
Research Article
An Enhanced Moth-Flame Optimization with Multiple Flame
Guidance Mechanism for Parameter Extraction of
Photovoltaic Models

Zhenyu Wang,1 Zijian Cao ,1 Chen Liu,1 Haowen Jia,1 Feng Tian,2 and Fuxi Liu 3

1School of Computer Science and Engineering, Xi’an Technological University, Xi’an 710021, China
2Bournemouth University, Poole, UK
3School of Mechanical and Electrical Engineering, Hunan Applied Technology University, Changde 415100, China

Correspondence should be addressed to Fuxi Liu; liufx28@163.com

Received 25 November 2021; Revised 25 April 2022; Accepted 11 May 2022; Published 11 June 2022

Academic Editor: Diego Oliva

Copyright © 2022 ZhenyuWang et al.�is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

How to accurately and e�ciently extract photovoltaic (PV) model parameters is the primary problem of photovoltaic system
optimization. To accurately and e�ciently extract the parameters of PV models, an enhanced moth-�ame optimization (EMFO)
with multiple �ame guidance mechanism is proposed in this study. In EMFO, an adaptive �ame number updating mechanism is
used to adaptively control the �ame number, which enhances the local and global exploration capabilities of MFO. Meanwhile, a
multiple �ame guidance mechanism is designed for the full use of the position information of �ames, which enhances the global
diversity of the population. �e EMFO is evaluated with other variants of the MFO on 25 benchmark functions of CEC2005, 28
functions of CEC2017, and 5 photovoltaic model parameter extraction problems. Experimental results show that the EMFO has
obtained a better performance than other compared algorithms, which proves the e�ectiveness of the proposed EMFO. �e
method proposed in this study provides MFO researchers with ideas for adaptive research and making full use of �ame
population information.

1. Introduction

�e optimization problem is an application technology
based on mathematics, applied to solve various engineering
problems. �e solution to most problems that can be
transformed into optimization problems will be gained by
using the optimization problem technology. However, some
problems are nondeterministic polynomial (NP)-hard
problems, and it is di�cult to �nd the optimal solution by
utilizing the optimization problem technology. To �nd the
global optimal solution to the optimized problems, a series
of intelligent algorithms have been proposed in the litera-
ture. In recent decades, optimization algorithms have been
widely used to optimize NP-hard problems [1], which can be
classi�ed into four categories, i.e., evolutionary algorithms,
physics-based algorithms, swarm intelligence-based algo-
rithms, and human-based algorithms. In 1975, Holland [2]

proposed a genetic algorithm (GA) based on the evolu-
tionary process of organisms. In 1982, Kirkpatrick et al. [3]
simulated the annealing process of metallurgy for designing
the simulated annealing (SA) algorithm. In 1991, Colorni
et al. [4] proposed the ant colony optimization (ACO),
which is inspired from the colony behavior of ants’ foraging.
In 1995, Eberhart and Keendy et al. [5] proposed a particle
swarm optimization (PSO) based on the foraging behavior of
birds. In 1997, Storn and Price [6] proposed di�erential
evolution (DE) based on GA. In the last decade, many
excellent algorithms have been proposed to solve complex
engineering problems [7], such as monarch butter�y opti-
mization (MBO) [8, 9], kill herd [10], slime mold algorithm
(SMA) [11], harris hawks optimization (HHO) [12],
earthworm optimization algorithm (EWA) [13], elephant
herding optimization (EHO) [14], moth search (MS) [15]
and naked mole-rat (NMR) [16]. In addition, many
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optimization algorithms have been utilized to successfully
solve the real-life applications [17–23].

.ese algorithms have successfully optimized various
complex optimization problems and have also been widely
used to solve engineering, scientific, and image-processing
problems. Although a lot of research has been performed on
these algorithms, they still face some challenges. For ex-
ample, PSOs are prone to premature when it is used to solve
many multimodal problems. .erefore, it is still a challenge
to develop a population-based heuristic search algorithm to
effectively prevent falling into the local optimum and
maintain a faster convergence rate.

.e moth-flame optimization (MFO) is a natural heu-
ristic algorithm proposed by Mirjalili [24] in 2015. .e al-
gorithm is based on a special navigation mechanism, in
which moths use lateral positioning when flying around the
moonlight at night. Since MFO is simple, flexible, and easily
implemented, MFO has been widely used in engineering and
scientific fields.

In literature [25], MFO was used to solve the optimal
power-flow problem. .e experimental results demon-
strated that MFO is robust and superior to other algorithms.
Sapre et al. [26] proposed the opposition-based moth-flame
optimization (OMFO), in which the opposition-based
learning mechanism, Cauchy mutation, and boundary
constraint-handing method were integrated into the MFO
algorithm. Experiment results showed that the OMFO has
obtained high optimization ability and fast convergence
speed, and can effectively jump out of the local optimum.
Zhao et al. [27] proposed an ameliorated moth-flame op-
timization (AMFO), in which a crisscross mechanism was
utilized to improve the search ability of MFO.

Xu et al. [28] proposed an enhanced moth-flame opti-
mizer with a mutation strategy for global optimization, in
which Gaussian mutation, Cauchy mutation, and Lévy
mutation were combined with MFO (GMFO, CMFO, and
LMFO), respectively. To optimize the pose of target, a new
improved MFO combined with DE was designed by Li et al.
[29]. In [30–32], and a chaotic map method was used to
control different parameters of MFO. To effectively jump out
of the local optimum, a Lévy flight-based moth-flame op-
timization (LMFO) was proposed by Li et al. [33]. Sayed and
Hassanien [34] proposed that MFO is integrated into the SA
algorithm (SA-MFO), in which the exploration ability of the
SA and the learning mechanism of the MFO were utilized to
balance the global exploration and local exploitation of the
population. .e PSO is embedded into MFO for enhancing
the performance of the canonical MFO in solving real-world
complex problems [35–37].

Nadimi-Shahraki et al. [38] proposed a migration-based
MFO (M-MFO) algorithm for avoiding premature. In the
M-MFO, a random migration operator was utilized to
improve the position of the poor moth in the early iterations.
Furthermore, new qualified solutions are separately stored in
a guided archive to keep population diversity. Nadimi-
Shahraki et al. [39] proposed a multitrial vector-based MFO
(MTV-MFO) algorithm. In the MTV-MFO, the multitrial
vector (MTV) mechanism is used to replace the movement
strategy of MFO for the use of a combination of different

movement strategies, each of which is adjusted to accom-
plish a particular behavior. Truong [40] proposed a new
MFO algorithm, in which a new encoding scheme was used
to help reduce the search domain and speed up the com-
puting time by utilizing a shorter length binary vector.

Although those variants described above have improved
the performance of the canonical MFO to a certain extent,
they exhibit poor performance in solving nondifferentiable,
nonlinear, and nonseparable multimodal problems and
especially did not solve two important defects of MFO. For
example, the number of flames linearly decreases, regardless
of whether the population falls in the local optimal trap..is
weakens the ability of the population to jump out of the local
trap. Furthermore, the original flame-guiding mechanism
only distributes the information of a flame to the moth so
that the moth is easy to fall into local optimal traps. To solve
the above problems, an enhanced MFO (EMFO) with
multiple flame guidance is proposed in this study. In the
EMFO, to improve the global search capability of the al-
gorithm, the flame number is adaptively controlled
according to the current population situation. Meanwhile, a
multiple flame guidance mechanism is designed to fully
utilize the information of the flames. To verify the perfor-
mance of the EMFO, it is compared with the state-of-the-art
algorithms on 25 benchmark functions of CEC 2005 and a
real-world problem.

.e main contributions of this study can be summarized
as follows:

(1) An adaptive flame number updating mechanism is
proposed to enhance the global exploration ability of
the population by adaptively controlling the flame
number according to the population situation.

(2) To enhance the search ability and make full use of the
information of the flames, a multiple flame guidance
mechanism is designed by utilizing the information
of multiple flames.

(3) To systematically verify the superiority of the pro-
posed EMFO algorithm, 25 complex benchmark
functions and parameter extraction of photovoltaic
models are utilized to estimate the overall perfor-
mance of EMFO.

.e section of this study is arranged as follows. Section 2
explains the basic concept of the MFO algorithm. Section 3
addresses a specific description of the EMFO algorithm. In
Section 4, the experimental results are presented. .e real-
world problem simulation is described in Section 5. Section 6
summarizes the study and the prospects for future research.

2. Moth-Flame Optimization Algorithm

.e MFO is a heuristic optimization algorithm proposed by
Mirjalili in 2015. .is algorithm is based on the special
navigation mechanism of moths. Figure 1 shows the con-
ceptual model of horizontal positioning of moths, which
simulates the process that moths fly around the moonlight at
a fixed angle. Since the moon is very far away from the
moths, the moths can keep flying straight using this
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approximate parallel light. Although this navigation
mechanism is very effective for moths, there are many ar-
tificial or natural light sources in reality. .is kind of light
source is very close to the moth compared with the moon.
.e moths fly around the light source at a fixed angle, which
leads to navigation failure and a spiral flight path, as shown
in Figure 2.

In theMFO, there are two candidate solutions (moth and
flame). .e moth is a moving entity in the search space,
utilized to find the optimal solution. .e position of the best
moth obtained so far is viewed as flame. .e moth searches
around the flame and updates its position to find a better
solution in each iteration. .e moth population M consists
of n moths, as represented in the following formula:

M �

m11 m12 · · · m1d

m21 m22 · · · m2d

⋮ ⋮ ⋱ ⋮

mn1 mn2 · · · mnd

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (1)

where n denotes the number of moths, and d stands for the
dimensions of the problem. For all moths, the following set
OM is used to store the fitness values.

OM �

OM1

OM2

⋮

OMn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (2)

where OMi denotes the fitness value of the i th moth.
.e other core of the MFO is the flame population F,

which is represented in the following formula:

F �

F11 F12 · · · F1d

F21 F22 · · · F2d

⋮ ⋮ ⋱ ⋮

Fn1 Fn2 · · · Fnd

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3)

.e set OF of fitness values is described in the following
formula:

OF �

OF1

OF2

⋮

OFn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (4)

where OFi denotes the fitness value of the i th flame.
Both moths and flames are candidate solutions. .e

difference between them is the way that they are treated and
updated in each iteration. In the search space, moths are the
actual moving subjects, and flames are obtained the best
position so far. Each moth searches around a flame, and the
current optimal solution stored in the flame is updated when
a better solution is found. Under this mechanism, the moth
will not miss its optimal solution.

.e position of each moth is updated according to the
following formula:

Mi � S Mi, Fj􏼐 􏼑, (5)

where Mi represents the i th moth, and Fj represents the j th
flame. Besides, S represents the spiral function.

According to the behavior of the moth spiral
approaching the flame, a logarithmic spiral search is defined
as follows:

S Mi, Fj􏼐 􏼑 � Di · e
bt

· cos(2πt) + Fj, (6)

where b is a constant for defining the shape of the loga-
rithmic spiral, and t is a random in the range [−1, 1]. Di is the
distance between moth and flame, which is expressed as
follows:

Figure 2: Spiral flight path around the light source.

Figure 1: Horizontal positioning.
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Di � |Fj–Mi| (7)

where Mi represents the i th moth, and Fj represents the j th
flame. Meanwhile, Di indicates the distance of the i th moth
for the j th flame.

As shown in Figure 3, the t parameter in the spiral search
defines how close the next position of the moth should be to
the flame (t � −1 is the closest position to the flame, while
t � 1 is the farthest position). To further enhance the ex-
ploitation global exploration capability and of the MFO, a
parameter r is used to improve the search speed of moths
and define the value range of t to [r, 1]. In the iteration
process, the r linearly decreases from -1 to -2. .e spiral
search shows that the moths can surround the flames instead
of just flying in the space between them, which balances the
global exploration capability and local exploitation capa-
bility of MFO.

To increase the possibility of finding a better solution, the
best solution obtained so far is considered to be the flame.
.erefore, the matrix F always contains the best solution
obtained so far. After each iteration, the flame position will
be reordered according to the fitness value for updating the
flame sequence, as shown in Figure 4. In the next generation,
moths update their positions based on the flames, which are
in the flame sequence corresponding to them.

If each position of n moths is updated based on n dif-
ferent positions in the solution space, the local exploitation
capability of the algorithm will be greatly reduced. To solve
this problem, a reduction mechanism of the flame number is
proposed to time-varyingly reduce the number of flames in
the iterative process, as presented in the following formula:

Flame_no � round n − l∗
n − 1

T
􏼒 􏼓, (8)

where n is the maximum number of flames, and l is the
current iteration number. Besides, Flame_no stands for the
number of flames, and T is the maximum iteration number.

3. Enhanced MFO with Multiple Flame
Guidance Mechanism

In the basic MFO, the reduction in the number of flames is
based on a fixed time-varying reduction mechanism, which
makes MFO easy to fall into the local optimal solution trap.
To solve this problem, an adaptive flame number updating
mechanism is utilized to adaptively control the number of
flames. In addition, a multiple flame guidance mechanism is
used to enhance the search ability of the population by using
simultaneously multiple flames to search.

3.1. Adaptive Flame Number Updating Mechanism. When
the global optimal value does not change every ten gener-
ations, the flame quantity will be updated as follows:

Flame_no � Flame_no + max Success,

max Success � max Success + max Success∗ adjust Success.
􏼨

(9)
On the contrary, the updating formula of flame’s number

is as follows:

t = -0.5 t= -1 t= 0 t= 1t = 0.5

Fj Mi
Di

Moth
Flame

Figure 3: .e position of the space around the logarithmic spiral
flame relative to t.

Update a flame if any of 
the moths becomes fitter 

than it

Moth
Flame

Figure 4: Flame assign mechanism.
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Flame_no � Flame_no − max Failures,

max Failures � max Failures + max Failures∗ adjust Failures,
􏼨

(10)

where max Success and max Failures are the initial values of
the updating step of flame’s number, Flame_no denotes the
number of flames. .e adjust Success and adjust Failures are
change rates, which are utilized to determine the degree of
change of max Success and max Failures, respectively.

In this mechanism, the number of flames will expo-
nentially increase when the global optimal solution is not
updated for hundreds of generations, which can effectively
solve the problem that the probabilistic stagnation of the
algorithm leads to a drastic change in the flame’s number. In
addition, after the global optimal solution is updated for
hundreds of generations, the reduction step of flame’s
number gradually decreases so that the population will
maintain the diversity.

3.2. Multiple Flame Guidance Mechanism. Inspired by DE,
the difference vector of the two flames randomly selected
from the flame population is regarded as the direction vector
that is used to guide another flame to search, which can
increase the diversity of the population. To balance the
multiple flame guidance mechanism and the spiral search
mechanism of the MFO, a judgment parameter rc is added
and randomly selected from the range [0, 1]. .e multiple
flame guidance mechanism is executed when ran d< rc is
not satisfied, as shown in formula (11). .e schematic di-
agram in space of this mechanism is shown in Figure 5.

S Mi, Fj􏼐 􏼑 �
Di · e

bt
· cos(2πt) + Fj, if r and< rc,

r and∗ Fm − Fp􏼐 􏼑 + Fj, otherwise,

⎧⎪⎨

⎪⎩

(11)

where j, m, and p are distinct indexes. Mi represents the i th
moth, and Fj represents the j th flame. ran d is a random in
interval [0, 1].

Based on the above description, the pseudocode of the
EMFO algorithm is presented in Algorithm 1.

4. Experimental Simulation and Results

In the simulation environment of this experiment, the CPU
is Intel(R) Core (R) i7-7500. .e CPU main frequency is
2.70GHz, and memory is 12.00GB..eMATLAB R2018b is
selected as the development environment.

To verify the performance of the EMFO, some classical
variants of the MFO and the original MFO are selected, for
example, MFO with Gaussian mutation (GMFO) [28], MFO
with Cauchy mutation (CMFO) [28], MFO with Lévy-flight
mutation (LMFO) [33], ameliorated MFO (AMFO) [27],
and opposition-based MFO (OMFO) [26]. A total of 25
benchmark functions of CEC 2005 [41] are used to test the
performance of the EMFO and compared algorithms. In 25
benchmark functions, the functions F1-F5 are continuous
unimodal functions while F6-F14 are multimodal and have a

significant number of local minima. Besides, F15-F25 are
hybrid composition functions.

Additionally, to further verify the performance of the
EMFO and the contribution of each component of the
proposed algorithm, two state-of-the-art algorithms (EMFO
[42] and SaDN [43]), MFO with adaptive flame number
(MFO-AFN) updating mechanism, and MFO with multiple
flame guidance (MFO-MFG) mechanism were added to the
comparison experiment for solving 28 functions of CEC2017
[44]. A total of 28 benchmark functions were composed of 1
unimodal function F1, 7 simple multimodal functions (F3-
F9), 10 hybrid functions (F10-F19), and 10 composition
functions (F20-F29). It is noteworthy that F2 of CEC2017 is
not used because it is an unstable problem.

.e population size of all algorithms is set as 100, and the
dimension of problems is 30 for all the 25 functions of
CEC2005. .e dimensions D are 10, 30, 50, and 100 for
CEC2017, and the total number of function evaluations of
each algorithm is set to 10000∗D. .e parameters
max Success, max Failures, adjust Success, and
adjust Failures of the EMFO are set as 2.5, 2.5, 0.8, and 0.5,
respectively. In addition, other parameters of compared
algorithms follow their original studies.

In this simulation, the mean value and standard devi-
ation of the function error value (f(gbest) − f(X∗)) are
recorded for testing the performance of each algorithm,
where gbest is the best solution found by the algorithm in a
run, and X∗ is the theoretical global optimum of the
benchmark functions.

4.1. Comparison on Solution Accuracy. Table 1 shows the
optimization results of the algorithm’s solution accuracy. In
each row of the table, the first part lists the mean value of 25
runs, and the second part is the standard deviation of the
solutions. .e P value and H value of the nonparametric
statistical test with a significance level α� 0.05 are presented
in the third and fourth lines. .e symbol “ǂ” is tagged in the
back of the mean value yielded by the algorithm that is
significantly worse than the EMFO. If the EMFO is worse
than other algorithms, a “ξ” is added to the back of the mean

rand* (Fm-Fp)

Mi
Fm

Fj

Fp

Figure 5: Schematic diagram of multiple flame guidance
mechanism.
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value of the corresponding algorithm. .e symbol “∼” in-
dicates that there is no significant difference between the
EMFO and compared algorithm. .e last row of the table
presents a summary of a total number of “ǂ,” “ξ,” and “∼.” In
addition, the best results are bold to clearly show.

Table 1 clearly shows that the EMFO has obtained the
best performance on 18 functions that consisted of 3 uni-
modal functions (F1, F3, and F4), 5 multimodal functions
(F6, F9-F11, and F13), and 10 hybrid functions (F16-F25),
which demonstrates that the EMFO is promising in solving
unimodal functions. Meanwhile, the EMFO is worse than
the AMFO on 2 functions (F5 and F7), which could be
because the spiral search operator of the EMFO has poor
search ability for the boundary neighborhood while the
crisscross optimization method of the AMFO enhances the
exploitation ability of the population to the boundary
neighborhood. In addition, the MFO has gained the best
performance on 4 functions (F2, F8, F12, and F24) and is
better than the EMFO on 3 functions (F5, F8, and F12). .e
LMFO is best on 6 functions (F5, F7, F14, F15, F21, and F24).
.is may be because themultiple flame guidancemechanism
decreases the search performance in solving the rotated
problems. .e GMFO and CMFO only have gained the best
performance on function F24, and OMFO only is best on
function F24.

In terms of the statistical results of Wilcoxon’s rank-sum
test, the EMFO is significantly better than the MFO, AMFO,
GMFO, CMFO, LMFO, andOMFO on 14, 22, 16, 18, 15, and
16 out of 25 functions, and inferior to them on 3, 2, 3, 3, 5,
and 2 out of 25 ones, respectively. .erefore, we can say that
the EMFO produces the best results for these benchmark test
functions.

Table 2 expresses the average ranks of the mean value of
the function error value (f(gbest) − f(X∗)) with 51 runs,

according to Friedman’s test for the compared algorithms.
.e best ranks are shown in bold. Table 2 clearly shows that
the EMFO is ranked first for all dimensions. Regardingmean
ranking and summary rank, the EMFO has obtained the best
performance, which demonstrates that the EMFO is
promising and significate. In addition, the EMFO is better
than the MFO-AFN and MFO-MFG for all dimensions
using CEC2017, which indicates that there is a synergy
between the adaptive flame number updating mechanism
and the multiple flame guidance mechanism.

4.2. 2e Comparison Results of Convergence Speed. In Fig-
ure 6, the vertical axis is the nature logarithm of the mean
value over independent 25 runs, and the horizontal axis is
the sampling point where 30 sampling points are taken from
FES� 1000 and mod (FES, 10000)� 0.

It can be clearly seen from Figure 6 that the EMFO
obtains the best convergence speed on 10 functions (F4, F6,
and F18-F25), which indicates that the adaptive flame
number updating mechanism and the multiple flame
guidance mechanism can improve the convergence speed of
the canonical MFO algorithm. Although the EMFO gained
poor convergence performance on 9 benchmark functions
(F1-F3, F9-F11, F13, F16, and F17), it obtains strong global
exploration ability and achieves the best convergence ac-
curacy. .is may be because the adaptive flame number
updating mechanism enhances the ability of the population
to jump out of the local optimal trap. .e EMFO gains poor
convergence speed on the other 6 functions (F5, F7, F8, F12,
F14, and F15), which could be because the EMFO needs a
longer time to jump out of the local optimum. In addition,
the MFO outperforms the other 6 algorithms on 5 functions
(F1-F3, F8, and F12), and the CMFO gains the best

(1) Begin
(2) Initialize the parameters;
(3) Initialize uniformly random population;
(4) gen� 1;
(5) while not meet termination condition
(6) if mod(gen, 10)� � 0
(7) Update the number of flames by using Equation (9) or Equation (10);
(8) end if
(9) Calculate the fitness values of moths;
(10) if gen� 1
(11) F� sort(M); OF� sort(OM);
(12) else
(13) F� sort(Mt−1,Mt); OF� sort(OMt−1,OMt);
(14) end if
(15) rc � rand (0,1);
(16) for i� 1 to n do
(17) Update the parameter r and t;
(18) Update the moth’s position by using equation (11);
(19) end for
(20) gen� gen + 1;
(21) end while
(22) end

ALGORITHM 1: Pseudocode of the EMFO.
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Table 1: Solution accuracy of EMFO and compared algorithms.

Func. Results EMFO MFO AMFO GMFO CMFO LMFO OMFO

F1

Mean 1.29E-24 4.10E-22∼ 8.36E+03ǂ 6.32E-11ǂ 1.17E-10ǂ 1.11E-10ǂ 1.62E-10ǂ
Std. 1.86E-24 2.04E-21 9.74E+02 1.00E-10 1.34E-10 1.25E-10 2.08E-10

P value — 3.21E-01 6.03E-40 2.78E-03 6.57E-05 5.26E-05 3.07E-04
H value — 0 1 1 1 1 1

F2

Mean 3.17E-02 5.32E-02∼ 1.94E+04ǂ 3.14E+01ǂ 3.44E+01ǂ 3.05E+01ǂ 2.98E+01ǂ
Std. 3.15E-02 5.24E-02 2.88E+03 2.07E+01 2.06E+01 1.75E+01 3.49E+01

P value — 8.46E-02 5.21E-35 8.73E-10 6.22E-11 2.18E-11 9.14E-05
H value — 0 1 1 1 1 1

F3

Mean 1.51E+06 1.84E+06∼ 1.30E+08ǂ 4.35E+06ǂ 4.26E+06ǂ 4.10E+06ǂ 3.89E+06ǂ
Std. 9.36E+05 7.07E+05 2.54E+07 1.48E+06 1.95E+06 2.27E+06 1.58E+06

P value — 1.70E-01 1.93E-29 1.56E-10 7.29E-08 3.35E-06 4.76E-08
H value — 0 1 1 1 1 1

F4

Mean 1.91E+00 1.16E+03ǂ 2.47E+04ǂ 3.46E+03ǂ 4.01E+03ǂ 2.99E+03ǂ 3.29E+03ǂ
Std. 2.70E+00 1.03E+03 3.74E+03 1.93E+03 2.42E+03 1.52E+03 2.72E+03

P value — 8.18E-07 1.32E-34 8.00E-12 8.39E-11 4.37E-13 2.12E-07
H value — 1 1 1 1 1 1

F5

Mean 2.90E+04 2.73E+04ξ 2.80E+04ξ 2.75E+04ξ 2.29E+04ξ 2.29E+04ξ 2.71E+04ξ
Std. 2.88E+01 2.24E+03 1.66E+03 2.63E+03 3.40E+02 4.55E+02 2.55E+03

P value — 3.47E-04 2.40E-03 6.67E-03 4.62E-55 4.76E-49 5.31E-04
H value — 1 1 1 1 1 1

F6

Mean 5.03E+01 1.38E+02ǂ 6.14E+08ǂ 2.31E+02ǂ 3.05E+02∼ 2.23E+02∼ 1.60E+02ǂ
Std. 3.75E+01 2.13E+02 1.23E+08 3.71E+02 8.97E+02 5.32E+02 2.65E+02

P value — 4.92E-02 3.82E-29 1.93E-02 1.63E-01 1.12E-01 4.52E-02
H value — 1 1 1 0 0 1

F7

Mean 4.70E+03 4.70E+03∼ 4.61E+03ξ 4.69E+03∼ 3.92E+03ξ 3.90E+03ξ 4.65E+03∼
Std. 2.83E-12 2.42E-12 1.13E+02 3.61E+01 1.75E+02 1.95E+02 1.53E+02

P value — 1.00E+00 2.33E-04 3.22E-01 6.08E-27 1.94E-25 1.61E-01
H value — 0 1 0 1 1 0

F8

Mean 2.09E+01 2.02E+01ξ 2.10E+01∼ 2.09E+01∼ 2.09E+01∼ 2.09E+01∼ 2.09E+01∼
Std. 6.02E-02 7.48E-02 6.03E-02 4.58E-02 7.21E-02 4.95E-02 6.25E-02

P value — 1.02E-38 3.72E-01 7.15E-01 8.44E-01 6.48E-01 9.54E-01
H value — 1 0 0 0 0 0

F9

Mean 2.13E+01 4.92E+01ǂ 2.33E+02ǂ 5.10E+01ǂ 4.82E+01ǂ 5.32E+01ǂ 4.94E+01ǂ
Std. 3.95E+00 1.16E+01 1.62E+01 1.59E+01 1.20E+01 1.87E+01 1.60E+01

P value — 2.83E-15 5.38E-48 5.37E-12 3.53E-14 6.58E-11 3.42E-11
H value — 1 1 1 1 1 1

F10

Mean 3.46E+01 1.13E+02ǂ 2.96E+02ǂ 1.23E+02ǂ 1.13E+02ǂ 1.26E+02ǂ 1.13E+02ǂ
Std. 9.31E+00 2.89E+01 1.42E+01 3.59E+01 3.17E+01 3.10E+01 2.82E+01

P value — 3.50E-17 6.81E-52 7.04E-16 6.26E-16 9.43E-19 1.28E-17
H value — 1 1 1 1 1 1

F11

Mean 6.14E+00 2.64E+01ǂ 3.93E+01ǂ 2.61E+01ǂ 3.97E+01ǂ 2.75E+01ǂ 2.39E+01ǂ
Std. 1.78E+00 4.25E+00 1.25E+00 4.33E+00 1.20E+00 5.33E+00 3.95E+00

P value — 1.17E-26 8.48E-52 3.52E-26 2.74E-52 5.63E-24 2.20E-25
H value — 1 1 1 1 1 1

F12

Mean 8.78E+05 7.81E+03ξ 1.02E+06ǂ 1.15E+04ξ 9.42E+05ǂ 3.15E+04ξ 9.38E+03ξ
Std. 8.30E+04 5.31E+03 1.51E+05 7.89E+03 1.24E+05 6.18E+04 5.85E+03

P value — 5.52E-44 1.25E-04 7.60E-44 3.61E-02 5.78E-39 6.14E-44
H value — 1 1 1 1 1 1

F13

Mean 2.67E+00 7.29E+00ǂ 3.16E+01ǂ 7.06E+00ǂ 7.11E+00ǂ 7.17E+00ǂ 7.48E+00ǂ
Std. 4.69E-01 2.23E+00 1.76E+00 2.59E+00 2.78E+00 2.20E+00 2.00E+00

P value — 1.54E-13 1.27E-52 6.73E-11 3.17E-10 2.34E-13 1.15E-15
H value — 1 1 1 1 1 1

F14

Mean 1.29E+01 1.33E+01ǂ 1.34E+01ǂ 1.28E+01ξ 1.33E+01ǂ 1.27E+01ξ 1.30E+01∼
Std. 2.28E-01 3.10E-01 1.45E-01 2.85E-01 1.85E-01 3.16E-01 2.49E-01

P value — 5.94E-06 1.54E-12 2.01E-02 8.44E-07 2.59E-02 1.03E-01
H value — 1 1 1 1 1 0
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performance on 2 functions (F5 and F7). .e LMFO is best
on 3 test functions (F5, F7, and F15).

In terms of convergence speed, the EMFO is significantly
speeder than MFO, AMFO, GMFO, CMFO, LMFO, and
OMFO on 15, 21, 20, 20, 18, and 21 out of 25 functions.
Meanwhile, the EMFO is clearly slower than MFO, AMFO,
GMFO, CMFO, LMFO, and OMFO on 7, 2, 3, 3, 5, and 2 out
of 25 ones, respectively..erefore, the results of convergence
speed indicate that the EMFO generates a promising con-
vergence speed for these benchmark test functions.

4.3. Comparison Results of Time Complexity. .e total
comparisons of the average time complexity of 25 functions
in one iteration of about eight algorithms are shown in
Figure 7 in the form of a bar plot. In Figure 7, it is clearly
shown that the mean CPU time of the OMFO is the best and
that of the CMFO is worst..emean CPU time of the EMFO
is the fourth and only 16.476 seconds longer than the
OMFO. Although the time complexity of the EMFO is not
the best, it can achieve acceptable convergence speed and
promising convergence accuracy.

Table 1: Continued.

Func. Results EMFO MFO AMFO GMFO CMFO LMFO OMFO

F15

Mean 3.88E+02 3.61E+02∼ 5.70E+02ǂ 3.96E+02∼ 2.68E+02ξ 2.63E+02ξ 4.00E+02∼
Std. 7.84E+01 6.62E+01 2.95E+01 8.08E+01 7.77E+01 9.45E+01 8.73E+01

P value — 1.85E-01 1.77E-14 7.51E-01 1.79E-06 5.95E-06 6.25E-01
H value — 0 1 0 1 1 0

F16

Mean 6.02E+01 2.05E+02ǂ 3.29E+02ǂ 1.83E+02ǂ 1.66E+02ǂ 1.83E+02ǂ 1.59E+02ǂ
Std. 2.48E+01 1.18E+02 1.42E+01 9.51E+01 8.01E+01 8.56E+01 6.62E+01

P value — 2.36E-07 7.77E-42 1.00E-07 7.85E-08 1.15E-08 7.20E-09
H value — 1 1 1 1 1 1

F17

Mean 6.83E+01 1.81E+02ǂ 3.64E+02ǂ 1.79E+02ǂ 1.73E+02ǂ 1.55E+02ǂ 1.49E+02ǂ
Std. 2.79E+01 1.04E+02 2.18E+01 8.75E+01 8.97E+01 6.53E+01 7.23E+01

P value — 3.16E-06 2.29E-39 2.43E-07 1.08E-06 1.82E-07 3.79E-06
H value — 1 1 1 1 1 1

F18

Mean 9.04E+02 9.11E+02ǂ 1.01E+03ǂ 9.11E+02ǂ 9.13E+02ǂ 9.13E+02ǂ 9.11E+02ǂ
Std. 1.04E+00 3.37E+00 8.57E+00 3.36E+00 4.18E+00 5.38E+00 3.04E+00

P value — 1.18E-13 1.99E-46 4.57E-12 2.29E-13 6.98E-10 2.79E-13
H value — 1 1 1 1 1 1

F19

Mean 9.04E+02 9.13E+02ǂ 1.00E+03ǂ 9.12E+02ǂ 9.10E+02ǂ 9.11E+02ǂ 9.13E+02ǂ
Std. 8.55E-01 4.32E+00 1.07E+01 3.03E+00 3.27E+00 4.05E+00 3.32E+00

P value — 2.87E-13 2.02E-41 4.50E-16 2.41E-12 1.73E-10 2.52E-16
H value — 1 1 1 1 1 1

F20

Mean 9.04E+02 9.12E+02ǂ 1.00E+03ǂ 9.12E+02ǂ 9.12E+02ǂ 9.12E+02ǂ 9.12E+02ǂ
Std. 9.78E-01 3.26E+00 9.76E+00 3.56E+00 5.70E+00 2.68E+00 3.27E+00

P value — 2.76E-15 1.34E-43 3.77E-14 1.31E-08 6.84E-19 2.52E-15
H value — 1 1 1 1 1 1

F21

Mean 5.00E+02 5.27E+02∼ 1.13E+03ǂ 5.79E+02∼ 5.48E+02ǂ 5.00E+02∼ 5.77E+02∼
Std. 8.29E-14 1.33E+02 3.30E+01 2.19E+02 1.12E+02 1.41E-10 1.95E+02

P value — 3.22E-01 1.94E-56 7.67E-02 3.76E-02 7.98E-02 5.39E-02
H value — 0 1 0 1 0 0

F22

Mean 8.76E+02 9.56E+02ǂ 1.07E+03ǂ 9.67E+02ǂ 9.60E+02ǂ 9.65E+02ǂ 9.46E+02ǂ
Std. 1.87E+01 3.75E+01 1.69E+01 5.35E+01 4.56E+01 3.40E+01 3.50E+01

P value — 1.52E-12 1.95E-37 2.36E-10 3.58E-11 2.97E-15 1.28E-11
H value — 1 1 1 1 1 1

F23

Mean 5.34E+02 5.77E+02∼ 1.12E+03ǂ 5.84E+02∼ 5.77E+02∼ 5.77E+02∼ 5.50E+02∼
Std. 4.29E-04 1.49E+02 2.97E+01 1.34E+02 1.51E+02 1.51E+02 8.06E+01

P value — 1.57E-01 3.04E-57 6.91E-02 1.60E-01 1.64E-01 3.22E-01
H value — 0 1 0 0 0 0

F24

Mean 2.00E+02 2.00E+02∼ 1.12E+03ǂ 2.00E+02∼ 2.00E+02∼ 2.00E+02∼ 2.00E+02∼
Std. 6.21E-13 6.21E-13 1.99E+01 1.29E-10 8.46E-11 6.37E-11 1.56E-10

P value — 4.58E-21 8.07E-75 3.42E-03 8.09E-04 1.46E-05 6.54E-03
H value — 1 1 1 1 1 1

F25

Mean 9.75E+02 9.85E+02ǂ 1.27E+03ǂ 9.86E+02ǂ 9.86E+02ǂ 9.86E+02ǂ 9.87E+02ǂ
Std. 4.74E+00 9.61E+00 1.60E+01 8.71E+00 7.81E+00 7.50E+00 1.05E+01

P value — 2.07E-05 1.38E-54 4.71E-07 2.94E-07 6.27E-08 1.64E-06
H value — 1 1 1 1 1 1

ǂ/ξ/∼ — 14/3/8 22/2/1 16/3/6 18/3/4 15/5/5 16/2/7
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5. The Application of Parameter Extraction of
Photovoltaic Models

It is well known that solar energy is the most important
renewable energy resource [45], and its main application is
photovoltaic (PV) power generation [46], which is because
solar energy can be directly converted into electricity by
using the PV system. However, the conversion efficiency of
the PV model is significantly affected by model parameters.
To solve this problem, the EMFO is utilized to extract the
parameters of the PV models.

5.1. PV Models and Fitness Functions. .e single-diode and
double-diode models [47] are the most widely used, which
can explain the current-voltage features of the PV systems.
.e single-diode model, the diode model, the PV module,
and the fitness function are addressed as follows.

5.1.1. Single-Diode Model. .e output current and voltage of
the single-diode model are calculated by using the following
formula [48]:

I � Iph − Id exp
V + IRs

aVt

􏼠 􏼡 − 1􏼢 􏼣 −
V + IRs

Rsh

, (12)

where I and V are the output current and the output voltage
of the single-diode model, respectively. Rs and Rsh denote
the series resistance and the shunt resistance, respectively,
and a stands for the diode ideal factor. Iph and Id are the
photo-generated current and the diode current, respectively.
Vt represents the junction thermal voltage, generated by
using the following formula:

Vt �
k · T

q
, (13)

where k denotes the Boltzmann constant (1.3806503×

10−23J/K) and T stands for the temperature of junction in
Kelvin. q represents the electron charge (1.60217646×

10−19C).
.e unknown parameters (Rs, Rsh, a, Iph, and Id) of the

single-diode model will be extracted.

5.1.2. Double-Diode Model. .e relationship between out-
put current and voltage of the double-diode model is de-
scribed in the following formula:

I � Iph − Id1 exp
V + IRs

a1Vt

􏼠 􏼡 − 1􏼢 􏼣

− Id2 exp
V + IRs

a2Vt

􏼠 􏼡 − 1􏼢 􏼣 −
V + IRs

Rsh

,

(14)

where Idi, i ∈ 1, 2{ } denotes the current i th diode, and
ai, i ∈ 1, 2{ } represents the i th diode ideal factor. I and V are
the output current and the output voltage.

.e unknown parameters (Rs, Rsh, a1, a2 , Iph, Id1, and
Id2) of the single-diode model will be extracted.

5.1.3. PV Module. .e output current I and voltage V of the
PV module are described in the following formula:

I � IphNp − IdNp exp
V + IRsNs/Np

aNsVt

􏼠 􏼡 − 1􏼢 􏼣

−
V + IRsNs/Np

RshNs/Np

,

(15)

where Ns denotes the number of solar cells that are con-
nected in series, and Np is the number of solar cells that are
connected in parallel. In the simulation, Np is set to 1,
because the used PV modules are all in series. .erefore, the
output current I and voltage V of the used PV module are
represented in the following formula:

I � Iph − IdNp exp
V + IRsNs

aNsVt

􏼠 􏼡 − 1􏼢 􏼣 −
V + IRsNs

RshNs

. (16)

.e unknown parameters (Rs, Rsh, a, Iph, and Id) of the
PV module will be extracted.

5.1.4. Fitness Functions. .e purpose of parameter extrac-
tion of the PV models is to minimize the error between
simulated and measured current data I. .e absolute error
current (AEC) of the individuals is calculated as follows [49].

Table 2: Average ranks for all algorithms across 28 problems and all dimensions using CEC2017.

Algorithms 10D 30D 50D 100D Mean ranking Rank
EMFO 1.84 2.21 1.96 1.89 1.98 1
MFO 6 5.68 4.93 5.32 5.48 5
AMFO 9.48 10.71 10.93 11 10.53 11
CMFO 5.30 5.21 5.11 5.71 5.33 4
GMFO 4.75 5.14 5.36 5.25 5.13 3
LMFO 5.11 5.53 6.57 5.25 5.62 6
OMFO 6.29 6.14 6.04 5.79 6.07 7
EMFO 5.39 5.92 6.68 7.68 6.42 8
SaDN 10.61 10.11 9.61 9.43 9.94 10
MFO-AFN 7.86 6.71 6.79 6.36 6.93 9
MFO-MFG 3.39 2.60 2.04 2.32 2.59 2
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Figure 6: Continued.
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.e AEC of the single-diode model is generated by the
following formula:

AEC � Iph − Id exp
V + IRs

aVt

􏼠 􏼡 − 1􏼢 􏼣 −
V + IRs

Rsh

− I

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
. (17)

.e AEC of the double-diode model is calculated by the
following formula:

AEC � Iph − Id1 exp
V + IRs

a1Vt

􏼠 􏼡 − 1􏼢 􏼣

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

− Id2 exp
V + IRs

a2Vt

􏼠 􏼡 − 1􏼢 􏼣 −
V + IRs

Rsh

− I

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
.

(18)

.e AEC of the PV module is described in the following
formula:

AEC � Iph − IdNp exp
V + IRsNs

aNsVt

􏼠 􏼡 − 1􏼢 􏼣 −
V + IRsNs

RshNs

− I

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
.

(19)

To quantify the overall error between the simulated and
measured current, the root mean square error is utilized as
the fitness function, which is represented as the following
formula:

f(x) �

�������������

1/N􏽘
N

i�1AEC
2
,

􏽲

(20)
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Figure 6: Convergence performance of the seven compared algorithms on 25 functions of CEC 2005.
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where x denotes the feasible solution consisted of the un-
known parameters to be extracted, and N indicates the
number of measured current data. Furthermore, f(x) is the

fitness value of feasible solution x. It is clearly shown that the
smaller the fitness value, the more accurate the extracted
parameters.

Table 3: .e feasible range of parameters to be extracted.

Parameters
PV-F1/F2 PV-F3 PV-F4 PV-F5

LB UB LB UB LB UB LB UB
Iph 0 1 0 2 0 2 0 8
Id, Id1, Id2 0 1 0 50 0 50 0 50
Rs 0 0.5 0 2 0 0.36 0 0.36
Rsh 0 100 0 2000 0 1000 0 1500
a, a1, a2 1 2 1 50 1 60 1 50

Table 4: Solution accuracy of the EMFO and compared algorithms on the PV problems.

Func. Results EMFO MFO AMFO GMFO CMFO LMFO OMFO

PV-F1

Mean 1.28E-03 1.74E-03ǂ 3.11E-03ǂ 1.74E-03ǂ 1.94E-03ǂ 2.06E-03ǂ 1.59E-03ǂ
Std. 2.50E-04 3.73E-04 5.82E-04 4.83E-04 3.70E-04 4.05E-04 3.76E-04

P value 5.87E-06 4.55E-19 9.74E-05 2.05E-09 9.41E-11 1.02E-03
H value 1 1 1 1 1 1

PV-F2

Mean 1.27E-03 1.81E-03ǂ 6.99E-03ǂ 1.50E-03ǂ 2.28E-03ǂ 1.83E-03ǂ 1.44E-03ǂ
Std. 2.21E-04 4.19E-04 2.27E-03 3.71E-04 3.92E-04 8.30E-04 2.16E-04

P value 7.34E-07 9.23E-17 1.36E-02 5.57E-15 2.06E-03 9.98E-03
H value 1 1 1 1 1 1

PV-F3

Mean 2.44E-03 2.51E-03ǂ 2.60E-03∼ 2.65E-03ǂ 1.62E-03ξ 2.43E-03∼ 2.56E-03ǂ
Std. 1.71E-05 1.07E-04 1.46E-03 3.38E-04 3.82E-05 1.18E-03 2.02E-04

P value 1.79E-03 5.86E-01 3.27E-03 5.56E-57 9.59E-01 6.34E-03
H value 1 0 1 1 0 1

PV-F4

Mean 3.24E-03 5.64E-03ǂ 2.23E-04ξ 3.32E-03∼ 1.73E-04ξ 7.50E-04ξ 3.69E-03ǂ
Std. 6.34E-04 2.30E-03 2.57E-05 4.88E-04 2.83E-05 1.59E-03 5.59E-04

P value 7.30E-06 3.44E-28 6.05E-01 1.67E-28 2.94E-09 1.03E-02
H value 1 1 0 1 1 1

PV-F5

Mean 3.38E-02 3.97E-02ǂ 2.39E-04ξ 3.14E-02∼ 1.91E-02∼ 2.95E-02∼ 3.83E-02ǂ
Std. 5.46E-03 1.30E-02 1.19E-04 1.33E-02 9.48E-02 9.25E-02 5.06E-03

P value - 4.17E-02 3.41E-33 4.13E-01 4.43E-01 8.18E-01 3.88E-03
H value - 1 1 0 0 0 1

ǂ/ξ/∼ - 5/0/0 2/2/1 3/0/2 2/2/1 2/1/2 5/0/0
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Figure 7: Mean CPU time of the EMFO and compared algorithms.
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5.2. Parameter Setting. .e current-voltage data of single-
(PV-F1) and double (PV-F2)-diode models are gained from
[50], measured on a 57mm diameter commercial silicon
R.T.C. France solar cell under 1000W/m2 at 33 ℃. .ree
different PV modules are utilized, i.e., polycrystalline
Photowatt-PWP201 (PV-F3), monocrystalline STM6-40/36
(PV-F4), and polycrystalline STP6-120/36 (PV-F5). .e
polycrystalline Photowatt-PWP201 is measured under
1000W/m2 at 45°C [50]. .e monocrystalline STM6-40/36
and the polycrystalline STP6-120/36 are measured under
51°C and 55°C, respectively, whose current-voltage data are
gained from [51, 52]. .e feasible range of parameters to be
extracted is shown in Table 3. In addition, the parameter
setting of the simulation is consistent with that in Section 4.

5.3. Comparison of Solution Accuracy. .e basic settings of
Table 4 are the same as Table 1. FromTable 4, it can be clearly
seen that the EMFO outperforms 6 compared algorithms on
2 functions (PV-F1 and PV-F2) and provides the second-
best result on 2 functions (PV-F3 and PV-F5). Additionally,

the EMFO obtains the fourth-best result on function PV-F4.
.e simulation results demonstrate that the EMFO is ef-
fective to accurately extract parameters of the PV models.

5.4. 2e Comparison Results of Convergence Speed. In Fig-
ure 8, the vertical axis is the nature logarithm of the mean
value over independent 25 runs, and the horizontal axis is
the sampling point where sampling points are taken from
FES� 1000 and mod (FES, 10000)� 0.

It can be clearly observed from Figure 8 that the EMFO
obtains the best convergence performance on 3 functions
(PV-F1–PV-F3) and gains the third-best convergence speed
on 2 functions (PV-F4 and PV-F5). .e results described
above indicate that the EMFO is promising and significant in
solving the parameters’ extract problems of the PV models.

6. Conclusions

To enhance the exploration ability and avoid to fall into the
local trap, an enhanced MFO with multiple flame guidance
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Figure 8: Convergence performance of the seven compared algorithms on the 5 PVmodels. (a) (PV-F1). (b) (PV-F2). (c) (PV-F3). (d) (PV-
F4). (e) (PV-F5).
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mechanism is proposed in this study, named EMFO for short.
In EMFO, an adaptive flame number updating mechanism is
utilized to adaptively adjust flame’s number for helping the
moth population escape the local optimal trap. Besides, a
multiple flame guidance mechanism is designed to fully use
the position information of flames, which enhances the di-
versity of flame guidance information and avoids premature.
To verify the performance of the EMFO, it is used to optimize
25 benchmark functions of the CEC 2005, 28 test functions of
CEC2017, and a real-world optimization problem, compared
with the state-of-the-art algorithms. .e results show that the
EMFO has obtained promising performance, and gained
higher convergence accuracy and faster convergence speed
than the compared algorithms.

In future work, the EMFO will be further tested on
newer, more complex test functions and more complex
application problems to verify its robustness.
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