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Abstract. We recorded vibratory patterns elicited by free haptic explo-
ration of a large set of natural textures with a steel tool tip. Vision and
audio signals during the exploration were excluded. After the exploration
of each sample, participants provided judgments about its perceptual at-
tributes and material category. We found that vibratory signals can be
approximated by a single parameter in the temporal frequency domain,
in a similar way as we can describe the spatial frequency spectrum of
natural images. This parameter varies systematically between material
categories and correlates with human perceptual judgements. It provides
an estimate of the spectral composition of the power spectra which is
highly correlated with the differential activity of the RA and PC affer-
ents. In addition to their relevance for basic research, our results may
represent a significant step ahead for tactile rendering in virtual reality.
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1 Introduction

When we touch natural surfaces, we are extremely good at distinguishing dif-
ferent materials (e.g. silk from satin) despite the complexity of the patterns of
stimulation elicited by tactile exploration [1].

Touching a surface causes patterns of vibrations on our skin which are sensed
by the mechanoreceptors embedded in the skin. Softness and temperature infor-
mation is also available. The vibratory signals play an important role for perceiv-
ing natural textures [2–4]. Perceptual representations based only on vibratory
signals acquired indirectly with a tool are remarkably similar to representations
obtained with bare hand exploration [4]. These vibratory signals are highly de-
pendent on exploration movements (e.g. speed) and on the local properties of
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textures. Understanding how such complex signals yield to robust perception of
material properties is not only interesting for perception science, but also for
applications, e.g. for haptically rendering material properties by the application
of vibratory signals on the skin.

In order to understand the relationship between the vibratory signals elicited
by free exploration of natural textures and how we perceive these textures while
we touch them, we built a database of vibratory patterns recorded while human
participants freely explored a large set of natural textures with a steel tool
tip. After the exploration of each signal, participants provided judgments about
their perceptual attributes (e.g. roughness or friction) and rated how much the
explored material feels like each of the seven material categories used in the
experiment (wood, plastic, fabric, paper, metal, stone and animal).

Here we describe the properties of the vibratory signals we recorded in rela-
tion to the perceptual judgements provided by human participants. The spectral
power P relates to the temporal frequency f according to a power law (P = 1

fs ).
We found that vibratory signals can be approximated by a single parameter
s in the temporal frequency domain. The same relationship characterizes the
spatial frequency spectrum of natural visual textures (e.g. [5]). Crucially, this
parameter s varies systematically between material categories such that it can
be used to classify physical category labels (e.g. metal vs. plastic). Classification
performance improves when classifying perceptually assigned labels, suggesting
a relationship between perception of material categories and the spectral statis-
tic described by s. In fact, s correlates with human judgements of some of the
perceptual attributes participants rated.

In our previous research, we showed that haptic perceptual representations
emerge by efficient encoding of vibratory signals [4]. These representations re-
semble the responses of the RA and PC afferents, tuned to lower temporal fre-
quencies (peak around 50Hz) and higher (250 Hz), respectively [6]. Here we show
that s correlates with the ratio of the PC to the RA responses; i.e. the higher
the contribution of high temporal frequencies as compared to lower frequencies,
the higher s. Thus, s provides a concise measure of the temporal frequency com-
position of the vibratory signals elicited by the exploration of natural images,
provides information about material categories and perceptual attributes, and
can be computed by comparing the responses of mechanoreceptors.

2 Methods

2.1 Participants

Eleven students volunteered to participate in the experiment; all were näıve to
the purpose of the experiment and were reimbursed for their participation. They
were right-handed and did not report any sensory or motor impairment at the
right hand. The study was approved by the local ethics committee LEK FB06
at Giessen University and was in line with the declaration of Helsinki from 2008.
Written informed consent was obtained from each participant.
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2.2 Stimuli

Our natural textures consisted of 81 different material samples which were glued
on wooden pieces (14 × 14 cm, Fig. 1).These materials samples are the same used
by [7]. They belong to seven material categories: plastic, paper, fabric, fur and
leather, stone, metal and wood, and were chosen to represent the large variety
of material appearances we encounter in everyday life.

Fig. 1. Photographs of all material samples. Rows indicate different material categories:
plastic, paper, fabric, fur and leather, stone, metal and wood, from top to bottom.

2.3 Procedure and Apparatus

Participants set at a table looking at a computer monitor elevated by a support.
Material samples were positioned by the experimenter in front of them through
a hole in the support so that they could easily be touched but no visual infor-
mation was available. The sound from the exploration of materials was covered
by earplugs and white noise presented via headphones.

Participants freely explored the 81 surfaces with a 3D printed pen containing
a steel tip at its end and a mounted accelerometer (ADXL345). This way we
could record the vibrations elicited by the interaction between the steel tip and
material samples. Each participant explored each material once.

The onset of the white noise signalled that they could begin the exploration.
They were instructed to slide the pen over the material’s surface. After the ex-
ploration of each material, participants rated how much the explored material
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felt like each of the seven material categories (paper, fabric, animal, stone, plas-
tic, wood, metal) on a scale from “very different” to “very similar”. Then, they
rated how much the material could be described by each of seven perceptual
attributes, as described by opposing adjective pairs. We used a subset of the de-
scriptors used by [7]: rough vs. smooth, hard vs. soft, orderly vs. chaotic, warm
vs. cold, elastic vs. not elastic, high friction vs. slippery, textured/patterned vs.
homogeneous/uniform. The experimental software was written with Psychopy
[8].

2.4 Vibratory Signals

For each material, 10 seconds of recording were acquired at 3200Hz temporal
resolution. We started the recording after 2 seconds of exploration and stopped
2 seconds before the exploration was terminated (i.e. participants explored 14
seconds each sample), to prevent that signals are affected by contact onset and
offset. We filtered out frequencies below 10Hz as they may be ascribed to ex-
ploratory hand movements [9–12]. We cleaned the signals by removing frequen-
cies above 800Hz, which are not relevant for perception of texture properties of
materials [13–15, 3, 1] and may be caused by measuring noise.

2.5 Analysis

We approximated the relationship between temporal frequency f and the ampli-
tude power P with the following function P = 1

fs In a log-log space, this equals
to the following linear relationship P = −sf . We determined s by fitting a line
in log-log space. From now on we refer to s as the slope (of the line). We as-
sessed how well this linear relationship can approximate the power spectrum by
computing R2, i.e. the proportion of variance explained by the linear fit. Slope
was computed for each material and each participant separately, i.e. for each
exploration trial. Since signals only included power at frequencies between 10Hz
and 800Hz, the linear fits were performed within this interval.

We used slope to classify the material categories by means of a linear classifier.
For classification, we averaged slope across participants yielding one average
slope per material. To prevent over-fitting, we iteratively left out one material
and trained the classifier on the remaining slopes, then computed performance
on the left-out material. We used bootstrap analysis to test whether classification
performance was higher than chance: we repeated the classification analysis 5000
times shuffling the category labels every time. Thus we computed the distribution
of classification accuracy under the null hypothesis of chance-level classification.
The 95% confidence interval was computed by reading out the 2.5th and the
97.5th percentiles of the distribution. The empirical chance level corresponded
to the mean of that distribution. We repeated the classification analysis based
on perceptual labels. To determine perceptual category labels, first we assigned
to each material the highest rated material category by each participant, then
we chose the most frequent category, i.e. the one chosen by the majority of
participants.
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To relate slope to the responses of the mechanoreceptors, we estimated the
responses of the RA and PC afferents using the TouchSim toolbox [16].

3 Results

Figure 2 shows one example of vibratory signal per material category. For all
categories the linear model seems to provide a good approximation of the spectral
profile.

Fig. 2. Spectral profiles of example materials for each of the seven categories. Natural
logarithm of the amplitude spectrum on the y-axis, as a function of the natural loga-
rithm of temporal frequency (x-axis). Each diagram represents the spectral profile of
one example material, explored by one participant in one experimental trial. The seven
diagrams represent one example per category.

On average, the linear fits could explain 43% of the variance of the spectral
profiles, indicating that almost half of the variability in such high dimensional
signals (32000 dimensions) can be approximated by two parameters (slope and
intercept). We used a linear classification analysis to determine whether slop
variations across different vibratory patterns provide information about mate-
rial properties. Based on slope we could classify material categories better than
chance (classification performance = 33.3%; empirical chance level =14.8 %,
with [6.17 23.46] 95% Confidence interval). Performance increased when we re-
peated the classification analysis based on perceptually assigned categorical la-
bels (classification performance = 38.27%; empirical chance level =16.67%, with
[6.17 27.16] 95% Confidence interval). This means that human misclassifications
could be explained by differences in slope, suggesting that perception is at least in
part based on slope. To explore this possibility, we investigated the relationship
between slope and human ratings of perceptual attributes (Fig. 3).
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Fig. 3. a)-g) Relationship between human ratings of perceptual attributes and slope.
Z-transformed perceptual ratings averaged across participants, on the y-axis. Slope
on the x-axis. h) Relationship between activity of mechanoreceptors and slope. The
differential activity of the PC and RA receptors is represented by the natural logarithm
of the ratio between the activity of the PC and the RA afferents, on the y-axis. Slope
on the x-axis. Different material categories are indicated by the different colours in the
legend in the top left panel. Dashed lines indicate regression lines.

Correlation analyses show that shallower slope is significantly associated with
low roughness, elasticity, fiction and with high hardness judgments (r=-0.31,
r=0.35, r=-0.45, r=-0.31; all p-values < α, with (α=0.00714), according to Bon-
ferroni correction for seven post-hoc comparisons).

RA and PC afferents seem crucial for perception of natural textures [3, 4].
RA respond to relative low temporal frequencies, whereas PC to higher temporal
frequencies. Therefore, the differential activity of these two afferents provides
information about the composition of the power spectrum of the tactile input.
We quantified this information as the natural logarithm of the ratio (PC/RA)
between the activity of the RA and the PC afferents. For each vibratory signal
we computed the RA and PC responses using the TouchSim toolbox [16], and
related this quantity to slope (Fig. 4).

The ratio PC/RA correlates with slope (r=0.48, p < 0.00001), indicating
these two measures employ a similar way to summarize the power spectrum of
vibratory signals elicited by exploration of natural materials.

4 Discussion

We recorded the vibratory signals elicited by free exploration of a large number
of natural materials. Each exploration is associated by perceptual judgments
of categories and perceptual attributes. Other databases of vibratory signals
have been published. Vibratory signals were measured with the same system
we used at controlled speed and free exploration [9, 10, 12]. To our knowledge,
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our database is the only one to present perceptual judgments, effectively ruling
out the influence of visual and audio information. Furthermore, we focused on
everyday life materials (like wool, or fabric) rather than following industrial
conventions for sampling and naming our material samples. Our database with
vibratory signals and perceptual judgements (ViPer) is publicly available on
GitHub (https://github.com/matteo-toscani-24-01-1985/ViPer).

By analysing the vibratory signals in the frequency domain, we showed that
they can be approximated by a single parameter representing the slope of the
linear relationship between spectral power and temporal frequency in log-log
space. This parameter can be used to classify material categories. Classification
performance improves when classifying perceptual labels, suggesting that slope
can account for human misclassifications. The bond between slope and percep-
tion is strengthened by the correlations with human judgements of perceptual
attributes like roughness, hardness, elasticity and friction.

The same linear relationship characterizes the spatial frequency spectrum
of natural visual textures (e.g. [5]). This may indicate scale invariance of the
visual world. Spatially rescaling an image by a factor of α implies rescaling the
corresponding frequency domain axes by a factor of 1

α . A power spectrum that
falls as a power law will retain its shape under this transformation, i.e. would
show scale invariance. We speculate that the slope we used to describe vibratory
signals exhibit time invariance, i.e. would change minimally for explorations at
different speed. Hence, perceptual systems could estimate slope based on the
differential activity of the RA and PC afferents (as suggested by the correlation
depicted in Fig. 3h) and use it to perceiving material properties despite different
velocities of exploratory movements, i.e. to achieve what is usually referred to
as speed invariance [17]. However, we did not measure the speed of exploratory
movements, therefore we cannot test how much it affects slope. We plan to
systematically investigate our speculation in future research.

We previously showed that haptic perceptual representations emerge by ef-
ficient encoding of vibratory signals [4]. Such compressed representation can be
described within a space whose dimensions resemble the activity of RA and PC
afferents. In this space, the compressed representations of different materials
tend to lay on a line (see [4], Fig. 3A), along which it is possible to distinguish
between different material categories, i.e. materials can be distinguished based
on the differential activity of the RA and PC afferents. As slope is able to capture
the differential activity of the RA and PC afferents, we speculate that slope may
be a prominent feature, if not the main one, of the compressed representation
we previously discovered.

Our analyses showed that a simple statistical property of the Fourier spec-
trum is able to capture nearly half of the variability within the vibratory signals
elicited by a large number of natural textures. This property systematically dif-
fers between material categories and correlates with perceptual judgments. Our
results may represent a significant step ahead for tactile rendering in virtual
reality, just like in vision pink noise is used for synthesizing naturalistic textures
(e.g. [18]).
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