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Abstract Background and objective: A deep unsupervised endoscopic image enhancement method is proposed
based on multi-image fusion to achieve high quality endoscope images from poorly illuminated, low contrast and
color deviated images through an unsupervised mapping and deep learning network without the need for ground
truth.

Methods: Firstly, three image enhancement methods are used to process original endoscopic images to obtain
three derived images, which are then transformed into HSI color space. Secondly, a deep unsupervised multi-image
fusion network (DerivedFuse) is proposed to extract and fuse features of the derived images accurately by utilizing
a new no-reference quality metric as loss function. I-channel images of the three derived images are inputted
into the DerivedFuse network to enhance the intensity component of the original image. Finally, a saturation
adjustment function is proposed to adaptive adjusting the saturation component of HSI color space to enrich the
color information of the original input image.

Results: Three evaluation metrics: Entropy, Contrast Improvement Index (CII) and Average Gradient (AG)
are used to evaluate the performance of the proposed method. The results are compared with that of fourteen
state-of-the-art algorithms. Experiments on endoscopic image enhancement show that the Entropy value of our
method is 3.27% higher than the optimal entropy value of comparison algorithms. The CII of our proposed method
is 6.19% higher than that of comparison algorithms. The AG of our method is 7.83% higher than the optimal AG
of comparison algorithms.

Conclusions: The proposed deep unsupervised multi-image fusion method can obtain image information details,
enhance endoscopic images with high contrast, rich and natural color information, visual and image quality. Sixteen
doctors and medical students have given their assessments on the proposed method for assisting clinical diagnoses.

Keywords Endoscopic image enhancement · Unsupervised deep learning · Image Fusion · Derived image · HSI
color space

1 Introduction

Endoscopy imaging is a medical diagnostic and treatment procedure [1]. Endoscopy has been widely used in
examining, diagnosing and treating esophageal digestive system, such as stomach and intestine. The image collected
by endoscopy is usually collected by doctors operating endoscopy in narrow internal cavities. Endoscopic images
are illuminated only by unidirectional point light source which causes problems of uneven illumination and low
illumination. Tissues and blood vessels of human organs are mainly distributed in the mucosa and submucosa,
which leads to which causes problems of the loss of image texture and color information. These problems will lead
to uneven brightness, insufficient brightness, low contrast and clarity in the organ regions of interest to doctors in
the image [2], thus affecting the accuracy of the doctors to analysis and diagnosis in clinical settings. Therefore, it
is very important to improving endoscopic image quality in analysis and diagnosis in clinical settings.

In this paper, we study techniques aimed at improving endoscopic image quality. In the past, many image
processing techniques have been proposed for brightness adjustment and contrast enhancement, such as gamma
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correction (GC) [3] based on gray level transformation and contrast-limited adaptive histogram equalization al-
gorithm (CLAHE) [4] based on histogram and low-light image enhancement via illumination map estimation
(LIME) [5] based on Retinex theory. Xia et al. proposed an endoscopic image enhancement algorithm based on
Retinex theory to improve the insufficient illumination and prevent magnifying noise in the process of image
enhancement [6]. Long et al. [7] combined histogram correction with wavelet transform to improve the contrast
of endoscopic images and avoid image distortion. However, the traditional image enhancement algorithm only
focuses on a specific problem, which is to correct the brightness in the image or to highlight the contrast of the
blood vessels in mucosal layer of the human lumen. With the rapid development of deep learning networks, deep
learning-based methods have made important progress in image classification, segmentation and detection [8,9]. LL-
Net [10], a CNN-based model, was successfully applied to low illumination image enhancement to natural images.
Subsequently, LightenNet [11] and RetinexNet [12] networks were proposed and achieved significant brightness
enhancement for low illumination images. Compared with traditional image processing technique, deep-learning
methods have the advantages of getting more images features from large samples of datasets and more powerful
feature expression ability. However, supervised neural networks require a large number of image pairs for train-
ing. The lack of medical ground truth datasets for network training is a major bottleneck in deep-learning based
medical imaging processing. Unsupervised learning methods do not need ground truth medical images for training
and is an effective way of processing endoscope image enhancement. More recently, Chen et al. [13] proposed a
new unsupervised learning framework De-smokeGCN without the need for real image pairs as the ground truth,
which has been used for smoke detection and smoke removal of endoscopic images. The enhancement effect is not
ideal when using unsupervised deep learning-based image enhancement methods to enhance endoscopic images.
Therefore, it is difficult to study endoscopic images before going straight to the previous deep learning-based image
enhancement methods.

In this paper, we propose a deep unsupervised learning framework based on a multi-image fusion method for
endoscopic image enhancement. It only uses low-quality endoscopic images to train the network without the need for
ground truth, combining several mature image enhancement techniques to achieve contrast enhancement, uniform
brightness, high clarity and natural color of endoscopic images. Firstly, we use three classical image enhancement
techniques: GC, CLAHE and LIME to process the original endoscopic image to get three derived images. The
RGB color space of the original images and the derived images have been transformed into HSI color space. Each
channel in the HSI color space has relatively independent characteristics, and we deal with the luminance channel
component I and saturation channel component S respectively to avoid the color distortion of the image without
changing the hue channel component H. For I-channel components, we propose DerivedFuse to improve the details
of the original image. Considering the characteristics of images obtained from endoscopy, we improve multiple
exposure fusion structural similarity (MEF SSIM) [14] and propose a new loss function MDF SSIM to extract and
fuse features of derived images more accurately. For S-channel component, we construct a saturation adjustment
function to enrich the color information of the image.

The contributions of this work are as follows:

1) For the first time, we combine advantages of GC derived image, CLAHE derived image and LIME derived
image with a deep learning network. The deep convolutional neural network architecture for unsupervised
fusion of derived images is proposed to obtain enhanced endoscopic images with superior image quality.

2) DerivedFuse is proposed to fuse fine details of derived images. This model can accurately extract and fuse the
features of the derived image without ground truth. A new loss function MDF SSIM was proposed to extract
and fuse features of derived images more accurately.

3) A saturation adjustment function was constructed to enrich the color information of the image in HSI color
space.

4) Our proposed method outperforms fourteen state-of-the-art algorithms and has shown high quality image en-
hancement. Sixteen medical doctors and students have evaluated our proposed algorithm for clinical endoscopic
diagnosis and treatment. The proposed method is general and applicable to images obtained from gastroscopy,
colonoscopy and laparoscopy.

2 Related work

Medical images obtained from endoscopy is illuminated by unidirectional point light source. This light source
could cause uneven brightness or darkness in some areas of the image [15]. Therefore, research of endoscopic image
enhancement techniques has been mainly focused on illumination adjustment, contrast and sharpness improvement.
In recent years, researchers have proposed some classical image enhancement methods to improve endoscopic images
quality [16–19]. With the rapid development of deep learning, deep convolutional neural network has gradually
become the main driving force in the field of image enhancement. Deep learning algorithm builds the complex
nonlinear mapping relationship between the degraded image and the real image by learning the deep convolution
neural network, and then achieve the purpose of enhancing the degraded image.
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In following sections, we divide these methods into two categories: classic conventional image enhancement
methods and deep learning-based image enhancement methods.

2.1 Conventional image enhancement methods

Image enhancement is an active research topic in the field of computer vision. Many image enhancement algorithms
have been proposed to address issues of natural images. Classical methods include algorithms based on histogram
[4,20,21], gray level transformation [3,22,23], Retinex theory based algorithms [5,24–28]. Histogram based algorithm
such as CLAHE [4] can significantly improve the contrast of the image to highlight the sense of layers and make
details in bright areas of the image clear, but not effective for dark areas. Whilst gray level transformation method,
such as GC [3], is commonly used gray non-linear transformation to improve the brightness of the image and
enhance details in the dark areas, it is usually limited to a narrow gray scale and the contrast is low. Finally,
LIME [5] based on Retinex theory can significantly improve the contrast and clarity of images in dark areas.
However, it can cause excessive enhancement to areas with high-brightness in the image.

In endoscopic images enhancement, a method for processing endoscopy images using texture analysis is proposed
by Hiroyasu et al. [16] to remove the noise when analyzing images of early gastric cancer taken with narrow-band
imaging endoscopy using a gray level co-occurrence matrix and a gray level run-length matrix. A color image
enhancement scheme termed as “Tri-scan” is proposed by Imtiaz et al. [17]. Firstly, the algorithm sharpens the
surface and edges of tissue and vascular characteristics. Next, the R plane of the image is processed with an
adaptive sigmoid function to enhance the vascular contrast of the mucosal layer. Finally, the subtle micro-vessels,
mucosal and tissue characteristics were highlighted by color tone enhancement. Sdiri et al. [18] addressed stereo
endoscopic image enhancement based on joint wavelet decomposition and binocular combination. These methods
only focused on a specific problem such as light regulation, vascular contrast enhancement or smoke elimination.

2.2 Deep learning-based image enhancement methods

Supervised learning and unsupervised learning are the two main methods of Deep learning-based methods. In
supervised learning algorithms, they need a training data set including ground truth images, and build the complex
nonlinear mapping relationship between the degraded image and the real image by learning the deep convolution
neural network for the purpose of enhancing the degraded image. Unsupervised leaning methods could realize the
transformation from low-quality raw images to high-quality enhanced images, not requiring image pairs.

Supervised learning: Lore et al. [10] applied a low-light net (LLNet) for low light image enhancement. LLNet
was trained on a variant of the stacked-sparse denoising auto-encoder to enhance the contrast and denoise low
illumination images. However, when LLNet is used to process color images of real scenes, there are more redundant
parameters, so it is easy to overfitting. Li et al. [11] proposed a convolutional neural network (LightenNet) for
weakly illuminated image enhancement. LightenNet uses four layer convolutional neural network (CNN) model to
realize the illumination mapping between the low illumination images and the corresponding normal light images.
However, the stability of the algorithm is poor, resulting in overexposure and redundant noise. Lv et al. [29]
proposed a multi-branch weak light image enhancement network (MBLLEN) for the purpose that single branch
or simple neural network can not enhance the brightness and contrast of image at the same time. MBLLEN can
improve image quality in many ways.

The combination of CNN [30] and Retinex theory can further improve the visual quality of enhanced images,
automatically learning the characteristics of the images and solving the problem of Retinex for being relying on
manual setting of parameters. RetinexNet [12] included image decomposition and continuous image enhancement
operations to improve image brightness. However, RetinexNet cannot estimate illumination correctly, and the
edge information is lost when smoothing and denoising the reflectance image, which leads to the edge blur and
color distortion of the enhanced image. In order to solve the problem of image color distortion, Ma et al. [31]
combined the advantages of color model transformation and convolutional neural network, transformed the image
from RGB color space to HSI space, and used deep convolutional neural network to enhance the image. Above
methods are generally supervised learning which requires paired synthetic low illumination images and high-quality
images as the ground truth to train the neural network. Obtaining high quality medical ground truth datasets is
a big challenge. Using synthetic low illumination images adds additional problems of limited color and the image
resolution range. Therefore, it is not ideal to train networks with synthetic datasets, especially in medical image
enhancement.

Unsupervised learning: Generative adversarial networks (GAN) [32] provides a good foundation for unsu-
pervised learning and have been widely applied in the field of image restoration. Inspired by GAN, CycleGAN [33]
used unpaired data for network training without one-to-one matching pairs of images. At least two types of image
datasets were required in CycleGAN to learn the mapping rules from one image to another. Guo et al. [34] proposed
a none reference enhancement method Zero-DCE by setting a series of loss functions for the network end-to-end
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training without reference images, which has good generalization for images under different illumination conditions.
Then, the author redesigned the network structure of Zero-DCE and proposed an accelerated and light version
Zero-DCE++ [35]. Jiang et al. [36] proposed an efficient EnlightGAN that can be trained without low-light/normal
light image pairs, bringing great flexibility and adaptability for real life images in various fields. Although these
unsupervised learning methods can solve the data set problem for low illumination image enhancement, the details
of enhanced images still need to improve.

3 Background

This section presents a brief introduction to the necessary background of GC, CLAHE, LIME, and Color space
involved in our algorithm.

3.1 Gamma correction

Gamma correction (GC), also known as exponential transformation or power transformation, is a commonly used
gray non-linear transformation. It can not only change the brightness of the image, but also enhance the details,
so that the overall effect of the image can be enhanced and improved. The basic form of gamma correction is as
follows:

Igamma = λIγ (1)

where I is the brightness of the original image. Igamma represents the image brightness after GC [3]. γ is the
correction parameter, and its value directly determines the effect of GC. When γ < 1, GC can improve the
brightness of the image and enhance the details in the dark areas of the image. Considering that the original
intestinal polyp image has the characteristics of uneven illumination and low overall brightness. GC is used in the
section 4.1 to generate the first derived image to adjust the global brightness of the original image. According to
the characteristics of the original image, the parameter γ of gamma correction function is unified as 0.6, and the
parameter λ is unified as 1.

3.2 Contrast-limited adaptive histogram equalization algorithm

Histogram based method can improve the contrast of image. Among them, the classical histogram equalization
(HE) belongs to global equalization, which can cause over enhancement and color distortion for non-uniform
illumination image processing. CLAHE is a local histogram equalization method, is an improvement of HE, it
has better flexibility. The basic principle of CLAHE is: Firstly, the input image is divided into some sub-blocks,
and the grayscale histogram of these sub-blocks is calculated. Then, a histogram clipping threshold is selected,
and the gray level exceeding the threshold in the grayscale histogram of these sub-blocks is redistributed to other
gray levels, which can avoid over-enhancement or over-amplification of the noise in the smooth area and reduce
the boundary of artifacts. Next, histogram equalization is performed on the new histogram. Finally, the enhanced
image is obtained by using bilinear interpolation between sub-blocks.

CLAHE [4] can significantly improve the contrast of the image, highlight the sense of layers of the image, and
make the details of the image clear. The image collected by endoscopy are illuminated by a unidirectional point
light source. Such light source may cause some areas to be brighten by direct illumination at a close range. In the
section 4.1, CLAHE was selected to generate the second derived image to make the details of the local brightness
area clear.

3.3 Low-light image enhancement via illumination map estimation

The traditional algorithm based on Retinex theory can significantly enhance the brightness of low illumination
images, but the contrast of enhanced images is low and the color will deviate from the original image color. LIME is
a new algorithm based on Retinex theory. The principle of this algorithm is to take the maximum value in the three
RGB channels of the original low-illumination image, then modify the original illumination image continuously
through the prior structure, and adjust the illumination map by gamma correction, so as to obtain the illumination
map with globally smooth and clear edges.

LIME [5] is specifically proposed for low illumination images, which can significantly improve the contrast and
clarity of images. The light source could also cause some areas to be darken in a long distance or back light. In
the section 4.1, we incorporate LIME into the third derived image generation to make the details of the local dark
area clear.
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3.4 Color space and image details

Color spaces such as HSV, HSL, HSI and CIE L*a*b* are widely used in image enhancement. This section studies
the brightness and detail information effect comparison of common color space in image enhancement technology
and mainly introduces the related knowledge of HSI color space used in this paper.

The three color channels of RGB color space in the original images have strong correlation with brightness.
When directly enhancing the image of RGB color space, it is generally necessary to enhance the R, G and B channels
respectively, and then combine the three enhanced channels into the final enhanced image. If the enhancement
of each channel is uneven, the inherent proportional relationship of R, G and B components will be changed, so
the enhanced image is prone to produce color distortion. Transferring low illumination images of RGB color space
into other color spaces and using relatively independent characteristics of each channel in the transferred color
space to enhance the brightness component alone can improve the color distortion. This vision system based image
processing can distinguish between the brightness and the information about hue and saturation [37]. HSL, HSV
and HSI are color spaces composed of three attributes. H and S have the same meaning in the three color spaces,
representing hue and saturation respectively. L, V, and I represent the lightness, value, and intensity of HSL,
HSV, and HSI color spaces respectively. The CIE L*a*b* color space is a color model set by the International
Commission on Illumination. L* component represents the brightness of pixels. a* and b* are two color channels.
The L, V, I and L* components describe the brightness and detail information of the image, and the H, S, a*
and b* components describe the color information of the image. The brightness information (L, V, I, and L*
components) of the above color space closely match the brightness perception of human and are separated from
the image color information (H, S, a* and b* components). Therefore, in the process of color image enhancement,
scholars often convert the original image from RGB color space to HSL, HSV, HSI or CIE L* a* b* color spaces.
Then, the brightness components of these color spaces are enhanced. Finally, it is converted back to RGB color
space for storage and display.

Fig. 1 Comparison of brightness components of various color spaces of different exposure images.

A large number of experiments were conducted on 60 images with low illumination, high illumination and non-
uniform illumination to compare the brightness components of various color spaces of different images. Considering
of the layout limitation of the paper, we selected 3 representative images with different illumination conditions
and their experimental results for display, which are low-illumination image ‘Cloudy’, high-illumination image
‘Car’ and non-uniform illumination image ‘Sun’. As shown in Fig. 1, the original image Fig. 1 (a) is processed to
obtain a single channel gray scale image Fig. 1 (b) to assess the brightness and detail information of the original
image more intuitively without being influenced by the color components. We compare the characteristics between
the brightness channels of CIE L*a*b*, HSV, HSI, and HSL color spaces and the gray scale image and select
the color space that best match the brightness and detail information of the original image. The Just Noticeable
Difference (JND) curve describes the minimum brightness deviation that the human eye can distinguish under
different illumination conditions. According to the JND curve, the human eye is not sensitive to the brightness
change in the high-light and low-light areas, but is sensitive to the brightness change in the middle-light (gray level
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is about 128). Therefore, it is difficult for human eyes to observe the difference of the brightness components of the
low-illumination image ‘Cloudy’ and the high-illumination image ‘Car’ in various color spaces. The non-uniform
illumination image contains a large area of middle-light region. Next, we will mainly analyze the results for the
image ‘Sun’. It can be seen in Fig. 1 (c) that the brightness of the L component of HSL color space at the sun is
darker than that of the original image, which makes some cloud textures with medium brightness level missing.
On the contrary, the brightness of the V component of the HSV color space in the sun is brighter than that of the
original image, which affects the texture details of the bright areas, as shown in Fig. 1 (d). The L* component of
CIE L*a*b* color space also has the problem in that the brightness in the sun is brighter than that of the original
image, which leads to the loss of the edge contour of the sun in the original image, as shown in Fig. 1 (e). The sun
in the I component of HSI color space is the closest to the original color image in brightness, as shown in Fig. 1
(f).

Quantitative metrics can intuitively show the difference of brightness components of various color spaces of
different images. In order to more formally analyze the color space selection, we used two quantitative metrics,
Structural Similarity Index Measurement (SSIM) [38] and Lightness Order Error (LOE) to compare the integrity of
structural information and the distortion level of luminance in an image. SSIM is an index to measure the integrity
of the image structure information, which is actually composed of luminance, contrast and structure. The higher its
value, the more similar the structure features between the test image and the reference image. LOE can objectively
measure the luminance distortion level of the image. The smaller the LOE value, the more similar the lightness
order of the test image and the reference image, that is, the better the naturalness of the test image is maintained.
In this paper, Fig. 1 (b) was taken as the reference image to calculate the values of SSIM and LOE. It can be
seen from the quantitative comparison of brightness channel images in different color spaces. The SSIM values of
the HSI color space images are all larger than those of the other three color spaces, indicating that the brightness
component of the HSI color space is more similar to Fig. 1 (b). The LOE values of HSI color space images are less
than those of the other three color spaces, indicating that HSI color space maintains a better brightness order and
the best naturalness. Therefore, HSI color space is more consistent with human visual characteristics than other
color spaces. Keeping H unchanged, the operation of I and S will not affect the proportion of the primary color
hue component, which can better maintain the image color and avoid color distortion. We choose HSI color space
to process the endoscope image.

4 Methods

Fig. 2 shows the flow chart of our proposed endoscope image enhancement framework, which consists of three main
modules: derived image generation, deep unsupervised fusion of intensity channel image and saturation channel
image adjustment.

1) The derived image generation module mainly uses the classical image enhancement technology to generate
three derived images. These three kinds of derived images have their own advantages in improving the detailed
information of dark areas, enhancing the contrast of bright areas and improving the global brightness of the
image.

2) The deep unsupervised fusion of intensity channel image module mainly uses our proposed network DerivedFuse
to extract and fuse the features of the three derived images accurately.

3) The saturation channel image adjustment module mainly uses the saturation adjustment function constructed
by us to process the saturation component S of HSI color space to enrich the color information of the endoscope
image.

4.1 The derived image generation

Taking into account of the complex internal environment of human body and the characteristics of endoscopy
imaging processing, we propose to use a combined image enhancement framework by generating three derived
images from GC, CLAHE and LIME. The three derived images are combined to complement each other to achieve
the contrast enhancement and illumination adjustment for endoscopy images. Then, three derived images are input
to the deep neural network to perform the merger for enhancing the intensity of them accurately.

GC can improve the global brightness of the original image. However, when GC is used to adjust the global
brightness of the image, the gray value of the resulting image is usually limited to a narrow gray scale, and the
contrast is low, so it is easy to lose some details. CLAHE can enhance the contrast of high bright areas, but it is
not obvious for dark areas. LIME has an obvious effect on improving the details of the dark areas in the image
obviously. However, it will cause excessive enhancement to the high-brightness areas in the image. Therefore, only
using a single GC, CLAHE or LIME to process endoscope images cannot achieve a comprehensive effect. The three
derived images each has its own advantages in improving the detailed information of the dark areas, enhancing the
contrast of bright areas and improving the global brightness of the image. In order to achieve global enhancement of
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Fig. 2 Flow chart of our proposed endoscope image enhancement framework of three main modules: a) Derived image generation;
b) Deep unsupervised fusion of intensity channel image; c) Saturation channel image adjustment.

contrast and brightness of endoscopic images, it is necessary to have these three derived images inputs to perform
the merger.

4.2 DerivedFuse network structure

Considering the lack of datasets containing low-quality images and their corresponding high-quality image pairs
of endoscopic images, we propose DerivedFuse fuses multiple derived images to effectively combine the advantages
of the three derived images of GC, CLAHE and LIME. The I-channel images of three derived images are feed to
DerivedFuse for enhancing the details of the original images. Different from the general deep learning method,
DerivedFuse does not directly use the network to learn the end-to-end mapping relationship between the low-
quality image and the high-quality image through training in RGB color space, but only enhances the intensity
component I in HSI color space to obtain more details of original images.

GC mainly focuses on the brightness enhancement of the image and cannot solve the problem of image color
restoration. CLAHE has a certain effect in enhancing the contrast of the image, but there will be the problem
of color distortion. The overall color of the image enhanced by LIME is light, and the color information of the
original image will be lost in the highlighted areas. Therefore, the saturation channel of the merged image will
lose the color information of the original image. We directly use the saturation adjustment function to process
the saturation component S of HSI color space of the original image instead of adjusting the saturation of the
merged image, which will not produce color changes but enrich the color information of the image, so as to be
more conducive to network training. DerivedFuse proposed in this paper is shown in Fig. 3. This model is mainly
composed of image input, feature extraction, feature fusion, image reconstruction and image output.

1) Image input and image output. As shown in Fig. 3, I-channel images (I1, I2 and I3) in HSI color space of
three derived images are input into DerivedFuse model respectively. DerivedFuse only processes the brightness
component, so the input image is the intensity component in HSI color space of three derived images with the
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Fig. 3 Network structure of DerivedFuse.

number of channels of 1, and the output image (Ifused) is the fused intensity component in HSI color space with
the number of channels of 1.

2) Feature extraction and feature fusion of the unsupervised deep net. The feature extraction module is com-
posed of two layers of partial convolution layer. The size of the three convolution kernels of the first layer is 5×5,
and the number of channels is 16. The size of the three convolution kernels of the second layer is 7×7, and the
number of channels is 32. The 5×5 convolution kernel can be used to extract low-level features of image. By
extracting feature maps with convolution of different scales, different features of the data can be extracted from
the intensity component in HSI color space of three derived images, which improves the speed of network training.
We simply add the pixel values at the same position of feature maps through the fusion layer to combine each
feature map. The fusion layer is used to fuse the features of L21, L22 and L23, as shown in Fig. 3. The size of the
fused feature map is 256×256 and contains 32 channels.

3) Image reconstruction. For the image reconstruction module, we use the U-Net model to extract the deep
features of the fused feature map. The U-Net model consists of 7 upsampling layers and 7 subsampled layers
respectively. The image reconstruction module input is the fused feature map with the channel number of 32 and
the size of 256×256 output by the fusion layer. The output of the reconstruction module is the final fused intensity
channel image with the channel number of 1 and the size of 256×256. The 7 subsampled convolution layers uses
a convolution kernel of size of 4×4, the stride is 2, the padding is 1, and the Leaky LeRU activation function is
adopted. The size of the convolution kernel used by the first six upsampling convolution layers is 4×4, the stride
is 2, the padding is 1, and the LeRU activation function is adopted. The last deconvolution layer uses the Tanh
activation function to produce the final intensity channel image with more complete details.

The specific parameter settings of DerivedFuse are shown in Table 1.
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Table 1 The network structure details of DerivedFuse. Block represents the convolution block type. Layer represents the layer
type. Conv represents convolution and Deconv represents deconvolution.

Block # Layer Output size Convolution
kernel size

Convolution
kernel number

Stride Padding

Feature Extraction
Input — 1*256*256 — — — —
1, 2, 3 Conv 16*256*256 5*5 16 1 2
1, 2, 3 Conv 32*256*256 7*7 32 1 3

Feature Fusion 1 — 32*256*256 — — — —

Reconstruction

1 Conv 64*128*128 4*4 64 2 1
2 Conv 128*64*64 4*4 128 2 1
3 Conv 256*32*32 4*4 256 2 1
4 Conv 512*16*16 4*4 512 2 1
5 Conv 512*8*8 4*4 512 2 1
6 Conv 512*4*4 4*4 512 2 1
7 Conv 512*2*2 4*4 512 2 1
8 Deconv 512*4*4 4*4 512 2 1
9 Deconv 512*8*8 4*4 512 2 1
10 Deconv 512*16*16 4*4 512 2 1
11 Deconv 256*32*32 4*4 256 2 1
12 Deconv 128*64*64 4*4 128 2 1
13 Deconv 64*128*128 4*4 64 2 1
14 Deconv 1*256*256 4*4 1 2 1

4.3 New loss function-MDF SSIM

SSIM [38] is not only a quantitative index, but also is a widely used loss function that guides the network learning
process by minimizing the difference between the enhanced image and the reference image, so that the structural
information of the enhanced image is consistent with the reference image and speeds up the convergence of the
network. By introducing structural loss SSIM can maintain image details and avoid image blur. However, it is
impossible to use SSIM directly in this paper because it needs a single perfect quality reference image. DerivedFuse
is an unsupervised network without ground truth reference images. MEF SSIM [14] calculates the loss without
using reference images. However, our experimental results show that MEF SSIM is not directly suitable as the
loss function in our network training, since it causes low contrast and brightness in the fused image, as well as the
loss of texture details. In order to extract and fuse the features(luminance, contrast and structure) of each derived
image more accurately, and make the details of the fused image clear, we improved MEF SSIM and proposed a
new loss function MDF SSIM by taking into account of the characteristics of three derived images.

Let {in} = {in | n = 1, 2, 3} denote the image patches extracted from the same spatial location in the input HSI
color space luminance channel images of multi-derived images, if denote the patch extracted from DerivedFuse
output fused image at same spatial location. The main goal of MDF SSIM is to calculate a value to evaluate the
fusion performance of given in and if .

SSIM decomposes any given image patch into luminance, contrast and structure, then input patches in can be
represented by Equation (2).

in = ‖in − µin‖ ·
in − µin
‖in − µin‖

+ µin =
∥∥∥̃in∥∥∥ · ĩ∥∥∥̃i∥∥∥ + µin = cn · sn + ln (2)

where ‖·‖ denotes the l2 norm of a vector, µin denotes the mean value of in. ln, cn, and sn roughly represent the
luminance, contrast and structure components of in, respectively. In order to get a high-contrast fused image, the
desired contrast ĉ of if is calculated from the maximum contrast of three different image patches in HSI color
space luminance channel. The calculation formula of ĉ is as follows:

ĉ = max
{1≤n≤3}

cn = max
{1≤n≤3}

∥∥∥̃in∥∥∥ (3)

In MEF SSIM, the desired structure ŝ of if is obtained by weighted sum of structures of all input different
exposure image patches. MEF SSIM is suitable for extracting structural features of all multi-exposure images.
GC derived image mainly improves the brightness of the original image, but the image contrast is low, and it is
easy to lose part of the structure information. We want to combine only texture structures of CLAHE and LIME
derived images to improve the contrast and clarity of the original image. In MDF SSIM, the desired structure ŝ of
if is obtained by weighted sum of structures of input patches of luminance channel in HSI color space for CLAHE
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derived image and LIME derived image as follows:
ŝ = s

‖s‖

s =
∑2
n=1 ω(̃in)sn∑2
n=1 ω(̃in)

ω(̃in) =
∥∥∥̃in∥∥∥tan( π2 ·‖

∑2
n=1 ĩn‖∑2
n=1‖ĩn‖

)

(4)

It is worth noting that the weighting function assigns equal ω to patches, when all input patches sn have dissimilar
structures. However, when all input patches sn have similar structure components, the patch with high contrast
is given more weight.

In MEF SSIM, the brightness of local patch is not obvious, so the desired fusion result î does not consider the
brightness. If the endoscopic image has the characteristics of low overall brightness, all the derived images can
improve the overall brightness of the original image with our multi-image fusion approach based on the brightness
information of all the derived images. The formula of l̂ is as follows:

l̂ = mean
{1≤n≤3}

ln = mean
{1≤n≤3}

∥∥∥̃in∥∥∥ (5)

Finally, we can get the desired fusion result patch î = ĉ · ŝ + l̂. Using SSIM framework to calculate the value
to evaluate the fusion local image quality:

Quality =
2σîif + C

σ2
î

+ σ2
if

+ C
(6)

where, σ2
î

is variance, σîif is covariance between î and if . C is a constant. The total loss is calculated as,

Loss = 1−Quality (7)

4.4 Saturation adjustment

In order to avoid color changes in the original endoscopic image and enrich the color information of the original
image, this paper constructed a function to adaptively adjust the saturation channel S of HSI color space and keep
the hue component unchanged. If SOriginal represents the saturation of the original image and Senhanced is the
saturation of the adjusted image. The mathematical expression of Senhanced is as follows:

Senhanced = α× T × SOriginal (8)

T =
mean(R,G,B) +M(R,G,B) +m(R,G,B)

mean(R,G,B)
(9)

where the values of M(R,G,B), m(R,G,B) and mean(R,G,B) are obtained adaptively in RGB color space.
M(R,G,B) represents the maximum value of pixels corresponding to R, G and B color channels in RGB color
space. m(R,G,B) is the minimum value of pixels corresponding to R, G and B color channels in RGB color space.
mean(R,G,B) is the average value of pixels corresponding to R, G and B color channels in RGB color space. α
and T are parameter variables, which can control the enhancement degree of S channel image. The range of the α
and T values is [0, 1] and [2, 6]. As shown in the Fig. 4, we get a large number of saturation adjustment images
with different α values. Due to the space limitation, we choose four representative saturation adjustment images to
enlarge and display. It can be seen that if the α value of image is too high or too low, the visual effect (color over-
saturation or color loss) of the image will be affected in the Fig. 4. We according to the doctor’s judgment to decide
if the level of saturation is suitable for the required enhancement. A large number of experiments on the low-light
gastrointestinal tract image dataset show that the α values corresponding to the enhancement results selected by
doctors is approximately 0.6. When the α value is approximately 0.6, the color of the enhanced image is more bright
than that of the original image, and the phenomenon of color distortion and over-saturation is avoided. Therefore,
doctors can choose different α values to achieve different saturation enhancement effects according to their needs.
Here, we set α = 0.6, the saturation adjustment function will adaptively adjust the saturation according to the
images with different T values.

Under the condition that the hue component H of HSI color space remains unchanged, the proposed saturation
adjustment function is used to adaptively and non-linearly stretch the S-channel information of HSI color space
according to the color information of the original image. Finally, the intensity component Ifused obtained in
Section 4.2 and the saturation component Senhanced obtained in this Section are integrated into the original hue
component HOriginal and reversed into the RGB color space to obtain the final enhanced color image with high
contrast, uniform brightness, clear details and natural color.
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Fig. 4 The visual effect of different α values of image.

5 Results and Discussions

We use MATLAB2019 to generate the derived images and pytorch1.5.0 as the deep learning framework on an
Inter(R) Xeon(R) E5-2620 CPU, 2.10GHz processor, 64GB RAM, and a Nvidia Titan Xp GPU. Under this
environment, one training procedure takes 20 hours. We train our model using Adam optimizer and set the
learning rate to 0.0002. The batch size is set to 16, and the iteration number is 100.

5.1 Training Data

The training data directly determines what mapping rules the deep CNN can learn. We evaluated our framework
on the open endoscopic image data set of the gastrointestinal. There are 868 authentic low-light gastrointestinal
tract images from the open source data set, including 325 endoscopic images from Kvasir Dataset [39], 113 images
from Kvasir-SEG [40], 93 images from CVC-ClinicDB [41], and 26 images from ETIS-Larib Polyp DB [42], 299
images in CVC-EndoSceneStill [43] and 12 images in CVC-ClinicSpec [44]. All these images are resized to 256×
256 pixels. These images are trained, verified and tested respectively.

5.2 Experimental Results and Analysis

Fig. 5 shows the loss graph in Equation (7) during the training procedure. As shown in Fig. 5, it can be seen
that the loss function value of our network is large at first, and then rapidly converges to a stable range as the
iterative number increasing, and the fluctuation range is small during this period, which indicates our method is
stable. After about 100 iterations, the loss function value of our network tends to be stable, so we set the iteration
number to 100 during network training.

Fig. 5 Convergence map of training. The abscissa represents the number of iterations, and the ordinate represents the loss function
value of our network.

5.2.1 Compare with the conventional methods and unsupervised learning methods

We compare the performance of different methods on the same images, including HE [20], CLAHE [4], SSR [26],
MSRCR [25], MSRCP [27], RRM [28], LIME [5], AGCWD [22], Al Ameen [23], Zero-DCE [34], Zero-DCE++ [35],
EnlightenGAN [36]. We use the recommended parameter settings in the original papers, and the parameter Lambda
proposed by the reference [23] are unified set to 5. We randomly select 167 gastrointestinal tract images from the
data set as the testing set A, and get the results of 13 algorithms respectively. Testing set A was composed of
various types of gastrointestinal tract images obtained by endoscopy, including normal cecum images, pathological
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Fig. 6 Visual comparison of different conventional image enhancement methods for gastrointestinal tract images of the testing set
A. (a) Original image; (b) HE; (c) CLAHE; (d) SSR; (e) MSRCR; (f) MSRCP; (g) RRM; (h) LIME; (i) AGCWD; (j) Al Ameen;
(k) Proposed method.

finding images of polyps and ulcerative colitis. In addition, it includes images related to removal of lesions, e.g.,
“dyed and lifted polyp”, the “dyed resection margins”.

Fig. 6 shows the visual comparison of the proposed method and conventional image enhancement methods
on the testing set A for processing gastrointestinal images. Column 1 shows an endoscopic image (containing an
appendiceal orifice) of a normal cecum observed from the inside of the intestine. Column 2 shows an example of
ulcerative colitis with bleeding and swelling of the mucosa. An endoscopic image of polyp is shown in Column 3.
Column 4 illustrates an endoscopic image of a polyp lifted by injection of saline and indigocarmine. Column 5 shows
the resection site after removal of a polyp by injection of saline and indigocarmine. Analysis from the subjective
observation, the method in HE (shown in Fig. 6(b)) clarify the images well but cannot effectively correct the color
of gastrointestinal images, since the overall color is slightly white as well as the bright region is over-enhanced.
That’s because this algorithm belongs to the histogram equalization algorithm, which can improve the contrast
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of the image but has little effect on color correction. The method of CLAHE (shown in Fig. 6(c)) and AGCWD
(shown in Fig. 6(i)) can improve the brightness of the image to a certain extent, but the overall brightness is still
low. The CLAHE has little effect on enhancing details in dark region, while the AGCWD may cause the loss of
some details owing to over-enhancement in bright region. The images enhanced by SSR (shown in Fig. 6(d)) and
MSRCR (shown in Fig. 6(e)) methods are not natural, which is slightly purple or white compared from the original
image. The enhancement results of MSRCP (shown in Fig. 6(f)) are generally too bright, and the produced artifacts
in the bright region cause the loss of texture details. The RRM (shown in Fig. 6(g)) significantly improves the
brightness of the image and makes the color bright, but over-enhances the bright region which resulting in a loss of
details. The LIME (shown in Fig. 6(h)) preserves the color and edge well, but fails to enhance the texture details at
the bright region. The Al Ameen (shown in Fig. 6(j)) method performs well on improving the brightness, but has
the problem of overexposure, which degrade the image details. By contrast, our method remarkably increases the
overall brightness and preserves the details well in both dark region and bright region. More specifically, after the
enhancement of our method, we can more clearly see the position of the appendiceal orifice on the normal cecum
image, the mucosal bleeding and swelling on the ulcerative colitis image, the polyp site on the polyp image, the
light blue polyp margins against the darker normal mucosa on the dyed lifted polyp image and the polyp resection
margin on the dyed resection margin image. In addition, our method avoids the color distortions while enriching
the color information of the original images, which has a better performance.

Fig. 7 Visual comparison of different unsupervised learning methods for gastrointestinal tract images of the testing set A. (a)
Original image; (b) Zero-DCE; (c) Zero-DCE++; (d) EnlightenGAN; (e) Proposed method.

Fig. 7 shows the visual comparison of the proposed method and unsupervised leaning methods on the testing
set A for processing gastrointestinal images such as normal cecum images, ulcerative colitis images, polyp images,
dyed lifted polyp images and dyed resection margin images. It can be seen from Fig. 7 that Zero-DCE (shown



14 Dongjin Huang1 et al.

in Fig. 7(b)) and Zero-DCE++ (shown in Fig. 7(c)) greatly improves the overall image brightness, but some
image edges get blurry, the overall tone is white and the bright region is over-enhanced after enhancement. The
enhancement effect of EnlightenGAN (shown in Fig. 7(d)) is better than Zero-DCE and Zero-DCE++ on the color
and contrast. However, on dark regions, that is not remarkable. Compared with these algorithms, the results of
our method have moderate brightness, rich texture details and natural visual effect.

Fig. 8 The salient object detection results of different image enhancement methods for example images on CVC-EndoSceneStill
dataset. (a) Example images; (b) HE; (c) CLAHE; (d) SSR; (e) MSRCR; (f) MSRCP; (g) RRM; (h) LIME; (i) AGCWD; (j)
Al Ameen; (k) Zero-DCE; (l) Zero-DCE++; (m) EnlightenGAN; (n) Proposed method; (o) Polyp mask (Ground truth).
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In order to verify the significant of the results of the proposed method, we made a significance analysis. This
study performed 13 experiments. The proposed method and other comparison algorithms are used to enhance
the images in the CVC-EndoSceneStill dataset. The trained with enhanced CVC-EndoSceneStill dataset using the
same configuration so that we can evaluate the impact of the 13 datasets on the significance detection performance
of U-Net [45]. Fig. 8 displays the comparison of polyp detection results for the 13 methods with the ground truths.
Fig. 8 (o) is the ground truth for the polyps corresponding to the original example images (shown in Fig. 8 (a)). This
ground truth consists of a mask corresponding to the region covered by the polyp in the image. Fig. 8 (b)-(n) shows
the salient detection results obtained from the image enhanced by 13 methods. It can be shown that our attention
focusing more on the lesion area of the polyp images after using the proposed method to enhance the image. The
proposed method significantly improves the saliency detection performance. Therefore, the enhancement method
proposed by this paper could have applications in the performance optimization for salience detection.

5.2.2 Compare with the supervised learning methods

We use natural image datasets to evaluate our proposed method, and compare the test results with the supervised
learning methods RetinexNet [12] and MBLLEN [29]. One purpose is to verify the better enhancement effect of
our proposed method than the supervised learning methods. The other is to verify that the proposed method is
not only effective for low illumination endoscope images, but also can enhance the real low illumination natural
images, and has better robustness.

In this paper, Low-Light datasets (LOL) [12] is selected as the training set, which includes 500 real scene
low/normal light image pairs and 1000 synthetic ones. And, we choose the public low illumination image data
set DICM [46] as the testing set B. DICM contains 64 real low illumination images such as night scene image,
backlight image and non-uniform illumination image.

Fig. 9 Visual comparisons of different supervised learning methods and our method on a low-light image sampled from the testing
set B.

Fig. 9 is the visual comparison of the proposed method and supervised leaning methods on the testing set B.
The RetinexNet would produce problems of artifacts, noise and the image texture details are not clear on dealing
with the dark areas in low-light natural images, as shown in Fig. 9(b). The MBLLEN would produce a lot of noise
when enhancing the extremely dark area near the light, and the over-enhancement problem when dealing with
the bright area in the low-light image. In addition, the overall hue of the image processed by MBLLEN is reddish,
which makes the enhanced image look unnatural, as shown in Fig. 9(c). The proposed method can restore the
clear image from the dark image, and keep the details and texture of the image well. Moreover, the contrast and
brightness of the image have also been well enhanced. This shows that our proposed method is suitable for low
light image enhancement task, and performs the better result than the supervised learning methods.
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Table 2 Entropy, Contrast, Sharpness metrics of each algorithm on polyp images of the testing set A. ↑ means that the larger the
value of the corresponding objective index, the better the enhancement result.

Algorithm Entropy↑ CII↑ AG↑
HE[20] (2002) 6.6176 0.9443 6.1487

CLAHE[4] (1994) 7.3892 1.2331 7.8895
SSR[26] (1997) 6.8867 0.6180 4.2280

MSRCR[25] (1997) 7.1956 0.5870 4.3810
MSRCP[27] (2014) 6.8261 0.6000 7.2964

RRM[28] (2016) 7.2351 0.8950 5.1143
LIME[5] (2017) 7.2086 0.9814 6.1469

AGCWD[22] (2013) 7.1229 1.0275 4.8848
Al Ameen[23] (2019) 6.4152 0.7865 5.0396
Zero-DCE[34] (2020) 7.1611 0.8002 5.4717

Zero-DCE++[35] (2021) 7.1734 0.8180 5.3344
EnlightenGAN[36] (2021) 7.1087 1.1710 4.5634

Our method 7.6314 1.3095 8.5074

5.3 No-Referenced Image Quality Assessment

To measure the results quantitatively, we need to test the objective evaluation indexes of the experimental results.
Different from synthetic images, the real polyp images and natural images don’t have corresponding high-quality
images of the same scene, so full reference image quality indexes such as MSE and PSNR cannot be tested. We use
three No-Referenced Image Quality Assessment indexes to evaluate the image quality including: Entropy, Contrast
Improvement Index(CII), Average Gradient(AG).

Entropy is a statistical form of feature, which reflects the quantity of average information in an image. The
value of entropy represents the amount of image information, that is, the detail of the image. A higher entropy
value represents more information and details in image. Entropy is expressed as:

Entropy = −
255∑
i=0

pilogpi (10)

where pi indicates the probability of i-th gray level.
CII can be used to reflect the degree of contrast enhancement before and after image enhancement. The larger

the value is, the more obvious the contrast enhancement is. CII is defined as:

CII = Cenhancement/Coriginal (11)

We divide the image into 3×3 small patches, where C is the average of local contrast measured by a window of
3×3, Cenhancement and Coriginal represent the average of local contrast in output and original image, respectively.
The contrast can be defined as: C = (max − min)/(max + min), where max and min are the maximum and
minimum gray value of the image patch.

AG is used to indicate the image clarity, which reflects the sharpness and texture change of image. The higher
the value, the clearer the image. The formula of AG is as follows:

AG =
1

M ∗N

M∑
i=1

N∑
j=1

√√√√(∂f∂x)2 +
(
∂f
∂y

)2
2

(12)

where M ∗ N is the image size, ∂f
∂x and ∂f

∂y represents the gradient in the horizontal and vertical directions
respectively.

5.3.1 Evaluation of endoscopic images

Table 2 shows the average evaluation value of the three objective indexes of the endoscopic image enhancement
results processed by the 13 algorithms on testing set A, including Entropy, CII and AG. The results demonstrate
that our method has the best performance on Entropy, which indicates that the proposed method enlarges the
image information further after the enhancement of the polyp image. Thus more image information can be ex-
tracted, which is beneficial for detail display. However, the Entropy values of HE, SSR, MSRCP and Al Ameen
were low, indicating the details and textures aren’t enhanced obviously. Moreover, the CII average value of the
proposed algorithm is also the highest among the 13 algorithms, indicating that the proposed method has a better
performance on contrast enhancement. The average CII values of SSR, MSRCR, MSRCP, Al Ameen, Zero-DCE
and Zero-DCE++ were slightly low among the 13 algorithms, which indicates that the contrast improvements
of SSR, MSRCR, MSRCP, Al Ameen, Zero-DCE and Zero-DCE++ on polyp images are not significant. More
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Table 3 Entropy, Contrast, Sharpness metrics of each algorithm on natural images of the testing set B. ↑ means that the larger
the value of the corresponding objective index, the better the enhancement result.

Algorithm Entropy↑ CII↑ AG↑
RetinexNet[12] (2018) 7.3983 0.8702 12.2892
MBLLEN[29] (2018) 7.3875 2.1162 9.7879

Our method 7.5398 4.6192 14.0950

Table 4 Background of the participants.

specifically, as shown in Table 2, after processing by the 13 methods respectively, the AG value of the proposed
method is obviously higher than that of other methods, indicating that the image enhanced by our method is
relatively clearer. While the AG results of AGCWD, SSR, MSRCR and EnlightenGAN were all low, indicating
that the enhancement results were not clear enough. The Entropy value of our method is 3.27% higher than the
optimal entropy value of comparison algorithms. The CII of our proposed method is 6.19% higher than that of
comparison algorithms. The AG of our method is 7.83% higher than the optimal AG of comparison algorithms.
In conclusion, the image enhanced by the proposed method contains richer information, and the contrast and
sharpness are also greatly improved. It can be seen that the proposed method has achieved significant effect on
enhancing the brightness and contrast of polyp images with different contents.

5.3.2 Evaluation of natural images

Table 3 shows the average evaluation value of the three objective indexes of the natural image enhancement results
processed by the two algorithms on testing set B, including Entropy, CII and AG. From Table 3, the proposed
method achieves the optimal values in Entropy, CII and AG. The Entropy value of our method is 1.91% higher than
the optimal entropy value of comparison supervised learning algorithms. The CII value of our proposed method
is 118.27% higher than the optimal CII value of comparison supervised learning algorithms. The AG value of our
method is 14.69% higher than the optimal AG value of comparison supervised learning algorithms. This shows
that the detail information, contrast and clarity of the low light natural image are improved significantly after the
enhancement by our proposed method.

5.4 User Study

To evaluate the results by 13 enhancement methods on endoscopic images, we consulted 6 colorectal surgeons with
more than 3 years of clinical experience and 10 medical students, and obtained their evaluation feedback on the
enhancement results of 8 images, randomly selected from the testing set A, as shown in Table 4.

We asked these 16 participants to evaluate the enhancement results of the 13 methods on endoscopic images
independently. The concrete steps were taken: participants were shown 16 images for every method, including 8
original polyp images and their corresponding enhanced images. 6 questions were designed in the investigation
sheets (1. Are the details of the lesion area clear? 2. Is the bright area of the image over-enhanced? 3. Does the
image contain underexposed artifacts? 4. Is there color distortion? 5. Does the result look realistic? 6. Whether
it can be applied to clinical diagnosis?). The participants were asked to take these 6 questions into consideration
when evaluating. The criteria were used to evaluate our method subjectively, and the score of each question in the
range of 1-5 (5 represents the most satisfying and 1 represents the least satisfying) was given. At last, we can get
feedback summary based on the evaluation of the participants.
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Fig. 10 Results of our user study. Each color bar shows the number of images in each score index.

The results of our user study are shown in Fig. 10. Among them, red, orange, yellow, cyan and blue represent
scores of 5, 4, 3, 2 and 1 respectively. The distribution of different methods shows that surgeons are favorably on
the results of our method. Compared with other methods, our method gets more “red” and “orange” ratings, and
much less “blue” and “cyan” ratings. The scores of SSR and MSRCP were very low. This is because they cause
color distortion and over-enhancement, which is not conducive to people to observe the details of polyp image.
Obviously, our method is superior to other methods, and these statistics are consistent with our analysis of Visual
Quality Comparison and No-Referenced Image Quality Assessment. From the feedback of Q6, we can see that the
algorithm proposed in this paper can be applied to clinical diagnosis.

5.5 Ablation Study

We perform ablation studies to demonstrate the effectiveness of each component of our method on the same polyp
images. The evaluation is performed on the testing set A.

(1)Ablation study on derived images
To demonstrate the effect of each derived image proposed in Section 4.1, we carry out the ablation experiment

on derived images. Fig. 11 shows the enhancement results of removing the three derived images respectively and
the enhancement results of our method. Compared with Fig. 11(d), the overall brightness of the image is reduced
as shown in Fig. 11(a), which indicates that the GC derived image can significantly boost the performance of
the overall brightness. According to the lining texture of the large intestine in Fig. 11(b) and Fig. 11(d), it can
be seen that the contrast of the bright part of the image is reduced when removing the CLAHE derived image,
which demonstrate the importance of the CLAHE derived image. Fig. 11(c) shows the enhancement results after
removing the LIME derived image. After the removal, the image details in the dark region are not clear, which
indicates the use of the LIME derived image improves the texture details in the dark region. Average Entropy,
Contrast, and Sharpness scores of testing set A generated by DerivedFuses trained with different derived images
are shown in Table 5. Results illustrate that adding three derived images from GC, CLAHE and LIME yield better
performance.

Fig. 11 Ablation experiment results on derived images.
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Table 5 Objective index results in terms of Entropy, Contrast, and Sharpness. These comparisons are carried out on testing set
A. ↑ means that the larger the value of the corresponding objective index, the better the enhancement result.

Method Entropy↑ CII↑ AG↑
Without GC 7.3894 1.0027 7.0882

Without CLAHE 7.2753 0.8310 5.9575
Without LIME 7.3696 1.2034 7.5019
Enhanced result 7.6314 1.3095 8.5074

Table 6 Entropy, Contrast, and Sharpness for DerivedFuse trained with different combinations of losses. These comparisons are
carried out on testing set A. ↑ means that the larger the value of the corresponding objective index, the better the enhancement
result. “w/o” means without.

Loss Entropy↑ CII↑ AG↑
w/o ŝ, w/o l̂ 7.3524 0.6458 4.3380

with ŝ, w/o l̂ 7.4731 0.8132 7.9844

with ŝ, with l̂ 7.6314 1.3095 8.5074

(2)Ablation study on loss functions

To validate the effect of the MDF SSIM proposed in Section 4.3, we compare the performance of DerivedFuse
trained by various combinations of losses. As shown in Fig. 12, the first column shows the original image. The
second column shows the images generated by MEF SSIM without the local structure ŝ of Equation (4) and the

local brightness l̂ of Equation (5). MEF SSIM fuses structural features of all derived images. The third column

shows the generated images with the local structure ŝ of Equation (4) but without the local brightness l̂ of Equation
(5). ŝ of Equation (4) is obtained by extracting structural features of CLAHE and LIME derived images. The fourth
column shows our proposed MDF SSIM, which with the local structure ŝ of Equation (4) and the local brightness

l̂ of Equation (5). Observing the results in Fig. 12(b), we can found that the MEF SSIM loss function does not
consider different image feature structures and fuses all of the structure components of the input patches, that
leads to the problems of low brightness, low contrast and losing the internal texture details of the original image
after enhancement. In Fig. 12(c), it only fuses the structure components of CLAHE derived image and LIME
derived image, and does not consider the brightness of local patches. That could improve the contrast and clarity
of the image, but reduce the brightness of the highlighted regions on the polyps.

And our method MDF SSIM not only fuses the structure components of CLAHE derived image and LIME
derived image, but also considers the brightness of local patches. That significantly improves the brightness,
contrast and clarity of the image and enriches the detailed texture information of the original image, as shown in
Fig. 12(d). Average Entropy, Contrast, and Sharpness scores of testing set A generated by DerivedFuses trained
with different loss functions are shown in Table 6. The Entropy, Contrast, and Sharpness values of the MDF SSIM
are optimal. These results demonstrate that MDF SSIM plays a key role in preserving the detailed information of
the original image.

Fig. 12 Ablation experiment results on loss functions.“w/o” means without.

(3)Ablation study on saturation adjustment function

In order to validate the effect of the saturation adjustment function proposed in Section 4.4, we also conduct
an ablation experiment on Saturation adjustment function. Fig. 13(a) is the original image. Fig. 13(b) shows the
enhancement effect of endoscope image without using saturation adjustment function. Fig. 13(c) shows the effect
of endoscopic image enhancement using our proposed saturation adjustment function. We can see that it enriches
the color information of the original endoscopic image by using our saturation adjustment function. In order to
objectively evaluate the quality of the enhanced image by the proposed saturation adjustment function. We use
the average saturation (Saturation, SAT) to evaluate the image processing effect from the perspective of color. It
can be seen from Table 7 that the saturation value of the image processed by the proposed saturation adjustment
function is the most considerable.



20 Dongjin Huang1 et al.

Fig. 13 Ablation experiment results on saturation adjustment function.

Table 7 Objective index results in terms of Saturation. These comparisons are carried out on testing set A.

Method SAT↑
Without saturation adjustment 0.3115

Saturation adjustment 0.3945

6 Conclusion

This paper proposes a new deep unsupervised endoscopic images enhancement method based on multiple derived
image fusion. Fourteen state-of-the-art algorithms have been compared with our proposed method. The experi-
mental results on public endoscopic image datasets show that the Entropy value of our method is 3.27% higher
than the optimal entropy value of comparison algorithms. The CII of our proposed method is 6.19% higher than
that of comparison algorithms. The AG of our method is 7.83% higher than the optimal AG of comparison algo-
rithms. The experimental results on public natural image datasets show that the Entropy value of our method is
1.91% higher than the optimal entropy value of comparison supervised learning algorithms. The CII value of our
proposed method is 118.27% higher than the optimal CII value of comparison supervised learning algorithms. The
AG value of our method is 14.69% higher than the optimal AG value of comparison supervised learning algorithms.
In addition, sixteen medical doctors and students have evaluated our proposed algorithm for clinical endoscopic
diagnosis and treatment.

In the future work, we will improve the method and apply it to the segmentation of lesions in endoscopic
images and the detection of lesions in endoscopic images.
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