METR-LA. These matrices show the spatial
dependencies of the first 100 sensors on both datasets. The colour indicates the spatial
dependency relationship, the darker the more relevant.

Comparing the results between GCNTG and VDGCNTGA allows us to understand
the contribution of the virtual dynamic graph proposed in this work to the final
prediction.

• VTGA: This variant is developed by removing the DGCN-Block of VDGCNTGA
and aimed at investigating the role played by the DGCN-Block in the full-fledged
VDGCNTGA model.

• VDGCNTGA*: For this variant, we remove the second STTras-Block in VDGC-
NTGA to understand the contribution of correcting learned features from DGCN-
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Block by aligning them with the virtual dynamic spatial matrix Avd in STm and the
targeted temporal embedding features TT ′ in TTm.

TABLE 6.1 presents the results of our ablation experiments on the two real-world datasets
for T ′ = 6 (i.e., 30-min prediction horizon). Overall, VDGCNTGA achieves the best
performance in both networks. From the results, we observe the following:

• The virtual dynamic spatial matrix Avd, that is generated by the Self-Attention
Block to learn the dynamic spatial relationships of road segments, plays an im-
portant role on improving the prediction accuracy. This conclusion can be derived
from the better result achieved by our VDGCNTGA over GCNTG. This observa-
tion further supports our design of VDGCNTGA in using virtual dynamic graph
rather than relying only on the physical road connectivity.

• The DGCN-Block conducts convolution operation on virtual dynamic graph Avd.
It can further and efficiently learn dynamic spatial-temporal features and also join
the spatial relations of historical traffic and future traffic into the learned features
from the first STTras-Block. The contribution of the DGCN-block can be seen
when comparing the prediction accuracy between the full VDGCNTGA and VTGA
whereby VTGA performed 0.13% (PEMS-BAY) and 0.04% (METR-LA) worse
without the DGCN-Block.

• The removal of the second STTras-Block results in the largest deterioration of the
prediction accuracy. This can be observed by the difference in accuracy achieved by
the three variants compared to the proposed VDGCNTGA whereby VGCNTGA*
obtained the largest decrease in accuracy. This is due to the fact that VGCNTGA*
loses (1) the functions of the virtual dynamic spatial matrix Avd in STm to cor-
rect the learned spatially-fused features and (2) the targeted temporal embedding
features TT ′ in TTm to build the external relationships of historical and future traf-
fic data. Specifically, for the virtual dynamic spatial matrix, Avd, by removing the
second STTras-Block, the model can no longer correct the spatial features in the
learned spatially-fused features from DGCN-Block.

6.4.3 Comparison Study

We now proceed to conduct a comparison study pitting our VDGCNTGA model against
the following seven well-known baseline models.
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Table 6.1: Comparison of results from different modules

Model PEMS-BAY METR-LA

Name MAE MAPE RMSE MAE MAPE RMSE

(a) 30-min future prediction (T’=6)

GCNTG 1.7085 3.76 4.6548 3.1933 8.96 6.5808

VTGA 1.6407 3.48 3.8876 3.0853 8.66 6.3775

VDGCNTGA* 1.7298 3.91 4.0023 3.1729 9.08 6.5595

VDGCNTGA 1.5648 3.35 3.5141 3.0971 8.62 6.3267

• GRU (Fu et al. 2016) is a variant of RNN such as LSTM. However, it has less
gates than LSTM so as to allow faster computing while still retaining competitive
performance against LSTM.

• CNN-LSTM (Cao et al. 2017) integrates CNN and LSTM modules for single-
service traffic prediction and interactive network traffic prediction. CNN and LSTM
analyze spatial and temporal dependencies, respectively.

• T-GCN (Zhao, Song, Zhang, Liu, Wang, Lin, Deng & Li 2019) uses GCN to learn
complex topological structures in the space domain and GRU to learn dynamic
changes of traffic data in the time domain.

• STGCN (Yu et al. 2018) composes of two spatial-temporal convolutional blocks
(ST-Conv) and a fully-connected layer. Each ST-Conv block consists of two tem-
poral gated convolution layers and a spatial graph convolution layer in the middle
to mine spatial and temporal dependencies.

• ASTGCN (Guo et al. 2019) uses a spatial-temporal attention mechanism to analyze
dynamic spatial and temporal features, a GCN for the spatial pattern analysis and a
CNN for temporal feature analysis.

• DCRNN (Li et al. 2018) models traffic as a diffusion process on a weighted road
graph and uses diffusion convolution neural network to learn spatial dependencies
and recurrent neural network to learn temporal dependencies.

• GMAN (Zheng et al. 2020) utilizes the transform attention mechanism to model
spatial and temporal dependencies in an encoder-decoder architecture. It builds a
spatial-temporal embedding to model the graph structure and time information and
embeds it into multi-attention mechanisms.
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Figure 6.12 presents the prediction accuracy (100%-MAPE) of all models for both PEMS-BAY
(Figure 6.12 (a)) and METR-LA (Figure 6.12 (b)). Overall, the prediction accuracy of all
models is higher for PEMS-BAY. Our VDGCNTGA achieves the highest prediction accu-
racy on average – 96.77% prediction accuracy on average for PEMS-BAY and 91.68% for
METR-LA, followed by GMAN (96.60% and 91.47% respectively) and DCRNN (96.05%
and 91.39% respectively). At the other end of the spectrum, T-GCN is almost always the
worst on both datasets and the average prediction accuracy is 93.71% for PEMS-BAY and
83.86% for METR-LA. The one probable reason is that only 1− hop neighbour matrix is
used in the GCN module of the T-GCN. As such, spatial features considered by T-GCN
are restricted to relations of each sensor with its adjacent neighbours. In addition, the
differences of performances among all models become larger over longer prediction hori-
zons. This indicates that all the models including the simpler models (e.g. GRU) compute
better predictions for shorter prediction horizons. For longer prediction horizons, more
complex models with the abilities to analyse dynamic spatial and temporal dependencies
are needed to obtain high prediction accuracy.

TABLE 6.2 compares the MAE, MAPE and RMSE across both datasets for the seven
baseline models and our VDGCNTGA. All models perform better for PEMS-BAY than
for METR-LA. For instance, their MAPEs are less than 8.00% across all prediction hori-
zons for PEMS-BAY as opposed to under 20.00% for METR-LA. One reason for this is
due to the missing data in the METR-LA dataset. From the results, we see that our VDGC-
NTGA mostly obtains the best results for all prediction horizons across both datasets with
the exception for 5-min and 15-min prediction horizons where DCRNN narrowly outper-
forms our model on both datasets. Again, all types of errors achieved by all models
increase when the prediction horizons become longer.

Table 6.2: Results achieved by all models for both datasets

Model PEMS-BAY METR-LA

Name MAE MAPE RMSE MAE MAPE RMSE

(a) 5-min future prediction (T’=1)

GRU 1.6913 3.45 2.8974 3.3369 7.83 5.8201

CNN-LSTM 1.8765 3.88 3.1958 3.3888 7.80 6.0269

T-GCN 2.4687 5.58 4.5619 4.9543 12.44 8.1131

STGCN 1.8384 3.81 3.1105 3.6787 8.22 6.5665
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ASTGCN 0.9347 1.88 1.7710 2.4857 6.43 4.4114

DCRNN 0.9170 2.22 1.6999 2.3325 5.77 4.0161

GMAN 0.9493 1.86 1.7579 2.4445 6.16 4.4177

VDGCNTGA 0.9329 1.81 1.7064 2.3828 6.04 4.3205

(b) 15-min future prediction (T’=3)

GRU 2.1303 4.58 3.7916 4.1811 10.25 7.6012

CNN-LSTM 2.1933 4.81 3.9610 4.3127 10.35 7.8845

T-GCN 2.5660 5.88 4.7532 6.1823 15.32 9.7222

STGCN 2.1103 4.51 3.7309 4.1964 9.69 7.9137

ASTGCN 1.4671 3.19 3.0985 3.0786 8.58 6.0340

DCRNN 1.3434 3.26 2.8615 2.7775 7.38 5.3535

GMAN 1.3533 2.86 2.9219 2.8269 7.58 5.6075

VDGCNTGA 1.3599 2.80 2.9192 2.7796 7.42 5.4790

(c) 30-min future prediction (T’=6)

GRU 2.5033 5.66 4.5481 5.0948 12.72 9.1599

CNN-LSTM 2.4535 5.59 4.5984 5.1480 12.65 9.3875

T-GCN 2.6843 6.20 5.0002 6.8121 16.65 10.6894

STGCN 2.4834 5.66 4.6108 4.9270 11.59 9.2209

ASTGCN 1.9311 4.53 4.3212 3.6345 10.71 7.4193

DCRNN 1.6805 4.23 3.8619 3.1839 8.95 6.4789

GMAN 1.6422 3.71 3.7884 3.1499 8.90 6.5428

VDGCNTGA 1.5648 3.35 3.5141 3.0971 8.62 6.3267

(d) 45-min future prediction (T’=9)

GRU 2.7262 6.31 4.9696 5.6871 14.46 10.0219

CNN-LSTM 2.5918 5.98 4.8798 5.8488 14.45 10.2587

T-GCN 2.8726 6.72 5.3505 7.1436 17.46 11.1565

STGCN 2.7979 6.63 5.2562 5.5858 13.09 10.1572

ASTGCN 2.2188 5.34 5.0119 4.0540 12.36 8.3200
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DCRNN 1.8706 4.82 4.3794 3.4493 10.02 7.1828

GMAN 1.7885 4.14 4.1667 3.3485 9.72 7.0905

VDGCNTGA 1.7584 3.90 4.0445 3.3014 9.42 6.8548

(e) 60-min future prediction (T’=12)

GRU 2.8705 6.66 5.2104 6.2478 15.88 10.6667

CNN-LSTM 2.6922 6.31 5.0876 6.4159 15.98 10.8960

T-GCN 2.9401 7.06 5.5091 7.7986 18.81 11.9359

STGCN 3.0762 7.50 5.7680 6.1128 14.32 10.8037

ASTGCN 2.4518 5.96 5.5218 4.4138 13.75 9.0173

DCRNN 1.9998 5.20 4.6791 3.6755 10.91 7.7280

GMAN 1.8857 4.41 4.3726 3.4815 10.30 7.4331

VDGCNTGA 1.8769 4.27 4.3248 3.4577 10.08 7.2180

From TABLE 6.2, on PEMS-BAY, VDGCNTGA, GMAN, DCRNN and ASTGCN are
always the top four best performers across all prediction horizons. Among them, VDGC-
NTGA always achieves better results as the prediction horizon is increased from 15-min
to 60-min. This owes to the virtual dynamic road graph Avd comprehensively mining
the hidden spatial dependencies of road segments as well as the spatial- and temporal-
transformers in VDGCNTGA. For the remaining models, (GRU, CNN-LSTM, T-GCN
and STGCN), GRU performs better than others and achieves 3.45% MAPE for 5-min
prediction horizon mainly due to its effective function on long-term dependency analy-
sis. T-GCN is the worst performing model with 2.4687, 5.58% and 4.5619 recorded for
MAE, MAPE and RMSE respectively. For 30-min, 45-min and 60-min prediction hori-
zons, CNN-LSTM is better than GRU, T-GCN and STGCN. This is likely due to the
spatial features extracted by CNN module in CNN-LSTM where it becomes more impor-
tant for longer prediction horizons. In addition, the 1D CNN layers in the CNN module
enable traffic information from all sensors in the road network to contribute to the targeted
sensor, as opposed to T-GCN and STGCN that only consider traffic information from sev-
eral neighbours. Note that the spatial features extracted by 1D CNN in CNN-LSTM and
GCN in T-GCN and STGCN can be considered as global and local spatial features, re-
spectively. To some degree, the global spatial features offer better performance than local
spatial features but with high computation cost.
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(a) PEMS-BAY

(b) METR-LA

Figure 6.12: The prediction accuracy (100% - MAPE) of all models for different predic-
tion horizons.

For METR-LA, the rank of all considered models is similar to PEMS-BAY but the accura-
cies are worse due to the missing data issue. Similar to PEMS-BAY, the top four models

154



Chapter 6

are still VDGCNTGA, GMAN, DCRNN and ASTGCN. For 5-min and 15-min prediction
horizons, DCRNN obtains 5.77% and 7.38% of MAPE followed by our VDGCNTGA
with 6.04% and 7.42%. For other prediction horizons, VDGCNTGA is consistently the
best. This is because VDGCNTGA not only uses more features from previous time in-
tervals and the same time interval with the targeted interval in previous days to analyse
spatial and temporal dependencies, it also generates a dynamic road graph (Avd) to fully
mine the hidden and non-uniform spatial relations among sensors or road segments in the
network. These can efficiently take into account the sudden changes caused by the miss-
ing data and incidents which are considered as big challenges for others. For the other
four models (i.e., GRU, CNN-LSTM, T-GCN and STGCN), T-GCN remains the worst
performing model with its MAPE increases from 12.44% for 5-min prediction horizon to
18.81% for 60-min prediction horizon. STGCN is almost always the best among these
four for all prediction horizons.

6.4.4 Prediction Accuracy vs Computation Time

We have thus far shown the performance of the different models in terms of prediction
accuracy. In this section, we turn our attention to the computation time. For this pur-
pose, we run a set of experiments comparing our VDGCNTGA with STGCN, ASTGCN,
DCRNN and GMAN. To ensure the fairness, for all models, we set the batch size as 18
in the training phase and run them on the same machine equipped with a GeForce RTX
2080 Ti GPU card with 11 GB Memory and 1545MHz Boost Clock. We obtain the av-
erage computation time of seven runs. We present the training time of four baselines
and our VDGCNTGA for both datasets in TABLE 6.3. From the table, we observe that
the training time for both STGCN and ASTGCN are much shorter than the other mod-
els. However, the prediction accuracy of these two models are much lower than the other
three, especially when the prediction horizons are large. Among top three models in terms
of accuracy (i.e., DCRNN, GMAN and our VDGCNTGA), VDGCNTGA appears to be
the most efficient compared to the other two. The longest training time of DCRNN is
caused by the sequence learning in RNN while, for GMAN, the longer training time is
due to the setting of the number of ST-Attention Block as L = 3 (Zheng et al. 2020) that
incur high computation cost. Our experiment results suggest that our proposed model,
VDGCNTGA, offers the best tradeoff between accuracy and computation time.
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Table 6.3: Computation time of four baselines and our proposed model when the batch
size is set as 18.

Training Time (seconds/epoch)
Model Name PEMS-BAY METR-LA

STGCN 196.72 104.09

ASTGCN 119.07 67.64

DCRNN 662.13 384.56

GMAN 834.71 472.59

VDGCNTGA 516.63 187.95

6.5 Chapter Summary

In this chapter, we present a novel deep learning model, VDGCNTGA, for addressing
the traffic prediction problem on large-scale road networks. Considering the complex and
dynamic spatial dependencies of traffic at road segments hidden within the road networks,
exploring these hidden and dynamic spatial dependencies is important for achieving high
prediction accuracy. Instead of purely relying on the use of the adjacency matrix and other
neighbourhood matrices that describe the physical connectivity between road segments,
we developed an algorithm in the training phase of VDGCNTGA to generate a virtual dy-
namic road graph that comprehensively mine the hidden and dynamic spatial dependency
of the road network.

We designed a framework for our VDGCNTGA based on GCN and the attention mechanism-
based Transformers to analyse temporal and spatial dependencies with correction. We
trained and tested our VDGCNTGA on two large-scale real-world road networks: PEMS-BAY
and METR-LA. We compared it against seven well-known models in literature including:
GRU, CNN-LSTM, T-GCN, STGCN, ASTGCN, DCRNN and GMAN. To further gain
insights into the characteristic behavior of our model, we conducted ablation experiments
and compared the full-fledged VDGCNTGA against three of its variants that are built
with a removal of one module from the full model.

The experimental results indicate that our proposed model, VDGCNTGA, obtains the best
performance (average accuracy ≈ 96.77% for PEMS-BAY and ≈ 91.68% for METR-LA)
and for almost all prediction horizons, only being closely challenged at the shortest pre-
diction horizon (i.e., at 5-min and 15-min horizons). The MAEs, MAPEs and RMSEs on
PEMS-BAY are less than 1.8800, 4.30% and 4.3300, and less than 3.4600, 10.10% and
7.2200 on METR-LA, respectively. These results indicate that our VDGCNTGA can effi-
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ciently improve the prediction accuracy on large-scale road networks, even on the dataset
suffering from missing data such as that in METR-LA.
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Long-term Traffic Speed Prediction on
Large-Scale Road Networks

7.1 Introduction

This chapter focuses on solving the long-term traffic prediction problem on urban trans-
port networks and aims to predict traffic speed in the whole urban road network. Com-
pared to short-term traffic prediction, long-term traffic prediction offer different chal-
lenges since the target prediction time has weaker relation to previous traffic states. We
designed a novel deep learning framework, based on the Sequence-to-Sequence archi-
tecture with an embedded module, named GCNT-Seq2Seq, for long-term traffic speed
prediction with high prediction accuracy. The embedded module uses Graph Convolution
Neural Network, a memory-less approach, for the local-spatial dependency analysis by
conducting convolution operation on the k − hop neighbourhood matrix, while utilises
Transformer as a memory-less approach for the global-spatial dependency analysis by
implementing the attention mechanism that assigns individual weights to neighbour de-
tectors for contributing to the targeted detector. The sequence-to-sequence architecture
considered as a memory-based approach is built to analyse temporal dependencies of the
spatially-fused time series from the embedded module. To evaluate our proposed model
and compare it against existing well-known ones, we use real traffic speed dataset with
missing data and frequent traffic incidents to train and test the models. The experimental
results indicate that our proposed framework achieves the most accuracy prediction, even
obtaining more than 80% accuracy for predicting traffic two hours in advance.

The rest of this chapter is organised as follows. We elaborate our approach for long-term
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traffic prediction on the large-scale road network, including the problem definition, the ar-
chitecture of our proposed model and its embedded module, in Section 7.2. Furthermore,
real-world traffic data collected from a large road network is described in Section 7.3
while the performances of our model compared against several existing models are shown
in Section 7.4. Finally, Section 7.5 summarises our research work for long-term traffic
prediction on the large-scale road network.

7.2 Methodology

7.2.1 Problem Definition

The traffic prediction problem in this Chapter considers large-scale road network with
N detectors. The road graph is represented as G = (V , E) where V is the set of nodes
with |V| = N . E is the set of edges representing physical connectivity between detectors.
Generally, G can be represented by A ∈ RN×N , the N ×N symmetric adjacency matrix,
with its element Ai,j = 1 if there exists a link between node i and j and 0 otherwise.
Considering that the future traffic states of a detector are influenced by its own historical
states, the road graph, G, is represented by Ã = (A+IN) ∈ RN×N where IN is the N×N

identity matrix. Ã only describes the connectivity of neighbours one hop away from each
node (i.e., 1 − hop neighbourhood). Due to considering that traffic speed propagates
downstream while traffic congestion propagates upstream and the dataset used in this
work includes traffic congestion, we introduce the notion of k − hop neighbourhood to
represent the set of nodes that are reachable within k hops from the targeted node and
define the k − hop neighbourhood matrix as Ãk ∈ RN×N .

The traffic speed data from the road network with N detectors is described as vt =

{v1t , v2t , . . . , vit, . . . , vN−1
t , vNt };xt ∈ RN , (i = 1, 2, 3, . . . , N), and vit denotes the traffic

speed measured at detector i at tth time interval. Typically, a time interval can represent
5, 15, 30, 45 and 60 minutes (Bickel et al. 2007). In this chapter, the dataset used for
evaluating the proposed model considers 5 minutes as the time interval. Then V ∈ RT×N

(cf. Eq. (7.1)) represents traffic speed data collected from N detectors in the network
for T previous time intervals. Conversely, the traffic speed for the future is written as
V ′ = {vt+1, vt+2, . . . , vt+T ′} ∈ RT ′×N where T ′ is the prediction horizon. Generally,
traffic prediction problems can be categorised into short- (T ′ < 30 minutes) and long-
term (T ′ ≥ 30 minutes). Since we aim to solve the long-term traffic prediction problem
on large-scale road network, this chapter covers timescales T ′ = {6, 12, 18, 24} corre-
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sponding to {30, 60, 90, 120} minutes.

V = {vt−T+1, vt−T+2, . . . , vt−1, vt};

V ∈ RT×N , T = 1, 2, 3, . . .
(7.1)

Based on traffic speed data and the road graph described above, the traffic prediction
problem for the proposed approach in this chapter can be formulated as Eq. (7.2).

Ṽ ′ = F
(
V ;G(V , E , Ãk)

)
(7.2)

where the objective is to learn the mapping function F(.) and compute the traffic speed
data in the next T ′ time intervals based on the historical traffic speed data in T previous
time intervals and the road graph G. For fitting the training phase, both input V and
targeted V ′ need to be formatted to V ∈ RB×T×N and V ′ ∈ RB×T ′×N where B is the
batch size.

7.2.2 The GCNT-Seq2Seq Model

Figure 7.1 presents the framework of the proposed deep learning model, GCNT-Seq2Seq,
that is designed to comprehensively analyse the spatial and temporal dependencies of traf-
fic speed data. GCNT-Seq2Seq is developed under the sequence-to-sequence architecture
consisting of an encoder and a decoder for the long-term dependency analysis. The en-
coder is used to learn the historical information and encodes it to a context vector. The
decoder is utilised to decode the context vector for the final prediction. The modules of the
sequence-to-sequence architecture is built based on Graph Convolution Neural Networks
(GCN) and the Transformer for analysing spatial dependencies from original traffic data
and the road graph data. The following details the GCNT-Seq2Seq model on the spatial
dependency analysis and the temporal dependency analysis in detail, respectively.

GCNT as the embedded module of the sequence-to-sequence architecture is used to anal-
yse the spatial dependencies. Figure 7.2 shows the GCNT module that consists of Lg

graph convolutional neural (GCN) layers and Ls transformer layers in parallel. Consider-
ing the lg

th GCN layer at the tth time interval as an example, the convolution operation is
conducted on the k − hop neighbourhood matrix Ãk joined to the output of the (lg − 1)th

GCN layer for obtaining spatial features using Eq. (7.3).
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Figure 7.1: The framework of GCNT-Seq2Seq.

GCN lg ;t = ReLU

(
(Wlg ;t ∗ Ãk)GCN (lg−1);t

)
+GCN (lg−1);t (7.3)

where GCN (lg−1);t ∈ RB×N is the output of the (lg − 1)th GCN layer and is treated as
the input of the lgth GCN layer. GCN lg ;t ∈ RB×N is the output of the lgth GCN layer and
the input of the 1st GCN layer is vt ∈ RB×N . Wlg ;t ∈ RN×N is the weight matrix of Ãk

and ReLU is the activation function of GCN layers. Due to Ãk describing connections of
detectors in the k − hop neighbourhood, obtained spatial features from the GCN layers
can be considered as local spatial features.

Meanwhile, transformer layers analyse spatial dependencies by the attention mechanism
to assign individual weights to neighbours of the targeted detector so as to contribute to the
targeted detector. Notes that this spatial dependency analysis can provide spatial features,
that may be missed by GCN layers, for the proposed model to achieve high prediction
accuracy. Each transformer layer consists of three fully-connected layers, an attention
layer and a linear layer. Considering the lsth transformer layer at the tth time interval as an
example, three fully-connected layers are used to generate the multi-head inputs of queries
Qls;t ∈ RB×(H×dq)×N , keys Kls;t ∈ RB×(H×dk)×N and values Vls;t ∈ RB×(H×dv)×N by
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Figure 7.2: The module of GCNT

Eq. (7.4), in which H is the number of multi-heads and dq, dk and dv are the number of
embedded features for Qls;t, Kls;t and Vls;t, respectively.

Qls;t = W q
ls;t

S(ls−1);t
⊺

Kls;t = W k
ls;tS(ls−1);t

⊺

Vls;t = W v
ls;tS(ls−1);t

⊺
(7.4)

The spatial weight matrix is generated by multiplying the transposition of Kls;t by Qls;t

and then utilised to obtain spatial features using Eq. (7.5).

Sls;t = ReLU

W s
ls;t

(
softmax(

Qls;tKls;t
⊺

√
dk

)Vls;t

)
+ bsls;t

+ S(ls−1);t (7.5)

where S(ls−1);t
⊺ ∈ RB×N is the transposition of the output of the (ls − 1)th transformer

layer as the input of the lsth transformer layer. Sls is the output of the lsth transformer layer
and the input of the 1st transformer layer is vt. W

q
ls;t

, W k
ls;t

and W v
ls;t

are weight matrices
of queries, keys and values, respectively. W s

ls;t
is the weight matrix of the linear layer and

bsls;t is the related bias. ReLU is an activation function. Due to the spatial weight matrix

162



Chapter 7

Qls;tKls;t
⊺

√
dk

∈ RB×H×N×N enabling all other detectors to have individual weights for the
targeted detector, spatial features obtained here are considered as global spatial features.

Finally, the output of the last GCN layer, GCNLg ;t, and the output of the last transformer
layer, SLs;t, are concatenated, and then pass to a linear layer to generate local-global
spatial features GCNTLgs;t using Eq. (7.6).

GCNTLgs;t = WLgs;tconcat(GCNLg ;t, SLs;t) + bLgs;t (7.6)

where WLgs;t and bLgs;t are the weight matrix and the bias, respectively.

In addition, the residual connection network (He et al. 2016) is used in each GCN and
transformer layer to ensure stable training and also supplement the important information
hidden in negative values that are neglected by the ReLU activation function.

Seq2Seq consists of LSTMs as the encoder and the decoder, which is used to embed
our GCNT module for extracting and delivering temporal features from spatially-fused
features. Taking the tth time interval as an example, the encoder takes the GCNTLgs;t as
the input and encodes the spatially-fused features using Eq. (7.7).

ft = σg(wf ·GCNTLgs;t + uf · ht−1 + bf )

it = σg(wi ·GCNTLgs;t + ui · ht−1 + bi)

ot = σg(wo ·GCNTLgs;t + uo · ht−1 + bo)

ct = ft ∗ ct−1 + it ∗ σc(wc ·GCNTLgs;t + uc · ht−1 + bc)

ht = ot ∗ σh × (ct)

(7.7)

where wf , wi, wo and wc are the weights of the forget gate ft, the input gate it, the output
gate ot and the cell state ct respectively while bf , bi, bo and bc are the corresponding biases
for each gate and the cell state. Furthermore, uf , ui, uo and uc are the weights of the last
hidden state ht−1. σg denotes a sigmoid function (= 1

1+e−x ) in three gates and the operator
∗ denotes Hadamard product. σc and σh are hyperbolic tangent function (tanh(x)) for
the cell state and the final output. ht is considered as the output of the encoder and
carries historical information. In the decoder, the output of the encoder ht is treated as the
initialised hidden state and GCNTLgs;t is still considered as the input. The output of the
decoder is the final prediction.
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7.3 Data Description

Dataset used for evaluating the proposed model and comparing our model against well-
known existing models is collected from the real-world road network, named METR-LA
(Li et al. 2018). The detailed information about this dataset can be found in Section 2.6.2.

7.4 Experiments

7.4.1 Parameter Settings

To optimise the GCNT-Seq2Seq model and obtain high prediction accuracy, there are
several hybrid-parameters that need to be tuned including historical time intervals T , tar-
geted time intervals T ′, the number of multi-heads H , the number of embedded fea-
tures {dq, dk, dv}, the learning rate r, batch size B and the number of epochs. Based on
the well-known existing works (Zheng et al. 2020), the historical time intervals T , tar-
geted time intervals T ′, the number of multi-heads H , the number of embedded features
{dq, dk, dv}, and batch size B are set as 12, 24, 8, {8, 8, 8} and 32, respectively. For the
learning rate setting, generally, a too small learning rate will make a training algorithm
converge slowly while a too large learning rate will make the algorithm diverge. There-
fore, finding an optimal learning rate is very important to improve the performance of
the algorithm. However, the experimental method to find the best learning rate is time-
consuming. In this work, we use Cyclical Learning Rates (CLR) (Smith 2017) to optimise
the learning rate. Using this method, we have set the learning rate to 1.02e−03. In addi-
tion, stop early strategy is used to optimise the number of epochs and avoid the problem of
over-fitting. The training process will be stopped when the training loss continues to de-
crease in 10 epochs while the validation loss increases. Finally, we follow the convention
and use 70% of the dataset for training, 10% for validation and 20% for testing.

7.4.2 Results and Discussion

To evaluate the proposed model, six baseline models are used in our comparison exper-
iments. They include 1) one linear feature-based model, ANN (Csikós et al. 2015); 2)
two temporal feature-based models, LSTM (Kang et al. 2017) and GRU (Fu et al. 2016);
3) one spatial feature-based model, CNN-FC (Ma et al. 2017); and 4) two spatial and
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(a)

(b)

Figure 7.3: Real (black color) and predicted (other colours) traffic speed (miles/h) in
a day with 288 (= 1days∗24hours∗60minutes

5minutes
) time intervals from all models on METR-LA

with a time interval = 5 minutes. The x-axis represents the time and the y-axis is traffic
speed (miles/hour). The prediction horizons are 30 minutes in (a) and 120 minutes in
(b), respectively. The red lines in (a) and (b) represent predicted traffic speed from our
GCNT-Seq2Seq.
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Figure 7.4: The prediction accuracy (100%-MAPE) from all comparison models.

temporal feature-based models, CNN-LSTM (Liu et al. 2017) and TGC-LSTM (Cui et al.
2019).

Figure 7.3 presents the real (black line) and predicted (other colours) traffic speed in a
day by the GCNT-Seq2Seq model and other six baseline models. Figure 7.3 (a) and
(b) consider 30 minutes and 120 minutes as prediction horizons, respectively. Overall,
GCNT-SeqSeq can efficiently predict the trend of traffic speed changes, even for longer
prediction horizons. Besides, GCNT-Seq2Seq also captured the sudden changes caused
by missing data or traffic incidents.

TABLE 7.1 presents experimental results from all models considered for different pre-
diction horizons. T ′ = {6, 12, 18, 24} are corresponding to {30, 60, 90, 120} minutes as
prediction horizons. It is observed that our proposed model, GCNT-Seq2Seq, achieves
the best performance among all considered models. Its MAEs, MAPEs and RMSEs for
all prediction horizons are almost always the lowest. Hence, the prediction accuracy of
GCNT-Seq2Seq is the highest, which can be also observed in Figure 6.12 that shows the
prediction accuracy (100%-MAPE) of all models. From Figure 7.4, the differences of
prediction accuracy between GCNT-Seq2Seq and other models become more obvious for
longer prediction horizons. The advantage of our model is higher for longer prediction
horizons. Even when for 120 minutes as prediction horizon, the prediction accuracy of
GCNT-Seq2Seq is still more than 80% and it is the only one achieving over 80% accuracy
among all models.

Furthermore, from TABLE 7.1, the linear feature-based model, ANN, that relies on the
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linear relationship of traffic speed data in time domain for prediction, almost always ob-
tains the worst results except for 30 minutes prediction horizon where the spatial feature-
based model, CNN-FC, is the worst one. The probable reason is that linear relationships
for longer prediction horizons are not obvious while the spatial dependencies among road
network become more important. Therefore, CNN-FC model that mainly focuses on
spatial feature extraction by the convolution kernels performs better than ANN for longer
prediction horizons. Between two temporal feature-based models, LSTM and GRU, GRU
always outperforms LSTM for all different prediction horizons. This conclusion is in
agreement with the results in (Chung et al. 2014). Both CNN-LSTM and TGC-LSTM
achieve similar results, likely because they are able to analyse both spatial and temporal
features for final prediction.

7.4.3 Prediction Accuracy vs Computation Time

We have shown the performance of all competed models by prediction accuracy above. In
this section, we turn our attention to the computation time. For this purpose, we run a set
of experiments comparing our GCNT-Seq2Seq with other six competed existing models.
To ensure the fairness, for all models, we set the batch size as 32 in the training phase
and run them on the same machine equipped with a GeForce RTX 2080 Ti GPU card
with 11 GB Memory and 1545MHz Boost Clock. We obtain the average computation
time of ten runs. We present the training time of six baselines and our GCNT-Seq2Seq
in TABLE 7.2. From the table, we observe that the training time for both ANN is much
shorter than the other six models. However, its prediction accuracy are lower than five
of the other six for 30 minutes prediction and much lower than all other models for large
prediction horizons (i.e., 90 and 120 minutes predictions). Our GCNT-Seq2Seq model
costs much more time to run due to the large number of parameters of Transformer and
GCN modules, compared to all competed models. However, its prediction accuracy is
highest among all, especially for large prediction horizons. Considering that this model
is used for long-term prediction to support efficient traffic strategy making that does not
have the demand of quick responding, the accuracy is more importance. If both the quick
responding and accuracy were requested, GRU could be best choice.
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Table 7.2: Computation time of six baselines and our proposed model when the batch size
is set as 32.

Training Time (seconds/epoch)
Model Name METR-LA

ANN 2.19s

LSTM 9.16s

GRU 8.23s

CNN-FC 16.93s

CNN-LSTM 11.71s

TGC-LSTM 14.46s

GCNT-Seq2Seq 51.59s

7.5 Chapter Summary

In this chapter, the problem of predicting long-term traffic on large-scale road network
is addressed and a novel deep learning framework, named GCNT-Seq2Seq, is devel-
oped. The proposed framework takes the advantages of Graph Convolution Network
(GCN) and Transformer on the different spatial dependency analysis and the advantage
of the Sequence-to-Sequence (Seq2Seq) architecture on the temporal dependency anal-
ysis. GCN is used to extract the local spatial features by operating convolution on the
k − hop neighbourhood matrix and Transformer is utilised to capture the global spatial
features by assigning individual weights to neighbours of the targeted detector so as to
contribute to the targeted detector. The concatenation of local and global spatial features
is embedded into the Seq2Seq architecture for temporal feature extraction and final pre-
diction. The proposed framework is compared against existing well-known models using
real world dataset with missing data and frequent traffic incidents. Among all the models
being compared, our proposed model shows the best performance and can achieve more
than 80% accuracy even for predicting two hours traffic status in advance.
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Conclusions

In this chapter, we summarise the research work and our contributions in this thesis by
a logic map that shows our idea and logic regarding this research work and achieve the
corresponding aim in Section 8.1. Furthermore, we also provide future research directions
in Section 8.2.

8.1 Summary

In this thesis, we are motivated by many traffic problems around the world such as serious
traffic congestion, long travel time and frequent traffic accidents. We aim to build novel
deep learning models for traffic prediction on urban transport networks which can be
used to support and optimise the performance of ITSs so as to reduce traffic congestion,
accidents and long travel time. We summarise our research in this context in Figure 8.1.

After reviewing the literature, we found two common ways to formulate traffic predic-
tion problems which we adopt in our work. However, while the problems are general,
there exists a broad range of solutions adopting different methodologies including statis-
tical models, machine learning models and deep learning models. In our work, we have
adopted the deep learning approach.

In our first work, we targeted short-term traffic flow prediction problem for linear road-
ways. This problem, in comparison with the rest of the our work, presented the least
challenge and offers a suitable stepping stone towards the more complex version of the
problem. For this, we designed an Ensemble Model (EM) that can analyse and extract
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Figure 8.1: Summary logic map.

spatial-temporal features from original traffic flow data via LSTM, DAE and CNN mod-
ules for the final prediction. We collected real-world traffic data from two different places
to evaluate our EM.

We then naturally proceeded to focus on short-term traffic flow prediction on intersections,
in which traffic situations are more complex than linear roadways because of multiple
entries and exits possibly impacted by roundabouts and/or traffic lights. For this, we
developed a novel deep learning model, named ALLSCP, based on ARIMA, LSTM, SAE
and CAPSNET modules. It is capable of analysing and extracting more detailed features
including global- and local-spatial, short-, medium- and long-temporal features for the
final prediction on intersections. ALLSCP is then evaluated on two real-world traffic
datasets collected from two different locations.

Next, instead of focusing on a specific road segment, we extended and conducted traffic
prediction on entire large-scale road networks and with multi-step predictions. Consid-
ering the network as a whole proved to be a much more complex task. Here, we first
built a novel deep learning model (named SAGCN-SST) based on the latest deep learning
technologies: GCN and the attention mechanism, for multi-step traffic speed prediction
on large-scale road networks. The architecture of SAGCN-SST is designed for extracting
dynamic-spatial and temporal features for the final prediction, specifically. The two large
datasets with different traffic patterns are used to evaluate our SAGCN-SST.

After developing SAGCN-SST model, we further found that the hidden spatial depen-
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dencies of road segments in road networks can be exploited to improve prediction ac-
curacy. Therefore, we proposed a novel Virtual Dynamic Graph Convolution Network
and Transformer-based model with Gated and Attention mechanisms (VDGCNTGA) by
considering hidden spatial dependencies under real road networks and dynamic spatial-
temporal features from original traffic data. Similar to our evaluation of the SAGCN-SST
model, two large datasets are utilised to evaluate VDGCNTGA.

Finally, we moved on to consider long-term traffic prediction problems, again for large-
scale road networks. This present different challenges to the model since the dependencies
of the traffic at the targeted time is weaker (i.e., it is further in the unknown future). This
research is important for ITS to devise long traffic control strategies/policies rather than
reactionary responses to immediate traffic conditions or incidents. For this, we proposed
a novel DL model, named GCNT-Seq2Seq, for long-term traffic prediction, which can
capture the long-term dependencies of traffic data. Similar to other developed models, we
used a large-scale road network dataset to evaluate GCNT-Seq2Seq model.

All models we built are compared against well-known models in the literature to val-
idate the better performances of our models. For the more complex models involving
higher number of constituent modules (i.e., ALLSCP, SAGCN-SST, VDGCNTGA), we
also conducted ablation experiments to gain further insights into the properties of these
models as well as to explain how and why our proposed models are able to perform better
than the competing state-of-the-art models.

8.2 Future Research Directions

Traffic prediction as an important element of ITSs to solve traffic problems such as traffic
congestion, accidents and long travel time is a very relevant topic in this era especially
with increasing urbanisation. Many researchers have contributed their efforts to this topic
but there are still challenges remained to be solved.

Based on the literature as well as our own work, we found that spatial and temporal
features are most important features for traffic prediction. Focusing on analysing and
extracting those features can predict traffic states in the future and also provide accurate
prediction. However, we believe there is further possibilities to extract more detailed
spatial and temporal features to further improve prediction accuracy. In line with this, we
see that the following could further contribute to this line of research:

• For spatial feature analysis, most of the latest works in literature use the attention
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mechanism to allocate different weights to neighbouring sensors so as to account
for the different level of impacts of neighbouring sensors on the targeted sensor.
However, the size of the neighbourhood is fixed for all sensors on the road net-
work. In the real world, the size of the neighbourhood is dynamic. For example,
at the same time interval and under serious traffic congestion, the size of the neigh-
bourhood should be larger than its under smooth traffic situations. This is because
more vehicles and/or road segments are affected by serious traffic congestion. Fur-
thermore, at different time intervals, the size of the neighbourhood for the same
targeted sensor should be treated differently because traffic state always changes
over time. Therefore, how to define a dynamic neighbourhood for each sensor is
one challenging part to predict traffic situation in the real world when analysing
spatial dependencies.

• For temporal feature analysis, most of existing works consider the fixed length of
historical traffic data to predict future traffic data on a sensor or road segment. The
fact is that traffic state on a smooth road segment relies on the more immediate his-
torical traffic states and, on a busy road segment, it is affected by longer periods of
historical traffic states. Therefore, the length of historical traffic data used to predict
future traffic data should be dynamic for each sensor on road networks. A model
that can adaptively adjust the number of previous time epochs into consideration
for making the final prediction could further improve the achieved accuracy.

• For dynamic road graph building, most of existing works consider the entire road
network as a graph and then use graph convolution neural network on this physic
road graph to analyse the spatial dependencies of road segments. This can help
model analyse the spatial dependencies of the road network but not fully exploit
hidden spatial dependencies due to constantly changing of traffic networks. To
solve this problem, the dynamic road graph can be generated and used for further
improving traffic prediction accuracy. The reinforcement learning can be poten-
tial method to generate dynamic graphs when considering that the reinforcement
learning is capable of representing hard constraints by the design of environment
dynamics and reward function (Peng et al. 2021). A sequence of dynamic graphs
can be generated by the action sequence and help the model learn the complex and
hidden spatial dependencies of road segments.

Combining accurate traffic prediction capabilities with other traffic management functions
could enable ITSs or relevant stakeholders to offer novel traffic services to users. For this,
we see two interesting research directions:
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• Dynamic Traffic path rerouting – the idea of combining traffic prediction on large-
scale road networks with path rerouting is a potentially useful one for travellers
(Sarker et al. 2018, Li, Fu, Yuan, Zhang, Chen, Yang & Yang 2019, Wang et al.
2019, Chan et al. 2021). Most current navigation applications and devices suggest
travel path based on the shortest distance and avoiding hitting congestion. When a
user selects a path and unfortunately ended up in an emerging serious traffic con-
gestion or accidents on the road, the navigator often could not change the path au-
tomatically based on real or emerging traffic situations on the road network. From
this view, traffic prediction could be a part of path rerouting in the navigator. Traf-
fic prediction can be used for finding vulnerable road segments in road networks
and then a rerouting algorithm can be developed and embedded in the navigator to
reroute path in real time.

• Traffic light optimisation – traffic prediction could be embedded into the control of
traffic light either specifically focusing on a single intersection or more ambitiously
the coordination of the entire traffic light systems in a city area to facilitate smooth
flow of traffic predictively (Kim & Jeong 2020, Shengdong et al. 2019).
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