
Some Problems In Hot Rolling Of Al-Alloys Solved By 
The Finite Element Method 

XINJIAN DUAN 

A thesis submitted in partial fulfilment of the requirements of 
Bournemouth University for the degree of Doctor of Philosophy 

November 2001 

Bournemouth University 



This copy of the thesis has been supplied on condition that anyone who consults it 

is understood to recognise that this copy right rests with its author and that no 

quotation from the thesis and no information derived from it may be published 

without the author's prior consent. 



Abstract 

This thesis is focused on employing the finite element method (FEM) to simulate 
hot flat rolling process. The relevant work involves selecting a suitable constitutive 

equation, predicting the rolling load and roll torque, computing temperature 

changes and lateral deformation, simulating the evolution of substructure, 

modelling static recrystallisation and designing the rolling pass schedule. 

A practical pass schedule supplied by an aluminium company and containing 

reliable measured data of roll load and torque is analysed by a commercial 3-D 

thermornechanical coupled FEM program FORGE3 V5.3. The inverse analysis 

method is adopted to obtain the friction coefficient and heat transfer coefficient. 

The distribution of pressure, equivalent strain, the stress and damage in the roll gap 
in breakdown rolling are discussed. The changes of temperature and lateral profile 

under both laboratory and industrial rolling conditions are computed and compared 

with experimental measurements, the differences are then investigated. Through 

applying the Taguchi experimental design method, the influence of each rolling 

parameter on the spread, i. e. the ratio of width to thickness, the roll radius to 

thickness, the thickness reduction, and the deformation temperature, the relative 

contribution of each control parameter is quantitatively estimated and expressed as 

a percentage. A new spread formula is built up based on a large amount of FE 

analyses. The new formula is able to deal with both laboratory and industrial rolling 

conditions with high accuracy. 

Critical reviews are presented for the previous work in the modelling of subgrain 

size and static recrystallisation. Both empirical and physical models are applied to 

investigate the evolution of subgrain size, dislocation density, misorientation and 

the flow stress in the roll gap. The predicted subgrain size agrees very well with the 

experimental measurement. The difference between the use of two models are 

illustrated and analysed. Studies on modelling of static recrystallisation are carried 
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out by incorporating the plastomechanical parameters, i. e. strain, strain rate and 

temperature, into empirical model. Various approaches are proposed to reduce the 

predicted volume fraction recrystallised at the surface and are verified by the 

comparison with measurement. Simulation results show that some of the previous 

work reported in the literature are erroneous. Further work in the modelling of static 

recrystallisation and texture evolution is detailed. The Taguchi experimental 

method is also applied to study the influence of the rolling parameters on the 

fraction recrystallised (Xv ). The study shows that rolling temperature has the 

greatest influence on the Xv, followed by the parameter H. 1L. The roll 

temperature and roll speed have little influence on the Xv . 

Designing a rational rolling pass schedule is critical for the control of strip profile 

and product quality. In the present thesis, the procedure of designing a rolling pass 

schedule is illustrated. The formulae used in scheduling are listed and explained. 

The scheduling program is then performed to check with two existing industrial 

schedules. The comparison shows that the rolling load, temperature and power 

model is reliable and shows high accuracy. A multipass simulation by the use of 

finite element method is also carried out and the results are compared with various 

model predictions. The problems in the simulation are illustrated and explained. 
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AT Temperature change at the slab tail, OC 
tail 

AV Velocity difference at the interface, mm/s 

/T Functional 

P Density in chapter 3 and 6; dislocation density in chapter 2 and 5 

Pb Boundary dislocation density, M-2 

-2 Pg Geometrically necessary dislocation density, M 

-2 A Internal dislocation density, M 

-2 P, Boundary dislocation density, M 

Ar Average distance a dislocation density travels before being stopped, m 
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Chapter 1 Introduction 

1.1 Aluminium alloys 

A unique combination of properties make aluminium alloys one of the most 

versatile engineering and construction materials. In addition to good mechanical 

properties, it has low density, high corrosion, no toxic reactions, and good electrical 

and thermal conductivity. 

According to the major principal alloy elements, wrought aluminium alloys are 

generally divided into seven major classes, identified by four digits. In other way, 

aluminium alloys can be categorised into non-heat treatable and heat treatable, in 

terms of whether or not they can be strengthened by heat treatment. Table I briefly 

illustrates the designation. 

Table I Designation of aluminium alloys 

Designation Major alloying Properties Heat Typical 

element treatable? Alloys 

lXXX I> 99% Excellent corrosion No AA1050 

aluminium High electrical and thermal Z=1 AA 1100 

conductivity 

2XXX Cu, Si High Strength-to-weight ratio Yes AA2014 

AA 2024 

3XXX Mn Medium strength No AA3003 

AA3104 

4XXX S1 Lower melting point Generally not 

5XXX Mg Good corrosion resistance No AA5083 

high strength AA 5052 

6XXX mo, Si Good formability, machinabilty, Yes AA6061 

weldability AA 6063 

7XXX Mg, Zn Moderate to very high strength Yes AA7075 
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In addition to strength, properties such as stress corrosion resistance, machinability, 

toughness and fatigue strength can be achieved by a careful control of alloying 

elements and by a special thermal treatments (Woodward 1994). Copper (Cu) has 

appreciable strengthening effect. Magnesium (Mg) has a marked strength effect, 
due to both its solubility and formation of intermetallic compounds. Silicon (Si) 

mainly influences the microstructure through its strong tendency to form 

intermetallic compounds with Al, Fe, Mg and Mn. Manganese (Mn) is present in 

the alloy both as precipitates and dissolved in the matrix. Zinc (Zn) improves 

general corrosion behaviour and compromises between good extrudability and 

required strength. 

Currently, aluminium alloys are widely used in building, construction, 

transportation, and packaging industries. There is increasing use in the manufacture 

of automobiles, and the average proportion of aluminium in body panel has been 

rapidly increasing in order to reduce weight and enhance stiffness (Vbhringer 

1999). 

1.2 Hot flat rolling and rolling pass schedule 

Flat rolled products, i. e. sheet, plate and foil constitute almost 50% of all aluminium 

alloys used. More than 1/3 of sheet and foil are consumed for making cans (Sanders 

2001). The raw material for most rolled products is the DC (Direct Chill semi- 

continuous cast) slab. Slabs up to over 20 tons in weight and 500-600 mm thick, 

2000 mm wide and 8000 mm long are produced. The slab is usually reduced in 

thickness to about 25 mm in a single stand hot reversing mill (see Fig. 1-1). This 

process is always referred to as breakdown rolling or roughing rolling in the 

literature. 

The breakdown rolling usually constitutes 9-25 passes depending upon the capacity 

of mill. After breakdown rolling, the strip is further deformed to 2.3-5. Omm in 
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thickness usually in a 4-stand or 5-stand mill, which is often referred to as tandem 

rolling. In some plant, tandem rolling is replaced by extended rolling in a single 

stand reversing mill. That is becoming more normal as the extended costs of plant 

increases. 

The number of rolling passes and the allocation of the amount of reduction directly 

determine the fori-ning feasibility and the product quality. Deciding the number of 

pass, allocating the amount of reduction, controlling the temperature variation are 

the main tasks of designing an acceptable rolling pass schedule. 

480-580 OC 
580 mm 280-350 OC 

20-30 mm 

Ingot 
I 

Coiler 
Reversing breakdown 

and 
finishing mill 

Coller 

Fig. I -I Conceptual view of single stand hot reversing mill 

1.3 Finite element method in metal forming 

Applying the finite element method (FEM) to aid predictions on the metal forn-ling 

industry has been an international research focus during the last decade. This could 
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be proved from the proceedings of any of the recent conferences on metal forming. 

The reason can be attributed to the characteristics of the metal forming processes: 
large defon-nation, thermornechanical coupled, non-linear boundary conditions and 

non-linear material behaviour. Presently, there is no method that could tackle all 

these problems satisfactorily except FEM. Applications of the plastic finite element 

method into metal forming started at the end of the 1970's. It has been widely used 
in both industry and academia since the beginning of the 1990's as computer 

hardware and software make significant advance. The main advantages of FEM, 

compared with other numerical methods and analytical techniques are: 

" Avoid the need to assume homogeneous deforination 

" Detail the deformation information, such as strain, stress, temperature, velocity 

" Consider the complex interactions between strain, strain rate, temperature, 

microstructure, and the flow stress 

" Use very realistic models to represent real process behaviour, such as the 

coefficient of friction, heat transfer etc. 

" Visualise the deformation process 

Replace the experimental phase partially or completely 

There are three main techniques dealing with the movement of the node in the FEM 

computation. In the Eulerian technique, the finite element mesh is spatially fixed, 

material is considered to flow through it. The main disadvantage is that it can not 

predict the deformation history with time. It is only applicable to the steady state 

deformation. The remeshing is avoided, thus computation time is greatly reduced. 

In the Lagranglan technique, the finite element mesh is deformed incrementally 

over time with the material. This techniques is commonly used by the major 

conu-nercial FEM programs. One disadvantage is that remeshing is frequently 

required. The Aribitrary Lagrange Euler (ALE) was shown to be efficient in metal 

forming to avoid remeshing. The basic idea is to define a mesh velocity, which is 

different from the kinetics velocity, but preserves the free surface evolution. The 
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mesh velocity is imposed so that, during the deformation process, the mesh 

distortion remains at a minimum (Chenot et al 1996). 

The FEM used in metal forming can be generally categorised into rigid-plastic 
FEM, elastic-plastic FEM and visco-plastic FEM, in terms of the type of material 

constitutive model employed (Hartley 1993). For some hot processes, such as 
forging, rolling and extrusion, plastic strains outweigh elastic strains; the material is 

regarded as a non-Newton fluid, and rigid-visco-plastic FEM is usually adopted to 

simulate these processes. Well recognised commercial programs used in bulk 

deformation include EASY-FORMO, DEFORMO, FORGE2&30, 

MARC/AUTOFORGE@, MSC/SUPERFORGEO and Qformo (Bramley 1999). 

Each commercial code has its speciality. For rolling, the capabilities of automatic 

meshing and remeshing, thermomechanical coupling and easy transfer of 

deformation history from one pass to another pass are crucial. 

The analysis accuracy is affected by three main elements: analyst, program and the 

input data. Choosing an appropriate program is a choice, followed by preparing the 

various input parameters, such as flow stress, heat conductivity etc. The analyst's 

job involves: establishing the analysis model, running the program and analysing 

the results. Although the present FEM programs are more user friendly and 

intelligent than those 10 years ago, the analyst still plays a very important role to 

ensure a good result. Further requirement for the analyst is the capability of 

programming user routine with FORTRAN or C language. 

1.4 Microstructure changes during hot working condition 

The microstructural changes during hot working conditions have been extensively 

studied. The temperature in hot working conditions is considered greater than 

0.6Tmq where Tn, is the melting temperature. The deformation of rolling is applied in 

a series of passes, which are necessarily separated by periods of time. The 
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microstructural changes occurring during deformation are termed dynamic recovery 

or recrystallisation, and those taking place in the time intervals after deformation is 

termed static recovery or recrystallisation. 

The structural changes during deformation are the competing results of work 

hardening and of softening by dynamic recovery and possibly by dynamic 

recrystallisation. Whether dynamic recrystallisation occurs or not depends primarily 

on the rate of dynamic recovery. Generally, aluminiurn alloys have high stacking 

fault energy. The movement of dislocation, such as climb and cross-slip, takes place 

easily at high temperature. Previous researches have shown that dynamic recovery 

is relatively rapid (Zaidi and Sheppard 1982). Dynamic recrystallisation does not 

occur in most circumferences. It has only been reported to occur in some 

aluminium-magnesiurn alloys when large strains were applied, which is not 

common in industrial production (Sheppard and Tutcher 1981 a; Raghunathan and 

Sheppard 1986). Hence, dynamic recrystallisation can not be considered in the 

present thesis. 

Lon 
LA 
Loi 

LA 

Grains Elongate 
Dislocotion Density I Distocation Densýy 

Increases Constant 
SuNroins Dtvt(oD SubgEoins Remain 

- Equiaxtd 

- Const. Mean Size 

Em Const. Mean Misorientn- 

Const. 
T Const. 

(a) 

STRAIN 

Fig. 1 -2 Schematic stress-strain curve and microstructural Changes 
(after Sellars 1990). 
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The microstructural changes are summarised in relation to the stress-strain curve in 
Fig. 1-2. Before the deformation reaches the strain F-, n, the flow stress increases with 

increase of dislocation density. Rearrangements of dislocation lead to the formation 

of subgrain boundaries. At the strain em, the hardening and softening process 

balance, a steady state regime is attained. The flow stress and dislocation density 

remains dynamically constant. A main feature of the steady state regime is that 

subgrains are well developed, approximately equiaxed, of constant mean size and of 

nearly constant mean misorientation, even after very large strains. 

After deformation,, further structural changes occur by the process of static recovery 

and recrystallisation. They are equivalent to the processes that take place during 

annealing of cold worked metals, although the driving forces are lower. These 

processes occur because the substructures produced by deformation are 

thermodynamically unstable. Static recovery produces smaller microstructural 

changes than does static recrystallisation. Therefore, it is difficult to observe by 

optical or electron metallography, but Sheppard and Zaidi (1982) did find the 

evidence to show that static recovery happens during interpass delay. Compared 

with static recovery, static recrystallisation has a marked softening effect and is 

easily observed. The process of static recrystallisation includes two stages; 

nucleation and growth. Nucleation always takes place at the original grain 

boundaries,, deformation bands or large participates. The mechanism of growth 

include subgrains coalesce, the migration of sub-boundaries and subgrain growth. 

The rate of recrystallisation is dominated by total stored energy and its distribution, 

the availability of nucleation sites and the holding temperature. 

1.5 Layout of the thesis 

The present work has focused on employing the finite element method to simulate 

the hot flat rolling process, from breakdown rolling to tandem rolling. The relevant 

aspects involve choosing an appropriate constitutive equation; predicting rolling 
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I tu load and torque; simulating the evolution of dislocation substruc re in the roll gap, 

modelling static recrystallisation and designing the rolling pass schedule. Although 

no experiments have been carried out, reliable data have been extracted from 

external PhD theses and the literature, supplied by the aluminium companies in 
Italy and the UK, and provided by other academic research groups in the UK. The 

total data is far greater than that available or used and reported in the existing 
literature. It should be emphasised that the data provided by the aluminium 

companies are especially valuable because they are usually commercially sensitive. 

Basic concepts on aluminium alloy, hot flat rolling and microstructural changes are 
briefly introduced in chapter 1. Detailed research history and critical reviews are 

given in chapter 2. Principal formulation and analysis techniques of the FEM 

programs FORGE2/30 are recalled in chapter 3 

In the early stages of the breakdown rolling, the lateral spread of a slab is 

significant, leading to a three-dimensional deformation. The influence of rolling 

parameters, such as reduction, temperature and slab geometry on the roll load and 

torque are first investigated. Attention is then paid to the heat transfer coefficient 

and friction coefficient, which are very difficult to measure. The changes of 

temperature and lateral profile under both laboratory and industrial rolling 

conditions are the major objectives in chapter 4. The Taguchi experimental design 

method is applied to analyse the influence of four main parameters (the ratio of 

width to thickness, the ratio of roll radius to the slab thickness, reduction and 

deforination temperature) on the spread, and to express the contribution of each 

parameter in percentage. A new formula is then established by analysing a large 

amount of FE analyses and the laboratory data from external PhD theses, which 

makes the formula valid for both laboratory rolling and industrial practice. 

In chapter 5, both empirical and physical based models are adopted to study how 

subgTain size, dislocation density, misorientation and the flow stress vary in the roll 
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gap. Studies on static recrystallisation are cam I ied out by incorporating the 

plastomechanical parameters, i. e. strain, strain rate and temperature, Into the 

empirical model. Further work is also detailed in this chapter. 

The pass schedule optimisation is the most difficult but also the most valid method 

to achieve good strip profile and high product qualities. In chapter 6, the procedure 

of designing an acceptable rolling pass schedule is illustrated. All achievements on 

temperature, lateral deformation, and the friction presented in Chapter 4 and 
Chapter 5 are applied into the design of rolling pass schedules. The computed 

rolling load, pass temperature, and power are then compared with industrial 

measurement and the predictions by the FEM. The design package shows a very 
high accuracy. 

Chapter 7 concludes all the work carried out in the present thesis and suggests 
further work in the modelling of hot rolling. 
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Chapter 2 Review of literature 

2.1 Simulation of breakdown rolling 

Rolling force, power, temperature and width are four basic rolling parameters 

required in the mill setup. Accurate prediction of these parameters is crucial for 

producing qualified products efficiently and safely. In the breakdown rolling passes, 

the slab thickness is of the same order as the rolls. The width-to-height ratio is 

usually less than 4. Lateral deformation cannot therefore be ignored. This is a three- 

dimensional deformation process and can only be described accurately by the use of 

suitable FEM or FD analyses. 

Nearly all theories concerning the calculation of the rolling force and torque in 

current rolling publications are based on a plane strain assumption and assume that 

the contact pressure distribution is distributed over a circular arc. Wright (1978) 

compared various assumptions with measured pressure distributions. The 

conclusions on the pressure distribution in the roll gap in breakdown passes are 

confusing. It is impossible to conceive a suitable mathematical algorithm because of 

the complexity of the deformation. Presently there is no method that could provide 

more detailed local deformation information than FEM. During the last decades, 

various FE models have been adopted to simulate the 3-D hot flat slab rolling 

processes. Li et al (1984) used 3-D rigid-plastic FEM in their analyses. Betrand- 

Corini et al (1988) applied 3-D visco-plastic model. Liu et al (1987) employed 

elastic-plastic analyses. 

The calculation of rolling force is the most important task for the mill setup. 

Accurate prediction of rolling force can greatly reduce the pressure over the 

controlling system to adjust the mill setup. Although each rolling plant has invested 

to establish their own empirical rolling model by various methods such as 

regression, neural networks, FEM and analytical approaches, these models are 
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usually not useful when rolling a new product. The reasons are due to the dearth of 
deep study on the influence of some factors, i. e. friction coefficient, temperature 

evolution and lateral deformation. Hence, hot rolling model development has 

proceeded slowly. In the following sections, reviews will focus on these factors. 

Friction coefficient 

Friction in the roll gap possibly affects the mode of deformation more than any of 

the geometrical features of the rolling slab or strip since its coefficient is affected by 

a multitude of factors, including temperature, lubricant and emulsion, reduction, 

and the interface velocity etc. The nature of the hot rolling process makes it 

extremely difficulty to verify the contact condition. Lenard, Pletrzyk and Cser 

(1999) have reviewed the techniques for the evaluation of friction coefficient in flat 

rolling. These techniques include: (1) direct measurement methods, measuring the 

average frictional shear stresses or the average coefficient of friction at the 

interface; (2) deriving a constant friction factor or coefficient of friction from the 

measured deformation load; (3) determining the constant friction shear factor or 

coefficient of friction by measurements of deformation or other indirect indices, and 
(4) calculating the coefficient of friction from measured values of the forward slip. 

The most commonly adopted methods are (1) and (2). When using FEA, the inverse 

analysis (trial and error) appears to be the best choice. By using an inverse analysis 

method, FEA is iteratively run until the appropriate friction coefficient is found to 

match the computed rolling force with the measurement satisfactorily. Clearly, 

industrial or experimental data is required for this method. 

However, none of the above methods appear to be capable of dealing with the 

variations experienced throughout a complete pass schedule. Moreover, most of the 

published work has been concerned with cold rolling and considered to be under 

plane strain conditions. Specific results on the measurement of friction during hot 

rolling of aluminium alloys is scarce. General conclusions are that the coefficient of 
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friction falls as the rolling speed is increased and it increases when the reduction is 
increased. Atack and Abbott (1986) concluded that sticking friction does not exist 

when hot rolling aluminium alloys. This conclusion contradicts many authors' 

observation. But it does indicate that more research work is necessary in this area. 

There are three friction laws, which have been widely used in the current 

simulations. They are the Tresca friction law, coulomb friction law, and viscoplastic 
friction law. The form of various laws will be detailed in chapter 3. 

2.1.2 Temperature evolution 

It is generally accepted that, in hot defori-nation processes, temperature is the most 

significant parameter for the determination of product properties. Ductility, 

strength, texture etc. are each significantly influenced by the formation and 
development of microstructure. Meanwhile, temperature also has a considerable 

effect on the defori-nation load and torque. It is therefore necessary to ascertain the 

magnitude of any temperature change during the deformation and dwell time. 

Temperature variation during hot rolling is caused by the combined effect of two 

factors. One is the heat generated by the friction work and plastic deformation. 

Another is the heat loss to the rolls through conduction and to the surroundings by 

convection and radiation. 

Three different approaches, the analytical approach, the finite difference (FD) and 

the finite element method (FEM) are currently in use to calculate the temperature 

variation through the slab thickness in the roll gap. There are quite significant 

differences between these approaches in their consideration of heat generation and 

heat loss. The analytical approach usually only takes into account heat transfer 

between the slab and roll by conduction. The calculated temperature is only 

rigorously true under certain conditions. FD gives a better prediction than the 

analytical approach by assuming heat generation through the slab thickness and 
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applying friction work to the surface elements, in addition to the conduction 
between roll and slab. Due to the convergence problem and the difficulty of dealing 

with the distorted mesh during deformation, currently all researchers have only 

adopted two-dimensional FD models. FEM is theoretically the best method because 

it considers all factors, such as changing thermal properties or differing rates of 

internal heat generation with position and time. The problem when employing FEM 

is that the analysis takes a good deal of computer time, especially for three- 

dimensional deformation. For this reason analytical methods and FD are usually 

adopted for the design of rolling pass schedules. 

2.1.2.1 The analytical approach 

The usual assumptions implemented are: 

* Heat conduction occurs in one direction - only radial in the rolls. 

* The heat transfer coefficient between slab and rolls is infinite 

e Uniform thermal properties exist in rolls and slab. 

Equations adopted to calculate the temperature distribution in slab and roll are 

expressed as (Carslaw and Jaeger 1959): 

T, =A 1+ 
k2 a] 

- erf 
x 

kIF2 2, vFal t 

A e7fc 
1XI 

(2-2) 
2ýa2t 

where T-) is the roll temperature, T, is the slab temperature, A is defined as 
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T initial 

1+ 
k2 al 

L k, 

Flaý21 (2-3) 

These relationships are limited by the lack of any terms for either internal heat 

generation or friction at the interface. Their validity is only rigorously true so long 

as the slab appears infinite, e. g. whenever x< -ýl 2oct . Assuming a quadratic 
temperature profile with the integral profile approach derives this latter limit. 

2.1.2.2 The Finite difference (FD) 

Wilmotte et al (1972) first used the finite difference approach to calculate 

temperature distribution in strip rolling. In their calculation, a uniform increase of 

temperature in the roll gap was assumed and Carslaw and Jaeger's (1959) equation 

was employed to calculate cooling during contact with the work rolls. Bryant and 

Heselton (1982) carried out similar calculations, neglecting the effect of friction and 

assuming uniform distribution of heat caused by plastic deformation and uniform 

temperature across the width of the strip. Sheppard and Wright (1978,1980) 

calculated the temperature distribution for slab rolling by taking into account non- Z-: ) 
uniform heat generation in the deformation zone and the effect of friction. Sellars 

and Kawai (1993) determined the temperature changes in the stock without 

computing conduction in the rolls, leading to a method termed "the phantom roll". 

Critically we should note that this method requires the input of considerable 

experimental data and is limited to two-dimensional geometry. Recently, Hand et 

al. (2000) calculated temperature changes for multi-deformation schedules during 

hot plane strain compression. The temperature rise due to plastic deformation and 

friction is obtained by considering the area under the equivalent pressure-strain 

curve over the appropriate strain interval. This requires actual test data. 
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In recent years, the application of FEM into the rolling process has made the FD 

techniques redundant. Compared with many available FEM codes, there are few 

commercial FD packages, and there exists inherent theoretical disadvantage, such 

as mesh generation and remeshing, and convergence. All these factors help to 

explain why the development of FD proceeds so slowly in the simulation of metal 
forming. In the current study, the method adopted by Sheppard and Wright (1980) 

is chosen as a representative for the FD. It should be stated that this method is not 
the best among various FD methods. The reason of selecting this method is 

attributed to that FD is not the major research interest in the current thesis. It is only 

adopted to give a general comparison of the predicted temperature evolution 
between FD and FEM. 

2.1.2.3 Finite element method 

Rebelo and Kobayashi (1980) first simulated the combined effects of viscoplastic 
deformation and heat transfer for cylinder compression and ring compression 

processes by introducing separate functions for the equilibrium and for the energy 
balance equations in FEM. The first application of the finite element method to 

analyse the temperature distribution during hot rolling was by Zienkiewicz et 

al. (1981). Lenard and Pletrzyk (1992) reviewed the research work on the heat 

transfer coefficient and described the effect of variation in the heat transfer 

coefficient on the calculation of load for warm and cold rolling of alurninium. 

In addition to the experimental method (Atack, Round and Wright 1988), the 

inverse analysis (trial and error) by FEM is another way to ascertain the heat 

transfer coefficient. When using this method, FEA is run iteratively until the 

computed temperature histories match the recorded temperature satisfactorily. The 

reported values of heat transfer coefficient show great differences from 10,000 to 

80,000 WM-2 K-1 by this method (Chen et al 1992, Wells et al 1998, and Mirza et al 

2001). These differences may be attributed to the thickness reduction (which 
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influences the pressure and hence the true contact area), and finally the thickness of 
the lubricant layer, this last factor alters the heat transfer characteristics across the 
interface. 

2.1.3 Lateral deformation 

In the hot flat rolling of slabs, plane strain condition prevails in the middle portion 

of the product width, and lateral flow occurs at the edges. The consequences of this 

spread are many: 

" It reduces the pressure for a given reduction. 

" There is a propensity for the fibers near the edge to be short, resulting in a 

residual tensile stress state, thus making shape and flatness control more 
difficult. 

9 It may cause edge cracking, depending on the initial geometry and the process 

parameters. 

* The material loss increases because cracked edges and bad edge profile must be 

trimmed. 

All these considerations emphasize the necessity for a deep understanding of lateral 

flow during slab rolling. Earlier work has predicted the spread by empirical 

formulae constructed from regression of laboratory experimental data (Hill 1950, 

Wusatowski 1958, Sparling 1961, Helmi & Alexander 1967, Sheppard & Wright 

1981 , Raghunathan & Sheppard 1989, Silk & Winden 1999). The relaevant 

formulae are given below. 

Hill' equation 

Sit = 0.5 expl- 0.525(W, / ýD * dH)] (2-4) 
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Wusatowski's equation 

expý 1.9872[WI / H, ]* [HI / R] 0.556 ý 

Sparling's equation 

S", = 0.981 expý 1.615 * [W, 0.9 I(RO. 55 Hlo*'dHO. 25 

Helmi & Alexander's equation 

-0.971 

Sw = 0.95 
W' 

exp - 0.707 
w W, 

1/2 H, H, (R * dH) 

Sheppard & Wright's equation 

(2-5) 

(2-6) 

(2-7) 
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Winden's equation 

W2 

= _Cspread 

H2 
+ 

(I 
+ Cspread (2-10) 

W, H, 
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Notes: 
Su, = Ln(W2 / W, )l Ln(HI / H2) 

TH: Homologues temperature 

dH = H, - H2 : Thickness reduction 

The conclusions drawn on the spread for hot flat rolling are that the spread 
increases with 

* decrease of the width/ thickness ratio of the slab 

* increase of the roll radius/ initial thickness ratio 

e increase of the reduction 

" increase of the entry temperature 

" Other factors such as the interface friction, roll speed, and the material -flow 

stress exert minor influence on the spread. 

Due to the limitation of laboratory conditions, small-scale experiments are always 

conducted to simulate the industrial condition by trying to obey the principle of 

similitude. Since some factors are very difficult to reproduce, such as the friction 

condition on at the slab/roll interface, the temperature changes along the slab 

thickness and the roll temperature, workers have tended to ignore these factors 

unconsciously or intentionally. Consequently, the formulae developed are only 

valid for a limited range of rolling conditions. 

More recently, Winden (1999) managed to simulate the industrial rolling on a 

conventional laboratory rolling mill through employing some new techniques. The 

regressed spread formula gave a good prediction than the previous fon-nulae for his 

experimental data. However, since only one parameter, the ratio of entry thickness 

to exit thickness , is employed, its application range must be greatly reduced. Strictly 
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speaking, this equation is not correct because possibly the most important factor, 
the ratio of entry width to entry thickness, is not included. 

The three-dimensional rolling process has been analysed either by FEM (Yamada et 
al 1992, Kobayashi et al. 1989, and Liu et al 1987) or the energy method (Yoon and 
Kim 1991). However none has systematically studied the spread behaviour in both 

laboratory and industrial rolling processes. In industrial practice, the slabs before 

entering the breakdown pass usually have a curved edge profile. "Broadside" rolling 

is adopted before the norinal reduction when the required product width is 

significantly wider than the initial cast slab width. The consequence of "broadside" 

rolling is in producing a distinctly concave profile. Slabs not treated in this way are 

rolled, as cast, with a slight convex initial profile. 

At the present time, there would appear to be no published papers dealing with 

width variation predicted by FEA for industrial rolling which must also include tD 
multipass rolling. 

2.2 Modelling dislocation substructure changes 

2.2.1 Dislocation substructure evolution 

Up to date, a considerable amount of work has been reported on the dislocation 

substructure evolution for aluminium alloys under various hot work conditions: hot 

rolling, hot torsion and plane strain compression (Immarigeon 1969) (Zaidi 1982) 

(Rahunathan 1989) (Sheppard 1982) (Knustad 1985) (Poschmann 1995) (Zhu 1996) 

(Mcqueen 1998) (Nieth 1996) (Baxter 1999) (Sellars 2000). Dislocation 

substructure can be described by three internal state variables: dislocation density 

(p), subgrain size (6) and misorientation across subgrain boundaries (0). Prior to 

discussing the modelling of the substructure changes, it would be useful to review 

the previous investigations on substructure evolution. 



42 

To give a clearly description of the dislocation density evolution, a schematic 
representation of substructure is taken from the literature (Nes 1998). In Fig. 2-1, 

total dislocation density consists of the internal dislocation density pi and the 

boundary dislocation density Pb - 
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Fig. 2-1 A schematic representation of the microstructure; cell diameter, (5, cell 
wall thickness b, cell wall dislocation density, p, and dislocation density with the 

cells, pi (after Nes 1998) 

During the early stages of deformation, dislocation multiplication occurs, and the 

total dislocation density (p), p=p, + p,, increases from 108 _ 1010 M-2 to 1011 _ 

10 12 M-2 at the commencement of macroscopic flow. Dislocations move, and 

interact with each other to fon-n tangles. This terminates in a cellular structure with 

the dislocations clustering tightly into the cell walls separating dislocation free 

regions. As deforination proceeds, p continues increasing, and attains at a constant 

value of approximately 10 14 M-2 when the steady state regime is reached. The 

cellular structures are replaced completely by the formation of subgrains due to the 

additional dislocation reactions. Subgrains can be regarded as an extension of a 
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cellular structure in that the dislocations are arranged in the form of planar networks 
in subgrain boundaries, while the cellular boundaries consist of three-dimensional 

network and tangles of dislocation. The ability to form a cellular or subgrain 

structure depends on several factors: the stacking fault energy, the applied stress, 
the strain,, the temperature, and the presence or absence of obstacles. 

An interesting feature of subgrains is that they are equiaxed and maintain their 

equilibrium size and shape in the steady state regime even at very large strains, 

whereas the grains are always elongated in the direction of the extension. There are 

up to date two interpretations. The first considers that sub-boundaries are constantly 

migrating in such a way as to keep the substructure equiaxed. The second possible 

interpretation is by the repeated unravelling of the sub-boundaries and the 

subsequent reformation of new sub-boundaries at locations which keep their 

average spacing and dislocation density constant, termed "repolygonisation" (Jonas 

et al 1969). 

The critical strain required for subgrain formation varies with the deformation mode 

and materials, and increases with Z, the temperature compensated strain rate, 

defined as 

Qdef 
Z *exp 

GT 
(2-11) 

At strain rates of 0.05 -I s-1, the critical value of strain for general hot working 

conditions is usually within 0.2-0.3; but for creep, the critical strains are only 0.01- 

0.1 (Jonas et al 1969). According to Zaidi et al's (1982) observation on the subgrain 

evolution for commercial pure aluminium throughout roll gap, the subgrain size is 

stabilised at 10mm from entry bite (the total contact length is 35 mm) in the slab 

centre, and no further change in size could be observed. The equivalent strain at this 
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position is about 0.15, computed by FEM. Sellars (1990) proposed an equation to 

calculate the critical strainc,,, , see Fig. 1 -2, 

cm = 0.002 * ZO. 2 
(2-12) 

The calculated value of em for commercial purity aluminiurn is 0.314 when the 

rolling temperature is 500OC; there is 40% reduction; and 2 s-1 is the strain rate. 

Obviously, the calculated value of e,, is too large. The reason may be attributed to 

the plane strain compression test where c,, is regressed from experimental data. 

Raghunathan and Sheppard's (1989) observation for AA5056 showed that a 

minimum strain of 0.19 is required to attain stabilised subgrains for that alloy. 

After the critical strain, the flow stress is independent of strain. The hyperbolic sine 

function is usually applied to describe the relationship between the rolling 

parameters and the flow stress. Before reaching e,,,, the flow stress is a function of 

strain. The relative terin in constitutive equation is often described by the power 

law. The determination of eM is hence important for the selection of constitutive 

equation. 

2.2.2 Modelling the change of dislocation density 

For steady state deforination, a generally recognised equation relating subgrain size 

with the internal dislocation density is written as 

A 112g 
SA 

= (2-13) 

C usually varies from 5 to 30 (Sellars 1997, Zhu 1998). Compared with the steady 

state deformation, there is little reported data for dislocation density during transient 



45 

deformation. Several models (McQueen and Blum 1998, Luce et al 1999, Roberts et 
al 2000, Sellars et al 2000) have been reported to calculate the changes of 
dislocation density by considering the rate of generation of dislocation density and 
the rate of annihilation of dislocation density. 

McQueen and Blum (1998) predicted the rate of dislocation annihilation p- by 

p- = Ap 1.5 
exp(- Q/R T) sinh (b'sk 07 I(A*T)) (2-14) 

Where A is constant. The rate of generation of the dislocation density p' was 

given by 

(2M1b)iýl(cD-o-') 

It is clear that p' depends on the strain rate E- and the dislocation density p. 

(2-15) 

The three-variable-model distinguishes three dislocation populations (Roters et al 

2000): the mobile dislocations p,, travelling through the cell structure, the 

immobile dislocations density pi inside the cell and the density of immobile 

dislocations p,,, in the cell walls. For each class of dislocations, the evolution is 

also made up of a production term and a reduction forn-1. 

Sellars and Zhu's work (1997,2000) is highlighted because it will be adopted and 

modified in chapter 5. 

The internal dislocation density p, - is made up of two parts, i. e. the so-called 

"random" dislocation density (p, ) and the "geometrically necessary" dislocation 

density (pl., ), 
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Pr + Pg (2-16) 

For deformation at constant Zener-Hollomon parameter Z, Pg ': ý' Pr, but for 

transient deforination, pg is of great significance to describe the evolution of 

internal dislocation density. p, contributes both to total stored energy and to the 

flow stress, but pg contributes little to the flow stress. 

The increment of random dislocation density due to plastic deformation is 

expressed as: 

dp+ =m dc 
r bAr 

(2-17) 

A is the average distance that a dislocation travels before being stopped. r 
Ar = CPI/2 is conu-nonly postulated (Nes 1998, Sellars et al 1997), where p is the 

total density of stored dislocations. To simplify the calculation, p is assumed to 

equal p, (Sellars et al 1997). 

The annihilation of dislocation density due to dynamic recovery is given by 

dPr _2LCvmPr dt 
w 

(2-18) 

where w is the length between the sites of cross slip or climb events, Lc is the 

length of dislocations annihilated, V.. is the mean velocity of viscous glide, defined 

as 

PM = Dsbaf 
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where D is the self-diffusion coefficient, P is the drag force and af is the friction 

stress. The evolution equation for the random dislocation density is then derived as 

+ +dPr = 1/2 dPr = dPr ClPr _C2 
ýjf 

Pr de 
z 

(2-20) 

where CI= CM /b, C is a constant andC2 = 2DOb, 8. At steady state deformation, 

dPr =dp+ +dp- =0, hence rr 

C2 
--": 

(Z 
/ OrfDI/2 (2-21) , )� C, - 

pg is derived using 

I= 
pgb +0 (2-22) 

Rp 8 

The local lattice curvature, IIRP , within a grain during deformation is assumed to 

be constant at a given strain in transient deformation. This assumption is not totally 

true. Further work has been initiated. 

2.2.3 Modelling the change of subgrain size 

It is generally accepted that the following equation can satisfactorily relate subgrain 

size with temperature T, and strain rate or the temperature compensated strain 

rate Z during steady state deformation: 

-n7 

=A+ BLnZ (2-23) 
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According to the conclusions given by Zaidi and Sheppard (1982), a good fit could 
be obtained for m values in equation (2-23) varying from 0.35 to 1.25. This is 
because the range of subgrain sizes generally obtainable in the hot working range is 

very small when compared with the range of LnZ values. Constants in equation (2- 

23) for various alloys are listed in Appendix 1. It can be seen from the appendix 1 

that rn equals 1 is widely used. It should be noted that equation (2-23) is not the 

only form of formula that relates subgrain size with process parameters for steady 

deformation. Other formulae modified from equation (2-23) are given as (Jonas 

1969, Raghunathan 1986, Nes et al 1994): 

ý, 
S-m =a+ bLn(ZIA) 

05SS -m=a+ ýb + cLn(ZIA)I. E 

GT 
L 

Zi5. 
%,, v' 

AB 

I=U 
LnZi5s., 

2C 
2 when cU 

kTZC., - 
1/3 

when 
Pv" 

cl U 

(2-24) 

(2-25) 

(2-26) 

(2-27) 

where P is the driving pressure for subgrain growth, ', ' is the activation volume, k V1, 

is geometric constant,, C= 2rsB C=0.0004M 1(v b 2C 
is a constant, I V1,2 D B)ICB 
* 

VD is the Debye frequency (Nes et al 1994). 
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It must be emphasised here that the equations (2-23 to 2-27) are just statistical 
expression from experimental data, strictly they have no physical interpretation, and 

are not valid to predict subgrains size in transient deformation. 

Compared with the work on subgrain size during steady state deformation, there is 

still a lack of quantitative relationships to relate the subgrain size with the 

deformation parameters in transient deformation. During the last few years, Furu et 

al (1999), and Sellars et al (2000) have carried out some exploration work in this 

field. They have performed transient deformation by altering the strain rate in plane 

strain compression (PSC) tests. The PSC specimens of 60.0x5O. OxIO. Omm'were 

machined from homogenised , rolled and annealed material with fully recrystallised 

grains of major intercept length (117 ± 5), um .A graphite lubricant was used for all 

tests. The specimens were quenched within 1.5s of the end of deformation. Their 

conclusions for internal dislocation density, subgrain size and misorientation are 

shown in Fig. 2-2. 

For deformation at constant strain rate, the subgrain size decreases. For deformation 

at increasing strain rate, the subgrain size also decreases with strain until a steady 

state size is achieved at a strain of about 1.0. Under transient conditions of reducing 

strain rate to a strain of 1.0. the subgrain size is smaller than the steady state size. 

After a strain of 1.0, the subgrain size increases suddenly, interpreted as the 

dissociation of subgrain boundaries. The steady state value is eventually achieved at 

a strain of about 1.6. 
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Figure 2-2 Experimental results of evolution of (a) strain-rate, t, (b) flow 

stress, a, (c) internal dislocation density, pl, (d) subgrain size J, and (e) 

misorientation between subgrains, 0, of AI-I%Mg defon-ned at 385'C in 

plane strain compression tests (After Sellars and Zhu 2000). 

It is clear from the above analysis that the subgrain size shows a very complex 

behaviour with strain during transient deformation, especially in the case of 

decreasing strain rate. Fortunately, for most metal forming processes, subgrain 

forms and stabilises in the stage of increasing strain rate, such as from the entry bite 

to the exit in hot flat rolling and from the rear of container to the die mouth in hot 

rod extrusion. The periods of decreasing strain rate in these two processes are very 

c 
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short. It should also be noted that measurements of subgrain size before the steady 
state regime have not been presented in the case of constant strain rate (see Fig. 2-2 
(d)). It is also clear that the prediction of initial subgrain size has not been logically 

studied. 

Comparing (b) with (c), (d) and (e) in Fig. 2-2, it can be seen that the flow stress can 

not be uniquely expressed as a function of dislocation density, subgrain size and 

misorientation when the transient deformation condition of decreasing strain rate is 

applied. This indicates that a simple work hardening and recovery approach is not 

sufficient. A different mechanism occurs. The sudden increase in dislocation 

density was attributed to the subgrain boundaries dissolving (Zhu et al 1997). 

The following equation has been applied successfully to model the behaviour of Al- 

I %Mg alloy: 

d45 = 45 (15,, - i5)de 
-06-gss 

(2-28) 

Where "ss" stands for steady state, 8 is the instantaneous subgrain size, de is the 

increment of strain, d6 is the increment of subgrain size, E8 is characteristic 

strains, which determine the rates of evolution of subgrain size, (5,, is defined as the 

same as equation (2-23). F-8 is assumed proportion to Z. It is strange that Zhu and 

Sellars (1997,2000) assigned different values (-0.5 and 1/4) to the exponent n in two 

papers for the same material and experimental conditions. However, it indicates that 

F-8 is a function of Z. The specific form relating F-5 with the Zener-Hollomon 

parameter may depend upon the deformation conditions and the material. 
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2.2.4 Modelling of the change of misorientation 

For obvious experimental reasons, the variation of misorientation 0 has not been 

extensively investigated. Some work concerned with high purity aluminium is 

shown in Fig. 2-3 (Nes 1998). The figure clearly shows that the average boundary 

misorientation increases rapidly with strain, reaching about 20-30 at a strain of about 

I. after that it remains constant up to strains as high as 4. According to Fig. 2-3, a 

simple relationship can be derived 

uj 

1=1 
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Fig. 2-3 Sub-boundary misorientation vs strain (after Nes 1998) 

3. xc if g<1. 

if -F >- I- (2-29) 

Sellars and Zhu (2000) have recently proposed another relationship for Al-l%Mg 

alloy during transient deformation conditions: 
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d0 =1 (Oss - 0)de (2-30) 
Co 

where E is a characteristic strain. -F CC Z 1/4 is assumed in their study. Fig. 2-2 (e) 

shows the comparison between the predicted and the measured misorientation. For 

increasing and for constant t, the calculated curves show similar shape as the curve 

presented in Fig. 2-3. The variation of misorientation under decreasing '& is more 

complex. But this condition does not happen in rolling. Therefore, equation (2-29) 

has adequate capacity to predict the misorientation. 

2.2.5 Substructure strengthening 

The mechanism of substructure strengthening has been a research focus in 

metallurgy for some time during the last decades (Jonas et al 1969, Zaidi et al 1982, 

Nes et al 1994, Marthinsen et al 2001). In the earlier work, when the values for 

dislocation was not established, and the misorientation was regarded to play only a 

minor role in determining the flow stress (Jonas et al 1969, Marthinsen et al 2001), 

only the experimental relationship between subgrain size and the flow stress was 

established. A modified Hall-Petch relationship is generally accepted for describing 

this kind of relationship during steady state deformation: 

+ ki5-' (2-31) 

Where a is the frictional stress, 8 is the subgrain size, k is a constant. With the 
.f 

introduction of new techniques into experimental measurement, models based on 

dislocation, subgrain size, misorientation and grain size have been reported. The 

most recent formulae include 

+aMG*bV-p-,,, (2-32) 
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(T=uf +a, MG*býp-, + a2MG*b /J (2-33) 

a= af + cyp + a, MG * bVp, + a2 G*b[118+11D] (2-34) 

where (x, and (X 2 are constants, p, 
O, in equation (2-32) is the total dislocation 

density given by: 

lco 
Ptot =pi+- 

bi5 
(2-35) 

where v=3 is a geometric constant (Nord-Varhaug et al 2000), 0 is the 

misorientation between the subgrains. 

In the calculations, the following values of parameters mentioned above have been 

selected: G* = 2.99 x 104 exp(-5.4 xI 0--4T) (Marthinsen and Nes 200 1), 

b=2.86 x 10-10 m. For high purity Al- I %Mg (Zhu et al 1997), af =25, a, -0.26ý 

(X2=0.83; for commercial Al- I %Mg (Zhu et al 1998), af -25, ot, =0.18, a -, -0.83. 

Based on a considerable amount of investigation on various aluminium alloys, 

Nord-Varhaug et al (2000) have found that af =O'laexp9 oc, -0.3, (X2=2.0 give a 

better prediction for samples deformed by hot torsion, PSC (plane strain 

compression) and uniaxial compression. Nes (1998) and Marthinsen and Nes (2001) 

have concluded that equation (2-33) and equation (2-34) give a much better 

prediction than does equation (2-32). 

There is another model (Roters et al 2000) which considers the dislocation density 

as the characteristic state variable. The flow stress is calculated by 
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M(fi 
- reff, 

i 
+ fn, 

'reff w) (2-36) 

where M is the average Taylor factor, f and f,,, are the weight factors, and 1-eff 
,i 

and 'reff 'w 
are the effective stress inside the cell or cell wall. Theoretically, equation 

(2-36) is the same as equation (2-33) since the strengthening by dislocation density 

inside cell walls equals the strengthening effect by subgrain size. However, there is 

an obvious difference in the application between equation (2-33) and equation (2- 

36) because the mode of calculations for p,,, and 15 are quite different. 

2.3 Modelling of static recrystallisation 

There are two types of models: empirical and physical, which deal with the kinetics 

of static recrystallisation (SRX). Each model has its advantages. In general, 

empirical models are easy to use and could be accepted by industry for off-line 

microstructure control. The physical model is advanced in theory and is only 

studied in academia at the present time. However, the model reveals the physics 
behind the transformation and if the problem of evaluating the constants can be 

overcome , it would clearly very useful. 

2.3.1 Empirical model 

The relationship between the fraction of recrystallised (Xv ) and the holding time 

is generally represented by the Avrami equation: 

xi, =I-exp 
. 

(2-37) 
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tf is the time to recrystallise the fixed volume fTaction f, k is a constant. In practice 

k has a value of about 2. C is a constant given by 

a (2-38) 

The usual convention is to fix f at 50% and this leads to the characteristic time for 

50% recrystallisation ( tO. 
5 

). In this case, C becomes In2. Equation (2-37) is 

rewritten 

2 
t 

Xv =1-exp -In2 (2-39) 
tO. 

5 

The time to 50% recrystallisation is usually given as 

tO. 
5 = AdOE h Z' exp Qrex (2-40) 

R T, 

A, a, b, c are constants regressed from experimental data. 

Recrystallised grain size is calculated by the following equation 

drex 
= Bdo e-f Z9 

B, e, f, g are constants. The constants in equation (2-40) and (2-41) are listed in the 

appendix 2 for various aluminium alloys. 
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From the appendix 2, it is clear that A has a positive value; b and c have negative 
values. This means that small grain size, high Z, high strains and high annealing 
temperatures all decrease tO. 

5 , and hence increase the fraction recrystallised. 

It should be noted that equation (2-37) is not the only form possible. In extrusion, 
the fraction recrystallised Xv is usually less than 50%. Hence the term t 0.5 can not 

be used. A replacement is using to . the time to just give zero recrystallisation. The 

modified expression for XV is given by the form of equation (Sheppard 1993b) 

In In 
I 

Ko + K, In do + K2 InZ-K3T, - 
K4 Int-K5 Ine (2-42) 

I-xv 

2.3.2 Physical models 

There are two main research groups (Nes et al at the Norwegian University of 
Science and Technology, Norway; Sellars et al at the University of Sheffield, UK) 

who have carried out similar researches on the modelling of SRX behaviour for 

aluminium. alloys. All models are built on the calculation of the number of 

nucleation sites and the total stored energy, which are two key parameters for the 

occurrence of SRX. Since two groups have different research objectives, and use 
different materials in their work, the consideration of the number of nuclei is 

therefore different, resulting in different models. 

Nes et al. have mainly concentrated on the cube texture evolution in multi-pass 

rolling during steady state deformation. The major alloy studied is AA3004 (Vatne 

1995,1998, Nes 1998), which is regarded as containing large undeformable t: ) 
particles. These particles are considered as an important and often governing 

nucleation mechanism. Three types of nucleation sites are involved: deformation 
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zones around particles, cube sites and grain boundary regions. The total stored 
energy (or driving force) PD is expressed as: 

PD= 0.5M 
bC. 5 

2+0.05M b 
8J (2-43) 

where Cr 
,, 

is a constant of typical value of the order 5. The f action recrystallisation 

X(t) after time t is written: 

x (t) =1- exp (X,.,, (t)) (2-44) 

Xext (t), the corresponding extended volume, is determined by: 

Xext 4 
irNToT(G 10. t 

)3 
(2-45) 

3 

GI is the growth rate of recrystallised grains. NTOT is the sum of above three types 

of nuclei. The recrystallised grin size d,,,, is given by: 

1/3 
x 

drex = 
NTOT (2-46) 

Sellars et al. (2000) and Zhu et al (2001) have built their models on the basis of 

three internal state variables, J, pi and 0. Al-Mg alloys are defonned by plane 

strain compression (PSC). Their work has focused on the influence of transient 

deformation on the substructure evolution and static recrystallisation behaviour. 

Since deformation is performed by plane strain compression and the material is 

high purity Al-Mg alloy, there is no cube band before or after deformation; grain 

boundaries are therefore the dominant nucleation sites. Hence only the nuclei at 

grain boundaries have been considered in their models. Adopting such a strategy is 

helpful for understanding one nucleation mechanism thoroughly. 
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In their work, the total stored energy, PD, is calculated by 

PD 
= 

Mb 2 

pi (I - In (I Obp' /2 + 
20 

1+ In 
ýC- 

(2-47) 10 1 bg 0 

The time to 50% recrystallisation is expressed as: 

c1 -1/3 

tO. 
5 =- - 

PD Nv 
(2-48) 

Where C is a constant. The fraction recrystallisation X(t) after time t is the same as 

equation (2-39). The recrystallised grin size d is written as: rex 

1/3 

drex 
=A Nv 

(2-49) 

Since physical modelling model is still at the exploration stage, there are several 

uncertain parameters in the above equations, such as G' in equation (2-45), and A 

in equation (2-49) etc. All these parameters are obtained by fitting the calculated 

results with experimental data. The reasons for such an analysis are attributed to: 

(1) these parameters are too difficult to measure by using current experimental 

equipment; (2) this kind research is just at the starting stage, few experimental data 

are available; (3) there are still some mechanisms which are not very clear, for 

example how the microband forms. Previous works have shown that the 

microbands are a preferential nucleation site (Zaidi and Sheppard 1982, Jonas 

1969); (4) the determination of the initial internal dislocation density (po) of 

annealed materials. Most workers consider this value to be 10 8 to 1010 M-2 . 
The 
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upper limit is 100 times the lower limit. This is a significant difference. In Sellars 

and Zhu's work (2000), p0 is even taken as 10 11. All these uncertain factors restrict 
the application of physically based models because they can not be directly applied 
to other materials. The ambition of obtaining a model, which has the capability of 
prediction power for cases outside the alloy test conditions, is however one should 
be pursued. 

It should be emphasised again that Nes et al's model is only applicable to steady 
state deformation with strains greater than 0.5, while Sellars et al's models are 
proposed for transient deformation. This perhaps explains why equation (2-46) and 
equation (2-49) do not have the same form and there is the introduction of a 
coefficient in equation (2-49). 

2.4 Prediction of microstructure evolution by FEM 

2.4.1 Dislocation density and misorientation 

Modelling the evolution of dislocation density by FEM started during the 1980's 

and was concerned mainly with steels. Lenard et al (1999) has given an excellent 

review in this aspect in their book. In the present thesis, attention will only be paid 

on the application of the models introduced in the section 2.2.2, because they are 

the latest work and must be advanced in theory. They are also the basis for the 

modelling of other metallurgical phenomena, i. e. the work hardening, behaviour 

static recrystallisation and texture evolution. 

In recent years, only the model proposed by Roters et al (2000) has been 

incorporated into a commercial FE program to simulate the rolling process for an 

Al-alloy (Luce et al 2000, Aretz et al 2000). Integrating Sellars and Zhu's model 

into FE programs has not been reported. 
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None of the past work has dealt with the simulation of misorientation. From the 
introduction in section 2.2.4, it can be seen that the modelling of misorientation is 

easy compared with the simulation of subgrain size and dislocation density. 

Equation (2-47) indicates that the calculation of misorientation is inevitable if we 

want to compute the value ofPD') which is the basis of all physical models for the 

modelling of static recrystallisation. 

2.4.2 Subgrain size 

There are two ways to predict the subgrain size. The first is using equation (2-23). It 

would appear to be a trivial task to predict the subgrain size and distribution, just 

simply substituting nodal strain rate and nodal temperature directly into equation (2- 

23). However, the work in chapter 5 will show that the computed distribution of 

subgrain size based on such a computation is incorrect. Hence, some modifications 

must be made for equation (2-23) when using FEM. 

At the present time, the present author is aware of only two attempts to predict the 

subgrain size by FEM: Dashwood et al's (1996) study on AA7075 during rod 

extrusion and Chen et al's (1992) prediction for hot rolling of pure aluminium. The 

predicted result by Dashwood et al. fit reasonably well with the experimental 

measurement in a small region around the die mouth. The distribution of subgrain 

size within the container was not given. However, in their study, there is one 

dubious assumption. The value of activation energy, which is used to calculate Z by 

equation (2-11), is twice the normal value of activation energy, and the authors did 

not present relevant experimental data to support this modification. The activation 

energy is a process parameter. It is approximately 156 KJ/mol for thermal activation 

during deformation for nearly all aluminium alloys. Of course, there will be 

somewhat variations from these values according to the fraction of cross-slip, 

climb, glide etc. of the dislocation movements in the alloy. It is not a parameter, 
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which can be tuned in order to match the predicted result with experimental 
measurement. 

Chen et al. averaged the Zener-Hollomon parameter over each element in the whole 
deformation zone and then integrated with time during simulation. This model gave 

an acceptable result. The relative error between the measured and predicted results 
is about 20%. There is also a problem with the method presented. That is how to 

average the Zener-Hollomon parameter over the whole deformation zone and what 

physical interpretation would justify this action? The authors' interpretation cannot 
be accepted. 

The second way to predict the subgrain evolution is in using physical model. Only 

Vatne et al (Vatne et al 2000) have applied Nes's subgrain model (Nes 1998) to 

predict the subgrain size after the deformation pass in order to calculate the driving 

pressure for subsequent recrystallisation. The predicted subgrain size was reported 

to be good (no computed distribution of subgrain size was given). However, the 

predicted subgrain size was not actually adopted in their calculation for static 

recrystallisation. 

2.4.3 Static recrystallisation (SRX) 

There are three ways to predict SRX: empirical model, physical model and cellular 

automaton. 

When using the empirical model, the FEA results are postprocessed to produce a 

mean value of Z and final equivalent strain for the differing through-thickness 

locations. These two values are then substituted into equation (2-40) to derive the 

value of tO. 5 , and finally the fraction recrystallised X, is calculated by the use of 

equation (2-39). Several attempts have been carried out by using this approach ( 

Dauda& McLaren 1999, Chen et al 1992, McLaren and Sellars 1993, McLaren 
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1994, Yiu et al 1991, Brand et al 1996, Wells et al 1998, and Mirza et al 2001) and 
all assumed plane strain deformation. 

For the modelling of SRX after single pass deformation, Chen et al (1992) simply 
incorporated the FE output into equation (2-11) without any modification, and their 

prediction was not validated by experimental or industrial data. The predicted 
fraction recrystallised falls from the surface to the centre. McLaren et al compared 

their prediction with experimental data for commercial purity aluminium in a small 

mill (roll diameter is 68mm) (McLaren 1994), (see Fig. 2-4). An unrealistic 

measurement of the fraction recrystallised at the surface was presented and not 

explained. The measured fraction recrystallised at the surface is even smaller than 

that at the centre, and the value at the centre appears to be too large. The predicted 
fraction recrystallised is in fact much higher than the measurement at the surface. 
The poor prediction has been attributed to the geometric factors through the section, 

such as the ratio of the roll contact length/stock thickness, which determines the 

homogeneity of the deformation. Recently, Dauda & McLaren (1999) measured and 

simulated the gradient of fraction recrystallised for high purity Al-3%Mg alloy. Full 

static recrystallisation in the slab was achieved before rolling. The comparison 

between the measurement and prediction is shown in Fig. 2-5. It is clear that the rate 

of recrystallisation increases steadily from the slab centre to the surface. But the 

prediction is still much greater than the measurement at the surface9 and the 

measured gradient from the centre to the surface appears to be lower than the 

non-nal industrial measurement. Yiu et al's measurement provided a strong 

quantitative evidence that the fraction recrystallised should fall from the surface to 

the centre see Fig. 2-6 (Yiu et al. 1990). Compared with Fig. 2-5, there is significant 

difference on the fraction recrystallised between the surface recrystallised and the 

centre in Fig. 2-6a. The value of the fraction recrystallised at the surface is in a 

reasonable range. 
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When modelling multipass hot flat rolling, Brand et al predicted the grain size 

evolution for AA2024 during a 6-pass rolling schedule (Brand et al 1996). Their 

method to deal with the combination between FEM and empirical models seems 

efficient. But regretfully, they did not give the predicted distribution of the fraction 

recrystallised or any measured data on grain size or the fraction recrystallised. Their 

results show a small gradient region near the surface where the grain is coarser than 

at the centre. Their conclusions were that " the kinetics for static recrystallisation is 

not evaluated exactly, the onset of SRX is calculated to occur too early in the 

multistage rolling process". Most recently, Mirza et al reported a very small 

prediction of the fraction recrystallised at the surface and relative high prediction at 

the centre for a 17-pass industrial schedule for AA3104 using two different 

approaches (Mirza et al '1001). No comparison with the measurement was presented 

in their work. The above two modelling results are unacceptable. The present 

authors have discussed this problem with several researchers connected with a large 

international aluminium company who have access to a considerable amount of 

micrographs. None of their micrographs support the above modelling results. Z: ) 
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In contrast, Winden's laboratory measurement for this alloy in a 14-pass rolling 

schedule show that the maximum fraction recrystallised is at the surface, see Fig. 2- 

7 and Fig. 2-8 (Winden 1999). Wells et al measured a slightly finer gain size at the 

surface than at the centre after 3-pass hot tandem rolling of AA5182, see Fig. 2-9, 

and there is an obvious difference in the distribution of the predicted recrystallised 

grain size through the thickness, see Fig. 2-10 (Wells et al 1998). We can conclude 
from Fig. 2-9 that the grain size is not wholly dependent on the variation of the 

fraction recrystallised because the gradient of gain size is much lower than the 

gradient of fraction recrystallised. Black et al's micrographs provide direct 

metallurgical evidence that rapid recrystallisation occurs at the surface in laboratory 

rolling, see Fig. 2-11 (Black et al 2001). The alloy used in Black et al's laboratory 

experiments is AI-I%Mn alloy. The first micrograph was obtained by a 30% pass 

followed by a further 40% pass in the same direction. The second micrograph was 

obtained by 30% forward rolling followed by 40% reverse rolling. 

50 
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Fig. 2-9 Comparison of model-predicted and experimental measurements of 

grain size in the strip after hot rolling for AA5182 (After Wells et al 1998) 
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Fig. 2-1 I Micrographs showing material half thickness in ND-RD plane for (a) 
20/40FF and (b) 30/40FR specimens annealed for I Os (after Black et al 200 1) 
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All previous work on the observation and modelling of SRX has proved to be very 

confusing in several aspects either for single pass rolling or for multi-pass rolling. It 

indicates the complex mechanism of SRX Several critical factors are unknown. 

These include the definition of the ideal distribution of fraction recrystallised 

through the thickness, what should be form of distribution (i. e homogenous or some 

pre-determined function), and if we assume all previous measurements to be 

correct, we must explain why these controversial distributions are necessary. It will 

also be necessary to establish the basic mechanisms behind the phenomenon. To 

optimise the rolling process and control the grain size evolution, we should know 

which factors play the most important role: alloying element, or stock geometry, or 

processing parameters (such as rolling temperature, roll speed, friction etc. ). Of the 

testing methods available, it will be necessary to define which test is most suitable 

to satisfy the basic physical premises such that empirical models similar to equation 

(1) and (2) may be more meaningfully interpreted. The evidence presented would 

suggest that laboratory rolling would appear to be the preferred test at the present 

time. However,, before commencing modelling by numerical methods, these 

questions must be clearly answered; otherwise any work would be questionable. 

Some of these points are covered in this thesis; others remain unsettled. 

From Fig. 2-4 to Fig. 2-6, one conclusion can certainly be drawn: the fraction 

recrystallised is overpredicted at the surface region after a single pass deformation 

when FEM is applied. In the present work, new methods are proposed to correct 

this anomaly. The study is carried out from four aspects: the calculation of 
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equivalent strain; the calculation of Z; averaging Z and the application of different 

empirical models. 

Coupling probabilistic cellular automaton with crystal plasticity FEM for simulating 
primary static recrystallisation have been reported by Rabbe and Becker (2000). 
The coupling between two models consists of. "extracting and translating the 

microstructure and stored energy data predicted by the FEA into the cellular 

automaton model; mapping these data on the quadratic cellular automaton in terms 

of the derived cell size, maximum driving force, and maximum grain boundary 

mobility occurring in the region, and establishing an adequate nucleation criterion, 

which makes use of these data. Davies( 2000) and Aretz et al (2000) combined the 

modified cellular automaton with normal FEM to predict the nucleation and grain 

growth during static recrystallisation. The cellular automaton was not fully 

integrated into FEM. Some elements are picked out of the workpiece mesh. If the 

elements leave the deformation zone below the rolls,, the FE simulation will be 

stopped and the resulting data (dislocation density) transferred to the cellular 

automaton simulation. 

Combining the physical model described in section 2.3.3 with FEM to predict SRX 

has not been reported. These approaches are not so complicated as cellular 

automaton in terms of programming and better than using the empirical model from 

the point of view of metallurgy. However, this approach requires the predictions of 

pi, 8 and 0. As discussed before, no successful examples have been given for the 

simulation of subgrain size and misorientation. After solving these two problems, it 

would be possible to employ the physical model. 

2.5 Design of hot rolling pass schedule 

Designing a rational pass schedule is the most effective way to control the final 

product qualities. However, it is very difficult to obtain any information about the 
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rolling pass schedule from the aluminium industry because of commercial 
sensitivity. But, it is relatively easy to find the published pass schedules for steels in 
the literature (Wehage et al 1998b, Mdntyld et al 1992, Svietlichnyj and Pietrzyk 
1999). 

According to different production requirements and applications, the process of 

aluminium hot strip rolling is categorised into five main processes (Bames et al 
1996): the twin roll caster routine, the process of thin slab casting followed by 

rolling on a hot tandem finishing mill, reversing roughing mill which performs both 

roughing and finishing duties, the hot reversing roughing mill coupled with a 

reversing warm finishing mill, and the conventional hot rolling process: reversing 

roughing mill followed by a continuous multi-stand mill. The scheduling strategy 
for each process varies considerably. 

Determining the number of pass, controlling temperature changes and product 

shape, allocating the amount of reduction and computing roll load and torque are 

the major contents in the design of pass schedule. The philosophy of scheduling is 

to maximise the output, minimise the power demand, achieve the narrowest 

tolerances for thickness, width, flatness and profile and run the mill with the least 

possible wear. Structure and properties of the material should also be considered 

since whatever the final form of the product, the hot rolled structure strongly 

influences the final properties. 

There are two modes of designing pass schedule: a forward strategy and a reverse 

strategy. The selection depends on whether the required initial values of thickness, 

temperature and width are given directly or whether one of them has to be 

determined iteratively (Czlapinski et al 1989). For the design of an initial pass 

schedule, the forward scheduling strategy is usually adopted. 
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Models in the pass schedule design involve: thermal model, rolling force and roll 
torque model, profile model, and microstructure model. It is of special importance 

to calculate the exact temperature changes because it has the major impact on the 

calculation of the roll force and power and considerably influences the structure of 
finished product. The adopted temperature model varies with designer and always 

need to be tuned with the industrial measured data. 

Accurate prediction of the rolling force is of paramount importance in the rolling 

industry. The most commonly adopted rolling force models are those due to Sim's, 

Orowan and Pascoe's and Ekelund's equation. Their comparisons have also been 

given in the literature (Larke 1957). Generally, the more accurate of the predicted 

rolling load, the less dependence on the control system, the less investment is 

required. The rolling force model for hot rolling is usually written: 

F= U*lW2QF (2-50) 

where a* is the modified plane strain yield stress, 1 is the roll-strip contact length, 

QF is the factor to account for pass W2 is the strip width after the roll gap, 

geometry and frictional conditions. 

The product profile is determined by the profile of the flattened roll, which can be 

controlled by spray cooling (Atack et al 1996) roll camber, thermal camber and roll 

bending. To cope with the problem of strain accumulation and to control the 

microstructure evolution, static recrystallisatIon must be considered. 
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Chapter 3 FEM Programs and formulation 

3.1 FEM programs 

'8ý 0 All simulations in the present thesis are conducted by FORGE2 and FORGE3R 
, 

which are two software packages developed by TRANSVALOR, a French company. 
Only those theories and analysis techniques, which are adopted by FORGE30ý' and 

related to the work in the following chapters, are taken from the literature (Chenot et 

al 1996 and 1999, TRANSVALOR 2001) and briefly introduced in this chapter. 

FORGE2R is dedicated to simulate the hot, warm and cold axisymmetric and plane 

strain bulk deformation processes, such as forging, rolling and extrusion. It has three 

databases: material database, process condition database and press database. Several 

alloys have been added to the material database. It can analyse the process with 

multiple deformable dies. The latest version is v2.9.4. 

FORGE3'E' predicts material flow for 3D bulk metal forming processes. A unique 

robust automatic remeshing technique enables the simulation of very complex parts. 

The program is also written to enable multi-processor computers to be used. This 

significantly reduces analysis time. 

3.2 Constitutive equation 

For hot rolling, the elastic effect can be neglected, the most economical laws are 

purely viscoplastic approximations. The 3-D isotropic viscoplastic Norton-Hoff law 

is written: 

2K(Vk) 
ni-I 
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E is expressed in term of the strain rate tensor 

1/2 

2/31 t2 
(3-2) 

ij 

K is the material consistency, a function of temperature T, and equivalent strain E 

K=K 0 
(eo 

+ E)n 
exp(, B'/ T) (3-3) 

where n and 8' are constants, and m in equation (3-1) is the strain rate sensitivity 

index,, which ranges between 0.1 and 0.2 for ordinary metals, and between 0.5 and 
0.7 for superplastic metals. Dense materials show a negligible volume change, 

which results in the incompressibility constraint: 

div(V) =0 (3-4) 

There is another viscoplastic flow stress law-the hyperbolic sine function, which is 

usually used to describe the flow stress behaviour at elevated temperatures, 

Ln - 

Iln 

4 a 

Z 2/n JAT 
(3-5) 

A, a, n are constants. Their physical interpretations are given in the literature 

(Sheppard and Jackson 1997). For various alloys, these constants are listed in the 

appendix 2. 

In FORGE20 and FORGE3g, the default constitutive equation is the Norton-Hoff 

law. The hyperbolic sine function is incorporated into these two programs by 

programming the user subroutine. 
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3.3 Friction model 

Three kinds of friction law are available in the FORGE2/3'ýý' codes; Tresca friction, 

Viscoplastic friction and Coulomb friction. The Tresca friction law is written in the 

following fon-n: 

67 AV 
T=-M T3 AV 

(3-6) 

where ff represents the yield stress, ff / V3 is usually temied the shear strength, m 

is commonly referred to as a friction factor, AV is the velocity difference at the 

interface. The Tresca law treats the interface friction as pressure independent and 

relates the friction stress directly to the yield strength of the deformed material. 

When in= I, sticking friction occurs. The range of in is 0 !! ý n7 !ýI. 

Viscoplastic friction law arises from the consideration of a thin interface layer of a 

viscoplastic lubricant between the workpiece and tool, as shown in Fig. 3-1. 

Workpiece oV Workpiece 

Viscop 
I 
lastic 

-Lubrica, 
nt v 

Lunricant 

Tool v Tool 

Fig. 3-1 Conceptual view of viscoplastic friction condition 

(after Wagoner and Chenot 1997) 

The Viscoplastic friction law is written in the following fon-n: 

r=-a*K*AV"-'*AV (3-7) 
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where a is a Viscoplastic friction coefficient and 0:! ý a! ý 1, which is a function of 

the normal stress. That means a could vary with thickness reduction in rolling. K 

is the consistency of the material, which is defined in equation (3-3). P is the 

sensitivity parameter to the sliding velocity. P is usually chosen as the same value as 

the strain rate sensitivity index in equation (3-1). When p=O, equation (3-7) turns 

into equation (3-6). Therefore, for the same simulation model, the value of a must 

be lower than the value of m in equation (3-6). 

The modified Coulomb friction law can be written as: 

AV 
/-Iu, - 

, AV 
ifjia 

and: 
(3-8) 

57 AV 
in-- V3 AV if V3 

with this relationship, the friction shear stress is equal to the normal stress a,, 

multiplied by the friction coefficient y or to a fraction of the maximum shear stress 

sustainable by the material. Equation (3-8) can be well illustrated by the following 

figure. 

Coulomb )ilý Transition Sticking 

T -------------- ------------- ----------- rrax 

P 

Fig. 3-2 Conceptual view of the modified Coulomb friction law 

(after Wagoner and Chenot 1997) 
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For convenient, a,, u and m are all called as friction coefficient throughout the 

present thesis. 

From the above equations, it is clear that each equation includes a term AV , the 

velocity difference between tool and workpiece. When AV approaches zero, certain 

problems occur. To solve these convergence problems in such cases, these friction 

laws are regularised, i. e. written as follows: 

0, AV 
(3-9) T3 VA+ Vol 

The regularisation sliding velocity AVO has a very small value. 

3.4 Thermal analysis 

The classical heat equation is written 

PC 
dT 

= div(kgrad(T)) + (3-10) 
dt 

The Norton-Hoff viscoplastic heat dissipation 4, is written as: 

fK(jel-) M+l 

The f factor takes into account the fraction of energy which is converted Into heat, it 

ranges generally between 0.9 and 1.0. f=0.95 is used throughout the present thesis. 

On the free surface, radiation is modelled by: 



78 

-k 
aT 

=E U (T 4 

-T 
4) 

(3-12) an rr 

On the surface of contact with the tools, conduction with the tool and surface 
dissipation due to friction must be taken into account: 

-k 
aT 

= hcd(T - Ttool +b** an b* + b,,, 
tool 

af K AVIP+l (3-13) 

3.5 Finite element approximation 

3.5.1 Finite element discretisation 

Using isotropic elements, the velocity field is discretised with the help of the nodal 

velocity vectors V, shape functions N,, and local co-ordinate vector ý as: 

I V,, N,, (3-14) 
n 

The mapping with the physical space is defined by: 4: ) 

x=N XN (3-15) inn 

n 

and the strain rate tensor is computed with the help of the B linear operator: 

I: V17Bn (3-16) 
n 

The pressure field is discretised in terrn of nodal pressure P, with compatible shape 

ftinctionsMni: 
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P, M, 

The discretised mixed formulation for viscoplastic material gives the set of 

nonlinear equations: 

R" = 2K(Výk) B dV +a Kjv, lp-'v, N,, dS - 
fptr(Bn)dV 

=0 (3-18) nfnff 
0 M, Q 

fM,,, div(v)dV =0 

which takes the symbolic fon-n : 

R(X, -E, V, P)=O (3-20) 

The time evolution of co-ordinate vectors and equivalent strain is governed by: 

dX 
=v (3-21) 

dt 

d Jff 
-* 

dt 
=F (3-22) 

3.5.2 Increment approach 

The nodal update can be perfonned with the Euler explicit scheme. If X' is the co- n 

ordinate vector of node number n at time t, with velocity vector Vnt ; at time t+ At 

the new co-ordinate vector will be: 

(3-19) 

Xt+At = Xt + AtVt (3-23) 
nnn 
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A second order scheme was shown to improve the accuracy, especially regarding the 

volume conservation of the part, with a Runge--Kutta method or the semi-implicit 

scheme: 

xt+At = xt t+v t+At +I At 
(Vn 

n nn2 

3.5.3 Approach of the coupled thermal and mechanical problem 

(3-24) 

The temperature field is discretised with the same elements as for the velocity field 

according to: 

T =IT,, N. (ý) =T-N (3-25) 
n 

The classical semi-discretised form is easily obtained from equation: 

C. dT 
+H. T+F=O (3-26) 

dt 

C and H are computed by: 

Cij = 
fpcNlNjdV (3-27) 

Q 

and 

Hij = 
fkgrad(Ni) 

- grad(N, )dV (3-28) 

Q 

while the F vector contains the viscoplastic heat dissipation and boundary 

conditions. The temperature field can be integrated with a second order scheme 

where: 
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T= aT 't-At 
- (1.5 - 2a - g)T t+ (a - 0.5 + g)T 

t+At (3-29) 

dT T' - T'-'ý" T "'ý" - T' 
-=0- g) +9- (3-30) dt At At 

C= (0.5 - g)C'-'ý' + (0.5 + g)C' (3-31) 

in the Dupont scheme, a=0.25 and g=l. 

3.6 Meshing and remeshing 

During the simulation of the forging and rolling process, which involve large or very 
large deformation, some elements soon become very distorted and are not 

appropriate for further computation. It is very often necessary to regenerate the mesh 

several times in order to complete the simulation. For very complicated industrial 

parts, tetrahedral elements seem more convenient for automatic meshing and 

remeshing. The 5 node tetrahedral mini element for the velocity, with linear 

continuous pressure is shown in Fig. 3-3. 

0 Velocity v and pressure p 

0 Velocity v 

Fig. 3-3 Finite element interpolation in a tetrahedron 

The remeshing module must be activated when one of the following conditions is 

reached: (a) one element becomes too distorted, due to internal shear; (b) the 

element sides of the mesh of the workpiece, which are located on the contact 

surface, are not small enough to follow accurately the local geometry of the tool. 
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Chapter 4 Simulation of 3-D hot breakdown rolling 

4.1 Comparison between the Norton-Hoff law and the hyperbolic sine function 

Flow stress functions may be divided into a number of groups differing type and 
taking into account the parameters describing initial conditions and the 
development of the material from the initial state (Grosman 1997). As described in 

Chapter 3, two flow stress functions: the Norton-Hoff law and the hyperbolic sine 
function, are adopted to relate the viscoplastic material behaviour for aluminium 

alloys under hot work conditions in the present thesis. Although several workers 
have proposed some more complex and advanced constitutive equations in recent 

years (Gelin et al 1993, Shi et al 1997, Puchi et al 1998), the major aluminium 

alloys that are studied in the present work: AA3003 and AAllOO have not been 

represented by these models. In contrast, the hyperbolic sine function has been 

applied to describe the behaviour of a great number of aluminium alloys (Sheppard 

et al 1997). 

Dashwood et al. (1996) have simply referred to the difference between these two 

flow stress ftinctions for AA7075. However, their comparison was not thorough. 

Therefore, it is still necessary to give more details about their difference under 

different temperature and strain rate conditions, especially their influence on the 

computed FEA results. Since the only available experimental data available to the 

present author is 4%Cu binary 2014 alloy (see appendix 4), the comparison is made 

for this alloy first. The comparison for AA3003 is followed. 

Fig4-1 indicates the correlationship among the regressed Norton-Hoff law, the 

regressed hyperbolic sine function, and the measured flow stress obtained from the 

literature. The regressed Norton-Hoff equation for 4%Cu binary 2014 alloy Is 

written 
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ý3 1* 1772 
* 875.71 * (E + Ejo * exp(2607.937 / T) *E0.177206 (KPa) (4-1) 

The regressed hyperbolic sine function for 4%Cu binary 2014 alloy is given in the 

appendix 3. 

It is clear from Fig. 4-1 that the hyperbolic sine function gives a better description 

for actual stress than the Norton-Hoff law does. The correlation coefficient of the 
hyperbolic sine function is nearly 1.0. Therefore, we have sufficient confidence to 

assume that, the hyper sine function can truly relate the flow stress with strain rate 

and temperature during steady state deformation under high working conditions. 

Because the flow stress behaviour for most aluminium alloys were expressed by the 
hyperbolic sine function in the past, in order to use the Norton-Hoff law in 
FORGE2/30, conversion from the hyperbolic sine function to the Norton-Hoff law 

is inevitable. How much accuracy is lost during this conversion is a common 

concern for each analyst. In the past the necessity for such a transformation was not 

occurred. Fig. 4-1 (c) compares the correlationship between the hyperbolic sine 
function and the Norton-Hoff law which is regressed from the hyperbolic sine 
function. The correlation coefficient in Fig. 4-1 (c) equals the correlation coefficient 
in Fig. 4-1 (a). That means the Norton-Hoff law regressed from the existing 

hyperbolic sine function has the same accuracy as the Norton-Hoff law regressed 

from experimental data. This discovery is of importance for the conversion between 

these two flow stress functions. 

Curves of the flow stress with temperature under different equivalent strain rates for 

these two flow stress functions are shown in Fig. 4-2. We can see that, there are 

significant differences between two curves in the low temperature range (lower than 

573K). The difference decreases with increase of temperature. The Norton-Hoff law 

significantly over-predicts the flow stress at low temperatures, and slightly under- 
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predicts the flow stress at high temperature. As the equivalent strain rate increases, 
the difference expands. It is noteworthy that, no measurement was carried out for 
temperatures lower than 573K (see appendix 4). The correlationship coefficient- 
0.985 between the Norton-Hoff law and the actual flow stress, shown in Fig. 4-1 (a), 

is only valid when conditions fall within the measurement range. When predicting 
the flow stress for a condition outside the valid range, the deviation from the true 

situation could be very large, as shown in Fig. 4-2. 

The same comparison is conducted for AA3003, and shown in Fig. 4-4 and Fig. 4-5. 

The regressed Norton-Hoff equation for this alloy is written 

31.1262 0 -0.0.1262 CY * 777.67 * (F- + c, ) 
exp(2194.284/T) F- (KPa) (4-2) 

From Fig. 4-4 (a), it is apparent that, these two equations correspond very well in t: ) 
whole temperature range. Fig. 4-4 shows similar feature as in Fig. 4-2. Z-: ) 

Fig. 4-6 shows the application of two flow stress functions into FEM for the plane 

strain rolling of AA3003. The rolling parameters, shown in Table 2, were provided 
by an aluminium company in Italy. 

Table 2 Rolling pass schedule 

Entry 

thickness 

Exit 

thickness 

RoIIin, 
-c-:,, 

temperature 

Roll speed Roll radius Measured 

pressure 

30mm l5mm 4500C 80 rpm 495mm 0.755 ton/mm 
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Fig. 4-6 Comparison of the computed pressure by two different flow 
stress functions regressed from the experimental data 

I 

It is clear from Fig. 4-6 (a) that, the two functions give identical curve shape. They 

reach the steady state regime and leave the roll gap at the same time. The measured 

rolling pressure in the steady state regime is 0.755ton/mm. The computed pressure 

by the hyperbolic sine function is 0.718 ton/mm. The relative error between the 

measured pressure and the computed pressure is 4.91%. For the model with Norton- 

Hoff law, the computed pressure is 0.663 ton/mm; the relative error is 12.2%. It is 

not surprising that the hyper sine function gives a better prediction than the Norton- 

Hoff does. The problem is that, the difference between two equations seems a little 

large. Since at the nominal rolling temperature 4250C (698K), two functions 

correspond very well (see Fig. 4-2), the difference should not be so large. The 

reason could be attributed to the derivative of the flow stress vs. strain rate. 
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To have a clear understanding of how flow stress function affects the computed 
results, it would be useful to briefly review the fundamental formulae of the rigid- 
viscoplastic finite element method (Kobayashi et al 1989). 

For rigid-viscoplastic materials, the following functional exists: 

z=f E(. ýjj ýV 
- 

1, F, u, dS (4-3) 

The first order of variation of above functional is: 

&= jffbeil-d V-1, Fi &i dS =0 (4-4) 

Where -6 = U(i% F- The incompressibility constraint on admissible velocity fields 

in Equation (4-3) is removed by using the penallsed form of the incompressibility as 

(5ir = f, d: '&-: dV +Kf tj, ikv dV -I Tý&jdS =0 (4-5) 

From arbitrariness of 8V, 
,a set of algebraic equations (stiffness equations) are 

obtained as 

a)T 
-I( 

a)T ) 

aui 
iý 

aul 
J(j) (4-6) 

Linearising Equation (4-5) by Taylor expansion near an assumed solution point 

V= VO . namely 

az a, z Au. =0 
lau, 

- V=ro - 
auiau "- U=U() 

(4-7) 

The first term of Equation (4-6) are expressed as 
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Li 
ýýP V. dV +j KCj V. C, dV - 

1, Fý Njj dS (4-8) aul 

The second derivatives of n are expressed as 

a, ir 
1 

f 
-ýýP Ij dV +2) 

IPIK 

VKVmPmdV+IKCJCIdV (4-9) auiaui EE aE EE 

a Cy The term ff and . are involved in equation (4-9). The influence of different flow aE 

stress functions on the computed results is thus introduced into FEM. 

For the hyperbolic sine function, the derivative of the flow stress with the 
equivalent strain rate is obtained as 

dZY 
= exp 

AH ). 1 
dE RT (x -n-A- 

[Sinh«Xd)]n-1 
- cosh(aU) (4-10) 

tanh(a-d) 
a. n. E 

and for the Norton-Hoff law exists 

d 
(4-11). 

dE 

Fig. 4-3 compares the difference between equation (4-10) and equation (4-11) under 
different temperature and strain rate conditions. There is considerable difference 

when the temperature is lower than 3000C (573K). As the equivalent strain rate 

increases, the difference rises from 200% to approximately 400%. When 

experimental data is correlated by either the Norton Hoff law or the hyperbolic sine 
function, the confidence level is usually higher than 95%. That means a very good 
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regression for the flow stress, but not for the derivative of the flow stress with the 
equivalent strain rate. Even if two flow stress functions have the same regression 
accuracy for the actual flow stress, it can not be assured that the same value of the 
derivative of flow stress with equivalent strain rate, which definitely contributes 
somewhat extent to the finite element analysis results. A quantitative description of 
this contribution could be very difficult due to the complex formulae in FEM. 

One interesting feature in Fig. 4-3 is that, the curve given by the hyperbolic sine 
function varies little with change of temperature, especially when strain rate is at a 
high value. Temperature affects the derivative of the flow stress with strain rate in a 
very complicated way, since both the numerator and the denominator in equation 
(4-10) involve the temperature T. If we take a look at Fig. 4-5, the curve given by 

the hyperbolic sine function varies considerably with temperature change, but still 

much less than the variation of the curve given by the Norton-Hoff law. That means 
the derivative of the flow stress with strain rate is sensitive to materials. 

The temperature distributions in the roll gap obtained by using these two 

constitutive laws are shown in Fig. 4-7 and Fig. 4-8. The temperature rise obtained 
by the hyperbolic sine function is little larger than the model given by the Norton- 

Hoff law. This is a reasonable result, because the load computed by the hyperbolic 

sine function is higher than the load obtained by using the Norton-Hoff law. Hence, 

more heat is expected to be generated. 

It is strongly advised that the reader should read appendix 9 before going through 

the following sections. In appendix 9, some important aspects related with the 

selection of the constitutive equation in the present thesis are explained. This 

explaination would be helpful for the reader to understand the work in the following 

chapters. 
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Fig. 4-8 Temperature distribution computed by the Norton-Hoff law 
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4.2 Rolling force and roll torque 

4.2.1 Rolling force 

In this section, selected passes of a real pass schedule supplied by M. P. C. 
Laminazione, Italy, are chosen to be analysed. The rolling was conducted in a 
single stand hot reversing mill. The rolling parameters are shown in Table 3. The 
FEM model is shown as Fig 4-9. Due to the symmetric nature of flat rolling, only a 
quarter of the slab is modelled. The slab length is chosen as 1000mm, long enough 
to obtain a reasonable rolling force record, short enough to minimise analysis time. 
The roll is treated as rigid with a radius of 495mm. The widths of pass 2,3, and 10 

are not provided in the original pass schedule. The values in Table 2 are calculated 
by the spread formulae. 

Table 3. Rolling pass parameters 

Pass 

No. 

Width 

(mm) 

Entry 

thickness 

(mm) 

Exit 

thickness 

(mm) 

Thickness 

reduction(%) 

Average 

temperature 

(1c) 

Roll speed 
(rpm) 

1 1800 580 540 6.897 560 40 

2 1814 540 500 7.407 555 40 

3 1832 500 460 8 550 40 

10 1860 220 180 18.1 5150C 55 

The deformed material is aluminiurn alloy AA3003. Its chemical composition is 

given in the appendix 4. The constitutive equation is shown in equation 

Material mechanical and thermal property parameters used in the simulation are 

given in Table 4. The measured roll force and torque are shown in Table 5. 
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Ak 

Fig. 4-9 The FEA model 

Table 4. Physical properties of slabs used in the finite element model 

I 

Heat capacity 

(J. Kg-l K-) 

Conductivity 

(W. m-'. K-l ) 

Heat transfer 

(W. M-2 K-l ) 

Possion 

Ratio 

Density 

(Kg. M-3) 

960 198 30000 0.33 2730 

Table 5. The measured roll force and torque 

Pass No. Measured Force(MN) Measured Torque(MN-m. ) 

1 8.11 1.46 

2 8.36 1.49 

3 8.61 1.52 

10 9.12 1.35 

Accurate inforniation about the rolling, force is essential when designing, a rolling Z: ) C) 

pass schedule. The rolling force directly determines the thickness precision of rolled t: ) 

products. The rolling force is also the basis for computing the rolling torque. The 
1-1) :n 

accurate prediction of both of these parameters is imperative if mill breakdowns are 
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to be avoided and to ensure maximum productivity in terms of geometric and 
property requirements. 

The rolling force is directly affected by the contact length, the friction coefficient, 
the material properties, and the temperature. The roll radius and reduction affect the 

rolling force indirectly through changing the contact length. Among these factors, 

the friction coefficient probably has the greatest influence. For passes I to 3, the 
friction coefficients are derived by trial and error by FEA. With the exception of the 
friction law, each computational parameter, including the mesh, material properties 

etc., are held constant. The derived friction coefficients are 0.7,0.6 and 0.35 for 

Coulomb friction law, Tresca friction law and Viscoplastic friction law 

respectively. 

It is clear that the friction coefficient is not the same for the same rolling condition 
for different friction laws in FORGE3. A lower value of friction coefficient is 

obtained for the Viscoplastic law than the other two friction laws. This is inevitable 

since the definition assumes that there is a continuous lubricant film within the roll 

gap, which is viscoplastic and is directly related to the material properties. Since the 

difference of thickness reduction for passes I to 3 is small, identical friction 

coefficients have been derived for coulomb and Tresca friction. 

The computed rolling load for pass I as the material traverses the roll gap is shown 

in Fig. 4-10. As expected the rolling force increases gradually when the slab feeds 

into the mill gap and reaches a relatively steady value when the defon-nation is in 

the steady state regime. Since only a quarter slab is modelled, the actual rolling 

force equals twice the average value in the steady state deformation shown in Fig. 

4-10. 
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Fig. 4-1 0 Comparison of the rolling load between the computed and 
the measured for pass 1 

For the viscoplastic friction law, the calculated rolling force is 4.12*2-8.24 MN. 

The relative error compared with the measured rolling force 8.11 MN is 1.6%. The 

error for the Tresca friction law and the Coulomb friction law are 1.1% and 3.3% 

respectively. The curves of Coulomb and Viscoplastic show nearly identical shapes, 

the same time to reach the steady state and same time to leave the roll gap. The 

curve for Tresca friction differs in shape. It needs greater time before reaching the 

steady state, and therefore the time leaving the roll gap is greater than other two 

friction laws. This phenomenon is of course due to the varying slip predicted by 

each friction mode. The common factor is that all friction modes give 

approximately the same averaged load in the steady state. Generally consideration 

of predicted rolling load value and the curve shape suggest that the Viscoplastic 

friction law gives a slightly better prediction than the other two friction laws. We 

may therefore adopt the Viscoplastic friction law and investigate pass 10. 

For pass 10, the analysis shows that when the friction coefficient is chosen as 0.35, 

the computed rolling load agrees well with the measured load. The computed 
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rolling load is 4.54*2=9.08 MN. The relative error compared with the measured 
load is 4.4%. One point, which should be noted,, is that this is a larger reduction 
than for pass 1, but nevertheless the friction coefficient is same. This phenomenon 

we may be attributed to the higher rolling speed and lower temperature compared 

with the first three passes. According to Lenard's study on hot rolling of 

commercially pure aluminium, the friction coefficient falls as the rolling speed 

increases and increases when the reduction is increased (Lenard et al 1999). In pass 
10, the effect of low temperature and high rolling speed balance the effect of high zn 

reduction, which may explain the calculation of the same friction coefficient. The 

comparison of the measured and computed rolling load is illustrated in Fig. 4-1 1. It 

is obvious that FEA gives excellent prediction. 

9.2 

9 

8.8 
. -ftý 

8.6 

'o 8.4 m 

8.2 

8 

7.8 

7.6 

[: i Viscoplastique 

0 Coulomb 

r-1 Tres ca 
Measured 1 

passl pass2 pass3 passlO 

Fig. 4-1 I Comparison between the predicted and the measured rolling loads 

4.2.2 Torque 

Perhaps the most important feature when designing the pass schedule is the 

calculation of energy requirement. An underpowered unit Is the most obvious risk 
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since this will lead to a reduction in productivity due to stalling. Thus we must 
ensure that the motor is more than adequate for any immediate or future workloads. 
In the present work, the calculated torque for various friction laws for pass I are 
shown in Fig. 4-12. 

1.6 

1.4 

1.2 

1.0 
0.8 

cr 0.6 
I- 0 

0.4 
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0.0 
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-. *-Tresca 
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0.0 0.2 0.4 0.6 0.8 

Time (s) 

Fig. 4-12 Comparison between the predicted rolling torques 
bv different friction laws for i)ass 1. 

The torque is obtained by post processing the output results from FORGE3. It 

should be emphasised here that the measured torques include the bearing torque. 

The bearing torque is not easy to measure. The values of the bearing torque 

calculated from rolling pass schedule program, which will be discussed in chapter 

6, are 0.084MN-m, 0.083MN-m, 0.082MN-m and 0.06MNm for pass 1,2,3 and 10 

respectively. Therefore, the rolling torques are 1.38MN-m, 1.41MN-m,, 1.44MN-m 

and 1.29MN-m respectively (shown in Fig. 4-13). The computed error of the rolling 

torque for the pass 1,2,3 and 10 are 9.4%, 7.8%9 6.9% and 14% respectively when 

Viscoplastic friction is employed. The computed rolling torque is under all 

conditions,, slightly greater than the measured value. So there is no risk of designing 

an underpowered unit. The torques calculated for pass 10 and the initial passes 
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would appear to be of good accuracy. In the practical rolling process, motors 
usually are able to sustain a certain amount of overload, and there are many 
interrelated factors, nevertheless it is necessary to pursue high computation 

accuracy to ensure that capital costs of the motor and drive chain are minimised. 

1.6 

1.55 

[3Viscoplastique 0 Coulomb 
E]Tresca 0 Measured 

1.5 

1.45 

1.4 

1.35 

1.3 

1.25 

passl pass2 pass3 passlO 

g. 
4 son between the predicted torques and the Fie, -13 Comparl 

measured values for different passes 

Table 6 The influence of element size on the computed results 

H/a Total element number Computed load(MN) Computed torque(MN-m) 

3 3349 4.25 15.6 

4 7661 4.15 15.2 

5 1390-5 4.13 15.2 

6 44998 4.13 15.1 

In table 6,, all analyses are carried out by using the v1scoplastIc fraction law with a 

friction coefficient of 0.335 for pass 1. The ratio of H/a is the value of slab thickness 
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of the simulation model over the characteristic element size. The increase of the 
ratio H/a means that the element size decreases and more elements are used. As we 
can see,, when H/a is greater than 4, there is almost no difference among the 
computed loads and torques. The computing precision improves no more. That also 
means that the searched friction coefficient is independent of the mesh density 

when H/a is over 4. When H/a doubles, for example changing from 3 to 6, the total 
element number increase 13 times. Due to the complexity of three-dimensional 

simulation,, 13 times increase in element number leads to at least 30 times increase 
in computing time. Therefore, the search of the critical H/a value is crucial for 

saving the analysis time. It should be emphasised here that the optimal value of H/a 

could increase if the research object is pressure distribution along the contact since 
it needs more nodes to display the local deformation information. 

4.3 Pressure distribution 

At the present time, few analytical studies have been presented on the distribution 

of pressure in the breakdown pass in hot rolling using numerical methods. The 

curves of pressure distribution in the roll gap for pass I and the pass 10 are shown 
in Fig4-14. The maximum pressure occurs close to the point of entry; after which 

the pressure drops gradually. This is in contrast to the pressure peak near the centre 
line for strip rolling. This conclusion coincides with Macgregor and Palme's (195 1) 

observation and the computed normal pressure curve of Chen et al. (1992) by using 

explicit dynamic relaxation model. 

Although the reduction of the pass 10 is about twice that of pass 1, the peak 

pressure value of pass 10 is lower than the peak pressure value of pass I (see Fig. 4- 

14). This phenomenon was also observed in Macgregor and Palme' (195 1) 

experiment. The maximum pressure in pass I is about 45 MPa. The yield strength t: ) 

under the current deformation condition is about 19 MPa. Peak pressure is thus 

much higher than yield strength. That is what Orowan called the "peening effect". 
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The peening effect was also found in Macgregor and Palme' experiment. The 

peening effect usually occurs in the early passes of the breakdown rolling, where 
the contact length is many times smaller than the slab thickness. Near entry, 
yielding is restrained by the adjacent and underlying elastic regions. V-shaped 

elastic region presents under a portion of the contact arc (shown in Fig. 4-15). 

4.4 Equivalent strain and stress state 

4.4.1 The distribution of equivalent strain 

The deformation mainly concentrates within the region of half thickness below the 

roll/slab interface when a small reduction (<10%) is applied (see Fig. 4-16). The 

magnitude of equivalent strain in the slab centre is about 0.08 indicating that the 

steady state deformation is not achieved in the slab centre. The curve of pass 3 

shows the same shape. This is a common phenomenon in industrial roughing rolling 

where the deformation can not penetrate into the slab centre. When 18% (passIO) 

reduction is applied, the equivalent strain at the slab centre increases. The highest 

deformation region is still concentrated near the interface of roll and slab but a large 

defori-nation zone gradually expands into the slab centre. For pass 1, the equivalent 

strain for the whole deformation zone is less than 0.25. For pass 10, the whole 

deformation zone has an equivalent strain value over 0.25. There are two factors, 

which cause large defonnation in pass 10. One is large reduction and another is the 
1: ) Z-: ) 

thinner thickness compared with the thickness in pass I- 

The curves in Fig. 4-17 show the variation of equivalent strain with time at three 

different positions from entering the roll gap to leaving the roll gap. The positions 

of three points are 270mm, 130mm and 30mm below the surface at a plane 30mm 

away the width centre. The three curves further verify the above conclusion. 
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4.4.2 Stress state 

There are two-dimensional tensile stresses, along the rolling direction and along the 

width, in the slab centre in the roll gap for pass I (see Fig. 4-18). Two-dimensional 

tensile stresses are undesirable because they tend to cause microcracks if the slab 

quality is not excellent. The stress through the thickness is compressive stress. This 

phenomenon is a feature of all rolling operations. The combined effect of three t: ) 

stress components is shown as the curve of pressure in Fig. 4-18. The pressure is 

defined as (ax + a,, + a-) /3 , the hydrostatic stress. In many fracture criteria, this 

hydrostatic stress is regarded as having a direct link with crack generation and plays 

an important role in causing cracks (Kim et al 1995). The compressive hydrostatic 

stress improves the plasticity and hence reduces the possibility of crack, and the 

tensile hydrostatic stress increases the possibility of crack 

20 
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Fig. 4-18 Stress distribution in the roll gap during the steady state for the pass I 



107 

4.5 The temperature variation during and after hot rolling 

Due to the limitation of equipment in the laboratory, there are severe differences 

between laboratory rolling and industrial rolling under some rolling conditions, 

such as the ratio of roll radius to the slab thickness, friction and cooling system. The 

ratio of roll radius to the slab thickness has a significant influence on the 

temperature profile through the thickness in the roll gap, and on the determination 

of spread. Presently, there appears to be no published literature reporting the 

comparison of the temperature distribution between different rolling conditions. 

All these aspects will be discussed in this section. The role of FEM is highlighted. 

The research works on the heat transfer coefficient in the rolling of aluminium 

alloys are reviewed since it is the major factor affecting the FEA accuracy of 

temperature. Knowledge of temperature changes in different slab positions after 

several passes will be helpful by offering the designer of rolling pass schedule a 

unique chance to understand rolling processes, and therefore to control the rolling 

process. In the following parts, a three-pass laboratory rolling schedule and a two- 

pass commercial rolling schedule are simulated. FEM gives an excellent agreement 

with the recorded temperature changes. 

4.5.1 The finite difference (FD) 

The theories of the analytical approach and the FEM have been discussed before. 

Here, only the method adopted by Sheppard and Wright (1980) is chosen as a Z-: ) 

representative for the FD. The theory of this method is briefly revisited. 

Applying the explicit finite difference equation to the general heat transfer equation 

and ignoring the material flow in the lateral direction (z), we obtain: 
t: ý 
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Fig. 4-20 Roll gap geometry and nomenclature 

Further assuming that heat flow is predominantly towards the rolls and using the t: ) 
nomenclature of Fig. 4-19 and 4-20, we obtain: 

T, (t + At) [Ti-I (t) + Ti, l 
(t)] + qD"'ý't + Ti (t) I- 

2ocAt 
(6X)2 K- (6X)2 

(4-13) 

using the same calculation time increment At for the slab and roll, the heat balance 

at the interface gives an interface temperature T, in the equation: 4D 

T, (t + At) = T, (t)+ 2M* (I + 7-) ýTl-l (t) 
- T, (t) + i-[Tj+l (t) - T, (t)]l (4-14) 

11 

where: 
K 

slab 
(5X)roll 

(4-15) 
Kroll (6X)slab 

M 2(At) 
(&-) 2 
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Friction at the roll-slab interface will cause a temperature rise locally near the 

interface. Assuming that the heat is generated only at the interface, and that sticking 
friction prevails, the temperature rise is given as: 

AT = 
2T(AV)(At) 

(4-17) (PC8X)roll + (PC8X)slab 

The tangential relative velocity between the slab and the roll is given by: 

AV =fI -h. cosa 
h. cos 0 

The time of contact between any element in the slab and the roll is calculated by: 

RR sin 20, 

Vccha 

[(h-, 
+2R)sinO. -RO. -21 (4-19) 

where 0 is defined as: m 

Om =sin 
VR8 

- 
52 /4 (4-20) 

R 

The heat generation per unit volume, q, is determined from the known stress-strain 

behaviour of the alloys: 

77c' In[ 
hl ] 

h, 
(4-21) 

where q is the fraction of work turned into heat. 



4.5.2 Single pass laboratory rolling 

Fig. 4-21 to Fig. 4-25 show the calculated results for a laboratory hot rolling pass. 
The material rolled is cornmercial purity aluminium. Details of the experimental 
program were given in Wright's thesis (1978). Briefly, the slab size is 30mm in 
length (rolling direction), 25mm in width and 25mm in thickness. The exit 
thickness is 17.5mrn, resulting in a 30% thickness reduction. The nominal rolling 
temperature is 5000C, and the roll diameter is 2-5-Omm. The average characteristic 
element size is 1.2mm, for the laboratory simulation. The comparison between the 

measured temperature data and the calculated curves is shown in Fig. 4-2 1. 
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laboratory slab rolling pass 

From fio-,. 4-2 1, xN, -e can see that,, the curve predicted by FEM is much better than the 

In the region near the curves given by the analytical approach and FD, especi 11 In_ II- 
surface. From the point of N-iew of the curve shape. all three methods give the same clý 
trend. The analytical approach gives a small temperature N-ariation from the slab Z: ý 
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surface to the slab centre, and the curve is much smoother than FD and FEM. This 

is not surprising since this method does not consider the heat generation caused by 

plastic deformation and friction work, and heat loss by radiation and convection. 
The thickness reduction in the current slab rolling pass is up to 30%. The effect of 
heat generation by plastic deformation at such a large deformation is expected to be 

very large and will change the temperature distribution gTeatly. When this effect is 

taken into account in the FD, the calculated accuracy improves greatly, especially in 

the centre region, where more heat is generated by plastic deformation. But the 

predicted temperature distribution is even worse than that provided by the analytical 

approach near the surface region. 
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Fig. 4-22 Comparison of temperature evolution through roll gap ZZ) 4n 
computed by FD and FEM for a laboratory slab rolling pass 4: ) 

The centre temperature profiles calculated by the FEM and FD are shown in Fig. 4- 

22. The contact time given by the FEM is about twice that given by the FD- One 

possible reason is that the influence of width spread is ignored in the FD. Metal 

flowing to the lateral side will increase the contact time by increasing the contact 

area with the rolls. Since the ratio of width to height of the current pass is 1.0, this is 
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a strong three-dimensional deformation. The width spread is significant. The 

computed transverse section predicted by FEM is shown in Fig. 4-23. It should be 

noted that Fig. 4-23 shows only a quarter of the actual section. It can be seen that 
there is intensive lateral deformation, causing non-uniform spread behaviour. 
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Fig. 4-23 The transverse section of the deformed slab (a 

Another possible reason is due to the assumption of uniform strain-rate distribution 

through the thickness adopted by the FD. In a process where high friction 

predominates (sticking friction was obtained in experiments by using a cleaning roll 

and an absence of lubricant), the difference of strain rate from slab surface to slab 

centre is significant. Therefore, the assumption of uniform strain rate is not 

appropriate. From Fig. 4-22, we can also see that the curve given by the FD drops 

quickly, while the curve given by FEM drops slowly. The temperature difference 

between FD and FEM increases with time. 
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Previous work has shown that the heat transfer coefficient plays an important role 
on the determination of the computed temperature by FEM. Very few experiments 
have been carried out to determine the heat transfer coefficient across the roll gap in 
the hot rolling of aluminium alloys, whereas the heat transfer coefficient in the hot 

rolling of steels reported by several workers (Semiatin et al. 1987, Smelser et al. 
1987) has shown large differences. 

In addition to the experimental method (Attack, Round, and Wright 1988), inverse 

analysis by FEM is another way to ascertain the heat transfer coefficient. When 

using this method, FEA is run iteratively until the computed temperature histories 

match the measured values satisfactorily. The reported values of heat transfer 

coefficient show great differences from 10,000 to 400,000 Win- 2 K-1 by this method 
(Chen et al. 1992, Lenard and Pietrzyk 1992, Well et al 1998, Mirza et al 2001). 

These differences may be attributed to the varying thickness of surface roughness of 

the roll and strip, the thickness reduction (which influences the pressure and hence 

the true contact area), and finally the thickness of the lubricant layer, this last factor 

alters the heat transfer characteristics across the interface. 

The influence of heat transfer coefficient on the computed temperature in the 

present work is shown in Fig. 4-24 and Fig. 4-25. Considering curves in both Fig. 4- 

24 and Ficr. 4-25, a heat transfer coefficient of 14000 WM-2 K-1 gives good prediction 

for both the surface point and the centre point. At the instant of time equalling 2s, 

the temperature differences between the curve given by 13000 WM-2K-1 and the 

curve given by 15000 WM-2K-1 in Fig 4-24 are 30C and 40C respectively. It is 

interesting to observe that in Fig. 4-25, there is a small temperature rise at the 

surface point after the slab leaves the roll gap. This re-heating phenomenon can be 

attributed to the equalisation of temperature throughout the slab after the severe 

chilling of the rolls has governed the distribution when the material is in the roll 

gap. Fig. 4-25 also clearly indicates a great temperature drop even in the slab centre. 

This is mainly caused by the chilling effect of the roll, even though 30% 
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deformation is expected to generate a considerable amount of heat. The reason is 
the thermal mass of the studied slab is less than 10% of the thermal mass of the 

rolls. The chilling effect penetrates into the slab centre, leading to considerable 
temperature drops in the centre region. The chilling effect on the surface of the slab 

can cause a substantial transverse gradient in the flow stress of the material. ) which 

influences the deformation and the roll forces. The temperature variation will result 
in differences in recrystallisation behaviour and in subgrain and grain sizes. 
Significant differences in temperature profiles at the slab centre and at the slab 

surface in the roll gap found in the present study confirm the necessity of 

employing a then-nomechanical coupled model to simulate the hot rolling process, 

since the deformation at different temperatures may lead to a significant variation in 

the flow stress and in the microstructure development. 
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4.5.3 Single pass industrial rolling 

In industrial rolling, especially in the early passes, the thermal mass of the slab is 

usually of the same order as the roll, and the thickness reduction is often less than 

10%. These conditions will essentially cause a different temperature distribution in 

the slab to that encountered in the laboratory. The temperature distribution is 

calculated here for an actual pass schedule. Larninazione Sottile SA, Caserta, Italy, 

supplied the experimental results. Rolling was conducted in a single stand hot 

reversing mill. The material rolled is AA3003. The inlet slab thickness is 580 mm 

and the exit thickness is 540 mm. The rolling was carried out at 5600C. The roll 

diameter is 990mm and surface speed is 2.073 m/s. Two remeshing boxes were 

adopted and the second box is located in the first box. The characteristic element 

I ide the remeshing box is 30mm, the element size in the first remeshing box s ze outsi I14: ) 
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is 15mm., the element size in the second remeshing box is 8mm. Computed results 
are shown from Fig. 4-26 to Fig. 4-29. 
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Fig. 4-26 Comparison of temperature distribution along thickness of slab 
for a industrial rolling pass 

Fig. 4-26 shows the temperature variation in the region 20mm below the slab/roll 

interface. After 20mm, there is no temperature change for all three approaches. The 

differences among the three different methods appear within the first IOMM. FD 

gives the lowest surface temperature, followed by the analytical approach, and FEM 

predicts nearly constant temperature distribution from slab surface to the slab 

centre. The temperature drop at the surface is 20C. The curves show the same trend 

as they do in Fig. 4-2 1. FD provides identical prediction as FEM does at 10 mm 

below the surface. The temperature difference between the FEM and the analytical 

approach is 20 0C after a depth of 20mrn below the surface. The reason for the small 

temperature variation along the slab thickness may be attributed to the distribution 
Z: ) 
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do 

do 
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From Fig. 4-27, we can see that deformation is mainly concentrated near the 

interface and there is very little deformation in the centre region. This is a common 
phenomenon in industrial roughing rolling where the deformation cannot penetrate 
into slab centre. A consequence of this kind of strain distribution is that much more 
plastic deformation energy is converted into heat in the surface region than in the 

centre region. Adding to the effect of friction in the interface region, all this 

generated heat compensates the heat loss into the roll, resulting in little temperature 

change in the surface, as shown by the FEM curve in Fig. 4-26. 

There could be some errors of the computed temperature distribution for the first 

8mm below the surface. This is because the slab is so large it is very difficult to use 

an element with a characteristic size less than 10mm. In the present simulation, the 

minimum element size is 8mm. in the roll gap and 30mm. outside the roll gap. 
Another possible reason, which can cause computation error,, is the heat transfer 

coefficient. In this case, the heat transfer coefficient is 30000 WM-2 K-1. Because no 

measurement of temperature distribution along the thickness was performed, it is 

very difficult to give an accurate value. However, the heat transfer coefficient 

adopted by Wells et al (1998) is an order of magnitude larger than the above value. 

When a heat transfer coefficient of 300,000 WM-2 K-1 was applied into the same FE 

model described above, it was found that nearly the same temperature drop, 2.40C, 

is observed. That means the mesh size is the major source error. Hence, a third 

remeshing box with an element size of 4mm was added to refine the elements 

below the surface. For the heat transfer coefficient of 30,000 WM-2 K-1, the predicted 

temperature drop is 4.80C on the surface just after the slab leaves the roll gap. This 

value agrees very well with the measured surface temperature drop (50C) using a 

non-contact pyrometer. Therefore, one conclusion can be drawn that the element 

size is the dominant factor determining the predicted surface temperature in the 

finite element computation. 
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In Fig. 4-28, the maximum deformation is in the slab centre, indicating a completely 
reverse curve shape to the curve in Fig. 4-27. From Fig. 4-29, it is apparent that there 

is very little temperature rise in the slab centre as slab goes through the roll gap. 
This is a completely different temperature variation history to the slab in laboratory 

rolling experiments. In laboratory rolling, even in the slab centre, there is a 
temperature drop of approximately 450C, caused by the large chilling effect of the 

roll. Such a significant difference between industrial rolling and laboratory rolling 

will certainly cause quite a different microstructure development. Therefore, 

conclusions drawn from laboratory rolling experiments should be treated with 

considerable caution when applied to industrial rolling. 
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Fig. 4-29 Comparison of temperature evolution through roll gap 

computed by FD and FEM for an industrial rolling pass 

In order to minimise this striking difference between laboratory and industrial 

rolling,, some new experimental techniques should be built into any laboratory 

study. A new rolling technique-SMART has been proposed by Winden (1999) to 
1ý 
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fulfil a reasonable temperature control for a 14-pass rolling schedule in a laboratory 

mill. Another laboratory study of hot rolling can be perfornied by Channel Die Hot 
Compression (Maurice and Driver 1994). 

4.5.4 Two-pass industrial rolling 

For most alurninium alloys, static recrystallisation may intervene during the 

interpass time if sufficient deformation at specific temperatures has been applied in 
previous deformations. Temperature has the most important influence on the 

recrystallisation behaviour. Temperature change in the slab during the interpass 
time is caused by the radiation and convection with surrounding air, and conduction 

with runout tables. The conduction with runout tables will cause non-symmetric 
temperature distribution between slab surface and slab bottom. This effect is 

ignored in order to shorten analysis time by using only a quarter of a complete slab. 

To study the temperature difference between the slab head and slab rear during 

rolling and during dwell time between passes, the temperature changes of some 

points are traced. Their positions within slab are shown in Fig. 4-30, in which X 

represents the rolling direction, Y represents the thickness direction and Z 

represents the width direction. The slab is 5 meters long. Other rolling parameters 

are the same as described in Table 3. 

Curves of temperature vs. time for these points are given in Fig. 4-3 1. The interpass 

air cooling time is of 20 seconds. For point 4, contrary to expectations, the 

temperature rises slightly, even after about 46 seconds. Temperature drops for point 

39 89 9 and 10 are 3,4,5,5 degrees respectively at the end of the first air cooling 

phase, and 6,7,9 and 10 degrees respectively at the end of the second air cooling 

phase. At the end of the second air cooling phase, point 9 and point 10 experience 

nearly the same time exposure in air, therefore the difference is very small. The 
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measured temperature drop by radiation pyrometer is approximately 50C after each 
pass. 

It should be noted that since pass I and pass 2 were performed on the same mill and 
have similar reductions, the heat transfer coefficient is chosen the same as in section 

21 4.5.3,3 0000 Win- K- . 

Plane 1 Middle Plane 0ý z Plane 2 

Fi, 
-,,. 

4-30 Illustration of trace point in slab 
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Fig 4-31 Temperature history for different points of the industrial rolling 

4.5.5 Three-pass laboratory rolling 

This is a three-pass rolling schedule. The details of the experimental program, 

equipment and materials are given in Raghunathan's thesis (1986). Briefly, the 

material is AA5056, with a size of 200mm in length, 70mm in width and 45 mm in 

thickness. The recorded temperature histories, at positions of 3.5mm below slab 

surface (called the surface point here) and at 22.5mm below the slab surface (called 

the centre point here) within the symmetrical plane along the width, were taken to 

compare with the computed results. Slab temperature after leaving the heating 
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furnace is 4560C. The thickness reduction of each pass is 5.5mm. The roll surface 
speed is 220mm/s. 

Three-dimensional finite element analyses were run from the initial air cooling 
phase due to transfer before the first pass, to the air cooling phase after the third 

pass. There are four cooling phases and three deformation phases. The computed 
temperature curves are shown in Fig. 4-32 and Fig. 4-33. Since the rolling were 

conducted on the same mill as described in section 4.5.2, the heat transfer 

coefficient is chosen as 14000 WM-2 K-1 for all simulation. 

Fig. 4-32 and Fig. 4-33 indicate that the slab temperature drops continuously and the 

rate of temperature drop is higher in the first air cooling phase than in the latter 

cooling phases. In each pass, the slab surface loses more temperature (380C) than 

the slab centre (150C). These temperature drops remain almost constant in all the 

passes. This is because the rolls are at the room temperature all the time and the 

heating effect of the slab on the rolls does not change the roll temperature 

apparently. The trace of each point contains three spikes. The rise in the 

temperature corresponding to these spikes increases with a decrease in the entry 

temperature (fig. 4-32). With a decrease of entry temperature for the same thickness 

reduction, the deformation energy input increases and thus the temperature rises. It 

has also been observed that this temperature rise decreases near the slab surface. 

Near the surface, the roll quenching effect more than compensates for the heat 

generation due to deformation and friction. Thus, for the material near the surface, 

the thermal history consists of two stages, an initial heat loss due to roll quenching : =1 4-7ý 

followed by a quick rise in the temperature to an equilibrium value by the heat gain 

from the hot interior. Outside the roll gap during the interpass period, there is not 

much variation in the temperature from the centre to the surface because of the high 

conductivity of aluminium alloys. 
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When comparing the measured curves with the computed curves (see Fig. 4-32 and 
Fig. 4-33), the first impression is that FEM gives a better prediction of temperature 

variation for the centre point than for the surface point in terms of the time that 

spikes occur and the value of spikes. Both predictions agree well with the recorded 

profiles. The predicted times at which the spikes of surface point occur are all about 
2-3 seconds in delay after the measured time, while the predicted times of spike for 

the centre point match very well with the measured values. The reason is that the 

interpass time used in comparison is taken from the curve of the centre point. The 

magnitude of temperature drop for both points at each pass is accurately predicted. 

The computed rate of temperature drop during interpass cooling is nearly identical 

to the measured rate. Only the effect of radiation and convection with the 

surrounding ambient air is included in the FEA simulation during the cooling 

computation. 
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4.6 Lateral deformation 

In this section, slabs with various initial lateral profiles rolled in both laboratory and 
industrial circumferences, either single pass or two successive passes, will be 
studied and compared with measured data in the literature (Wright 1978). The 

validities of various existing formulae on the prediction of spread under 
experimental and industrial conditions are compared. The difference of lateral 
deformation behavior under both laboratory and industrial rolling conditions is 
highlighted and discussed. The Taguchi method is applied to study the influence of 
various factors on the spread. Finally, a new formula is derived from a large amount Z-71 
of mixed data sets. 

4.6.1 Source of experimental data and the analysis model 

Four aluminium alloys are considered. Their chemical compositions are shown in 
appendix 5. The rolling pass schedules adopted in the simulation are shown in 
Table 7. All the experimental data are extracted from Wright's thesis (1978). The 

measured profile are given in the appendix 6. For the rolling of slab D8A the 

experiment was conducted in the laboratory. The measurement of width was made 
by micrometer giving readings accurate to within 0.01 mm. The rolling of AA5051 

and AA7075 were carried out at the Kitts Green works of Alcan Booth Sheet Ltd 

(now Alcoa Aluminium). The profile of each slab was measured before and after 

each normal pass with a hand held profile follower using pins of 7.5 mm di zD I iameter. 
The measurement error of this method is ± 0.1 mm; an order of magnitude less 

accurate than for the laboratory measurements. The top widths of slabs KG3 and 

KG7 were measured by photographing the slab with a specially marked rule held on 

its surface. The measurement error is ±4 mm, less than 0.3% compared with the 

whole width. The top widths of KG13A, KG13B and KG13C were measured by 

employing a large hand held 'vernier' which lay across the slab surface allowing the 4-: ) 

measurements to within ±I mm. Experimental details for 3003 were supplied in 
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the form of a 19 pass schedule by Lamanazione Sottile, Caserta, Italy. This 

schedule gave details of roll load and torque, but measurements of spread and edge 

profile were not supplied. 

To describe the simulation results clearly, some geometrical terms are defined 

according to Fig. 4-34. Only a quarter of the real slab is simulated. The plane EFGH 

and FDCG are symmetry planes. X represents the rolling direction, Y represents 

thickness, and Z represents the width direction. The variation of edge AD is the 

principal objective studied in the present paper. Ideally, the edge should be straight, 

but usually a convex or concave shape is observed. Throughout this section, only 

this curve is used to represent the edge profile. Point A is defined as the surface 

point, point D is the center point. The curve AE is the leading edge. 

HB 

Fig 4-34 Schematic slab geometry for FEM 
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4.6.2 Computed results 

The predicted edge profile for AA3003 is shown in Fig. 4-35. This pass is the first 

pass of a 19-Pass schedule. The friction coefficient 0.6 was obtained by the method 

of inverse analysis, which has been discussed in section 4.2. A sticking friction 

condition with friction factor of 0.95 illustrates the effect of friction coefficient on 

the spread. The edge profile is assumed straight before entering the breakdown 

pass. It should be noted that the starting point of measurement along the thickness is 

on the surface, corresponding to point A in Fig. 4-34. It is obvious that after the 

breakdown pass, the straight edge line turns into a concave profile. The reason will 

be explained in the next section. 
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Fig. 4-35 Predicted edge profiles of a slab with an initially straight 
profile for the industrial rolling of AA3003 

It also can be seen that, from Fig. 4-35, there is more increase in surface width for 

the lower friction coefficient than for the larger friction coefficient. Two 

mechanisms have been used to explain the widening of the slab contact face. The 
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first is termed 'side-fold', occurring by the transfer of material from side faces and 
being folded to form a new interface (Sheppard and Wright 198 1). Another 
mechanism is by the billet slipping across the rolls during rolling. Obviously, the 
second mechanism operates in this case. However, for sticking friction, there is a 
very strong trend of the occurrence of the side-fold. 
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Fig. 4-36 Changes of lateral profile of a slab with initially concave edge shape 
(KG7A is the initial profile and KG7B is the measured profile after deformation) 

Cr I11 Fig. 4-36 shows the change of an initially convex edge profile before and after a 
breakdown pass. The initially convex profile is inherited from the preceding 

"broadside" rolling. The width differences between the surface point and the center 

point of the curves for KG7A, KG7B and KG7B-Predicted are 7.5mm, 5mm and 

2.5mm respectively. This indicates that the width difference between the surface 

and the center decreases. The deformation tends to reduce the extent of convex 

profile. If the deformation continues, a concave profile will inevitably be produced. 

Fig. 4-37 shows an actual profile when rolling an AA5051 plate of 35mm final 

thickness. There is an obvious concaN,,, ity. 
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Fig. 4-37 Profile of actual rolled product 

The change of an initially convcave edge profile before and after a breakdown pass 

is shown in Fig. 4-38. The curve KG3A represents the III KG3B is initial edge profile. 

the measured profile after deformation. It is clear that, the extent of concavity 

increases and the computed profile matches very well with the measured curve. 
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Fig,. 4-38 Lateral profile of a slab with initially curved edge shape obtained by 

broadside rolling (KG3A is the initial profile, KG3B is the measured profile 

after deformation) 
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Fig. 4-39 Changes of lateral profile of a slab with initially convex edge shape (KG13A is the initial profile, KG13B and KG13C are the measured profiles 
after the first and second deformation respectively) 

60f 

600 

595 

590 

585 

580 

575 

570 

KG13C 
KG13C-Predicted 

50 100 150 
Surface Thickness (mm) Centre 

Fig. 4-40 Comparison of the predicted and the measured profile for 
KG13C (KG13C is the measured profile after two pass deformation) 
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Fig. 4-39 shows the changes of an initially convex profile (KG13A) after two-pass 
deformation. After approximately 5% thickness reduction, the curve KG13B is 
measured, following another 8.3% reduction, the curve KG13C is obtained. The fit 
between the curve KG1313-Predicted and KG13B is much better than the fit 
between the curve KG13C-Predicted and KG13C. In Fig. 4-40, the FEM model is 
shown to fit very well at the interface width and appears to overpredict the width for 
the data from KG13C. However, the measured width at the slab centre for KG13C 
is even smaller than that for KG13B, the only reasonable explanation is that there 

was a measurement error at the slab centre for KG I 3C. We can see that,, from Fig. 4- 
39, the faces of the slab which are in contact with the rolls increase significantly in 
width, the extent of bulge in the slab center decreases. The increase of interface 

width appears to originate mainly from the billet slipping. If the slab is further 

rolled, side fold will dominate, (see the predicted curve in Fig. 4-40). 

A careful measured lateral profile from laboratory rolling is shown in Fig. 4-41. The 

maximum measurement error is O. Olmm. The curves of D8A, D8A-I and D8A-2 

are all predicted profile. The curve D8A represents the edge profile after a single 

pass rolling of an initially straight edge. The total reduction (30%) of D8A-I and 
D8A-2 is equivalent to the reduction of D8A. The relative thickness reduction for 

D8A-I is 10%. The following relative thickness reduction is 22.2% for D8A-2. The 

measured edge profile after 30% single pass reduction is labeled as the "measured". 

It is obvious, the curve D8A matches very well with the measured curve. The curve 
DSA-15 obtained after slight deformation, shows little shape change in the center 

recrion, and slight more increase in surface width. This increase is caused by the 

effect of sidefold, since sticking friction is applied in the simulation. It is interesting 

to note that, the curve D8A-2 exhibits a "large" difference with the measured curve. 

This phenomenon was also discovered in the literature (Wright 1978). The 

interpretation can be attributed to several factors, and will be discussed in the 

following section. 
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Fig. 4-41 Comparison of lateral profile between one single pass and two 
successive passes (D8A- I is predicted after 10% relative reduction from an initial 
straight profile, D8A-2 is predicted after 22.2% relative reduction from D8A-1, 
and D8A is obtained by 30% relative reduction from an initial straight profile) 

Prior to discussing the computed results, it would be useful to revisit the existing 

conclusions drawn on spread during hot flat rolling. The lateral spread increases 

with 

*A decrease in the width/ thickness ratio of the slab 

0 An increase in the roll radius/ initial thickness ratio 

9 An increase in the reduction 

An increase in the entry temperature 

Other factors such as the interface friction, roll speed, and the material flow 

stress exert minor influence on the spread. 
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4.6.3 The effect of friction on the spread 

Fig. 4-35 indicates the influence of friction coefficient on the edge profile. In 

contrast to previous conclusions, the lateral shape is sensitive to the friction 

coefficient. When the friction coefficient varies, there is an obvious response to the 

profile. Since ffiction causes inhomogenous deformation in the slab, the smaller the 
friction coefficient, the more homogenous is the deformation in the slab. That is 
why the spread obtained when a low friction coefficient obtains is larger than the 

width spread obtained by a high friction coefficient. It also means that the 

elongation increases with increase of friction coefficient. But how to explain the 

contradiction between the predicted results here and the previous experimental 

results? The contradiction arises from the difference of temperature distribution 

throughout the slab thickness between industrial and laboratory rolling conditions. 
Generally, there is a high temperature drop (up to 45 OC in the slab centre in the 

rolling of D8A) in the slab in laboratory rolling (see Fig. 4-24). However, the 

temperature remains nearly constant in the slab centre in industrial practice even 

after two pass deformations and two air cooling periods (See Fig. 4-31). The 

temperature drop after the first breakdown pass on the slab surface is also small, 
less than 5 degrees in industrial practice. This significant difference in temperature 

distribution will naturally cause a different gradient of flow stress along the slab 

thickness. The flow stress at the surface is much higher than that in the slab centre 

in laboratory rolling conditions. The material in the slab centre flows easily 

whenever the friction coefficient is high or low, leading to the previous conclusion 

that the interface friction exerts a minor effect on spread. In industrial 

circumstances, the gradient of the flow stress along the thickness is small because 

of the small temperature gradient, and the thickness reduction is normally less than 

10% in those passes which are clearly three dimensional, resulting in a deformation 

concentration near the slab surface. The combined effects of these two factors 

ensure that the material flow at the surface is encouraged. 
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4.6.4 Successive reduction 

It is unusual to find a large single pass reduction in early stages in industrial 
breakdown rolling. Therefore, it is of interest to know how a succession of small 

reductions compares with one equivalent large reduction, and how lateral profile 
develops. Comparing the curves D8A-2 and D8A presented in Fig. 4-41, we can find 

that, for the curve D8A-2 which is the result of two successive reductions, the 

magnitude of outward spread at the slab centre is reduced, and the spread near the 

surface region is increased. This discovery is useful for the control of lateral profile 

by adjusting the amount of reductions for each pass. It also hints that, for a 

multipass schedule, the spread should be calculated pass by pass. There are several 

factors, which can account for the spread discrepancy. The first factor is the value 

of -vFR(51H, differs with each pass. For the curves D8A-1, D8A-2, and D8A, the 

values of -ýRPHI are 5,7.45 and 8.66 respectively. The second factor is the 

deformation concentration near the surface region due to the small reductions, 

leading to large spread in the surface. The third factor is the variation of the 

width/thickness ratio. 

4.6.5 Prediction of slab shape 

According to Wright's study (1978) based on the results from both laboratory and 
Z-D 

industrial experiments, when 

V-R-J 
<C±0.06 

HI 
(4-22) 

the lateral shape is concave. For laboratory experiments C=0.8 and for industrial 

rolling C=0.3-0.6. The computed values of -A(51H, for various rolling conditions 

are shown in Table 7. In all industrial rolling cases, the values of ýR(51H, are less 
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than 0.4, and all show a tendency of concave profile. In all laboratory cases, except 
the D8A- I, equation (4-22) also gives an accurate prediction of shape changes. 

Fig. 4-42 shows the predicted shapes of the leading edge, which is obtained by two 

successive reductions of KG13A. It is clear that the material at the slab centre 

elongates more than the material at the slab edge region, and the length difference 

between the centre and the edge increases with pass number. This kind of shape is 

always observed in industrial roughing passes and perhaps illustrates that spread 
does indeed induce residual stresses since when insufficient material is in the roll 

gap each fibre is allowed to elongate freely. 
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Fig. 4-42 The shape of leading edge (KG13B is predicted after 5% 
Z: ) 

reduction from KG I 3A and KG I 3C is obtained after further 8.3% 

reduction from KG I 3B) 
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4.6.6 Calculation of spread by different formulae 

The comparison of the predicted and the measured spreads for the cases of D8A and 
AA3003 are listed in Table 8. 

Table 8. Comparison of calculated spread 

Formula D8A AA3003 

Hill 0.37 0.00433 

Helmi & Alexander 0.53 0.0135 

Wusatowski 0.44 0.0012 

Sparling 0.39 0.00007 

Wright* 0.48 0.001 

Raghunathan* 0.02 0.00014 

Computed 0.478 0.17 

Measured 0.487 

*- Spread is defined as: 

Sw =Ln(W2 /Wl)/Ln(HI /H,, ) 

The six formulae to be examined here are due to Hill, Wusatowski, Sparling, Hehni 

& Alexander, Sheppard and Wright, and Raghunathan & Sheppard. Each formula, 

except Raghunathan & Sheppard's, gives an acceptable prediction for laboratory 

rolling (MA). Sheppard & Wright's formula gives the best prediction for this case. 

However, none of the existing fonnulae agrees with the predicted spread obtained 4: ý 
by the FEM. They all significantly underestimate the maximum spread during the 

breakdown passes in the industrial data. The reasons that all formulae fail to predict 

the spread for industrial practice may arise from: 
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Different slab geometry 

For the rolling of AA3003, the ration WIH, =3.1, RIHI=0.853. The 

corresponding ranges of W, / H, and R/H, for various formulae are shown in Table 

9. The R/H, automatically included in the FEA is excluded in all formulae. The 

reason for this omission in laboratory data is presumably that rolling the thick, wide 

specimens would overload an experimental mill. This exclusion might be the cause 

of the considerable difference in the two calculations. 

Table 9 The range of some geometric factors used in experiments 

Formula R/H W/H 

Helmi & Alexander 3.75-10 1-13 

Wusatowski 3-5 0.5-30 

Wright* 2.54-8.5 1-4 

Raghunathan* 5-12.5 1-3 

(2) Different rolling conditions 

All the above formulae are constructed from data collected in single pass rolling of 

flat slabs in the laboratory. There is usually no rolling emulsion applied, which 

could lead to sticking friction at the roll surface. The surface is thus restrained from 

expanding in the width direction. In industrial rolling, there is some degree of I-D 
lubrication. The surface can expand along the width direction. When the reduction 

is small, all deformation concentrates near the roll/slab interface, causing large 

spread on the top surface of slab. 

Hill's fonnula was the only work in which the spread was derived by analytical 

analysis. It is analytically correct but grossly underestimates the spread. In addition 

to the geometrical factors, the influence of temperature and friction condition Is 

included in Sheppard & Wright's formula for aluminium alloys. As reported in the 
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literature (Raghunathan and Sheppard 1989), for steels, the fon-nula proposed by 
Helmi & Alexander superseded the formulae proposed by Wusatowski, Hill and 
Sparling. Table 8 validates this conclusion. The reasonable prediction for D8A 

given by Helmi & Alexander's formula indicates that the properties of the material 

would exert a minor effect on the spread. From the point of view of the theoretical 

consideration, Raghunathan & Sheppard's formula is advanced since it involves all 

major factors. However, the formula was built up only on the basis of AA5056 and 

AA5083 at the temperatures of 3000C and 5000C. The term of Ln 
z 

is adopted to 
A 

consider the combined effect of roll speed, temperature and differing material 
behaviour. Although we would expect this to improve the prediction accuracy, the 

term greatly reduces the predicting capacity when the formula is applied to other 

alloys, which are not involved in the experiments. It indicates that more research is 

necessary in this area. 

Most recently, Winden (1999) proposed a formula for industrial break down rolling 

where the experiments were carried out on a laboratory mill. The predicted spreads 

sm. = 
Ln(W2 A 

by equation (2-10) for the D8A and the AA3003 are 0.16 and 
Ln(HI IH2 

0.19 respectively. It is clear that equation (2-10) fits very well with the AA3 003, but 

provides a bad prediction for the D8A. That is not surprising since equation (2-10) 

only considers the second important influence factor, the reduction, but neglects the 

most important factor, the ration of initial width to the entry slab thickness. Hence 

the valid range is greatly reduced. The ranges of R/H and W/H where equation was 

regressed are 0.6-17 and 0.9-30 respectively. 

4.6.7 Taguchi experimental design method 

In this part, the Taguchi method is employed to find out the Influence of each 

rolling parameter on the spread, to quantitatively estimate the relative contribution 
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of each control parameter and to express this contribution as a percentage. 
Quantifying the contribution as a percentage permits the engineer to gain insight 

into which control factors are the most important and which are less important. This 

kind of information can be very helpful for choosing the right variables to construct 

a new spread formula. 

The Taguchi method was conceived and developed by Dr. Genichi Taguchi in 
Japan after World War II. It is considered as a highly effective method for the 

determination of optimal values for the various parameters involved in a given 

manufacturing system and has been successfully used in many industries. The 

application of this method in the rolling industry is few (Tseng et al 1996, 

Yoshimura et al 1995). The Taguchi method emphasises returning to the design 

stage after inspection since statistical quality can never fully compensate for bad 

design. It seeks to design a process that is insensitive or robust to causes of quality 

problems. 

The Taguchi method adopts a set of standard orthogonal arrays (OA) to determine 

parameters configuration and analyse results. These kinds of arrays use a small 

number of experimental runs but obtains maximum information and have high t: ) 

reproducibility and reliability. The steps in applying the Taguchi method include: 

Deten-nine the quality characteristics to be optimised 

Select control factors(parameters) 

Design the orthogonal array 

Conduct experiments according to the array 

o Analyse the experimental data 

Determine the optimum parameter combination and quantify the 

contribution of each factor on the quality characteristics in percentage. 

There are four approaches that have been devised to study specific experimental 

design space: Build-test-fix, one-factor-at-a-time experiments, ftill factorial 
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experiments, and orthogonal array experiments (fractional factorial). Build-test-fix 

is an ineffective and inefficient method that necessarily leads to long development 

times and is strongly dependent on the skill of the experimenter. It is impossible to 
find an optimum design using this method. 

In one-factor-at-a-time experiments, the first factor is thoroughly studied under 
fixed conditions, and then moves to another factor until all factors are thoroughly 

studied. The drawbacks of this method are that it is not balanced and does not 

consider the interactions among factors. 

The full factorial approach investigates all possible combination of all factor levels. 

The biggest weakness of this approach is that it requires too many experiments. For 

example, 8 factors at three levels, all possible combinations are 38 (6561). The time 

and cost to conduct such a study is prohibitive. 

Taguchi's OA is considered to be superior than the traditional factorial design 

method since: 

9 The factorial design experiment is not efficient in handling large number of 

factor variables. 
Taguchi's OA experiments, on a product design yield similar and consistent 

results, even though the experiment can be carried out by different 

experimenters. 

9 The OA table allows determination of the contribution, of each quality 

influencing factor. 

* OA allows easy interpretation of experiments with a large number of 

factors. 

A typical tabulation is shown in Table 10. In the array, there are four parameters A, 

B, C and D, each at three levels. There are 9 rows and each row represents a trial 

condition with factor levels indicated by the numbers in the row. The vertical 
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columns correspond to the factors specified in the study and each column contains 
three level 1, three level 2 and three level 3 conditions for the factor assigned to the 

column. This is called an L 9(34). Usually, the orthogonal array is written as LA(Bc). 

A stands for the number of experimental runs. B stands for the number of levels for 

each factor. C is the number of factors. The total degree of freedom (DOF) equals 
A-1. In this array, the columns are mutually orthogonal. That is, for any pair of 
columns, all combinations of factor levels occur; and they occur an equal number of 
times. This characteristic is terined orthogonal. 

Note that this design reduces 81 (3 4) configurations to 9 experimental evaluations. 

There are greater saving for larger arrays. For example, using an L,, (3l') array, 

only 27 experiments are required instead of 1594323 (3"). As a result, the 
development time and cost are largely reduced. 

Table 10 An orthogonal array L9(3 4) 

Test number Parameter A Parameter B Parameter C Parameter D 

1 1 1 1 1 

2 2 2 2 

3 3 3 3 

4 2 1 2 3 

5 2 2 3 1 

6 2 3 1 2 

7 3 1 3 2 

8 3 2 1 3 

9 3 3 2 1 

As discussed before,, there are several kinds of parameters that have influence on 

the spread. They are initial geometry parameters (width/thickness, 

lengthAhickness), deformation zone parameters (draft, the contact length), process 
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parameters (temperature, roll speed) and material parameters (component). Four 

variables, the ratio of init'al width to the entry thickness ( W, IHI ), the ratio of roll 

radius to the entry thickness (RIH, ), the slab temperature (T), and the amount of 

reduction (AH% ) that are easily controlled, are selected for the study. Each 

parameter has three values, also called three levels. These values are shown in table 

11. For the ratio W, IHI , the values are 3,6 and 10. For the ratio of RIH, , the values 

are 1,5 and 8. For the slab temperature, the values are 4000C, 4700C and 5400C. 

For the reduction AH%, the values are 10%, 20% and 30%. 

Table II Test parameters and their levels 

Level W, 1H, RIHI AH% T( uC) 

1 3 1 10 400 

2 6 5 20 470 

3 10 8 30 540 

Substituting corresponding parameter values to table 10, the experiment design Is 

obtained and is shown in table 12. In this study, the entry slab thickness is fixed at 

60mm. 

Table 12 Experimental design and results 

Run No. W, IHI RIHI AH% T( OC) Spread 

1 3 1 10 400 0.124313 

2 3 5 20 470 0.14199 

3 3 8 30 540 0.2186 

4 6 1 20 540 0.03117 

5 6 5 30 400 0.055387 

6 6 8 10 470 0.047248 

7 10 1 30 470 0.02 

8 10 5 10 540 0.016147 

9 10 8 20 400 
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With regard to the spread, there are two types of definition. One is defined as 

Ln(W2 WI) 

Ln(H, H2) 

Another definition is usually referred to the natural width strain 

Ln(W2 / WI) 

Equation (4-23) is first studied. 

(4-23) 

(4-24) 

Results obtained from the orthogonal array are usually analysed to achieved the 
following objectives (William et al 1995): 

* To estimate the contribution magnitude of each parameter on quality 

characterics. 

9 To gain the best or optimum condition for a process or a product, so those 

good quality characteristics can be sustained. 

* To predict the response of the product design parameters under the optimum 

conditions. 

The first objective is obtained through the analysis of variance (ANOVA). ANOVA 

uses the sum of squares to quantitatively examine the deviation of the control factor 

effect responses from the over all experimental mean response. 

The optimum design is identified by investigating the average response of each 

parameter level in the OA experiments. For each level, the mean of quality 

charactertic response is calculated by 

(4-25) 
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n is the number of experiments that include the level. For example, The first level of 
the WIIHI is included in the experimental run number 1,2 and 3. The first level of 
the RIHI is included in the experimental run number 1,4 and 7. In the array 

Lq (3') ,n is a constant 3. So for the W, 1H, at level 1, the mean for spread is 

calculated by: 

--10.1243 + 0.141994 + 0.2186) 
3 

= 0.16163 6 
(4-26) 

The mean values at other levels of other factors for the spread can be calculated in 
the same way, and calculated results are shown in the Table 13 under the column 

y. 

In order to detennine the optimal parameter design, the signal-to-noise (S/N) ratio is 

adopted. The S/N ratio can reflect both the average (mean) and the variation(scatter) 

of quality characterics under one trial condition. The S/N function is defined by 

SIN= 10*Log(MSD) (4-27) 

where the MSD stands for the mean square deviation. The purpose of using the 
In 

constant 10 is to magnify the S/N value for easier analysis. In this investigation, the 

MSD is expressed as: 

MSD =2 yi 

The mean S/N ratio is expressed as: 
9 

SIN=-Y(SIN)i 
9 

(4-28) 

(4-29) 

= -24.39119 
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Table 13 Level average response analysis using S/N ratio 

Variables Level Runs y y S/N SIN (S/N)" 
1 0.124313 -18.1097 327.9612 

W, IHI 3 2 0.141994 0.161636 -16.9546 -16-0904 287.4584 
3 0.218601 -13.2069 174.4234 

4 0.03117 -30.1253 907.5346 
6 5 0.055387 0.044602 -25.1318 -27.2565 631.6076 

6 0.047248 -26.5124 702.908 

7 0.02 -33.9794 1154.6 
10 8 0.016147 0.046703 -35.838 -29.8266 1284.365 

9 0.103962 -19.6625 386.6134 

1 0.124313 -18 . 1097 327.9612 
RIHI 1 4 0.03117 0.058494 -30.1253 -27.4048 907.5346 

7 0.02 -33.9794 1154.6 

2 0.141994 -16.9546 287.4584 
5 5 0.055387 0.071176 -25.1318 -25.9748 631.6076 

8 0.016147 -35.838 1284.365 

3 0.218601 -13.2069 174.4234 
8 6 0.047248 0.12327 -26.5124 -19.7939 702.908 

9 0.103962 -19.6625 386.6134 

1 0.124313 -18.1097 327.9612 
AH% 10 6 0.047248 0.062569 -26.5124 -26.8201 702.908 

8 0.016147 -35.838 1284.365 

2 0.141994 -16.9546 287.4584 
20 4 0.03117 0.092375 -30.1253 -22.2475 907.5346 

9 0.103962 -19.6625 386.6134 

3 0.218601 -13.2069 174.4234 
30 5 0.055387 0.097996 -25.1318 -24.106 631.6076 

7 0.02 -33.9794 1154.6 

T. 400 1 0.124313 -18.1097 327.9612 
5 0.055387 0.094554 -25.1318 -20.968 631.6076 
9 0.103962 -19.6625 386.6134 

1 0 
470 2 0.141994 -16.9546 287.4584 

6 0.047248 0.069747 -26.5124 -25.8155 702.908 
7 0.02 -33.9794 1154.6 

540 3 0.218601 -13.206 174.4234 
4 0.03117 0.088639 -30.1253 -26.3901 907.5346 
8 0.01-6-14-7 1 

-35.838 1 1 1284.365 
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The sum of the squares due to variation about the mean is: 

9 

SS = 
(S / N, - 

3ý-INY 

= 503.1005 
(4-30) 

For the factor expressing the ratio of width to thickness, the sum of the squares due 

to variation about the mean is 

3 
SSW, 

/ H, LM* (S / Niij -S/ N)' 
j=l 

(4-31) 

Where M is the number of experiments at the level I of the ratio of width to 

thickness. 

=-3*(S1Nwi -S1N)'+3*(S1NfV2-S1N)2 +3*(SINH3 -SIN)2 

= 319.9713 

If this procedure is repeated for RIH, , 
dH and T, the following is obtained: 

SSR/H, = 98.173 

SSAH'1o = 31.729 

SST 
= 53.227 

(4-32) 

These values represent a measure of the relative importance of each control factor 

in controlling the spread. The percentage contribution of the relative effect each Z: ) 
factors has on the spread is shown in the following: 
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Factor W, 1H, : (319.9713/503.1)xIOO=63.59988ý/ý 

Factor RIHI : (98.173/503.1)x 100=19.51362% 

Factor AH% (31.729/503.1) x1 00=6.30662% 

FactorT: (53.227/503.1)xIOO=10.57987/` 

From table 14, it is clear that the factor W, IHI has an overwhelming influence on 

the spread, the factor AH% has the minimum effect. Table 14 also implies that the 

factor of temperature should be included in spread fon-nulae. 

Table 14 Analysis of variance of spread defined by equation (4-23) 

DOF ss SS% 

W, IH, 2 319.9713 63.59988 

RIH, 2 98.173119 19.51362 

AH% 2 31.728658 6.30662 

T 2 53.227398 10.57987 

Total 8 503.1005 100 

AH% having the minimum effect on the spread does not seems a reasonable 

conclusion. Most researchers could not accept it. But it does come from scientific 

analysis. This is due to the definition of the spread. All the above analyses are 

perfom-ied based on the equation (4-23), S,,, = 
Ln(W2 I W, ) 

. The effect of reduction 
Ln(HI / H2) 

on the spread is involved implicitly in the definition of spread through the 4: ) 

introduction of the temi Ln(H, IH2 )" 

If equation (4-24) is adopted, a differing analysis emerges. The obtained analysis of 

variance for the spread defined by equation (4-24) is shown in table 15. 
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Table 15 Analysis of variance of spread defined by equation (4-24) 

DOF ss SS% 

W, IH, 2 321.04148 41.05 

RIH, 2 97.559536 12.474 

AH% 2 309.42486 39.564 

T 2 54.06191 6.912 

Total 8 782.08778 100 

Surprisingly, a totally different order is given except for the ratio of W, IHI . W, IHI 

has nearly the same effect as AH% on the spread, followed by RIH, and T. 

Considering this point, Winden's formula, which just considers the effect of 

reduction, is incorrect. It is clear the effect of T can be neglected to simplify the 

process of establishing a new formula. 

From the aforementioned discussion, we can see that the Taguchi method is indeed 

helpful for gaining insight into the spread behaviour, and does provide useful guides :n 
for controlling the spread behaviour. 

When applying the Taguchi method, two elements have significantly influence on 

the results. They are the choice of parameters and the value at each level. For the 

spread, the influencing parameters include: roll speed, roll temperature, friction 

coefficient, material resistance and the four parameters studied in the above 

sections. The reason for excluding the first four parameters are that they either have 
tD 

minor influence on the spread, or they are difficult to control. If all these parameters 

are chosen as parameters, an orthogonal array L,, (3') will suit this task. 



153 

0.045 
0.04 

0.035 
0.03 

.00.025 
0.02 

CL 
cn 0.015 

0.01 
0.005 

0 

0.04 

0.035 

0.03 

0.025 

'0 0.02 

0.0.015 
0.01 

0.005 

0 

(a) 

10 
Wl/Hl 

15 

0 10 20 30 40 
Reduction (1/6) 

0.04 

0.035 
0.03 

0.025 
M 0.02 

0. U. 01 5 

0.01 

0.005 

0 

(b) 

0 

0.03 

0.025 

0.02 

,o0.015 

0. U. U I 
ch 

0.005 

0 -L- 
350 400 450 500 550 

Temperature 

Fi, gr. 4-43 Plots of response of each parameter level on 
the spread defined by equation (4-24) 

The average effect of each parameter level on the spread is shown in Fig. 4-43. 4: ý 
From Fig. 4-43, it can be seen that: 

(a) the spread coefficient increases with the decrease of W, IHI 

(b) the spread coefficient increases as reduction AH% increases 

(c) the spread coefficient increases as RIH, increases 

(d) the spread coefficient generally increases with the increase of deformation 

temperature 

These agree with most workers' experimental observation. It is also interesting to 

f ind that , in Fig. 4-43 (a), there is little change in the spread when the ffrIH, >6; the 

spread increases linearly with reduction (see Fig. 4-43 (c)) and the spread shows a 

more complex relationship with the deformation temperature (Fig. 4-43 (d)). 

5 10 
R/Hl 

(d) 
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4.6.8 New spread formula 

From the above discussion, it is clear that FEM gives an excellent prediction of the 
lateral profile under both laboratory and industrial rolling conditions. This shows 
that the laboratory or industrial experiments can be replaced totally by FEM. The 

advantages of such a replacement are obvious. There is no equipment limitation, the 

accuracy of measurement is high and little capital investment is required. We adopt 

a quarter model to analyse hot flat rolling process by FEM, stop the analysis when 

rolling reaches the steady state regime, use a powerful workstation and limit the 

experimental analyses. This is regarded as sufficient to construct a spread formula 

with high precision. The time would be shorter than the time necessary for 

laboratory experiments, especially when the whole experimental procedure is 

considered, i. e. homogenisation, rolling, machining and measurement. 

From Table 14 and Table 15 , it can be seen that the definition of the spread 

coefficient directly determines which factor should be included in any spread 
formula. With the consideration of reducing any possible measurement error, it was 

decided that equation (4-23) would be abandoned because it involves both a change 

in width and a change in thickness. A more satisfactory way is to use equation (4- 

24), where W-) is the maximum width after deformation. The advantage of using 

equation (4-24) is that the spread coefficient is a simple function of reduction. If we 

W1 W' 
revisit equations (2-4) to (2-8), we can see that three parameters: Hj 9 ý-R * dH 

(where dH = H, - H-, ) and 
R 

are adopted. This suggests that S is a function of 
H, 

above three factors. In recent years, a parameter, 
H' 

the ratlo of the mean roll gap 
L 

thickness to the projected arc of contact, is adopted to distinguish various rolling 

conditions (Biinten and Karhausen 1999). The value of where 
L 
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L= VR -*dH decreases from approximately 4 in the initial breakdown pass towards 
the values of 0.3 in the finishing hot rolling pass. This parameter will also be 
included in the new formula. The influence of temperature is neglected as suggested 
by the study using the Taguchi method. Hence a total of 4 factors will be involved 
in the new formula. 

A total of 434 sets of spread data are employed to deduce the new formula. The data 

are taken from two sources: one is from the FE analyses for various industrial 
rolling conditions (50 data sets), another part is taken from Wright's laboratory 

experiments (384 data sets) (Wright 1978). It is zn expected that the new formula 

constructed in this way will be able to deal with both laboratory rolling and 
w W, RH industrial rolling. The ranges of -,, and ' are: H, , VR *dH ' H, L 

1:! ý W, /Hl 

0.54:! ý W, /J- -*dH :! ý 28.6 
1: 5 R/Hl :59.48 
0.42:! ý H. /L <4 

(4-33) 

The software used to obtain the new spread formula is Microsoft Excel 97. The 

linear regression function "LINEST" in Excel 97 is applied for multiple linear 

regression. This function calculates the statistics for a line by using the "least 

squares" method to calculate a straight line that best fits the provided data. The 

equation for the line is: 

M1 Xi + 1112 X2+---+b (4-34) 

where the dependent y-value is a function of the independent x-values. The m- 

values are coefficients corresponding to each x-value, and b Is a constant value. 
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Note that y, x, and m can be vectors. The array that "LINEST" returns is 
Im. 

9 mn-, ý--.., m, . bl Imn, mn- 1,..., m I, b 1. 

When applying the function "LINEST", one necessary condition is the knowledge 

of the possible form of the formula. Although four factors are ascertained above,, 

there are countless functional combinations for these four factors. The most 

common function are due to linear, power and exponential relationship. From 

equations (2-4) to (2-8), we can see that there possibly exists an exponential 

relationship between Sw and W, IVR * dH , and possibly power relationship 

between S,, and W, IHI 
. After many trial regression analyses, it was found that the 

following formula gives the best fit with the raw spread data: 

w 0.1071*ý 
wl 

R -0 * 848 
wl -1.481 -2.6978 

Ln 0.2187 *e -JR*dHi (4-35) 
W, H, H, L 

It can be seen from equation (4-35) that H. IL contributes more to the spread 

coefficient than does W, IHI 
. The reason why H,,, IL is not studied as a parameter 

in the Taguchi method is attributed to the difficulty of controlling the variation of 

H,,, IL. The value of H 
.. 
IL is usually calculated by 

Hm (HI +H2 )/2 

L -ýR- 
-*dH 

(4-36) 

where H, and H, are the thickness before and after the roll gap. From equation 

36) 
, it can be seen that the H.. IL is influenced by three parameters: H,, H-, (or 

dH) and R. In the above Taguchi experimental design, see table 12, the value of 

H is fixed. W,, R and H were determined according to the levels of W, 1H, 
2 

RIH, and AH% = (H, - H2 )/ H, x 100. Hence, in each analysis, the H,,, IL is 
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different. That means the H,,, IL, W11H, 
, RIH, and AH% can not be applied 

together to design an orthogonal array. In order to compare with the reported work, 

it was decided that the H,, IL should be ignored in the orthogonal table. But this 

does not mean that the H 
.. 
IL is not important. On the contrary, it could be the 

most influencing variable. 

The relation between Sw and W, IýR * dH is shown in Fig. 4-44. It is obvious that 

an exponential function does exist between S, and W, IVR * dH . We can also 

observe that most data,, which are taken from Wright's thesis, are situated within the 

range of W, IVR * dH !ý 10. The reason is due to the roll load limit of the laboratory 

mill. The slab width can not be larger because of torque limitation. The fit between 

the prediction and the measurement is illustrated in Fig. 4-45. The correlation 

coefficient is 0.97. 
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Fig. 4-45 Correlation between the measured/computed spread and the 
predicted spread coefficient by the new formula 

To check the validity of the new formula, the variation of spread coefficient of a 14- 

pass schedule was calculated and compared with the laboratory measurement by 

Winden (Winden 2000). The experiments were carried out in a laboratory mill in 
the University of Sheffield, but the industrial rolling conditions were reproduced 

through the introduction of a series of new techniques. The calculated spread 

coefficients are shown in Table 16. The values in the column 4 to column 7 in Table 

16 are calculated by using the expression Wi IWO 
, where W, is the width of ith pass, 

WO is the initial width which is 55 mm in this particular rolling pass schedule. It is 

assumed here that the values given by Winden's equation can be regarded as the 

actual measurement because his equation is regressed from the measurement. 

From Table 16, we can see that the present work shows a better prediction than 

Sheppard & Wright's equation and Helmi & Alexander's equation. Sheppard's 

work gives the greatest unrealistic values after the twelfth pass. It is believed that 
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this result is caused by the first term in equation (2-8) (Winden 2000). Although the 

present formula is regressed from nearly the same data sets as Sheppard & Wright's 

equation adopted, the new formula show more flexibility and accuracy due to two 

main reasons: 

(a) The introduction of the terin of ý 
Hm 

in equation (4-35) 
L 

(b) The introduction of industrial data into the regression data set 

Table 16. Comparison between different spread formulae 

Pass No. 

(Winden) 

H, H2 Sheppard 

Eq. (2-8) 

Helmi 

Eq. (2-7) 

Winden 

Eq. (2-10) 

Present 

work 
1 58.6 50.1 1.006 1.032 1.028 1.030451 

2 50.1 48.2 1.007 1.033 1.035 1.035224 

3 48.2 43.4 1.009 1.047 1.051 1.050404 

4 43.4 38.7 1.013 1.063 1.066 1.065958 

5 38.7 34 1.016 1.083 1.082 1.082465 

6 34 29.3 1.02 1.106 1.097 1.100177 

7 29.3 24.6 1.026 1.133 1.113 1.119475 

8 24.6 19.8 1.034 1.168 1.129 1.141663 

9 19.8 15.1 1.045 1.208 1.145 1.166637 

10 15.1 11.3 1.062 1.244 1.157 1.188666 

11 11.3 7.6 1.104 1.286 1.17 1.215497 

12 7.6 4.7 1.298 1.323 1.179 1.241364 

13 4.7 3.2 0.311 1.341 1.184 1.255344 

14 3.2 2.2 0 1.353 1.188 1.266232 

The present author believes that the introduction of 
E-m 

into the spread calculation 
L 

is vital for the success. Unfortunately, this temi was ignored In all previous 

fon-nulae. It is worth emphasising that even though equation (4-35) is derived for a 
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series of single pass deformation, it still performs quite well for multi-pass rolling 
process. 

4.7 Prediction of damage evolution 

Edge cracking is a common rolling defect occurred in the hot rolling of aluminium 

alloys. It is desirable to predict and eliminate the occurring of edge cracking in the 
design stage. Several studies have been carried out in recent years by incorporating 
ductile fracture criteria into the FE code (Kim et al 1995, Hartely et al 1997, 

Behrens et al 1999). Cockroft & Latham's criterion may be the best for practical 

applications, because no material constant is included in the formula (Kim et al 
1995). The modified Cockroft & Latham's criterion is expressed as: 

fýdE 
=C 

0& 
(4-37) 

In Fig. 4-46, the maximum damage value is 0.21, which occurs at the ed e and the Z: ) 9 

slab centre. That means the edge and the centre are the most dangerous places. If 

the damage value reaches a critical value, either edge cracking or alligatoring may 

occur. Because there is no practical data nor experimental evidence to connect edge 

cracking or alligatoring in any aluminium alloys it is not possible to predict the 

fracture limit or to assess whether the maximum value of C=0.21 will produce 

unsound products. We can however observe that the greatest values occur at those 

locations most susceptible to cracking. 

The rolling process is made up of a series of single passes. Similar to the strain, the 

damage value is inherited from pass to pass. If the damage value is computed from 

the first pass to the pass in which the edge cracking becomes manifest, the 

accumulated damage can be regarded as the critical damage value. It is suggested 
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that the critical damage value C could be obtained, by conducting hot compression 

tests. 

Fig. 4-46 The damage value distribution in the rolled slab 
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Chapter 5 Simulation of Microstructure Evolution 

5.1 Modelling of subgrain size 

5.1.1 Hot flat rolling of commercial purity aluminium 

It is well known that the microstructure of dilute Al. alloys during hot deformation 

consists of subgrains within the original grain in those processes In which 
recrystallisation does not intervene during the deformation and during any interpass Z-ý 
time. The subgrain distribution and the mean size have a significant influence on 
mechanical properties: determining the strength, ductility, texture, etc. Thus 
knowledge of the distribution of subgrain size is critical for quality control. 

In this section, the experimental data are taken from Zaidi and Sheppard's (1982) 

experiment. Generally, The material specification conforms to AA I 100. The slab is 

25mm. in thickness and 25mrn in width. The rolling was performed at 5000C and at 

strain rate of 2s-1 in a single stand mill with roll diameters of 250mm. The thickness 

reduction is 40%. The specimens were quenched within 3 seconds in ice water after 
deformation. The measurement locations are shown in Fig. 5-1. All these points are 

in the symrnetrical plane along width, where the plane strain defori-nation prevails. 

Therefore,, a 2-D plane model is used. 

The measured microstructure in the roll gap is shown in Fig. 5-2. Figure 5-2 (a) i I z: -:, 
I is 

taken from a foil extracted from a position 8 mm ahead of the roll bite, indicated by 

A in Fig. 5-1. There is no evidence of subgrains, the only substructural feature being 

dislocation lines which terminate either at particles or grain boundaries. This is 

typical of a cast and homogenised structure. At a position closer to the roll gap 

(location B in Fig. 5-1) but still generally considered to be outside the quasi static 

deformation zone,, an imperfect cellular structure with ragged walls and 

considerable dislocation activity may be observed (see Fig. 5-2 (b)). It indicates that 
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very low strains are required to produce sufficient activity to initiate the formation 

of subgrains. 

Figure 5-2 (c) shows that many dislocation tangles have formed in the grain interior 
but that well defined sub-boundaries form only at the grain boundaries and at those 

positions where larger particles are located. This is because the grain boundaries are 
likely to be locations of the greatest stress in lightly deformed material. 

At the onset of observable macroscopic deformation (position D in Fig. 5-1, I mm 

into the roll bite) the electron micrograph (Fig. 5-2 (d)) indicates a structure 

consisting of well developed subgrain walls but containing a multiplicity of 

4microcells' within each subgrain. Subgrain size in Fig. 5-22 (e) is stabilised and no 

further change is observed after the position E in Fig. 5-1. 

Generally, in a billet rolled at 5000C with 40% reduction, the average subgrain 

diameter decreased from -9 to 6.4, wn within the first 10 mm of the projected 

length of contact. The total length of contact for such a reduction is 35 mm. 

Fig. 5-1 Locations of subgrain size measurement (after Zaidi. and Sheppard 1982) 
Z: ý 
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(d) 

(e) 
Fig. 5-2 The development of a subgrain structure as material passes 

through the roll gap (after Zaidi and Sheppard 1982) 

The relationship between the subgrain size and the deformation parameters in the 

steady state regime was given by: 
=1 

(5. %. %-] = -0.196 + 0.0153 * LnZ (5-1) 

In the following prediction of the subgrain size evolution, Sellars and Zhu's model 

is applied. The F-6 , the characteristic strain for the subgrain formation, is assumed 

proportional to Z-1, which differs from Sellars et al. 's assumption (2000). 

(a) (b) 
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E5 = -1 
(5-2) 

Substituting equation (5-2) into equation (2-28), obtaining: 

d8 =8Z (8ss 
- 6)dF, (5-3) 5ss *A 

where A is a constant. The initial subgrain size is taken as 9 ýtm , which is indicated 

by the experimental observations. In many circumstances, the initial subgrain size is 

unknown, replacing the initial subgrain size by the initial grain size seems the most 
logical way to apply the equation (5-3). The variation of subgrain size with constant 

and increasing strain rate calculated by equation (5-3) is shown in Fig. 5-3. 
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Fig. 5-3 The variation of subgrain size under different strain rate 
conditions calculated by equation (5-3) 

It is apparent that the curves presented In Flg. 5-3 show similar trends to those in 

Fig. 2-2 (e). The subgrain size decreases with increasing strain, and attains a 

strain rate 
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stabilised value of 6.4 ýtrn . The strain needed to attain such a steady subgTain size is 

about 0.2 for constant strain rate and 0.8 for increasing strain rate. 

The computed distribution of subgrain size using equation (5-3) by FEM is given in 

Fig. 5-4. Obviously, Fig. 5-4 shows a reasonable prediction for subgraln size: 

subgrain size at the surface is smaller than that at the centre and the decreases from 

the entry to the exit. Clearly it is constant after leaving the roll gap. 

Line Subgrain si 

8=8.711 
7=8.422 
6=8.133 
5=7.844 
4=7.555 
3=7.266 
2=6.977 
1=6.689 

Fig. 5-4 Distribution of subgrain size computed by equation (2-28), in um 

To give a better understanding of the variation of subgrain size, the histories of 
47) 

III Z-D point A and point B are traced from the beginning to the locations shown in Fig-5-4. 

The variations of subgrain size with time for these two points are shown in Fig. 5-5. 

For the surface point, the stabilised subgrain size of 6.4 ýLm is first attained at a time 

of 0.2s, while the centre point obtains its steady state value of 6.75 ýtin at a time of 

approximately 0.4s. As discussed before, the stabilised subgrain size at the centre is 

6.4pi, the relative error between the measurement and the prediction is 5.5%. 

Chen et al (1990) also simulated the same rolling process by using the empirical 

X=l I X-20 X=32 
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equation (2-23), the predicted subgral 1111 n size in the state steady reg ime is5.2 ýLm , the 

relative error is approximately 20%. It is clear that the present prediction is much 
better than Chen et al's work. 

The predicted distributions of subgrain size through the slab thickness at different 

locations in the roll gap are shown in Fig. 5-6. X=O corresponds to the position 

where the rolls just contact the workpiece before rolling. The curves marked 

"X=20mm" and "X=32mm" is much smoother than the curve marked "X= II mm". 

This implies that the difference of subgrain size between the surface point and the 

centre point decreases as the slab passes through the roll gap. The subgrain size at 

the slab surface is smaller that that of the centre point, due to the lower 

temperatures at the roll/surface interface. 
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Fig. 5-5 Variation of Subgrain size with time 
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Fig. 5-6 Variation of subgrain size along the thickness 

Fig. 5-7 shows the predicted distribution of subgrain size when no modification has 

been made to equations (2-23), i. e. substituting the instantaneous nodal strain rate 

and temperature directly into equation (2-23), and using normal activation energy. 

The range of subgrain size is between -1549, um to 1004, wn. That is clearly 

impossible. The subgrain size can not assume a negative value nor one as large as 

1004 ýtm. Another feature of Fig. 5-7 is that the distribution is irregular. The reason 

is that equation (2-23) is just a statistical relationship, which relates the subgrain 

size with mean strain rate and nominal rolling temperature. Critically, this equation 

is not suitable for the prediction of subgrain size during transient deformation, 

because it is constructed in the steady state regime. Therefore, it is not surprising 

that FEM gives unreasonable results because FEM uses the instantaneous strain rate 

and temperature, which vary both with the position and time. 
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19 

Line Smbgraim size 
8 720.1 
7 436.5 
6 152.9 
5= -130.7 
4= -414.3 
3= -697.9 
2 -901.5 
1 -1265. 

& Max i= 1004. 
o Mini = -1549. 

Fig. 5-7 Predicted distribution of subgrain size by equations (2-23) by using 
instantaneous strain rate, temperature and normal activation energy, in ym 

Unlike Chen et al's work where the prediction of subgrain size based on equation 
(2-23) utilised a Zener-Hollomon parameter averaged over the whole deformation 

zone, the Zener-Hollomon parameter is calculated by using instantaneous nodal 

strain rate and nodal temperature in the present study. 

Fig. 5-8 shows the computed subgrain size using the same ideas that Chen et al 
(1990) adopted: strain rate is averaged over the whole deformation region at each 

increment during FE computation, but it also varies as deformation progresses. 

Comparing Fig. 5-8 with Fig. 5-4, it can be seen that using the physical model gives 

a much better prediction than using the empirical model. The predicted subgrain 

size at the centre in Fig. 5-8 at exit is 5.15, um, which approaches Chen et al's 

prediction, 5.2, um . 

Finite element analyses show that distribution of strain rate is erratic and irregular 

rom entry to exit with greatest contribution at entry point. There are too much bias f 

in the roll gap. The subgrain size at exit Is most important. However, the strain rate 

at this position approaches zero. Hence it is necessary to average strain rate over the 

whole deformation zone. 
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Fig. 5-8 Predicted distribution of subgrain size by equations (2-23) by using 
averaged strain rate, temperature and normal activation energy, in pm 

5.1.2 Hot rod extrusion 

Although hot extrusion is not the research topic in the present study, it would be 

useful to compare the subgrain size evolution with an alternative strain path. Both 

hot extrusion and hot rolling belong to hot bulk deformation. Theoretically, 

equation (2-28) should be valid for hot extrusion. The experimental model is taken 

from Vierod's PhD thesis (1983). The extrusion schedule is shown in Table 17. The 

measured subgrains size at different locations in the container, shown in Fig. 5-9, are 

listed in Table 18. 
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Table 17 Extrusion schedule 

Extrusion ratio 40: 1 

Ram velocity 6.7mm/s 

Extrusion temperature 325 0C 

Billet size (mm) 0 73.5 * 95 

Container size (mm) 075 

Container temperature 275"C 

Ram temperature 225"C 

Die temperature 2250C 

Table 18 Measured subgrains size 

Location Measurement (gm) Error Predicted (gm) Relative Error 

A 1.27 0.19 1.29 1.57 

B 1.38 0.11 1.4 1.45 

C 1.36 0.21 1.44 5.88 

D 1.88 0.12 1.82 3.19 

E 1.49 0.25 1.57 5.37 
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Fig. 5-9 Schematic illustration of locations of the TEM specimens 

Unlike the rolling process, the subgrain size from point A to point E increases due 

to the inherent temperature rise. In this case, 8,, is given as 

5ss-1 = -1.747 + 0.096 * LnZ (5-4) 

The computed history of the subgrain size for point F is shown in Fig. 5-10- It is 

I increases steadily before reaching the die mouth. obvious that the subgrain size iI 

When point F enters the high deformation region, the subgrain size gTows rapidly. 

After leaving the die mouth, the subgrain size maintains an equilibrium size; any 

possible growth being prevented by the water quench which is usually applied. The 
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substructure observed at point D and E are shown in Fig. 5-11 and Fig. 5-12 

respectively. 
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Fig. 5- 10 Variation of subgrain size with time for point F 
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Fig. 5-1 I Substructure observed at point D (After Vierod 1983) 
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Fig. 5-12 Substructure observed at position E (After Vierod 1983) 
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Fig. 5-13 Variation of strain rate with time for point F 
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Fig. 5-14 Variation of temperature with time for point F 

The variations of strain rate and temperature for point F are shown in Fig. 5-13 and 
Fig. 5-14 respectively. Temperature and strain rate also increase with time before 

leaving the die mouth. It is obvious by inspecting all the formulae that the higher 

the temperature, the larger the subgrain size; the higher the strain rate, the smaller 

the subgrain size. The effect of increasing temperature complements the effect of 

increasing strain rate on the subgrain size. At the die mouth, the strain rate, 

temperature and subgrain size all reach their peaks. Also, the curve presented in 

Fig. 5-10 exhibits almost the identical shape to the curve presented in Fig. 5-14. This 

implies that temperature must play a dominant role on the determination of subgrain 

size. Certainly, it's influence would appear to be greater than the precipitates and 

dispersoids readily identified in Fig. 5-1 I and Fig. 5-12- 

The profiles of subgrain size, strain rate, equivalent rate and temperature from point n 
E to point D at the die mouth are shown from Fig. 5-15 to Fig. 5-18. The predicted 



177 

subgrains size at point E and D are 1.57ýtm and 1.82 gm respectively. The relative 
errors compared with experimental measurement are 5.4% and 3.2% respectively. 
The predicted subgrains size for other points are listed in Table 18. It is clear that the 

predicted subgrain size agree well with the measured data. 

The strain rate, equivalent strain and temperature at point D are all larger than those 

at point E, leading to a larger subgrain size at point D. It is interesting to find that 

there is a sharp growth in the equivalent strain near the die surface due to the strong 
friction effect (sticking friction condition is assumed in the present simulation). 
Since the die temperature is 1000C below the initial billet temperature, there is a 

strong heat transfer phenomenon between the billet and the die. The combined 

effects of friction and heat transfer cause approxim ately 5 OC temperature rise 
between points D and E. 
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Fig. 5-15 Variation of subgrain size along line ED 
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Fig. 5-18 Variation of temperature along line ED 

Although equation (2-28) gives a good result in the present research, it still is a 
half-physical model, depending upon strain, strain rate, temperature and previous 

state of subgrain size. As discussed earlier, the initial subgrain size is the 

consequence of dislocation movement and interaction. From the point of view of 

metallurgy, the internal dislocation density should be included or should precede 

equation (2-28) in the calculation. Most recently, Nes et al (Nes 1998, Marthinsen 

and Nes 2001) have proposed a model relating subgrain evolution with dislocation 

density and other metallurgical variables. 

When using equation (2-28), there is a parameter which has not been clarified in 

Furu et al's work (see Fig. 2-2). This is the determination of the initial subgrain size. 

In the present paper, the Initial subgrains size, 9ýlm is extracted from the 

experimental measurement. Therefore, it is not a problem in this study. Regretfully, 

experimental work on the measurement of subgrain size from the beginning to the 

steady state regime is scarce. 
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As we know, the initial internal dislocation density usually varies from 108 to 10 11 

-2 M. According to Holt's work (1970), the relationship between internal dislocation 

density and subgrain size is given as 

JVp =K (5-5) 

For the same K, if p varies from 108 to loll M-2, the corresponding maximum value 

of 6ma, is about 31.6 times the minimum value of 6min. In the current stage of 

modelling the evolution of subgrain size, few experimental data are available. The 

determination of some parameters, i. e. E,,, is obtained by tuning to one 

experimental data set. Therefore, the choice of initial subgrain size will significantly 

affect the determination of e,, , and hence the predicted results of subgrain size. 

5.2 Modelling of dislocation density 

In this part, the internal dislocation density is computed based on Sellars and Zhu's 

model (2000). Since the objective of calculating dislocation density and 

misorientation (discussed in the later section) is to calculate the flow stress, the 

geometric necessary dislocation density pg is neglected due to its small 

contribution to the flow stress. Hence, only the random dislocation density is 

considered and assumed to replace the internal dislocation density. The FE analysis 

model is the same as that described in section 5.1. 
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Fig. 5-19 Distribution of internal dislocation density 

Fig. 5-19 shows the distribution of the computed internal dislocation density pi. The 

maximum dislocation density occurs near the exit in the surface due to the effect of 

strong shearing since sticking friction is applied in the simulation. To understand 

the evolution of internal dislocation density, point A (see Fig. 5-4) is traced from the 

beginning of the rolling to the position illustrated in Fig5-4. The variation of pi of 

point A with the position in the roll gap is shown in Fig. 5-20. The initial pi is 

assumed to be 1011M-2. It is clear from Fig. 5-20 that there is a sharp rise from 

approximately 101 IM-2 to the peak value of 4x 1013M-2 within a very short period, 

and is followed by a slightly decrease caused by dynamic recovery during 

deformation in the roll gap and static recovery after leaving the roll gap. Unlike 

subgrain size which remains constant after leaving the roll gap, the random 

dislocation density decreases since the generation of dislocation density stops due to 

the cessation of further plastic deformation, while static recovery or static 

recrystallisation occurs during the interpass time. 
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Fig. 5-20 Variation of internal dislocation density for point A 

The predicted profiles of pi along the thickness at different location (see Fig. 5-4) in 

the roll gap are given in Fig. 5-21. We can see that as the workpiece passes through 

the roll gap, the values of pi rise and the gradients increase due to increasing shear 

strain. The curves present in Fig. 5-21 shows a completely reverse shape to the curve 

in Fig. 5-6. From Fig. 5-19 to Fig. 5-21, it can be seen that the predictions seem 

reasonable with common metallurgical observation. Due to the dearth of the 

measured data in dislocation density, comparison between the measurement and the 

prediction can not be performed. Once the measured data is obtained, the constants 
in equation (2-20) need to be tuned to the experimental data set. The tuned model is 

then applied to predict the dislocation evolution. 
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Fig. 5-21 Distribution of the pi through the thickness at different locations 

5.3 Modelling of misorientation 

The predicted distribution of misorientation 0 is shown in Fig. 5-22. The maximum 

0 of 30 appears at the surface, nearly the same position as that the maximum 

appears. The history of 0 for point A is given in Fig. 5-23.0 also first remains 

almost constant, then increases to the peak within a short period and finally reaches 

a steady value of about 1.90. The maximum 0 situated at the surface is attributed to 

the strong effect of shear strains, which contributes more to the equivalent strain 

than the other strain components, while at the slab centre, little shear strains exist. 

The relationship between shear strain and the equivalent strain will be detailed in 

section 5.5. 



Line Misorienta 

0 = 2.667 
7 = 2.333 
6 = 2.000 
5 = 1.667 
4 = 1.333 
3 = 1.000 
2 = 0.6667 
1 = 0.3333 

Fig. 5-22 Distribution of misorientation 

C, 

0 

C, 
I- 
0 
U) 

2 

2.0 

1.8 

1.6 

1.4 

1.2 

1.0 

0.8 

0.6 

0.4 

0.2 

0.0 

-20 0 20 40 60 80 100 120 140 

Time (s) 
Fig. 5-23 Variation of misorientation with time for point A 

184 



185 

5.4 Modelling the flow stress based on physical model 

The predicted distributions of the flow stress by equation (2-32) and equation (2-33) 

are shown in Fig. 5-24 and Fig. 5-25 respectively. Two figures show similar 
distribution except the magnitudes. Fig. 5-24 indicates that the now stress at the 

surface is about 4 times higher than the flow stress at the centre. This is caused by 

two effects: lower temperature at the surface (about 700C temperature drop from the 

surface to the centre, see Fig. 4-25) producing a small subgrain size; strong shear 

strain generating high dislocation density and high misorientation. As discussed in 

section 4.6, this considerable gradient in the flow stress between the surface and the 

centre will produce a serious difference, i. e., microstructure, lateral deformation, 

between laboratory and industrial rolling. Fig. 5-24 further confirms the explanation 

of the difference on the lateral deformation between laboratory rolling and 

industrial rolling. 

Line Flow str 

8 = 57.97 
7 = 51.43 
6 = 44.89 
5 = 38.35 
4 = 31.81 
3 = 25.27 
2 = 18.73 
1 = 12.19 

Fig. 5-24 Distribution of the flow stress by equation (2-32) in MPa 
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Fig. 5-25 Distribution of the flow stress by equation (2-33) in MPa 
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Fig. 5-26 Variation of flow stress for point A computed by different models 
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The comparison of the histories for point A calculated by equation (2-32) and 
equation (2-33) is illustrated in Fig. 5-26. It is apparent that values computed by 

equation (2-33) are larger than the values calculated by equation (2-32). Similar 

results have been given in the literature (Marthinsen and Nes 2001, Nord-Varhaug 

et al 2000). The difference between two curves is small before the two curves reach 
the pseudo steady state. The flow stress declines slightly and gradually during the 

steady state. These curves fit with metallurgical observation. Since dynamic 

recrystallisation does not usually intervene, the effect of either dynamic or static 

recovery exert minor effects on the flow stress. The results demonstrate that the 

prediction is reasonable. 

The curves present in Fig. 5-26 exhibit almost identical shape to the curve present in 
Fig. 5-14. This implies that dislocation density must contribute more to the 

determination of the flow stress than subgrain size does. Urcola and Sellars (1987) 

and Zhu et al (1997) have reached the same conclusion for Al-Mg alloys. However, 

from h-nmarigeon and McQueen (1969) et al's observation on substructure for 

superpurity aluminiurn rolled after 90% reduction in a single pass (see Fig. 5-27 and 

Fig. 5-28), there is little dislocation within the subgrain, especially at high 

temperature. The strengthening effect by subgrain size should be the major source. 

The modified Hall-Petch relationship, equation (2-31), should be used for the 

prediction of the flow stress. Therefore, the conclusion that dislocation density is 

the major strengthening source should be applied with extreme caution. 

When the flow stress is calculated by either equation (2-32) or equation (2-33) in 

the present study, the values of the constants a, anda2 are chosen as the same as 

the Nord-Varhaug et al (2001) adopted. Experiment evidences for various 

aluminiurn alloys have confin-ned the validities of these parameters. 
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Fig. 5-27 Micrograph of superpurity aluminium rolled at 0.55 T,, (After Immarigeon 

and McQueen 1969) 
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Fig. 5-28 Micrograph of superpurity aluminium rolled at 0.65 T.. (After Immarigeon and 

McQueen 1969) 
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As a rudimentary study, physical models have been successfully linked with the 

commercial FEM code. The predicted results, i. e. subgrain size, dislocation density, 

inisorientation and the flow stress, seem reasonable. Further work on the coupling 

of physical models with commercial program will focus on the validation of the 

predicted flow stress. A simple way is in simulating the plane strain compression 
(PSC) process since the macroscopic relationship between the flow stress and strain 

can be easily determined from PSC. Other work on the coupling between the 

physical models and the FEM code is feeding back the calculated flow stress in 

each increment to the invoking FEM code as input for the next increment. 

Controlling the distribution of texture is one of the major objectives in the strip 

rolling of alurninium alloys. Frequent occurrence of static recrystallisation (SRX) 

after intermediate stages reduce the intensity of the rolling texture and final SRX 

texture (McQueen and Blum 1998). Due to the complexity, modelling of texture 

evolution is not ready to lend itself for numerical modelling even though some 

workers have predicted the texture by FEM. In the near future, modelling the SRX 

based on physical model is practical and will be helpful for a deeper understanding 

of SRX behaviour and its influence on the texture. 

The rate of recrystallisation is dominated by the total stored energy and its 

distribution, the availability of nucleation and the holding temperature. The 

calculation of the total stored energy per unit volume, PD, is crucial for every 

physical model. To obtain the value of PD, the calculation of p, need to be added 

in addition to the calculation of p,. After PD is calculated, subsequent 

recrystallisation kinetics and related reactions such as grain size and cube texture 

can possibly be predicted, either by Nes et al's model (1994) or Sellars's model 

(2000). 
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5.5 Modelling of static recrystallisation 

This study is to improve prediction through introducing new approaches for the 
analysis of the FEM results and using recently proposed SRX models. The analysis 
model is taken from McLaren's experiment (McLaren 1994). The material, 
commercial purity alummium, is rolled with an initial centre temperature of 4000C 
in a single stand mill with roll diameter of 68mm. The roll peripheral speed is 
0.21m/s. The initial slab thickness is reduced from 50 mm to 38mm. After rolling, 
the specimen is water quenched. The specimen is annealed at 4000C, and the 
fractions recrystallised (Xv ) are measured after annealing for 426 seconds. A plane 

strain deformation model is used to simulate the Tolling process because the 

measurement of the fraction recrystallised was taken at the slab centre. Sticking 
friction is assumed in the finite element computation. The heat transfer coefficient 
between the roll and the slab is 25 kWm -2 K-1. This value was obtained by matching 
the computed temperature history with the recorded values in the literature 

(McLaren 1994). 

5.5.1 Calculation of equivalent strain 

From equation (2-40), it is clear that the mean values of strain and Zener-Hollomon 

parameter at different through thickness positions are required for the prediction of 

the local kinetics of static recrystallisation. On the calculation of strain for t0.59 four 

different methods have been proposed by McLaren and Sellars (1993) in summing 

the strain components. The details of the summation methods are given in the 

appendix 8. Two definitions of equivalent strain are used in the present study: 

Strain I 

f J, 2 ý2, +2 +i 2! t dt (5-6) 
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Strain 2 

2+ f 
1ý 

F-13 Ft 

x7ý, 
' dt (5-7) 

In equation (5-7), the contribution of the shear strain to the total accumulated 

equivalent strain is ignored. There are two reasons. Firstly, McLaren and Sellars's 

work (1993) have demonstrated clearly that "accumulated equivalent strains by 

summing squares of components during deformation may give grossly erroneous 

results if these strains are applied in equations (2-40) for recrystallisation kinetics. 

The accumulation of shear strains irrespective of sign appears to be incorrect in 

regions where significant reversals in the direction of shear occur during rolling". 
Secondly, when equation (2-40) is regressed from the experimental data, the strain 

is usually calculated by (Sheppard et al 1986) 

E=Ln 
Hf 

Ho 
(5-8) 

where HO and H. f are the initial and final thickness respectively. The effect of 

shear strain is not included in equation (5-8). 

Dauda and McLaren (1999) adopted another definition of equivalent strain in their 

study 
F3EC 

"' 'c 
(5-9) 

However, extra caution must be taken when using equation (5-9) since it is 

proposed for small deformations. Hot rolling is typically a large deformation 

process, except for the first few passes in the hot breakdown rolling. To reduce the 

possible error introduced by the use of equation (5-9) in FEM, the increments of 
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time must be set at very small values to ensure a small deformation during each 
increment. 

5.5.2 Calculation of Zener Hollomon parameter 

Presently, there are two ways to calculate the value of Z for each node in FEM 

computation. The first method is simply substituting the nodal strain rate and nodal 
temperature into equation (2-11) to calculate the history of Z. The Zener-Hollomon 

parameter calculated by this way is termed "instantaneous Zener-Hollomon 

parameter", represented by Zj, in this thesis. The second method is using the 

averaged strain rate and nodal temperature to derive the value of Z. The Z 

calculated by this way is termed " averaged Zener-Hollomon parameter", 

represented by Zave * The averaged strain rate is obtained by averaging strain rate 

over the whole deformation zone in each increment durino, the finite element 

computation (Chen et al 1992). Adopting such an average strategy is logical since 

the strain rate in equation (2-11), which is regressed from experimental data, is also 

a mean value over the whole deformation zone. Thus , in each increment during the 

finite element computation, all nodes have the same strain rate. The gradient of Z 

depends upon the gradient of temperature. According to Wells et al's study (Wells 

et al 1998), temperature plays an overwhelming effect on determining the 

microstructure when compared with roll speed (strain rate), work roll temperature, 

and the friction coefficient. Hence, averaging strain rate over the whole deformation 

is acceptable. 

As reported by McLaren & Sellars (1993), the mean value of Z can be obtained by 

averaging the history of Z on the basis of time or strain. For the Z ins I the averaged 

value on the basis of increments of time and strain are given in equation (5-10) and 

(5-11) respectively: 
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Zin, At Vin, 

t 
(5-10) 

1 Zins AE 
(Zins)e =- (5-11) 

E 

where At and AE are time and strain increments respectively, t is the deformation 

time, Zý is the final equivalent strain. For the Z ave) similar definitions are given by: 

I Zave At (Zavc)t = (5-12) 

2: Z AE (Z 
ave), - =, 

ave (5-13) 
j 

5.5.3 Prediction of the fraction recrystallised for commercial purity 

aluminium 

The predicted through thickness variation of the accumulated strains defined in 

equations (5-6) and (5-7) are shown in Fig. 5-29. These final nodal strains are taken 

from the FEM output. The lines marked "strain I" and "strain 2" give the same 

value at the slab centre, where the effect of shear strain is negligible. From the 

centre to the surface, the difference between these two curves expands due to 

increase of shear strain. "Strain I" rises gradually from the centre to the surface. 

However, for the line marked "strain 2", there is a steep rise near the surface. 

"Strain I" is much greater than "strain 2" at the surface. This implies that there is a 

large shear strain generated by the contacting friction force. 

The computed profiles of (Zi,, ), and (Z,,,, ), are shown in Fig. 5-30. There also 

exists a significant difference between these two lines in the surface region. The 



195 

maximum value appears at the surface, and the value of (Z,,, ), is much greater than 

the value of 
(Zave )i* 
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Fig. 5-29 Variation of strain throughout the thickness. Strain I is 
defined by equation (5-6); strain 2 is defined by equation (5-7) 
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In Fig. 5-29 and Fig. 5-30, the maximum values of equivalent strain and Z are all 
located at the surface. Theoretically, the highest rate of recrystallisatlon should 
appear at the surface because more stored energy for recrystallisation is produced at 
the surface due to the low temperature, high strain rate and high strain. The stored 
energy can be calculated by the following model: 

= 
Gb' 

- In(I Ob 1/2))+20 1+ In PD 
10 A (I pb90 

1 (oc 

Line Energy 

8 = 8.5891E+04 
7 = 7.5162E+04 
E = 6.4433E+94 
5 = 5.3705E+04 
4 = 4.2S76E+04 
2 = 3.2247E+04 
2 = 2.1 tj -, BE-:: - Oil 
1 - 1.0790E+94 

(5-14) 

\ 
1% \\3\ 

Fig. 5-31 Distribution of the computed stored energy in Joules 

The prediction of pi, 15 and 0 by integrating FEM with physical models for hot 

flat rolling of aluminium alloys have been reported in section 5.1 to 5.3. It should 

be noted that calculation of og has been included in the calculation of pi - The 

variation of 11R, with strain is taken from the literature (Baxter et al 1999). The 

predicted distribution of the stored energy is given in Fig. 5-3 1. This results fit well 

with other researcher's calculation (Hansel and Jensen 1990). It can be seen from 
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Fig. 5-31 that the maximum stored energy appears in the surface region. Whilst the 

energy decreases from the surface to the centre at exit. Therefore,, we have 

sufficient confidence to say that the ideal fraction recrystallised should fall from the 

surface to the centre during normal rolling conditions when the roll is not heated 

intentionally. 

In industrial hot rolling, the roll temperature is usually less than I OOOC which is 

much lower than the stock temperature, generally about 5000C for the breakdown 

rolling and greater than 3000C after tandem rolling. Under such conditions, the 

chilling effect becomes increasingly significant as the slab get thinner. Therefore it 

is very difficult to conceive why a small fraction recrystallised is predicted by FEM 

in the surface region for industrial rolling (Brand et al 1996, Mirza 2001). The only 

explanation is that the previous modelling results are incorrect. 
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Fig. 5-32 Comparison between the measured and the predicted gradients of 

the fraction recrystallised by using Gutierrez et al's model with (Zi,,, ), 
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The measured and calculated through thickness distributions of the fraction 

recrystallised under the conditions of annealing 426 seconds is compared in Fig. 5- 
32 when Gutierrez et al's model (Guitierrez et al 1988) is applied with Vins)t' 

Since the influence of the initial grain size on the kinetics of static recrystallisation 

is not included, Gutierrez et al's model has to be adjusted for the specific case. 
Here, Gutierrez et al's model is tuned on the basis of "Strain I" by matching the 

predicted fraction recrystallised with the measurement at the slab centre. The tuned 
Gutierrez et al's model is expressed as 

tO. 
5 = 1.45 X 10-6 e-1.5 Z-0 . 75 

exp 
220000 

R7ý 
(5-15) 

This tuned equation is then applied for "strain 2". It is clear from Fig. 5-32 that, the 

measured fraction recrystallised drops to a very low value at the surface, whereas 

the predicted lines give fast recrystallisation in the surface region. Although the 

influence of shear strain is deleted from "strain 2",, the prediction is far from 

satisfactory. This demonstrates that changing the definition of equivalent strain does 

not succeed much in reducing the prediction of X, in the surface region. The 

comparison between McLaren's measurement and the present prediction can not be 

considered because it is clear that some experimental error has occurred. These 

results must therefore be excluded when evaluating SRX. Z: ) 

The three reported single pass rolling conditions and measurements are shown in 

Table 19. It is clear that Yiu et al's experiment (Yiu et al 1990) is more practical 

than the other two experiments in terms of roll diameter, roll speed and rolling 

temperature. Comparing Dauda & McLaren's and Yiu et al's experiments, it can be 

seen that the fraction recrystallised increases with increase of the percent of Mg and 

increase of reduction. It is generally recognised that the number of nucleation sites 

and the stored energy are key for the occurrence of static recrystallisation. The 
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number of nucleation sites depends upon the precipitates, which are determined by 

the alloying elements and the substructure which is also a function of the alloy. In 

general, alloying elements tend to reduce the activation energy, making the 

movement of dislocations more difficult during deformation. The less the 

movement of dislocations, the more difficult it is for the occurrence of recovery and 

the easier it is for the occurrence of recrystallisation. The more reduction, the more 

stored energy becomes. From the above analyses, we can conclude that, in 
McLaren's measurement, the maximum fraction recrystallised at the surface should 

not exceed 39.2% and the maximum fraction recrystallised at the centre should be 

less than 4.5%. But McLaren reported a larger measurement at the centre and a 

smaller measurement at the surface than the other two measurements. Therefore we 

can say there is greater error in McLaren's measurement. If we assume that the 

measurements at the fractional position of 0,0.2,0.4,0.6 and 0.8 are correct, and 

plus the possible maximum fraction recrystallised, 39.2%, at the surface, we can 
draw a "Modified Experimental" curve for McLaren's experiment, see Fig. 5-32. 

There are two reasons to assume such a curve. Firstly, the purpose of this section is 

how to accurately predict at the surface. The most important point is that we know 

the maximum fraction recrystallised should be less than 39.2%. Secondly, all 

empirical models need to be tuned to the measurement at the centre. 

Table 19 Comparison of the rolling conditions and measurement 

McLaren Dauda & McLaren Ylu et al 
Roll diameter 68mm 89mm 368mm 

Rolling temperature 4000C 400()C 4600C 
Relative reduction 24% 30% 48% 

Roll peripheral speed 21 Ornrn/s 200mm/s 385nun/s 
% Mg in the alloy <0.001 3 4.45 in Fig. 2-6a 
Measured fraction 10.7% -3% -4.5% in Fig. 2-6a 

Measured fraction 2.3% -15% -39.2% in Fig. 2-6a 
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In the following parts, all predictions are compared with this -modified 

experimental " curve not the measurement. Comparing the curves "Strain I" and 
"Strain 2" in Fig. 5-32, it can be seen that "strain 2" shows a better agreement with 

the theoretical curve than "Strain I". But this kind of changing the definition of 

equivalent strain is not convincing. 

Fig. 5-33 shows the comparison on prediction by using (Z ins), and (Z,,, 
s),. 

The 

symbol "Strain 1 -time" indicates that the corresponding curve is calculated by 

64strain F and (Z ins 
)t 

. The symbol "Strain 2-strain" indicates that the corresponding 

curve is calculated by "strain 2" and 
(Zin. 

Y)E . It can be seen that averaging Z on the 

basis of strain appears to give a better prediction than that by averaging with time 

for both "strain F and "strain 2". This conclusion was also confirmed by Dauda 

and McLaren (1999). In the following computations, all Z, either 
Zins or Zave 

9 are 

averaged with increments of strain. 
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Fig. 5-33 Comparison of the predicted profiles by using between (Z,,,, ), and (Z,,,, ), 
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All curves in Fig. 5-33 still possibly overpredict the fraction recrystallised within the 

surface area. An alternative method to improve the prediction is a recently 

developed model-- Liserre and Goncalves's model (Liserre and Goncalves 1998). 

This model was modified from Gutierrez et al's model for commercial purity 

aluminium. Liserre and Goncalves's model is adjusted to 66strain I" at the centre. 

The computed results are shown in Fig. 5-34. Unexpectedly, this model gives an 

irregular distribution of the fraction recrystallised through the thickness because the 

calculated values of t is negative for some points on the lines. The error is 0.5 

introduced by the term "-6924" (See appendix). Apparently, Liserre and 

Goncalves's model is basically in error. 

Another method to decrease the difference between the prediction and the 

theoretical distribution is in modifying the mode of calculation for Z. "Averaged Z: ) 
Zener-Hollomon parameter", 

Zave 
31 will be applied. Fig. 5-35 shows the predicted 

profiles by using Gutierrez et al's model. Clearly, using Z,,,, significantly improves 

the prediction for both strains. 
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Fig. 5-34 Comparison between the measured and predicted gradients of the 
fraction recrystallised by using Liserre et al's model with (Z,,,, ), 
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The comparison of various empirical models is shown in Fig. 5-36- These empirical 

models are all tuned with the measurement at the centre for "strain 2". Contrary to 

expectation, the model established for commercial purity aluminium (Gutierrez et 

al) does not give the best prediction for the rolling of purity aluminium. The other 
three models provide nearly the same prediction within 70% thickness. Sheppard et 

al's model (Sheppard et al 1986) proposed for aluminium alloy AA5056 gives the 

best agreement, particularly in the surface area. The predicted fraction recrystallised 
by using Sheppard et al's model is nearly half of that predicted by using Sellars et 

al's model. This discrepancy with other models is of considerable importance 

because only Sheppard et al's models are regressed from rolling tests. The other 

three models are established either by plain strain compression (Sellars et al's 

model (Sellars et al 1985)) or the torsion test (Gutierrez et al's model (Gutierrez et 

al 1988)). 

In torsion testing, the effect of shear strain is dominant. The phenomenon that shear 

strain changes the direction is not included. The magnitude of shear strain is much 

greater than those in plane strain compression (PSC) and rolling. In PSC, the 

magnitude of shear strain at the surface is lower than that in the rolling test where 

the slab is pulled into the roll gap by the net frictional force. Although there is a 

direction change at the contacting face in PSC testing, a specified material point at 

the interface only experiences uni-directional shear strain. While in rolling, a 

specified material point at the surface first experiences a forward shear strain 

because its entering speed is lower than the roll peripheral speed. The shear strain 

disappears at the neutral point or neutral recrion. After that the same material point 

experiences a backward shear strain. From the above comparison, it can be 

concluded that there is a considerable difference in the strain path between these 

testing methods. Black et al's work show that the strain path affects the static 

recrystallisation kinetics (Black et al 2001). Rossi and Sellars (1996) reported that 

PSC leads to faster kinetics of recrystallisation than rolling does by a factor of 

approximately 2.7, but the authors are not able to establish why this should so. 
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From the above discussion, it can be concluded that the empirical model should be 

established by the rolling test. Otherwise, the fraction recrystallised would be 

overpredicted. 

Now, we should compare the predicted results given by McLaren (1994) with the 

present study. Fig. 5-37 shows the predicted results with Guitierrez et al's model by 

McLaren. It should be noted the curves marked "strain I" and "strain 2" were 

calculated from the addition of increments of shear strain, accumulated irrespective 

of sign through the roll gap. "Strain F and "strain 2" used by McLaren are different 

with those in equations (5-6) and (5-7). The curve "strain 3" was calculated from 

the net shear at exit. The curve "strain 4" is the result of non plane strain conditions 

during experimental rolling. Using "strain 3" and "strain 4" do have a marked effect 

on the prediction. Even making so many changes to the strain, the predicted results 

are really not good within the 70% thickness region. Comparing Fig. 5-36 and Fig. 5- 

37, It can be seen that the present work gives a much better prediction. The reason 

can be attributed to the use of "strain 2" and (Zave)E 
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Fig. 5-37 Predicted gradients in ftaction recrystallised (After McLaren 1994) 
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Fig. 5-38 shows the results by using the "strain F, and (Z,,, ),. The curve marked 
"Gutierrez et al" in Fig. 5-37 gives a better prediction than any curves In Flg-5-37 

within approximately 80% thickness, even though there is no modification to the 
equiValent strain (The effect of shear strain is included). We can also see that 
changing the mode of calculation for Z has a marked effect on improving the 

prediction. 
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Fig. 5-38 Comparison of the predicted gradients in the fraction recrystallised by 
the different normallised models with the "strain I" and (Z ave 

)E 

If we check Sellars et al's and Dauda & McLaren's model in the appendix 2, it is 

clear that two models have the same powers for e and Z- That may be the reason 

why the two models predict very close results, see Fig. 5-36 and Fig. 5-38. Based on 

the observation of microstructural. changes of Al-lMg, Rossi and Sellars (1996) 

found that the slight difference in alloy constitutions had a profound effect on static 

recrystallisation. Fig. 2-6 presented in Chapter 2 also indicates the significant 

influence of alloying element on the recrystallisation behaviour. This means that we 

can not build up an empirical model for a new material in such a way: modifying 
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the constant A but retaining the constants b and c in equation (5-40) from existing 
models which were constructed for differing materials. If so, incorrect result will be 

given by the simulation (Mirza et al 2001). Simulation by physical modelling seems 

essential for future research work. 

5.5.4 Prediction of the fraction recrystallised for AA5083 

The analysis model is established based on the experimental work by Timothy et al 

(Timothy et al 1991). The material, aluminiurn alloy 5083, is rolled with an initial 

centre temperature of 4600C in a single stand mill with roll diameter of 368mm and 

roll temperature of 20 0 C. The roll peripheral speed is 0.192m/s. The initial slab 

thickness is reduced from 30 mm. to 15.9mm. The specimen was rolled to 

completion and held for 15s after deformation before being water quenched. The 

predicted histories of various defon-nation variables are shown in Fig. 5-39 to Fig. 5- 

41. The predicted maximum temperature rise for the centre point is -230C, which 

approaches Timothy et al's theoretical calculation and FEM prediction of -260C 

(Timothy et al 1991). The minimum sub-surface temperature of -3650C 

corresponds very well with their measurement. The temperature rise for the quarter 

and centre point is caused because the heat generation due to plastic defomiatlon 

and the interface friction work outweighs the heat loss to the roll and the 

surrounding. Aluminium alloys have a very good heat conductivity. The 

temperature of the whole section becomes approximately uniform within a very 

short time of about 0.5s. 
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Fig. 5-43 Measured micrographs at (a) centre, (b) surface (After Timothy et al 1991) 

Fig. 5-40 shows an obvious difference in the final equivalent strain when leaving Z: ) 

the roll gap. The value decreases from the surface to the centre. This phenomenon is 

caused by the distribution of shear strain, which is strong at the surface due to the 

roll-stock contact, and vanishes at the stock centre due to the geometrical 

symmetry. The predicted history of Z is plotted in Fig. 5-41 by the use of a 

logarithm function. It can be seen that Z also decreases from the surface to the 

centre. It is generally recognised that higher strain and Z tend tO accelerate the SRA 
4n 

because they produce more stored energy. Therefore, the X, should decreases 

from the surface to the centre. 

The reported fon-nula for the calculation of the 10.5 for AA5083 in the literature was 

, o, lven by (Sheppard et al 1986): 
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2.45 2Z -'- 58 
exp 

183000 tO. 
5 =2.7*10-"do 

(9.75+3.82 
GT, 

(5-16) 

In Timothy et al's paper, the initial grain size was not reported. To predict the 

fraction recrystallised, equation (5-16) is tuned according to the measurement at the 

centre (4.5%) by changing the initial grain size. The tuned initial grain size is 86 

and 69gm for the use of Z ave and Z ins respectively. The predicted distribution of 

fraction recrystallised for the present single pass rolling is shown in Fig. 5-42. The 

two curves give the same trend but differ in value. The measured X, is 39.2% and 

4.5% for the surface (at the 0.95 fraction position) and centre point respectively. 

The corresponding micrographs for these two points are shown in Fig. 5-43. It is 

clear that using the Z,,,, gives a better prediction than the use of Z,,,,. 

The formula for the calculation of the recrystallised grain size, d,,,,, was also 

reported in the literature (Sheppard et al 1986) 

dl, 
e. Ir = 4.79do Z -0.075 / (3.72+1.12E2 ) 

(5-17) 

The predicted distribution of d,, through the thickness Is shown In Flg. 5-44. The 

d decreases from the centre to the surface. For the curve predicted by using 
Zm, 

e) rex 
I t: ý 

the d,. 
C-, ' at the centre is 15.6ýLm which fits well with the measurement of 16ýLrn at 
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this position. The computed drex 
at the surface is 12.6gm, which is also close to the 

measurement of 16gm. It is inconsistent that the same drex 
was measured for both 

the centre and the surface point. There are significant differences on the 

deformation histories through the thickness, see Fig. 5-39 to Fig. 5-41. Theoretically, 

drex should decrease from the centre to the surface. 
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Fig. 5-44 Predicted distribution of the recrystallised gain size 

5.5.5 Determination of the influence of rolling parameters on the X,. 

From the curve marked "Averaged Z" presented in Fig. 5-42, it is clear that FEM 

gives an excellent prediction. This Indicates that we can replace the experiment by 

FEM. The advantages of such a replacement are obvious. There is no equipment 

limitation, the accuracy of measurement is high, little capital investment is required 

and it is fast. 
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There are several types of parameters that have influence on the X,. 
. They are 

initial geometry parameters (width/thickness, length/thickness), defon-nation zone 

parameters (draft, the contact length), process parameters (temperature, roll speed) 

and material parameters (component). Four variables, the ratio of the mean 

thickness to the contact length ( 
HT H, +H2 

the roll temperature 
L -(Hý ýH 

2) 

roll speed (V) and the slab temperature (T) that are easily controlled, are selected 

for the study. Each parameter has three values, also called three levels. These values 

are shown in Table 20. For the ratio H,,, IL, the values are 0.4283,0.627 and 0.813 

(equivalent to 50%, 30% and 20% thickness reduction respectively since the roll 

radius R and the initial thickness H, are fixed. The values are the same as those 

described in section 5.5.4). For the ratio of T,,,,,, the values are 200C, 600C and 

I OOOC. The designed orthogonal table L9(3') is shown in table 21. L9(34 ) indicates 

that there are four parameters, each parameter has three levels and total 9 test runs 

need to be conducted. The simulated material is aluminium alloy AA5083. 

Table 20 Test parameters and their levels 

Level H,,, IL T,,,,, (OC) V(mm/s) T(uC) 

1 0.428 20 100 400 

2 0.627 60 200 450 

0.813 100 300 500 
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Table 21 Experimental design and the predicted fraction recrystallised 

Run No. H 
.. 
IL T, 

ý,,, 
('C) v(mm/s) T(OC) X,, %(Centre) X,. %(Surface) 

1 0.428 20 100 400 14.174 62.360 
2 0.428 60 200 450 0.863 3.692 
3 0.428 100 300 500 0.073 0.159 
4 0.627 20 200 500 0.059 0.411 
5 0.627 60 300 400 2.873 6.798 
6 0.627 100 100 450 0.278 1.520 
7 0.813 20 300 450 0.219 0.779 
8 0.813 1 60 1 100 1 500 0.017 0.090 
9 0.813 1 100 1 200 1 -400 1.107 2.949 

The objective of this section is to show the relative contribution of each parameter 

on the X,,. This task is obtained through the analysis of variance (ANOVA). 

ANOVA uses the sum of squares to quantitatively examine the deviation of the 

control factor effect responses from the over all experimental mean response ( 

Fowlkes and Creveling 1995). 

For each level, the mean of quality characteristic response is calculated by 

Y Yi (5-18) 
71 i=1 

where y, is the quality characteristic response. In this study, it refers to the X, .n 

is the number of experiments that include the level. In the array Lq (3 4) 
,n is a 

constant 

The calculated mean values at different levels for each factor are shown in the 

Table 22 under the column y-. It can be seen from Table 22 that level I of Hm /L 

is included in test runs 1,2 and 3. 
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Table 22 Level average response analysis using S/N ratio for the centre point 

Variables Level Runs yy SIN SINy 
Hm IL 

1 14.1735 -23.0295 Level 1 0.428 2 0.862902 5-03F; 4q I 9An77A n z, )rg i cz 
3 0.073067 22.72562 

4 0.059329 24.53467 
Level 2 0.627 5 2.872739 1.07006 -9.16592 8.828117 

6 0.278112 11.1156 

7 0.219293 13.17951 
Level 3 0.813 8 0.016918 0.447636 35.43283 15.91059 

9 1.106695 -0.88056 
T1011 

1 14.1735 -23.0295 Level 1 200C 4 0.059329 4.817375 24.53467 4.894878 
7 0.219293 13.17951 

2 0.862902 1.280774 
Level 2 600C 5 2.872739 1.250853 -9.16592 9.18256 

8 0.016918 35.43283 

3 0.073067 22.72562 
Level 3 1 000C 6 0.278112 0.485958 11.1156 10-98689 

9 1.106695 -0.88056 
V 

1 14.1735 -23.0295 
Level 1 1 oomm/s 6 0.278112 4.822844 11.1156 7.839629 

8 0.016918 35.43283 

2 0.862902 1.280774 
Level 2 200mm/s 4 0.059329 0.676309 24.53467 8.311628 

9 1.106695 -0.88056 

3 0.073067 22.72562 
Level 3 300mm/s 5 2.872739 1.055033 -9.16592 8.913068 

7 0.219293 13.17951 

T 
1 14.174 -23.0295 

Level 1 4000C 5 2.873 6.050979 -9.16592 -11.0253 
9 1.107 -0.88056 

2 0.863 1.280774 
Level 1 450 Oc 6 0.278 0.453436 11.1156 8.525294 

7 0.219 13.17951 

3 0.073 22.72562 
Level 1 5000C 4 0.059 0.049771 24.53467 27-56437 

8 0.017 35.43283 

Level 3 of the rolling temperature is involved in test runs 3,4 and 8. When 

performing level average analysis for one level of one parameter, all the influence 

from different le\'els of other parameters will be counterbalanced because every 



215 

other parameter will appear at each different level once. Thus the effect of one 

parameter at one level on the experimental results can be separated from other 

parameters. In this way, the effect of each level of every parameter can be viewed 

independently. 

Table 23 Analysis of variance of fraction recrystallised for the centre point 

Centre Surface 
Hm IL 13.7% 13.9% 

2.2% 5.9% 

v 0.1% 2.9% 
T 84% 77.3% 

Total 100% 100% 

In the Taguchi method, the signal-to-noise (S/N) ratio is adopted to analyse the test 

results. The S/N ratio can reflect both the average (mean) and the variation (scatter) 

of quality characterics under one trial condition. The S/N function is defined by 

SIN---IO*LOG(MSD) (5-19) 

where the MSD stands for the mean square deviation. The purpose of using the 

constant 10 is to magnify the S/N value for easier analysis. In this Investigation, the 

MSD is expressed as: 

2 (5-20) MSD = yj 

The overall mean S/N ratio of the OA is expressed as: 

9 

SIN = -j(S1N)j 9 i=l 
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The sum of the squares due to variation about overall the mean is: 

9 

SS (S / N, -S 
-IN)' 

(5-22) 

Forthe Ilh factor, the sum of the squares due to variation about the mean is 

3 

SSi =jM_, *(SINý -SIN) 2 (5-23) 
j=l 

Where Mj is the number of experiments at the each level. It is a constant of 3 in 

this study. The percentage of contribution of 1 th factor to the Xv can be calculated 

by 
ssi% 

= 
ssi /SS*100% (5-24) 

Using the same method described in chapter 4.6.7, the relative contribution of each 

method on the X, at both the surface and centre can be calculated and shown in 

Table 23. It can be seen that, for both the surface and centre point, the same order is 

given. For the centre X, , the rolling temperature contributes 84% to the XV I about 

6 times the contribution of the Hm I L. The influences of roll temperature and roll 

speed on the X,. are negligible. In Wells et al's study (Wells et al 1998) by the use 

of sensitivity analysis, the contribution of the rolling temperature to the X, is about 

70%, which fit very well with the present work. Roll temperature and roll speed 

exert slightly more influence on the X,. at the surface than at the centre. That is 
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because the temperature and strain rate in the sub-surface region are easily affected 

by the change of boundary conditions. Table 23 also indicates that to control X, 
9 

accurate prediction of the temperature evolution during multi-pass hot rolling is 

vital. 

It should be noted that the aforementioned analysis in Table 23 is only valid within 

the experimental parameters setting ranges. For the Hm /L, it decreases from 

approximately 4 in the initial breakdown pass towards the values of 0.3 in the 

finishing hot rolling pass. Raghunathan and Sheppard reported that, for AA5056, at 

least 15% thickness reduction is required to ensure that SRX occurs (Raghunathan 

and Sheppard 1989). To ensure the occurrence of SRX, the minimum reduction is 

set 20% (equivalent to 0.813 of H.. /L) in the present study. Due to the limitation 

of the laboratory mill, the roll speed can not be assigned a very large value. The 

range from 100n-un/s to 300mm/s is equivalent to from 5.2rpm to 15.6 rpm. 

Comparing those roll speeds with industrial rolling, the values appear to be small. 

When the roll speed increases, far greater influence could be exerted by the roll 

speed. 

The average effect of each parameter level on the spread is shown in Fig-5-45. 
I,!, 

-45 ,. I From the Fig. 5 it can be seen that X, increases with the decrease of all 

parameters. This agrees with most workers' experimental observation. 
L- 
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Chapter 6 Design of rolling pass schedules 

As the described in Chapter 2, designing a rational rolling pass schedule is 
critical if the product quality (i. e. strip profile, mechanical properties and 
texture) is to be controlled. Presently, the design of rolling pass schedule 
depends on the accuracy of various empirical models. These models are usually 
difficult to apply to a new product while the FEM appears to be universal if the 

correct material properties and boundary conditions are applied. Compared with 
the design by various empirical models, the disadvantage of applying FEM in 
the design of pass schedule is obvious: time consumption. In order to have a 
better understanding and control of the whole rolling process and to apply the 

FE modelling more effectively and approximately, the knowledge of how a 

rolling pass schedule is designed would be very useful. In this study, the results 
from FEM are used as one of the standards by which the calculated rolling pass 

schedule may be compared. 

The procedure and formulae, which are presented in the following sections, are 

extracted from a rolling pass schedule package, which was first developed by 

Terry Sheppard, and has been modified by Terry Sheppard and the present 

author. Due to the lack of sufficient industrial data and the complicated nature of 

practical industrial rolling, optimising the rolling pass schedule either by 

intelligent methods, such as expert system and neural network, or by the 

conventional constrained optimisation method, is not practical for the present 

author. Shape control is not considered. Some factors associated with the shape 

control such as the design and control of roll camber and thermal camber is 

therefore not considered. At the end Ofthis chapter, three examples are shown. 

In the first two pass schedules, the computed rolling load, power and pass 

temperature are compared with industrial measurements. The third pass 

schedule is designed for a new production line. The computed rolling load and 

pass temperature are compared with the predictions from other industrial 

models. 
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6.1 The procedure of designing rolling pass schedule 

The procedure of designing an initial schedule can be divided into 6 main steps: 

(1) Preparing the input data 

Input data fall into two categories: mill stand and driving data, and rolling stock 
data. Mill stand and driving data include the roll diameter, the roll barrel length, 

the roll material, the maximum roll force, the maximum roll torque, the 

maximum bending force and the maximum power. The rolling stock data 

include density, final dimensions, heat expansion coefficient, specific heat 

capacity, heat conductivity, emissivity, Young's modulus and temperature. 

(2) Calculating the slab length and width 

The length is calculated based on the principle of volume equality. The width 

after a pass deformation is calculated by the new spread equation described in 

chapter 4.6.8. Although in some passes, edge trimming or end shearing may 

occur, the principle of volume equality will still be applied at least when end 

shearing occurs 

(3) Calculating the yield strength 

The calculation of the yield strength plays a vital role in ensuring the success of 

the design of a rolling pass schedule. The yield streng h depends on many gt 
factors: the reduction (determining strain), the roll speed (determining strain 

rate), and temperature. 

(4) Setting the draft and speed 

The roll force and torque, and the power required are determined by means of 

the respective existing models. If any limit, particularly force and power, is 
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exceeded, the draft is reduced and all variables are recomputed. The process is 
repeated until an acceptable pass is found. The determination of the roll speed 
mainly depends on the productivity required. But it is also retrained by the mill 
capacity and perhaps by structural and mechanical requirements. 

(5) Determining the roll/slab contact time and setting the idle time 

The determination of interpass time depends mainly upon the time to adjust to 
the exit gauge and in the initial passes the time to reverse the motor. In normal 
rolling, the shorter the idle time and the contact time, the less the temperature 
loss. This ensures lower rolling force and power for the next pass. 

(6) The calculation of the temperature for the next pass. 

The control of temperature changes over the entire schedule is of particular 
importance. Firstly, temperature has the major impact on the calculation of the 

roll force; secondly, the structure of the finished product is considerably 
influenced by the final defon-nation temperature. The ways in which the 

workpiece can lose or gain heat include heat conduction with the roll (including 

cooling and lubricant emulsion) and air, deformation, radiation, and coolant. 

None of the constants involved in these mechanics are well documented in the 

literature. 

Step I to step 6 is repeated until the last pass exit gauge is just greater than the 

specified finished coil gauge. The draft for this pass is adjusted to meet the 

target gauge. If the last pass reduction is too small or too large to give an 

acceptable rolling load or good shape, an ideal last pass reduction is determined. 

The drafts on the previous passes are altered slightly to accommodate the ideal 

last pass. 
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6.2 The formulae used in the design of schedule 

To assistant the reader to readily interpret the symbols used in this paper, a 
schematic diagram of parameters in the roll gap is given in Fig. 6- 1. 

th 4 
No 

Fig. 6-1 Schematic diagram of parameters in the roll gap 

6.2.1 Maximum reduction 

The rolls pull the slab into the roll gap through the net frictional force at entry to 

the roll bite. Since energy is dissipated in overcoming friction, thus increasing :n 
friction means increasing force and power requirements. More seriously, high 

friction could damage the slab surface. Therefore, a comprise has to be made to 

ensure a friction coefficient balancing the reduction and the damage it could 

cause. The maximum thickness reduction dHmaxmay be calculated by equating 

the horizontal forces to yield 

dHmax 
=, u (6-1) 

where ýt is the friction coefficient, R is the roll radius. Thus, the higher the Z: ) 
ftiction, the larger the roll radius, the greater is the maximum possible thickness 

reduction. In hot rolling, the practical reduction is much lower than this formula 

indicates. Propelling the slab into the roll bite becomes more dependent on the 

operator I experience and confidence. 
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6.2.2 Detennination of the exit thickness H, 

The value of thickness reduction dH is assigned directly within the range 
0< dH < dHmax 

H2 
= H, -dH (6-2) 

The reduction of the first pass is often assigned a value much lower than the 

maximum possible draft. There are several reasons for this. The first purpose is 

to produce satisfactory gauge and an acceptable slab surface since the flatness of 

the cast ingot may not be perfect nor the gauge precise. In this context it is also 

necessary to ensure that the roll emulsion acts efficiently as a lubricant. The 

second purpose is to produce compressive residual stresses on the surfaces to 

improve the fatigue life. The stress state and deformation distribution in the roll 

gap of the first pass in the breakdown rolling has been discussed in chapter 4.4. 

The third purpose, the major reason, is to assure a certain thickness value after 

the first deformation since the thickness of the cast and the result of any scalping 

is usually as not accurate as should be expected. 

6.2.3 Calculating the average strain rate in the roll gap 

This average strain rate is simply derived by dividing the total equivalent strain 

over the total time passing through the roll gap. Z: ) 

2; rN (6-3) 
. e=-* 

: K*Ln H' 

60 dH H, 

6.2.4 Calculating the Zener-Holloman parameter Z 

As discussed below, this parameter strongly influences control and calculation 

of both continuum and structural mechanics. 
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Z =E -exp __Ldef A[sinh(a57)] 17 (6-4) 8.314T 

where T is the temperature in degree Kelvin, Qdef is the thermal activation 

energy, A and a are constant, af is the flow stress. The prevailing Zener- 

Hollomon parameter is imperative for the calculation of the flow stress and 
many structural parameters. Although the microstructural model is not 
incorporated in the current scheduling package, the calculation of Z provides the 

possibility to do so in the future. 

6.2.5 The flow stress ff 

Two commonly used constitutive equations are introduced. 
The hyperbolic sine function is written 

IzI Y'n 

57= *Ln - aA 

21n 

(6-5) 

It can be seen that the work-hardeninor effect, which is obvious in cold rolling or 

when the rolling temperature drops below 2500C, is not considered in equation 
(6-5). So that for the case of cold rolling or when the temperature is below 

2500C, the constitutive equation must be modified to involve a strain sensitivity 

tenn. The Norton-Hoff Law could typically be applied. 

exp(j8T) -Em. 
(E 

+ EO 

6.2.6 Calculating the spread coefficient S, 

(6-6) 

There are several fon-nulae available for this calculation. The performance of 

each fon-nula for laboratory and industrial rolling has been reported in chapter 

4.6.6. The new spread coefficient f6miula is written: 
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w 0.1071*( 
Jill )R 

-0 , 
848 -1.481 -2.6978 

-, 
f R-* WdH S", = Ln "2=0.2187 e (6-7) W, H, H, L 

It should be noted that this equation is only valid for the ratio W, IHI :! ý 8, where 

the formula is regressed. When the ratio W, 1H, >- 8, no width variation is 

allowed because plane strain deformation prevails. 

6.2.7 The slab width after the roll gap 

W2 
= W, * exp(S,,, ) 

6.2.8 The slab length after defom-iation 

(6-8) 

If the operation of edge trimming and shear copping are ignored and the cross 

section after deformation remains rectangular, according to the principle of 

volume equality, the workpiece length after leaving the roll gap can be 

expressed by: 

LIWIHI 
W2H2 

(6-9) 

Allowance for edging trimming or shearing can be dealt with at the appropriate 

pass. 

6.2.9 Rolling load models 

There are three commonly used fon-nulae for the calculation of rolling load 

during hot flat rolling (Larke 1957). They are Sim's equation, Orowan-Pascoe's 
Z: I 

equation and Ekelund's equation. Larke found that rolling loads calculated by 

Sim's equation are always more in accordance with measured data than those 
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obtained by use of the Orowan-Pascoe and the Ekelund equations (Larke 1957). 
Hence Sim's equation is adopted in the present scheduling program. 

P=c -W-JR(H, 
ýH2) 

- Qs (6-10) 

where W is the stock width, R is the roll radius, the Q, factor is defined as 

H, R2H2 
tan Ln n 

2 (H Hj 
7c 

H2H, HIH, 4 
(6-11) 

where Hn is the thickness at the supposed neutral point in the roll gap. The 

symbol a* in equation (6-10) is called the modified plane strain yield stress. In 

hot rolling, especially in the hot rough rolling, there is a strong friction between Z) 

roll and stock, the through thickness shear stress distribution is not uniform. To 4: ) 

take into account this effect, u* is defined by (Atack et al 1988): 

2 
m IM2 -a (6-12) 

J3 

where m, can be calculated by Lalli's expression (Lalli 1984): 

MI= 
(I 

_M2C2 
) 0.5 (6-13) 

In equation (6-13), m and c are constant. Generally. The value of m, is 

associated with the inhomogeneous distribution of strain (rate) through 

thickness. The empirical formula for the calculation ofM2 is given by (Atack et 

al 1988): 

in, = 0.75 + 0.25 * H,, IL 

and 

for H,, IL >I 

for H,,, IL -< I 
(6-14) 
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When coiling is operated, the 'nfluence of tension on the rolling load should be 

considered. The rolling force can be calculated by (Larke 1962) 

F=P I- 
(tf + th )J3 1 

257 j (6-15) 

where P is the rolling load when no tension is applied defined in equation (6- 

t is the front coiling tension and t is the back coiling tension. b 

6.2.10 Calculating the deformed roll radius R' (Larke 195 7) 

Due to the elastic deformation of the roll, the phenomenon of roll flattening 

occurs. An assumption is made that the arc of contact remains circular in shape, 

its radius of curvature is R' being greater than R, the nominal radius of the roll. 

R' 
-=1+ R 

C*P 
W, *(HI -H2 

) (6-16) 

where C--16(l _V2 )/7rE=2.1 * 10-5 
. Typically, in hot rolling, 5 iterations are the 

maximum required to converge on a deformed roll radius (Lalli 1984). The 

present authors found that just 3 iterations were sufficient. 

6.2.11 Calculating the modified rolling load using Sim's equation 

W. V-R77(HI 
2) * 

QS (6-17) H, ) 

2 

3 where a" is calculated by the expression (T" =m m-, Where a is the 
3 

modified flow stress. 
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6.2.12 Calculating the lever arm 

When W, / H, < 9, the experience shows that the lever arm can be calculated by 

a= VR -*dH 
- Xn (6-18) 

where VR * dH is the contact length, Xn is the distance from the entry to the 

neutral point. When W, / H, > 9, the lever arm can be calculated by 

FR7 
-37-* 4LI 0.5 (0.5 - -ýR dH 

CR' 
(6-19) 

where A'= 0.43 for rolls used during the preparatory stages of rolling and 

A/=0.48 for finishing rolls (Larke 1957). 

TORQUE -Pa 

TOROUE - Pa 

Fie, 6-2 Basic torque for both rolls equals 2Pa, work done for 
Zý* 
both rolls per revolution equals 47rPa (After Larke 1962) 

6.2.13 The torque J 

J= 2P a 
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A schematic diagram is given in Fig. 6-2 to illustrate the calculation of torque 
and the work. 

6.2.14 Calculating the work done 

2JOh (6-21) 

6.2.15 Entry bite angle (in radians) 

= cos-i 
7R#-0.5 * dH 

(6-22) ob 

R lf 

6.2.16 Volume of the material in the roll gap 

H, +H2 * 
wl +W2 

* Rl*ýý vbile -22 CH (6-23) 

6.2.17 Temperature rise of the slab due to plastic deformation 

AT .. at = 
77 *J*O 

h- (6-24) 
PC vbite 

where fl=0.95 is the coefficient of energy converted from the plastic 

deforination energy to heat, 
jo is the slab density, c is the heat capacity. 

6.2.18 Temperature loss to the rolls 

2[H w -dH 
V-RT-*d-H 

R(T,,,, - 
Trol 

. 

dH 
v 

(6-25) 
, ýýTroll 

p*c* 
(W2 

* VR dH)* H., 
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where HR IS the conductive heat transfer coefficient between the rolls and the 
slab, T,,,,,, is the last pass stock temperature in degree Kelvin. 

6.2.19 Temperature loss at the slab tail 

ar Ar 
[T. 4 

-T4 WI +HC T -T 
1.25 

1WI mat amb 

Itail 
22 mat amb tail' 22 

T 
tail p *C Ih 2 2' 2) 

(6-26) 

where Tarnb is the ambient temperature degree Kelvin, tiad is the time of the 

slab tall exposed in air, Hc is the convective heat transfer coefficient 

between the stock and outside media such as rolling emulsion and air, a, is 

the Stephan-Boltzmann constant, A, is the emissivity. 

6.2.20 Temperature loss at the slab leading edge 

aA, 
4 

-T4 W. L +HC[T -T 
1.25 

WI 
rr 

[Tm-at 

amb 

Ilead' 
22 mat amb 

"lead 22 
T4 lead p*c*. Iw Ih V'2 2' 2) 

(6-27) 

6.2.21 The average pass temperature for the next pass T 

'AT + ATtail 

T+ AT,,,,, - AT,,,,, - 
lead (6-28) 

6.2.22 Power required for deforming the slab 

Kdýf = 
41rN 

aP' (6-29) 
60 

6.2.23 Power absorbed by the bearings 
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Kbearing 
:: -- 47r * 

P" 
*, U, */Iol * 

DrN 
(DI +D2) (6-30) 2- 60 

The friction coefficient u' varies with the material of bearing. D, and D2are the 
diameters for work roll and back-up roll bearings respectively. 

6.2.24 Total power required 

Klotal =Kdef+Khearing (6-31) 

6.2.25 The overload coefficient of power 

0P 
=K total/ Klim (6-32) 

where K is the maximum power limit. Jim 

6.2.26 Time for the slab passing through the roll gap 

L2 

(6-33) 
v 

where V is the tangential roll speed. 

6.2.27 Total time for an arbitrary pass 

ttotal =I/+t 
fail (6-34) 

6.3 Verification by an industrial schedule 

6.3.1 Hot rolling of AA3003 

This design method for working rolling pass schedules is applied to an industrial 

rolling pass schedule in this section. The whole rolling pass schedule is given in 
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Table 24, from which the predictions and the measurements in terms of 

workpiece temperature, rolling load and total power are compared. The rolled 

material is aluminium alloy AA3003. The cast ingot is 580 mm thick, 5000 mm 
long and 1800 mm wide. The starting rolling temperature is 5600C. The required 

exit thickness is 3 mm. Rolling is performed in a single stand four-high 

reversing mill. The nominal working roll diameter is 990mm. The diameters of 

working roll bearing and the supporting roll bearing are 660 mm and 950 mm 

respectively. The maximum roll load is 30MN, and the maximum power 

available is 7.360 M. 

From table 24, it can be seen that a total of 19 passes are required to produce a 

satisfactory product. The relative reduction for each pass increases steadily from 

the beginning to the end. To achieve a satisfactor y rate, the roll speed also 
increases from the first pass and remains at the speed limit after pass 12 where 

plane strain conditions prevail. A coiling operation is performed in pass 17,18 

and 19. The shearing operation is conducted after pass 14. The definition of the Z-7) 

gauge where shearing occurs and which passes are coiled are usually determined 

during the initial design of the mill. 

The variations of the computed pass temperature, rolling load and total power 

for each pass are plotted in Fig. 6-3 to Fig. 6-5. It can be seen that Fig. 6-3 shows 

that the temperature drops slowly for the first 12 passes where the slab is not 

long. Less time is spent on passage through the roll gap and exposes in the 

interpass time. As rolling continues, the slab gets longer. More time is spent on 

passing through the roll gap, hence the slab is exposed to air for a longer period. 

At the same time, as the slab gets thinner, the roll chilling effect becomes 

increasingly significant, resulting in a large temperature drop. 
Z-: ) 
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Fig. 6-3 Comparison of the pass temperature for hot rolling of aluminium alloy 
AA3003 

The predicted temperature corresponds very well with the industrial 

measurement in Fig. 6-3. It should be noted that the measurement of temperature 

was conducted by radiation pyrometer. This implies that the measurement points 
locate at the surface. However, the calculated value of temperature is an average 

value, therefore it is not surprising that the calculated temperature is greater than 

the measurement. The difference between the two curves increases as the pass 

number increases. As reported in previous work chapter 4.5.4, the calculated 

temperature drop for the first two passes by using FEM is approximately 50C. 

This value fits with the measurement very well. 

The heat transfer coefficient between the rolls and the slab used in the 

calculation of the average pass temperature is 100 kWm -2 K-1. The choice of heat 

transfer coefficient in industrial hot rolling has been discussed in chapter 4. 

Here, only one point is emphasised: this coefficient varies with rolling 

conditions considerably. Other constants used in the f6miulae are chosen as 
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m=0.6, c=0.6, T,,, Ii=373K5 Tamb-313K, u, =5.67xlO-I, E, =0.5, Hc=20 kWm -2 K-1 

Cooling time due to mill adjustment is set at 10 seconds between passes. 
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Fig. 6-4 Comparison of the rolling load for hot rolling of alurninium alloy 
AA3003 

Fig. 6-4 clearly shows that the predicted rolling load also agrees very well with 

the measurement except pass 12 and pass 14. All rolling loads are less than the 

rolling load limit, 30MN. In this pass schedule, the power limit becomes the 

main constraint. To control the temperature variation and preventing edge 

cracking, the reduction can not be chosen by simply satisfying the limit of 

rolling load and power limit to pursue a maximum productivity, especially for 

the first few passes. This process is usually repeated several times to find the 

appropriate reduction and roll speed. Therefore, designing a pass schedule is not 

a simple mathematical optimisation problem. Many aspects must be considered 

and adjusted properly. The calculation of the rolling load is of paramount : --. 5 
importance for industry. The greater the accuracy in the predicted rolling load, 

the less effort necessary is required in use of the gauge automatic control C) 

system. Higher product quality and less investment become a possibility. 
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Fig. 6-5 Comparison of the power for hot rolling of aluminium alloy 
AA3003 

Fig. 6-5 shows the comparison between the predicted and the measured power. A 

very good agreement is given. Generally, the prediction is slightly higher than 

the measurement. An underpowered unit is the most obvious risk since this will 
lead to a reduction in productivity due to stalling. Thus we must ensure that the 

motor is more than adequate for any immediate or future workloads. 

6.3.2 Hot rolling of AA5052 

This 19-pass schedule, see Table 25, is taken from the literature (Atack et al 

1988). The material is aluminium alloy AA5052. The cast ingot is about 540 

mm thick, 8173 nim long and 1371 mm wide. The starting rolling temperature is 

approximate 5220C. The required exit thickness is 3.81 mm. Rolling is 

performed in a single stand four-high reversing mill. The nominal working roll 

diameter is 9651nni. 



238 

The heat transfer coefficient between the rolls and the slab used in the 
calculation of the average pass temperature is 50 Min -2 K-1. Other constants 
used in the formulae are chosen as m=0.6, c=0.6, T, 011=373K, Tamb=313K, 

-2 -1 a, =5.67xlO-', E, =0.5, Hc=20 kWM K. Cooling time due to mill adjustment 

is taken from the measurement. The measurement of temperature was conducted 
by radiation pyrometer. Thus it is not surprising that higher predictions are given 
for the last few passes than the measurement. 

The comparison of the computed histories of temperature, rolling load and 

power are shown in Fig. 6-6 to Fig. 6-8. From these figures, it can be seen that a 

very good agreement with the measurement is shown. 

From the above two examples, - one conclusion can be drawn: the present 

temperature, rolling load and power model are reliable and show a fairly high 

accuracy. 

600 

500 

400 
16- 

300 

200 

100 

0 

Prediction 

Measurement, 

0 10 15 20 

Pass Number 

Ficy. 6-6 Comparison of the pass temperature for hot rolling of aluminium 
alloy AA5052 
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Fig. 6-7 Comparison of the rolling load for hot rolling of aluminium 
alloy AA5052 
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6.4 Comparison with industrial models 

In this part, the rolling load of each pass of an industrial rolling pass schedule is 
also calculated by using the formulae presented. The results are then compared 
with those values predicted by using industrial models and FEA. This pass 
schedule was generated to produce a new kind of aluminium alloy plate in a 
single stand four-high reversing mill. No industrial measurements were 

conducted. 

To avoid any possibility of leaking industrial sensitivity, some necessary mill 

setup parameters, such as the roll speed, the entry and exit thickness can not 
listed here. Only the computed rolling load and the average workpiece 
temperature are shown. For simplicity, predictions from two industrial models 

are abbreviated as "Ind I" and "Ind2" in the following figures. These two models 

are from two international well-known aluminium companies. It should be 

emphasised here that the present author knows nothing about their models. Only 

the predicted results are provided. 

Table 26 Comparison between different rolling models 

Pass T (OC) 

Present 

T (OC) 

"Ind I 

T (OC) 

"Ind2" 

P (MN) 

Present 

P (MN) 

"Ind I 

P (MN) 

('Ind2" 

P (MN) 

FEA 

1 283 283 276 17.1215 18.45 15.5 18.33 
2 277.698 279 270 17.6393 18.76 15.3 19.07 
3 276.065 277 267 24.9643 26.26 22 27.26 
4 277.376 278 263 23.9578 25.92 21.33 27.24 
5 277.962 279 256 23.0938 25.3 20.33 27.41 
6 277.789 279 252 22.3626 24.6 19 24.91 
7 276.81 8 277 244 21.7006 23.89 18.17 22.47 
8 274.972 275 239 21.0306 22.03 16.67 19.72 

9 274.963 274 233 20.1967 21.03 15.6 17.54 

10 273.853 271 226 19.4054 20.04 15 15.81 

11 271.552 268 218 18.7377 19.16 13.67 14.03 
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This is plate rolling. The Initial plate thickness is 50mm and the exit gauge after 
pass II is 15.8 1 mm. The initial width and length are 21 00mm and 2000mm 

respectively. After pass 11, the plate length is approximately 6.3m. There is no 
coiling operation. The ratio W, 1H, equals 42. Hence no width variation is 

assumed. A plane strain model is used in the FEM simulation. The rolling pass 
schedule is analysed pass by pass. The effects of softening caused by either 
static recrystallisation or recovery are ignored. Hence, the equivalent strain is 
accumulated from the beginning to the end. The rolled material is aluminium. 

alloy AA5083. The calculated rolling load and pass temperature are shown in 
Table 26. The comparison of the rolling load is given in Fig. 6-9. From this 
figure, it can be seen that the load curve given by the present work locates 

between two industrial predictions, approaches the curve "Indl" more closely. 
This indicates that the present load model is comparable with those industrial 

models. The computed load curve by using FEA shows similar shape and 

corresponds very well with the curve "Indl" before pass 9, and approaches the 

curve "Ind2" in the remaining passes. The result seems to be a comprise 
between the curve "Ind I" and the curve "Ind2". 

30 

25 

20 

15 

10 

5 

Present work 
Indl 
lnd2 
FEA 

0 
10 12 

Pass Number 

Fio. r. 6-9 Comparison of the rolling load predicted by different methods 
(Ind I and Ind2 are the abbreviation of industrial model I, and industrial 

model 2 respectively) 
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The change of pass temperature in the whole rolling chain is illustrated in Fig. 6- 
10. The heat transfer coefficient between the rolls and the stock used in this pass 
schedule is 40 kWm-2 K- 1. Other constants are chosen as m=0.6, c=0.6,, 
Troll-358K, Tamb=313K5 a, = 5.67 x 10 -' 9 E, = 0.5 9 Hc=20 kWM-2 K-1 

9 
do = 100 um . Cooling time due to mill adjustment is set as 10 seconds between 

passes. The temperature values predicted by the use of present method are 
nearly the same as those predictions by "Ind I". Industrial model "Ind2" predicts 
low temperature values than other two models, and controversially gives 
however gives a much lower rolling load, especially in the latter passes. There 

are great differences between the two industrial models. This shows that the 
design of rolling pass schedule is not an easy task even for those larger 

companies who have a considerable amount of industrial data. 

It should be noted that static recrystallisation is not considered in the calculation 
by using the aforementioned schedule models because the rolling is carried out 

at lower temperature. The static recrystallisation is also not taken into account in 
the FEA. 
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Fig. 6-10 Comparison of the workpiece temperature(Ind I and Ind2 are the 

abbreviation of industrial model 1, and industrial model 2 respectively) 
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6.5 Problems in the multi-pass simulation by using FEM 

Modelling the multi-pass hot rolling by using FEM is not an easy task. The 

complicated relationship of the flow stress, microstructure, temperature, and the 

equivalent strain all has to be considered simultaneously. Lack of precise data of 

any aspect may cause computing errors. However, due to the dearth of sufficient 

industrial data and the complex nature, the work in the simulation of multipass 
hot rolling of aluminium alloys is an emerging technology. It is therefore normal 

to ignore one or two factors. 

The main drawback of the finite element analyses in this pass schedule is the 

difficulty of consideration of static recrystallisation and recovery between 

passes. In other words, the influence of the microstructure variation on the flow 

stress is not fully taken into account. From the view of finite element 

computation, the problem is reflected in how to deal with the accumulated 

equivalent strain. In hot rolling process, it is generally accepted that the 

softening mechanism is mainly caused by recrystallisation. Recovery only plays 

a very minor role and hence it is always omitted. If recrystallisation is assumed 

to have little effect on the flow stress, the strain can be accumulated pass by 

pass. If recrystallisation occurs and is considered, the total strain will be reduced 

by the X(0 !ýX:! ý I)* 100 percent of the recrystallisation. The remaining strain 

passed into next pass isO - 
X)ET 

'where 
ET is the total strain. 

According to the work by Winden (1999) and Mirza et al (2001) static 

recrystallisation does not occur during the first six passes in the industrial hot 

rolling of AA3104. Hence the strain can be accumulated directly. For the first 

seven passes, the computed rolling load from FEA should not be doubted if all 

boundary conditions, and the mechanical and thermal properties are applied 

properly. From Fig. 6-9, it can be seen that the FEA slightly overpredicts the 

rolling load for the first seven passes. The reason is that the local deformation 

variables, such as temperature and strain rate, are adopted for the calculation of 

the flow stress in FEA. In the plate surface, the local strain rate is usually greater 
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than the averaged value in the roll gap and the local temperature is lower than 
the averaged pass temperature. Hence the calculation of load by FEA is likely to 
be greater than by the normal pass schedule. These pass schedules are usually 
subjected to arbitrary constants to overcome this problem. 

The effect of the accumulated equivalent strain on the computed rolling load is 

accomplished by changing the flow stress through two ways. For those kinds of 

constitutive equations that include the strain term, such as Norton-Hoff law (see 

equation (6-6)), the influence of the strain on the flow stress is obvious. The 

second way is more complicated. In metal forming, it is generally accepted that 

more than 90% deformation energy is dissipated into heat. The plastic 
deformation work can be simply calculated by 

W=U*E (6-35) 

This means that the greater the accumulated equivalent strain, the more plastic 

deformation work is done, the more heat is generated, and hence the possibility 

of higher temperatures. The flow stress is therefore reduced. This description 

can reasonably explain the decline of the rolling load curve predicted by FEA 

for the later rolling passes in Fig. 6-9. 

According to the latest study on multi-pass simulation for aluminium alloy 

AA3104 by Mirza et al (2001), "the formation of statically recrystallised 

material would not significantly change the actual flow stress behaviour in the 

subsequent passes". This conclusion indicates that the simulation of static 

recrystallisation can be omitted. Although this conclusion is very helpful for the 

present authors because of lack of data, the reader should wary of such an 

assumption. There are several dubious points in Mirza et al's work and those 

problems could contradict his conclusions. It is essential and urgent to carry out 

the relevant work on the microstructural evolution during multipass rolling 

either by empirical models or physical models. 
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Chapter 7 Conclusions and Recommendation for Further Work 

7.1 Conclusions 

On the friction, pressure, stress and strain in the breakdown rolling 

The Viscoplastic friction law is slightly better than the Coulomb and Tresca friction 

law in ten-ns of predicting rolling load and torque. The maximum pressure in the 

roll gap occurs near the entry. The deformation is mainly concentrated near the 

roll/slab interface and does not penetrate into the slab centre. There are two 

dimensional tensile stress in the slab centre, which might tend to cause microcracks 

if the slab quality is not good, or if a small reduction is applied. 

On the temperature changes during multi-pass rolling 

The Fl) and the analytical approach always under-predict the surface temperature of 

the slab, and when the ratio of roll radius/slab thickness decrease, the predicted 

precision improves. The predicted temperature value in the slab centre by the FD 

fits well with the measured temperature, but there is a high level of error when 

using the analytical approach due to the omission of heat generation and friction 

work. The temperature distribution in the slab predicted by the FEM would appear 

to be the most accurate. 

Due to the limitation of equipment capacity, the slab used in laboratory experiments 

is usually small. The then-nal mass of the slab is much lower than the thermal mass 

of rolls. The chill effect is significant, resulting in a large temperature drop even in 

the slab centre. In the early passes of industrial rolling, the thermal mass of the slab 

is of the same order as the rolls and the chill effect is not obvious. Contrary to 

laboratory rolling, the temperature in the slab centre remains sensibly constant even 

after 2 passes. To minimise the striking difference in temperature between 
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laboratory and industrial rolling, new experimental techniques such as SMART 
(Winden 1999) could be used. 

Thermornechanical coupled FEM is essential for simulating the laboratory rolling, 

where there is a great temperature difference from surface to centre. Since FEM 

may also deal more easily with three-dimensional problems, it should also be the 

preferred method for industrial application. Computer times may be significantly 

reduced by the use of the inverse method coupled with the omission of very fine 

meshes. 

On the lateral deformation 

The significant difference in spread behaviour between the slab surface and the slab 

centre confirms the need to employ a three-dimensional FEM programme to analyse 
the slab rolling processes. 

The equation - 
-FR(5 <C±0.06 is valid for the prediction of the lateral profile. For 
HI 

the early passes in the industrial rolling practice, all existing spread formulae, 

except Winden's formula, fall to predict the spread. However Winden's fom-iula 

does not give a good prediction for laboratory experimental result and may not be 

applicable when considering a variety of mills and roll passes because it only 

considers the less important influence factors, the reduction, but neglects the most 

important factor, the ratio of width to the slab thickness. 

The lateral profile is sensitive to the change of friction coefficient in industrial 

rolling but not in laboratory rolling. The reason may arise from the different 
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temperature distribution through the slab thickness promoting sticking at the 

slab/roll interface. 

It is a common phenomenon that the slab profile appears to be concave in 

commercial rolling. FEA can replace the laboratory or industrial experiments totally 

for the development of a spread formula. 

Through integrating FEA with the Taguchi experimental design method, it is found 

that the ratio of width to thickness has overwhelming influence on the spread, 
followed by the thickness reduction, the ratio of the roll radius to thickness and the 

slab temperature. 

Based on a large amount of FE analyses and the carefully measured experimental 
data from the literature, a new spread formula is constructed. The new formula is 

capable of dealing with both laboratory and industrial rolling with high accuracy. 

The new fom-iula is written as 

0.107 -, 
-0.848 w -1.48 -2.6978 1 

-vrR 
ý*Idh R 

LnW' =0.2187* e 
11 

W, H, H, L 

On the prediction of subgrain size 

Subgrain size can be modelled accurately by FEM provided that the correct 

methodology is followed. In the prediction of microstructural evolution, accurate 

prediction of temperature is vital. Aberrant results are given when empirical models 

are applied directly into FEM without any modification. Previous work by 

Dashwood et al and Chen et al. all failed to give rational explanation to the 

modification made to these two equations. The empirical model is not suitable for 

the prediction of subgrain evolution since it is established in the steady state regime 
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and is just a statistical relationship. The physical model based on temperature, 

increment of strain, strain rate and previous state of subgrain size can predict 

accurate distribution of subgrain size under hot working conditions and widely 

varying parameter. Metallurgical experiments are essential to determine some 

parameters, such as the steady state subgrain size, the initial subgrain size, and the 

characteristic strain. The equation d45= 
8 AS 

- o5)dE is still not mature. More 
-Cs (5S S 

metallurgical work is required to relate the subgrain size with internal dislocation 

density. 

On the modelling of dislocation density, misorientation and the work 

hardening behaviour 

Various physical models have been successfully linked with the commercial FEM 

code. The predicted results, i. e. subgTain size, dislocation density, misorientation 

and the flow stress, fit well with the experimental observation. It indicates that the 

present research thoughts are feasible. Integrating the physical models to the FEM 

code enables simulation to be more precise. It provides industry with a powerful 

tool to improve and optimise the existing processes. 

On the modelling of static recrystallisation 

Altering the strain, or using the "Instantaneous Z", or averaging the "instantaneous 
C) Z=I CD 

TI with time can not reconcile the prediction with the measurement effectively, 

while averaging the "averaged Z" on the basis of strain can significantly improve 

the prediction accuracy. Averaging the history of Z on the basis of increments of 

strain gives better prediction than averaging Z on the basis of time. Changing the 

methods in summing strain components is not recommended since all equivalent 

strains should theoretically be the same if the time increment is small enough in 

FEA. Except Liserre and Goncalves's model, all remaining empirical models give 
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reasonable prediction after tuning the models for the measurement value at the 

centre. Sheppard et al's model gives the best agreement with the experimental 
measurement. This implies that the empirical model should be established by 

rolling test. It also indicates that the empirical models available are not appropriate 
for the prediction of the kinetics of static recrystallisatlon when numerical 
computation is adopted. The analysis of variance shows that the most significant 
SRX parameter is the rolling temperature, which accounts for 84% for the X, at 

the centre and 77.3% at the sub-surface, followed by the H. IL. The influence of 

roll temperature and roll speed have negligible influence on the Xv, 

On the design of rolling pass schedule 

Good agreement with FEM results and the industrial measurement shows that the 

present method for the design of a rolling pass schedule is reliable and is 

comparable with those models used by large companies. The marked difference 

between predictions by the use of different industrial models indicate that the 

design of rolling pass schedule is not an easy task even for those industrial company 

that have access to huge amounts of industrial data. The temperature, rolling load 

and power model given in this chapter show very high accuracy. 

7.2 Recommendation for further work 

On the flow stress 

Neither the Norton-Hoff law or the hyperbolic sine function is the best choice for 

the whole breakdown rolling process where the temperature varies from 5600C to C) 

3000C. There are two other more suitable empirical models which are worth trying: 
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Hensel and Spittel's and Voce's model. We should note that Hensel and Spittel's 

model has been set as one of the default constitutive equations in the latest version 
of FORGE3 and FORGE2. A new material database has also been provided for 

various aluminium alloys. 

The ideal way to cope with the flow stress is in using the physical model, which is 
based on dislocation density, subgrain. size and misorientation. 

On the simulation of the breakdown rolling 

The prediction precision can further be improved by adopting a function of heat 

transfer coefficient, and a function of friction coefficient. Using a mean value for 

heat transfer coefficient can not reflect the actual conditions that the heat transfer 

coefficient experiences. A function of pressure and temperature should be 

established for heat transfer coefficient. The condition for friction is even more 

complicated. The function of temperature, reduction should also be established for 

the friction coefficient. 

On the simulation of microstructure evolution 

A series of experiments need to be carried out to validate the prediction of 

dislocation density, misorientation and the flow stress. The mechanism of initial 

development of subgrains (i. e from individual dislocations to networks to 

subgrains) should be established. Various testing methods (i. e. plane strain 

compression, rolling and torsion) should be systematically studied, and establish 

procedures for experimental testing to establish reliable SRX models. Further work 

is using the physical to simulate SRX and texture evolution. 

On the design of rolling pass schedule 
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The accuracy of the power model needs to be improved. A new formula for the 

calculation of lever arm should be proposed. Extending the present pass scheduling 

package from for a single stand reversing mill to for three or four stands tandem 

rolling is the next object. Designing an expert system and making the package 

friendly to the user would make the design package more commercial. 
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Appendix 3 

Constants in the constitutive equation for some Al-alloys 

(Sheppard 1999) 

2 

n Qdýf 
Z 

a 
Ln IA+A +1 and exp GT 

z( 
FA+ 

I 

Alloy cc n 12def G InA Remarks 

is 0.04 3.84 157000 8.314 26.66 
1050 0.037 3.84 156888 8.314 26.69 
1100 0.045 5.66 IS8300 8.314 24.67 
2011 0.037 3.712 142000 8.314 19.2 
2014 0.0128 5.13 131309 8.314 22.23 
2014* 0.0152 5.27 144408 8.314 24.41 PH. -SS 
2014** 0.0283 3.49 128913 8.314 21.959 4% Cu 
2024 0.016 4.27 148880 8.314 19.6 
3003 0.0316 4.4S. 164800 8.314 26.9 
3004 0.0344 3.6 193850 8.314 28.21 
3005 0.0323 4.96 183100 8.314 29.87 
3105 0.0248 4.83 179300 8.314 29.98 
4047 0.04 2.65 129300 8.314 20.47 
5005 0.029 5.8 183576 8.314 26.65 
M57S 0.02 5.1 155000 8.314 24.20 
S052 0.016 S. 24 155167 8.314 24.47 
5054 0.015 5.43 173600 8.314 26.61 
5056 0.015 4.82 166900 8.314 23.05 
5083 0.015 4.99 171400 8.314 23.11 
5182 0.062 1.35 174200 8.314 22.48 
5456 0.0191 3.2 161177 8.314 23.5 
6061 0.045 3.55 145000 8.314 19.3 
6063 0.04 5.385 141550 8.314 22.5 
6105 0.045 3.502 145000 8.314 20.51 
7004 0.035 1.28 153000 8.314 20.12 
70SO 0.0269 2.86 151500 8.314 22.85 

7075HI 0.0141 5.41 129400 8.314 20.75 24hr. Soak 
707SH2 0.01 6.14 158432 8.314 26.32 SI. Ht. -F. Cool 
70751-13 0.012 7.8 155336 8.314 27.54 F. Ht-SI. Cool 
70751-14 0.01 8.5 156325 8.314 27.14 F. Ht-F. Cool 
7150HI 0.01 5.7 161402 8.314 29.8 F. Ht-F. Cool 
715OH2 0.013 6.1 158806 8.314 29.2 F. Ht-SI. Cool 

71501-13 0.01 S. S 159832 8.314 30.7 SI. Ht-F. Cool 
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Appendix 5 

Experimental data of the flow stress measured by hot torsion 
for 4% Cu binary 2014 alloy (Vierod 1983) 

Strain rate (s-') Temperature (OC) Actual stress (Mpa) 
0.032 300 50.23 
2.507 303 93.13 

28.768 311 115.85 
28.443 312 115.23 
0.032 350 32.69 
2.633 357 69.46 

28.443 360 93.45 
28.443 360 93.45 
0.032 390 23.37 
0.305 391 38.05 
2.669 395 55.83 
8.567 397 66.65 

29.129 400 78.27 
0.032 430 17.06 
0.305 431 28.67 
2.687 433 44.64 
8.567 436 54.28 

29.472 436 1 66.4 
0.032 475 12.34 
0.31 476 21.26 
2.76 477 34.64 
8.567 478 43.41 

29.472 480 54 
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Appendix 7 

Different definitions of equivalent strain accumulated along a streamline at exit to 

the roll bite (McLaren 1993) 

Strain 1: 

J V(ex 
_ el, 

)2 
+ e2 + e2 e2 

3x +6 

where Ex is the strain in the rolling direction, F,, is the strain in the thickness direction, 

and e.,,, is the shear strain on a plane containing these directions, computed with a fixed x 

co-ordinate system. 

Strain 2: 

2+ 
-F 

2+F2 
+6E 

2 
AF3 n)sn sn 

where e., is the strain in the rolling direction, E,, is the strain in the thickness direction, 

and e is the shear strain on a plane containing these directions computed with an sn sn 

co-ordinate system which rotates to maintain s parallel to, an n normal to the streamline. 

Strain 3: 

2 

F 
ny 

+E2 +E2 
s n7 sn sn 

where jEsyl I is the shear strain along a streamline, accumulated irrespective of sign 

through the roll bite. 

Strain 4: 

1jE2 
2 

C2 + 
1A 

2, ý�2 jD --": 
f ý13 

1 1, + 21,3 dt 
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Appendix 8 

Measured microstructural gradients in Aluminium slabs 
(McLaren 1994) 

Annealing 426s Annealing 787s 

Fractional 

Position 

Recry. 

Fraction% 

95% Conf. 

limit 

Fractional 

Position 

Recrys. 

Fraction% 

95% Conf. 

Limit 

0 10.7 ± 2.2 0 31.8 ± 3.2 

0.2 12.8 ± 2.3 0.2 31.2 ± 3.2 

0.4 11.4 ± 2.2 0.4 32.4 ± 3.2 

0.6 15.9 ± 2.5 0.6 34.5 ± 3.3 

0.8 15.1 ± 2.5 0.8 32.1 ± 3.2 

0.9 8.8 ± 2.0 0.9 28.3 ± 3.1 

0.95 2.3 ± 1.2 0.95 12.7 ± 2.9 
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Appendix 9 

The selection of constitutive equation 

This work on finite element analysis commenced in January 2000. At that time, the 
Norton-Hoff law was the only available constitutive equation. However, the author 
had the constitutive equation expressed by the hyperbolic sinh function. To use 
FORGE3 @ the hyperbolic sinh function was utilised to regress into the Norton-Hoff 
law excluding the strain hardening term. All analyses in sections 4.2,4.31 4.4 and 
4.5 were carried out by the use of the Norton-Hoff law without the strain hardening 
term. 

Since the virtual manufacturing group at Bournemouth University bought the 
FORTRAN program, Compaq Visual Fortran 6, in June 2000, the second 
development on FORGE2/30 became possible. The hyperbolic sinh function was 
added into FORGE2/30. In order to compare the difference between the hyperbolic 
sinh function and the Norton-Hoff law regressed from the hyperbolic sinh function, 
work in section 4.1 was carried out. It was found that the hyperbolic sinh function 
gives slightly better results that the Norton-Hoff law does. Hence the hyperbolic 
sinh function was adopted in the following analyses, such as those in section 4.6 
and 4.7, and chapter 5 and Chapter 6. 

When this thesis was completed, new versions of FORGE2/30 were launched. A 
new material database, "FPD-Base", is enclosed with the new versions. A new 
constitutive equation, the Hansel & Spittle's model, was made available for various 
aluminium. alloys. In order to study the influence of strain hardening ((elastic 
deformation) on the computed rolling load and temperature, some two dimensional 
analyses were conducted by the use of the Hansel & Spittle's model, the Norton- 
Hoff law and the hyperbolic sinh function. These results are then analysed and 
compared. To keep the structural consistency of the original thesis, section 4.1 was 
rewritten in the form of a short communication and put independently. It should be 
noted that there are still some minor problems in this communi cation, such as the 
time difference in attaining the steady state for the different constitutive models. 
The present author has referred this problem to the developer, TRANSVALOR. A 
satisfied reply has not been received. 
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The Influence Of the Constitutive Equation On Finite Element 
Analysis 

X. Duan and T. Sheppard 
DEC, Bournemouth University, Studland House, Bournemouth, BH I 3NA, UK 

Abstract: In this short communication, the differences of three commonly used constitutive 
equations (the Norton-Hoff law, the hyperbolic sine function and Hansel & SpIttel's model) are 
compared with respect to changes of temperature and strain rate. Applying these three equations into 
a commercial FEM program-FORGE21ý', the predicted rolling load and temperature in hot flat 
rolling are compared with experimental measurements. The differences between these three equations 
when incorporated into the FEM code, are analysed with respect to the fundamental laws, governing 
the performance of discretisation in the FEM code. The effect of the derivative of the flow stress with 
the equivalent strain rate is emphasised. 

1. Introduction 

The research focus in the simulation of hot flat rolling has progressed from the prediction of load and 
torque to the modelling of microstructure evolution. Previous work shows that temperature plays a 
more important role in the development of final microstructure than any other plastomechanical 
parameters, such as strain, strain rate and stress. In most rolling experiments, the measurement of the 
microstructure has been carried out at the stock centre where plane strain deformation prevails. The 
finite element method (FEM) technique for two-dimensional (including axisymmetric) problems has 
reached a mature stage. The analysis errors caused by the inaccuracy of the input physical data now 
become a major factor. One of the most important physical parameters is the material flow stress. 
Three constitutive equations, the Norton Hoff law, The hyperbolic sine function and the Hansel & 
Spittle's model, have usually been adopted in the simulation of hot flat rolling [1-3] 

. 
It would be useful 

to determine the most suitable equation for aluminium alloys in the simulation under hot working 
condition. In this communication, these questions, which are of concerned to FEM analysts, are 
answered. A commercial FEM program, FORGE2", is run for two hot flat rolling processes. The 

computed rolling load and temperature are then compared with experimental measurements. 

2. Constitutive equations 

The exponential form of Norton-Hoff law used in FORGE2 C" is written as: 

&=K- exp(X). em .(F+ eo 
)n (1) 

where K, 3 are material constants, m is the strain rate sensitively index, n is the stram-hardening 

index, E is the equivalent strain C is the equivalent strain rate, E is a small constant. For 
0 

Aluminium alloy AA5083, K =2160.29 Mpa, fl =-0.00524, m =0.0 198, n =0.11. 

The hyperbolic sine function can be written: 

+ _ýr 
IZ 

Iln 2 17 

Ln - 
?_+1 (2) 

Cr 

F(*, 

A4 A 

A, an are constants. Their physical interpretations are given in the literature 
[4]. Z is termed the 

Qdef 

temperature compensated strain rate, with a definition as Z=E exp 
GT , where Qdef is the 
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activation energy for deformation, G is the universal gas constant. For aluminium alloy AA5083, 
Qd, = 145 101 U/mol, A= 1.02E I o, a =0.0 14, n =3.65. 
The Hansel & Spittle's model is expressed: 

e 
mlTýM2 'M3 

e 
M4 

(3) 
MI ý M2 9 M3 ý M4 are constant. For AA5083, there are 953-655 Mpa, -0.00524,0.01407,0.11 

and -0.00913. 

3 Finite element analysis model 
in this paper, aluminium alloy AA5083 is investigated. Two single-pass rolling processes are 
analysed. The rolling conditions are shown in Table 1. The relative thickness reductions for these two 
processes are 6.7% and 48% respectively. Plane strain deformation is assumed. Due to symmetrical 
conditions, only the top half stock is modelled. The element sizes in the roll gap are 2.5 mm and 1.5 
mm respectively. The 6-node triangle element is used. 

Table I Rolline nass schedules 
No. Entry 

thickness 
Exit 

thickness 
Rolling 

temperature 
Roll speed Roll radius Measured 

pressure 
I 50mm 47.13mm 

____2830C . 
10 rpm 460mm 0.879 ton/mm 

2 30mm 15.6mm 485GC 10 rpm 184mm 

Result analysis and discussion 

Curves of the flow stress vs. equivalent strain under different temperature and strain rate are shown in 
Fig. ], in which "Hansel 283 0.81" indicates that the curve is a plot using the Hansel & Spittle's 
model at the rolling temperature of 2830C and the strain rate of 0.81. Similarly, 
"Hyperbolic-485_2.45" indicates that the curve is plot by the use of the hyperbolic sine function at 
the rolling temperature of 4850C and the strain rate of 2.45. It can be seen that there are significant In 
differences between the Hansel & Spittle's model and the hyperbolic sine function when the 
equivalent strain is less than 0.1 and temperature is 2830C. The difference decreases with increase of 
temperature. There are small differences between these three constitutive equations during steady 
state deformation. We would expect that the predicted results, such as the temperature history and 
rolling load, would show a great difference between the use of these constitutive equations at a lower 
temperature than at the high temperature, especially when the deformation is small. 
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50 

Hansel-283_0.81 
Nlorton_283-0.81 
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Fig. I Curves of the flow stress vs. equivalent strain 

E 
E 
0 

CD 

Ch 

IL 

1 

0.9 

0.8 

0.7 

0.6 
0.5 

0.4 

0.3 

0.2 

0.1 

0 

Hypeebolic Sine Function 
Norton-Hoff Law 
Hansel & Spittle's Nbdel 

0 0.2 0.4 0.6 
Time (s) 

I Fig. - Comparison Of the computed rolling 
pressure for the first pass 

265 



266 

The critical strain to reach the steady state regime in Fig. 1 is 0.26 and 0.12 for the deformation at 2830C and 4850C respectively. After the critical strain, the effect of work hardening balances the 
effect of softening, the flow stress does not change thereafter. Most aluminium alloys show a similar curve to that given by the Hansel & Spittle's model in Fig. ] [5-7] 

. The major difference between different Al. alloys is the value of the critical strain required to achieve a steady state deforination. 
The magnitude of critical strain depends mainly on the deformation conditions. The value usually 
varies from 0.01 during creep to less than 0.5 under hot deformation. If the flow stress still increases 
with increase of equivalent strain when the equivalent strain is greater than 0.5, it is usually regarded that errors have occurred in the experiment. 
The predicted rolling pressures for the first rolling pass schedule is compared in Fig. 2. The mean 
equivalent strain of this pass can be calculated by 

E=2 In 
HO 2- 

In 50 
0.068 (4) 

-ý3 H, V-3 47.13 
The mean strain rate of this pass is 

MN R* 
Ln 

H' 
0.81 

60 H H2 7H (5) 

The measured rolling pressure during the steady state stage Is 0.879 ton/mm. The predicted averaged 
rolling pressures are 0.897,0.933 and 0.777 ton/mm for the Norton Hoff law, the hyperbolic sine 
function and Hansel & Spittle's model respectively. The relative computation errors are 2%, 6.2% 
and 11.5% respectively. The Norton-Hoff law gives the best fit with the measurement. It also can be 
seen that the hyperbolic sine function slightly overpredicts the rolling loads and the Hansel & 
Spittle's model underpredicts the rolling load. The answer can easily be found from the curves zn 
presented in Fig. L In practical industrial rolling, the relative thickness reduction is usually less than 
10% for the first few breakdown rolling passes. The distribution of deformation through the slab 
thickness is inhomooreneous. In most regions, steady state deformation is not achieved. If the 
hyperbolic sine function is applied, we would expect that the rolling, load would be overpredicted 
Fig. 2 also indicates that using a complicated constitutive equation as Hansel & Spittle's model does 
not necessarily mean that the result will be better than the use of a simple model such as the 
hyperbolic sine function. One obvious advantage of the hyperbolic sine function is due to its' 

physical background, such as the term of Qdf 
, the activation energy for the deformation. Z-D t-11) 

It can be seen that there are significant differences in the time to reach the roll bite for these three I constitutive equations. But, the time spending on the passage of the roll gap is the same. The reason 
1ý for this phenomenon is due to the convergence problem. It should be noted that FORGE20 has been 

developed based on the Norton-Hoff law ý9-10J. The other two constitutive equations are the later 
extensions. 

It is understandable that there is a difference in the computed rolling load between different models. 
The problem is that, the difference of the computed rolling pressure between the Norton-Hoff law 
and Hansel & Spittle's model, see Fig. 2, appears to be fairly large. Since at the nominal rolling 
temperature 2830C with a strain of 0.068 and a strain rate of 0.81, two curves correspond very well 
(see Fig. 1). The difference between the two flow stress curves is 3.94%. However, the computed 
rolling pressure difference by the use of these two models is 9.5%. The reason could be attributed to 
the derivative of the flow stress vs. strain rate. To have a clear understand of how the flow stress 
function affects the computed results, it will be useful to briefly review the fundamental formulae of 
the rigid-viscoplastic finite element method I 
For rigid-viscoplastic materials, the following functional exists: 

7r =k E(ýýj ýV 
- 

IF FjujdS (6) 
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The first order of variation of above functional is: 
8TC = 

-ý(75-CdV 
- 

IF Fi6udS =0 (7) 
Where C The incompressibility constraint on admissible velocity fields in equation 

(7) is removed by using the penalised form of the incompressibility as 
J, T ffbe-I'dV +Kf tv (5tv dV -I Tý &, ds =0 F 

from the arbitrariness of 8V, 
,a set of algebraic equations (stiffness equations) are obtained as 

ar a 7r 

V, V, ý=I=0 (9) CIiaV, 
(A 

Linearising Eq. (9) by Taylor expansion near an assumed solution point V VO, namely 

7C 
+ 

a, 7r AVj =0 (10) a V, avlavj 
- V=VO 

The first term of Eq. (10) are expressed as 

ýýPjj V, dV + f, KCj Vj C, dV - Fý- Nil dS V, EF 

The second derivatives of 7r are expressed as 
2 

=f P dV+ PI., VKVm Pw dV +f KCj C, dV V, a Vj EY2E 

(12) 

The term a and-. are involved in equation (12). The influence of different flow stress functions 
alff 

on the computed results thus depends both the flow stress and it's derivative. 

For the hyperbolic sine function, the derivative of the flow stress with the equivalent strain rate is 
obtained as 

exp( 
AH tanh(aff) 

(13) 
RT a-nA- [sinh(ad')] cosh (ad7) anE 

and the Norton-Hoff law 

MIE (14) 

For Hansel & Spittle's model, we note that 

=U-M /E- (15) 3 

Fig_. 3 compares the derivative of flow stress vs. temperature based on the equation (13), (14) and (15) 

under different temperature and strain rate conditions. There does exist a significant difference 

among three different models especially between the hyperbolic sine function (without strain 
hardening term) and the Hansel & Spittle's model or the Norton-Hoff law (including the strain 
hardening term). Sensitivity analysis on the mesh size was also conducted. The element size in the 

roll gap is reduced from 2.5mm to 1.5mm. The computed pressure histories remain the same for the 
three constitutive equations. 
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For the second rolling pass schedule, the mean equivalent strain is, 

-2 
HO 2 30 

E =-In - =-In 0.755 (16) 
,JH, 

V3 15.6 
The mean strain rate of this pass is 

21rN R H, 
=- 

2ý 
* Ln = 2.45 (17) 

60 dH H2 

Obviously, steady state deformation is achieved. Under such rolling conditions, three models 
correspond very well (see Fig. l). Comparison of the computed rolling pressures is shown in Fig. 4. 
No measurement on the rolling pressure was conducted. The Hansel & Spittle's model gives nearly 
the same averaged rolling pressure, 0.727 ton/mm, as the Norton-Hoff I aw. The hyperbolic sine 
function predicts a lower value, 0.677 ton/mm. A significant difference also exists in terms of the 
time to reach and leave the roll gap. It should be noted that, with exception of the constitutive 
equation, all simulation parameters, such as the mesh size, die setup, friction law and the friction 
coefficient, and the heat transfer coefficient are the same for three models. 
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The predicted temperature histories are compared with the experimental measurements [121 in Fig. 5 
and Fig. 6. Surprisingly, three models give nearly identical curve shape for both the centre and the 
sub-surface point. They just differ in the time taken to reach the roll bite. It should be noted that the 
present authors do not know the initial position of the measured points. The tracing points in FEM 
computation are initially located at the half-stock length. This indicates that, unlike rolling pressure, 
temperature is not sensitive to the constitutive equation. It is clear that an excellent agreement with 
the measurement has been given for three models. The heat transfer coefficient at the roll contact is 
set to 25 kWM-2 K-1 and the free surface is set to 0.01 kW M-2 K-1. 

4. Conclusion 

The selection of the constitutive equation should consider the actual deformation condition. The 
critical strain is an important criterion. For the small deformation, the choice of the hyperbolic 
sine function tends to overpredict the rolling load. The difference between the three models is 
negligible for the large deformation under which the steady state deformation is usually 
achieved. 

2. The influence of different flow stress functions is introduced into the finite element analysis 
results, not only by the flow stress computation, but also by the derivative of the flow stress with 
strain rate. 

3. Unlike rolling load, temperature is not sensitive to the change of constitutive equation. Z: ) 

Reference 

1. J. L. Chenot and M. Bellet. In: Hartley P., Pillinger I. & Sturgess C. (editors). Numerical C) 

modelling of material deformation processes, Research, development and applications. 1992, 
London. Springer Verlag, 179-224. C 

2. M. A. Wells et al. Metallurgical and materials transactions B. v29B (1998), 709-719. 
3. M. S. Mirza et a]. Materials science and technology. 17 (2001), 874-879. 
4. T. Sheppard. Extrusion of aluminium alloys. Kluwer Academic Publishers, Boston U. S. A., 

Dordrecht, The Netherlands 1999, ISBN 0412590700. 
5. K. Karbausen et al. In: J. H. Beynon et al. (editors). Modelling of metal rolling processes 3. C, 

London, 1999.300-309. 
6. J. H. Shi et al. Materials science and technology. 13, (1997), 200-216. 
7. Eli S. Puchi et al. 1998. In: T. Sao et al. (editors). Sixth International conference on Aluminium 

alloys, Toyohashi, Japan, July 1998,395-400. 
8. X. Duan and T. Sheppard. Three dimensional thermal mechanical coupled simulation during hot 

rollina of aluminium alloy 3003. International Journal of Mechanical Sciences (To be published). 
9. Raj Hans. et al. Engineering Computations. V9, n5, (1992), 575-586. 
10. Y. Germain et a]. Structural Analysis Systems: Software - Hardware - Capability - Compatibility 

- Applications. Volume 4: CAD/CAM & Structural Analysis in Industry, Proceedings of the SAS 

World Conference 
H. Shiro Kobayashi, Soo-lk Oh, Taylan Altan. Metal forming and the finite element method. 

Oxford university press, 1989. 
12. H. L. Yiu et a]. The use of plane-strain compression testing to simulate the evolution of hot-rolled 

microstructures in alummium alloys. In: T. G. Langdon et al (editors). Hot deformation of 

aluminum alloys. Proceedings of a symposium by the non-ferrous metals committee of the 

minerals, metals and materials society, Detroit, Michigan, October 8-10,1990.509-525. 
rn 

269 



270 

Reference 

Aretz, H. et al. 2000. Integration of physical based models into FEM and 
application in simulation of metal forming processes. Modelling 
Simul. Mater. Sci. Eng. 8,881-891. 

Attack, P. A. et al. 1996. Control of thermal camber by spray cooling when hot 
rolling aluminium. Iron-making and steelingmaking. 23(l), 69-73. 

Attack P. A et al. 1988. An adaptive scheduling and control system for a single stand 
reversing mill for hot rolling of aluminium. Proceedinqs of the Aluminiurn Association 
Rolling Mill Gauge, Shape and Profile Control Seminar, Atlanta, Georgia, USA, June 8-9 
1988. 

Atack, P. A. and Robinson, I. S. 1990. Adaptation of hot mill process models. Journal 
of materials processing technolog . 60,535-542. 

Backofen, W. A. 1972. Deformation processing. Addison-Wesley publishing 
company. 

Barnes, Howard R. et al. 1996. Aluminium flat products -plant technology and 
future trends. MPT international. 6,50-59. 

Baxter, G. J. et al. 1998. Effect of magnesium content on hot deformation and 
subsequent recrystallisation behaviour of aluminium-magnesium alloys. In: Sao 
T. et al. (editors). Sixth International conference on Aluminium alloys, Toyohashi, 
Japan, July 1998,1233-1238. 

Baxter, G. J et al. 1999. The influence of transient strain-rate deforination 
conditions on the deforined microstructure of aluminium alloy Al-I%Mg. Acta 
material. 47(5), 2367-2376. 

Behrens, A. et al. 1999. Assessment of deformation sequences using damage 

mechanics in cold metal forging. In: Geiger, M. (editor). Advanced technology of 
plasticity 99: Proceedings of the 6 th ICTP, 19-24 Sept. 1999. Springer-Verlag, New 
York, 1999.2311-2316. 

Bertrand-Corsini C. et al. 1988. A three dimensional thermornechanical analysis of 
steady state flows in hot forming processes. Application to hot flat rolling and hot 

shape rolling. Modelling of metal forming processes. In: Chenot J. L. and Onate, E. 
(editors). Modelling of metal fori-ning processes, 1988. Kluwer academic 
publishers, 271-279. 



271 

Black, M. P. et al. 2001. Effect of strain path on recrystallisation kinetics during hot 
rolling of Al-Mn- Materials science and tec - 17,1055-1060. 

Bramely, A. N. and Mynors, D. J. 1999. The use of forging simulation tools. In: 
Geiger, M. (editor). Advanced technology of plasticity 99: Proceedings of the 6 1h 
ICTP!, 19-24 Sept. 1999. Springer-Verlag, New York, 1999,1583-1596. 

Bryant, G. 
- 
F. and Heselton, M. O. 1982. Roll gap temperature models for hot mills. Metals Technology, 9(12), 469-477. 

BUnten, R. and Karhausen, K. 1999. Modelling of Al-rolling processes involving 
through thickness plastic inhomogeneities. In: Beynon, J. H. et al. (editors). 
Modelling of metal rolling processes 3. London, 1999,323-332. 

Carslaw, H. S. and Jaeger, J. C. 1959. Conduction of heat in solids. OUP, 88. 

Chen, B. K. et al. 1990. Simulation of evolution of microstructure in a thermo- 
mechanical analysis of the hot rolling of aluminium. International Journal of 
structural mechanics and materials science. 31(4), 455-469. 

Chen, B. K., Thomon, P. F. and Choi, S. K. 1992a. Temperature distribution in the 
roll gap during hot flat rolling. Journal of Materials Processinsz Technology. 30, 
115-130. 

Chen, B. K., Thomon, P. F. and Choi, S. K. 1992b. Computed modelling of 
microstructure during hot flat rolling of aluminium. Materials science and 
TechnolM. 8,72-77. 

Chenot. J. L. and Bellet, M. 1992. The viscoplastic approach for the finite element 
modelling of metal-forming processes. In: Hartley P., Pillinger 1. & Sturgess 
C. (editors). Numerical modelling of material deformation processes, Research, 
development and applications. 1992, London. Springer Verlag, 179-224. 

Chenot, J. -L. et al. 1998. FORGE30-a general tool for practical optimization of 
forging sequence of complex three-dimensional parts in industry. International 
conference on forging and related technology (ICFT'98), 27-28, April, 1998. 
Professional Engineering Publishing, Suffolk, UK, 113-122. 

Chenot, J. -L. et al. 1999. Practical simulation of forging sequence of complex 3-D 
parts in industry. In: Geiger, M. (editor). Advanced technology of plasticity 99: 
Proceedings of t1i 6 1h ICTP, 19-24 Sept. 1999. Springer-Verlag, New York, 
1999-1597-1612. 

Chiou, Jen-Ming. 1996. A study of ductile damage in metal formin 
. PhD thesis, 

The University of Bin-ningham. 



272 

Chung, S. H. and Hwang, S. M.. 1999. An integTated finite element computer 
simulator for the prediction of the strip profile in cold strip rolling. In: Beynon, J. H. 
et al. (editors). Modelling of metal rolling processes 3. London, 1999,343-349. 

Chung, W-K; Choi, S. K.; and Thomson, P. F. 1993. Three-dimensional simulation 
of the edge rolling process by the explicit finite-element method. Journal of material 
processing technology. 38(1-2), 85-102. 

Compaq computer corporation. 1999. Compaq Fortran languange reference manual. 

Cotner, J. R. and McG, W. J. 1969. Tegart. High-temperature deformation of 
aluminium-Magnesium alloys at high strain rates. Journal of institute of metals. 97, 
73-79. 

Czlapinski Witold et al. 1989. Optimization strategy and model forming for heavy 
plate rolling. Metallurgical 'plant and technolog . 12(l), 44-53. 

Dashwood, R. J. et al. 1996. Computer prediction of extrusion limit diagrams. 
Proceedings 5th 

- international aluminium extrusion technology seminar. Chicago, 
USA!, 1996,331-339. 

Dauda, T. A. and Mclaren A. J. 1999. Simulation of single-pass hot flat rolling of Al- 
3%Mg using the finite element method and the kinetics of static recrystallisation. 
In: Beynon, J. H. et al. (editors). Modelling of metal rolling processes 3. London, 
1999,257-266. 

Davies, Chris H. J. 2000. The cellular automaton simulation of microstructural 
evolution during deformation processing of metals. Materials research society 
syMposium-proceedings. 578,457-468. 

Dean, T. A. and Flu, Z. M. 1999. The increasing requirements on empirical data for 

use in metal forming process simulation packages. In: Geiger, M. (editor). 
Advanced technology of plasticity 99: Proceedings o the th ICTPI 19-24 Sept. 
1999. Springer-Verlag, New York, 1999.542-550. 

Edberg, Jonas. 1992. Three dimensional simulation of plate rolling using different 
friction models. In: Chenot, Wood & Zienkiewicz (editors). Numerical methods in 
industrial forming processes, 1992,, Balkema, Rotterdam. 713-718. 

Engler, Olaf et al. 1996. Influence of deformation temperature and strain rate on the 

recrystallization nucleation in Al-Mnl-Mgl. Zeitschrift fur Metallkunde. 87 (6), 

454-464. 



273 

Furu, T. et al. 1996. Physical-based modelling of strength, microstructure and 
recrystallisation during thermornechanical processing of Al-Mg alloys. Materials 
science Forum. 217-222,453-458. 

Furu, T. et al. 1999. The influence of transient deformation condition on 
recrystallization during thermomechanical processing of an Al-I%Mg alloy. Acta 
material. 47(5), 2377-2389. 

Gelin, J. C. et al. 1993. Identification and modelling of constitutive equations for hot 
rolling of aluminium alloys from the plane strain compression test. Proceedings o 
is' international conference on modellin of metal rolling processes, 21-23, Sep, 
1993, Imperial college, London, UK. 

Grosman Franciszek. 1997. Criteria flow stress ftinction choice for numerical 
simulation of plastic forming processes. In: Chandra T. and Sakai T. (editors). Proc. 
Intern. Conf. On Thermornechanical Processing of Steels and Other Materials 
(THERMEC'97), 1997, The Minerals, Metals and Materials Society, 2047-2052. 

Gutierrez, 1. et al. 1988. Static recrystallization of commercial purity aluminium 
after hot deformation within the steady state regime. Materials science and 
engineering A. 102,77-84. 

Hand, R. J. et al. 2000. Temperature changes during hot plane strain compression 
testing. Materials science and technology. 16,442-450. 

Hansen, Niels and Jensen, D. Juul. 1990. Mechanisms of deformation, recovery and 
recrystallisation of aluminium. In: Langdon, T. G. et al (editors). Hot deformation of Zý 
aluminum alloys. Proceedings of a symposium by the non-ferrous metals committee 
of the minerals, metals and materials society, Detroit, Michigan, October 8-10, 
1990.3-19. 

Hartley, P. et al. 1993. Numerical modelling of rolling processes. In: Wang, Z-R- 
(editors). Proceeding of the fourth international conference on technology of 
plasticily, September, Beijing. Academic publisher, 742-747. 

Hartley, P. et al. 1997. Elastic plastic finite element modelling of metal forming 

with damage evolution. In: Predeleanu, M. and Gilon-nini, P. (editors). Advanced 

methods in materials processing defects, 1997. Elsevier science, 136-143. 

Hollinshead, P. A. 1986. Texture and mechanical property developments in 

aluminium alloy hot rolling. Ph. D. thesis, University of London. 

Helmi, A. and Alexander J. M. 1968. Geometric factors affecting spread in hot flat 

rolling of steel. Journal of the iron and steel Institute. 206,1110-1117. 



274 

Holt, David L. 1970. Dislocation cell formation in metals. Journal of applied 
physics. 41(8), 3197-320 1. 

Hosford, William F. and Caddell, Robert M. 1982. Metal fonning: mechanics and 
metalluEgy. Prentice-hall, Inc., Englewood Cliffs, N. J. 

Hughes, D. A. et al. 1998. Metal forming at the center of excellence for the 
synthesis and processing of advanced materials. JOM, 50(6), 16-21. 

Hum, B. et al. 1996. Measurements of friction during hot rolling of aluminium 
strips. Journal of materials processing technolog . 60,331-338. 

Immarigeon, J. P. and McQueen, H. J. 1968. Dynamic recovery of aluminium 
during hot rolling. Canadian metallurgical quarter] . 8(l), 25-34. 

Jonas, J. J. et al. 1969. Strength and structure under hot-working conditions. 
Metallurgical reviews. 14,1-24. 

Karhausen K. et al. 1999. Determination of constitutive equations for the hot rolling 
of Al-alloys by combinatoric optimisation methods. In: Beynon, J. H. et al. (editors). 
Modelling of metal rolling _ processes 3. London, 1999.300-309. 

Kim, Hyunkee et al. 1995. Prediction and elimination of ductile fracture in cold 
forgings using FEM simulations. Transactions of NAMRI/SME, Volume XXVIII, 
63-69. 

Knustad, 0. et al. 1985. Polarized light observation of gTain extension and subgrain 
formation in aluminium deformed at 4000C to very gigh strains. Praktische 
metallogyr, raphie, 22(5), 219-229. 

Kobayashi, Shiro; Oh, Soo-1k and Altan, Taylan. 1989. Metal forming and the finite 

element method. London, Oxford university press. 

Lalli, L. A. 1984. An analytical rolling model including through thickness shear 
stress distributions. Journal of en gineerin gmaterials and technology , 106 (1), 1 -8. 

Larke,, Eustace C. 1957. The rolling of strip, sheet and plate. Chapman and hall ltd. 

Lehert, W. et al. 1996. Experimental and mathematical simulation of 
microstructural evolution during hot rolling of Al and Cu material. Journal of 

60,567-574. 

Lehert, W. et al. 1999. Defom-lation behaviour and microstructure properties 
evolution during hot and cold strip rolling aluminium alloys. In: Geiger, M. (editor). 



275 

Advanced technology of plasticity 99: Proceedings of the 6 Ih ICTP, 19-24 Sept. 
1999. Springer-Verlag, New York, 1999.1941-1948. 

Lehert, W. et al. 1999. Hot rolling in the process of thermomechanical treatment. 
in: Geiger, M. (editor). Advanced technology of plasticity 99: Proceedings of the 6 th 
ICTP, 19-24 Sept. 1999. Springer-Verlag, New York, 1999.1957-1966. 

Lekhov, 0. S. et al. 1987. Optimisation of basic parameters of rolling complex for 
production of billets. Steel in the USSR. 17 (2), 78-80. 

Lenard, J. G. and Pietrzyk, M. 1992. Rolling process modelling. In: Hartley P., 
Pillinger 1. & Sturgess C. (editors). Numerical modelling of material deformation 
processes, Research, development and applications. 1992, London. Springer Verlag, 
275-303. 

Lenard, J. G., Pietrzyk, M. and Cser, L. 1999. Mathematical and physical simulation 
of the properties of hot rolled products. Elsevier science. 

Li, Guo-Ji; Kobayashi, Shiro. 1984. Analysis of spread in rolling by the rigid- 
plastic, finite element method. Numer Anal of Fon-n Processes. 71-88 

Liserre, G. et al. 1998. Contribution to the modelling of microstructure evolution 
during thermornechanical processing of commercial purity aluminium. In: Sao T-et 
al. (editors). Sixth International conference on Aluminium alloys, Toyohashi, Japan, 
July 1998,395-400. 

Liu, C. et al. 1987. Finite element modelling of deformation and spread in slab 
rolling. International Journal of mechanics science. 29(4), 271-283. 

Lubrano, M. and Bianchi, J. H. 1996. A simple model for on-line control of skin 
pass from finite element analysis of rolling deformation. 2 Id Int. Conf, NMRP. The 
IOM. London. 574-583. 

Luce, R. et al. 1999. Microstructure multipass rolling simulation using physical 
models integrated into FEM. In: Beynon, J. H. et al. (editors). Modelling of metal 
rolling processes 3. London, 1999,218-226. 

Macgregor, C. W. and Palme, R. B. 195 1. The distribution of contact pressures in the 
rolling of metals. Trans. ASME(J. Baslc Eng. ). 81,669-679. 

Mdntyld, P. et al. 1992. Improved thickness and shape accuracy with advanced pass 
scheduling in plate rolling. Journal of materials processing technolog , 329 255-263. 

Marthinsen, K. and Nes, E. 2001. Modelling strain hardening and steady state 
defon-nation of Al-Mg alloys. Materials science and technologv. 17,376-388. 



276 

McLaren, A. J. 1994. Modelling of thermomechanical processing of metals. PhD 
thesis, University of Sheffield. 

McQueen, H. J. and K. Conrod. 1985. Recovery and recrystallization in the hot- 
working of aluminium alloys. In: Ch'a, E. Henry and McQueen, H. J. (editor). 
Microstructural control 

- in aluminiurn alloys: deformation, recovery and 
recrystallization. New York, 27 Feb. 1985. New York, The metallurgical society, 
Inc., 197-219. 

McQueen, H. J. and W. Blum. 1998. Recovery and recrystallization in AL alloys 
fundamentals and practical applications. In: Sao T. et al. (editors). Sixth 
International conference on Aluminium alloys, Toyohashi, Japan, July 1998,99- 
112. 

Mirza, M. S. et al. 2001. Multipass rolling of aluminium alloys: finite element 
simulations and microstructural evolution. Materials science and technology. 17, 
874-879. 

Nes, E. et al. 1994. Physical modelling of microstructural evolution during 
thermomechanical processing of alurniniurn alloys. In: Sanders, T. and Starke, E. A. 
(eds). Aluminiurn alloys physical and mechanical properties (ICCA4), Altanta, 
1994ý 250-257. 

Nes, E. 1998. Modelling of work hardening and stress saturation in FCC metals. 
Progress in materials science. 41,129-193. 

Nieth, T. G. et al. 1997. Subgrain formation and evolution during the deformation of 
an Al-Mg-Sc alloy at elevated temperatures. Scripta material. 36(9), 1011-1016. 

Nord-Varhaug K. et al. 2000. Substructure strengthening in aluminium alloys. 
Material science forum. 331-337,1387-1392. 

I : =1 ing Orsetti Rossi, P. L. and Sellars, C. M. 1996. Static recrystallisation of Al-lMg duri 
thermomechanical processing. Materials science forum. 217-222,379-384. 

Parker, B. A. and Lim, Jangho. 1996. 
deformation of alummium-magnesium 
technolog . 

60,563-566. 

Microstructure development during the 
alloys. Journal of materials processing 

Pletrzyyk, M. et al. 1992. Finite element simulation of mechanical, thermal and 
structural phenomena in the hot rolling process. In: Chenot, Wood & Zienklewlcz 
(editors). Numerical methods in industrial forming processes, 1992, Balkema. ) 
Rotterdam. 749-754. 



277 

Pinna, C. et al. 1999. Modelling of the effect of lubrication on texture evolution 
during hot rolling. In: Beynon, J. H. et al. (editors). Modelling of metal rolling 
processes 3. London, 1999,237-246. 

Poschmann, 1. and McQueen, H. J. 1995. Subgrain distributions in aluminium 
deformed under hot working conditions. Physica status solidi, 149,341-348. 

Postlethwaite, 1. et al. 1996. The improved control for an aluminium hot reversing 
mill using the combination of adaptive process models and an expert system. 
Journal of materials processing technology. 60,393-398. 

Puchi, Eli S. et al. 1998. Analysis of a hot rolling schedule for commercial 
aluminium- I %magnesium. alloy in terms of dynamic material modelling 
concepts. Part Ldescription of the constitutive behavior. In: Sao T. et al. (editors). 
Sixth International conference on Aluminium alloys, Toyohashi, Japan, July 1998, 
395-400. 

Raabe, Dierk and Becker, Richard C. 2000. Coupling of a crystal plasticity finite- 
element model with a probabilistic cellular automaton for simulating primary static 
recrystallization in allurniniurn. Modelling and simulation in materials science and 
engineering. 8,445-462. 

Raghunathan, N. 1986. Thermal and mechanical processing of commercial 
aluminium magnesium alloys. Ph. D. thesis, University of London. 

Raghunathan, N. and Sheppard, T. 1989. Microstructural development during 
annealing of hot rolled Al-Mg alloys. Materials science and technology. 5,542-547. 

Raghunathan, N. and Sheppard, T. 1989. Evolution of structure in roll gap when 
rolling aluminium alloys. Materials science and technology. 5,194-201. 

Raghunathan, N. and Sheppard, T. 1989. Lateral spread during slab rolling. 
Materials science and technology. 5,1021-1026. 

Rebelo, N. and Kobayashi, S. 1980. Coupled analysis of vIiscoplastic deformatlion 

and heat transfer em dash. International Journal of Mechanical Sciences, 22(l 1), 
699-705. 

Roters, F. et al. 2000. Work hardening in heterogeneous alloys- a microstructural 
approach based on three internal state variable. Acta materialia, 48(17), 4181-4189. 

Saito, Y. et al. 1999. Microstructure and texture control by novel rolling processes. 
1ýn In: Geiger, M. (editor). Advanced technology of plasticity 99: Proceedings of the 6 1h 

LCTP, 19-24 Sept. 1999. Springer-Verlag, New York, 1999.1923-1930. 



278 

Sanders, Roberts E. Jr. 2001. Technology innovation in aluminum products. JOM. 
53(2), 21-25. 

Sch6ning, K. -V., MOller, M. and Bogob, P. 1999. Simulation tools in sheet metal forming-today's possibilities, tomorrow's demands. In: Geiger, M. (editor). 
Advanced technology of plasticity 99: Proceedings of the 6 th ICTP, 19-24 Sept. 
1999. Springer-Verlag, New York, 1999.2113-2130. 

Sellars, C. M. et al. 1986. Recrystallization characteristics of aluminium-1% 
Magnesium under hot working conditions. In: Chia, E. Henry and McQueen, H. J. 
(editor). Microstructural control in aluminium alloys: deformation, recovery and 
recrystallization. New York, 27 Feb. 1985. New York, The metallurgical society, 
Inc., 179-196. 

Sellars, C. M. 1986. Modelling of structural evolution during hot work processes. In: 
Proceedings of the 7th Riso International Symposium on Metallurgy and Materials 
Science, 1986, Roskilde, Den. Riso Natl Lab, 167-187. 

Sellars, C. M. 1990. Modelling microstructural development during hot rolling. 
Materials science and technolog , 6,1072-108 1. 

Sellars, C. M. 1992. Modelling microstructure and its effects during multi-pass hot 
rolling using SLIMMER. ISIJ international, 32(3), 359-367. r: ) - 
Sellars, C. M. and Kawai, R. 1993. The 'phantom roll' concept for modelling 
temperature changes during hot rolling. In: Beynon, J. H. (editor). Modelling of metal 
rolling -processes,, Imperial college, London, 21-23 September 1993,648-659. 

Sellars, C. M. and Zhu, Q. 2000. Microstructure modelling of aluminium alloys 
during thermornechanical processing. Materials Science and Engineering A: 
Structural Materials: Properties, Microstructure and Processin . 280(l), 1-7. 

Semiatin, S. L., Collings, E. W. and Altan, T. 1987. Determination of the interface 
heat transfer coefficient for non-isothennal bulk-fon-ning processes. Journal of 
Engineering for industry, Transaction ASME. 109(l), 49-57. 

Sheppard, T. and Wright, D. S. 1980. Structural and temperature variations during 
rolling of aluminium slabs. Metals technology, 7(7), 274-28 1. 

Sheppard, T. and Tutcher, M. G. 1981 a. Effect of process parameters on structure 
and properties of Al-5Mg-O-8Mn alloy (AA5456). Metals Technology. 8(8), 319- 
327. 



279 

Sheppard, T. and Wright, D. S. 1981b. Parameters affecting lateral deformation in 
slabbing mills. Metals Technolom. 8(2), 46-57. 

Sheppard, T. and Zaidi, M. A. 1982. Deformation during multipass rolling of 
commercial-purity aluminium. Metals Technolog . 9(2), 52-59. 

Sheppard, T. et al. 1986. Structural evolution during the rolling of aluminium 
alloys. In: Chia, E. Henry and McQueen, H. J. (editor). Microstructural control in 
aluminium alloys: deformation, recovery and recrystallization. New York, 27 Feb. 
1985. New York,, The metallurgical society, Inc., 19-43. 

Sheppard, T. 1993a. Extrusion of AA2024 alloy. Materials science and technologY. 
9,430-440. 

Sheppard, T. 1993b. Extrusion limit diagrams containing structural and topological 
information for AA6063 aluminium alloy. Materials science and technology. 9, 
313-318. 

Sheppard, T. and Jackson, A. 1997. Constitutive equations for use in prediction of 
flow stress during extrusion of aluminium alloys. Materials science and technology, 
139 203-209. 

Sheppard, T. 1999. Extrusion of aluminium alloys. London, Kluwer academic 
publishers. 

Shercliff, H. R. 1997. Modelling of materials and processes. -Materials 
modelling 

and technology foresight, 1997, London. 

Shi J. H. et al. 1997. Constitutive equations for high temperature flow stress of 
aluminium alloys. Materials science and technology. 13,200-216. 

Smelser, R. E. and Thompson, E. G. 1987. Validation of flow formulation for 

process modelling. AMD(American society of mechanical engineers, applied 
mechanics division), 88,273-282. 

Sparling, L. G. 1967. Research on the rolling of metals. Journal of the junior 
institution of engineers. 77(11), 330-434. 

Svietlichnyj, D. and Pietrzyk, M. 1999. On-line model for control of hot plate 

rolling. In: Beynon, J. H. et al. (editors). il rolling processes 3. 

London, 1999,63-71. 

The aluminum association. 1993. Aluminum stands and data 1993. Eleventh 

edition. 



280 

Thiebaut, C. and Morey, J. -M. 1996. Application of a F. E. M. code to the evaluation 
of the friction law of a tungsten part at high temperatures. Journal of materials 
processing technology, 60,475-479. 

Timothy, S. P. et al. 1991. Simulation of single pass of hot rolling deformation of 
aluminiurn alloy by plane strain compression. Materials science and technolog . 7, 
255-261. 

Transvalor S. A. 2000. FORGE30 V5.3 user guide & reference guide. Transvalor S. 
A. 

Tseng, T. Y. et al. 1996. Improvement of physical properties for Al-1.1%Mn alloy 
with Taguchi method. Material science forum, 217-222(2) 1329-1334. 

Turczyn, S. 1996. The effect of the roll-gap shape factor on internal defects in 
rolling. Journal of materials processing technology,. 60,275-282. 

Urcola, J. J. and Sellars, C. M. 1987. Influence of changing strain rate on 
microstructure during hot deformation. Acta matalluraical. 35(11), 2649-2657. 

Vatne, Hans Erik. 1995. Experimental investigations and modelling of 
recrystallisation in two hot deformed aluminium alloys. PhD thesis, The Norwegian 
Institute of Technology. 

Vante, H. E. 1996. Modelling recrystallisation after hot deformation of aluminium. 
Acta materialia, 44(l) 4463-4473. 

Vatne, Hans Erik et al. 1998. Industrial hot rolling of an AA3004 alloy; 
experimental investigations and modelling of recrystallisation. In: Sao T. et al. 
(editors). Sixth International conference on Aluminium alloys, Toyohashi, Japan, 
July 1998,1263-1268. 

Vatne, Hans Erik et al. 2000. Industrial verification of microstructural models for 
theromechanical processing by application to hot rolling of AA3104. Materials 

zn 
science forum, 331-337,551-556. 

Vierod, R. P. 1983. Effect of copper additions on deformation processing of 
aluminium alloys. PhD thesis, University of London. 

Whringer, K. -D. 1999. Metal forming- a key technology for automobile 
production. In: Geiger, M. (editor). Advanced technology of plasticity 99: 
Proceedings of the 6 th ICTP, 19-24 Sept. 1999. Springer-Verlag, New York, 1999. 
i--12 



281 

Wagoner, Robert H. and Chenot Jean-Loup. 1997. Fundamentals of metal forinin 
John Wiley & Sons, Inc. New York, 1997. 

Wehage, Harald et al. 1998a. New trends In hot flat rolling technologies and pass 
schedule optimization. MPT international, 4,60-71. 

Wehage, Harald et al. 1998b. Pass schedule optimization for new hot flat rolling 
processes. MPT international. 5,92-104. 

Wells, M. A. 1998a. Modelling the microstructural changes during hot tandem 
rolling of AA5XXX aluminium alloys: Part I, Microstructural evolution. 
MetallurRical and Materials Transactions B. 29B, 611-620. 

Wells, M. A. 1998a. Modelling the microstructural changes during hot tandem 
rolling of AA5XXX aluminium alloys: Part 1, Textural evolution. Metalluraical and 
Materials Transactions B. 29B, 621-708. 

Wells, M. A. 1998a. Modelling the microstructural changes during hot tandem 
rolling of AA5XXX alurninium. alloys: Part III, Overall model development and 
validation. Metallurgical and Materials Transactions B. 29B, 709-719. 

William Y. Fowlkes and Clyde M. Creveling. 1995. Engineering methods for robust 
product design using Ta2),, uchi me. thods in technology and product development. 
Addison-wesley publishing company. 

Wilmotte, S. et al. 1972. Stidy of the cross-profile of hot rolled strip. Metall RPR 
CRM5 30,11-28. 

Winden, M. R. Van der. 1999. Laboratory simulation and modelling of the break- 
down rolling of AA3104. Ph. D. thesis. The university of Sheffield. 

Wood, Roy. 1994. The rolling of aluminium: the process and the product. TALAT 
lecture 1301. Aluminium training partnership. 

Wright, D. S. and Sheppard, T. 1976. Observations on the mode of deformation 
during aluminiurn slab rolling. Proc. Of Mach. Tool Des and Res Con 3(17), 539- 
548. 

Wright, D. S. 1978. Lateral deformation in slabbing mills. PhD thesis, University of 
London. 

Wusatowski, Z. 1955a. A study of draught, spread and elongation. iron & steel. 
February 1955,49-54. 



282 

Wusatowski, Z. 1955b. A study of draught, spread and elongat' ion. Iron & steel. March 1955,89-94. 

Yamada K. et al. Three-dimensional analysis of flat rolling using rigid-plastic finite 
element method coupled with roll deformation analysis. In: Chenot, Wood & 
Zienkiewicz (editors). Numerical methods in industrial forming processes, 1992, 
Balkema, Rotterdam, 755-760. 

Yiu, H. L. et al. 1990. The use of plane-strain compression testing to simulate the 
evolution of hot-rolled microstructures in aluminium alloys. In: Langdon, T. G. et al 
(editors). Hot deformation of aluminum alloys. Proceedings of a symposium by the 
non-ferrous metals committee of the minerals, metals and materials society, Detroit, 
Michigan, October 8-10,1990.509-525. 

Yoon, S. G. and Kim, D. W. 1991. A study on width spread in 2-high rolling of 
rectangular bar. Key engineering materials. 51-52,423-428. 

Yoshimura, Koji et al. Robust design of square-to-box rolling of steels rods. 
American society of mechanical engineers, Design engineering division. 82(l), 
415-421. 

Zaidi, M. A. and Sheppard, T. 1982. Development of microstructure throughout roll 
gap during rolling of aluminium alloys. Metals technology. 16,229-238. 

Zhu, Q. et al. 1997. Modelling hot deformation behaviour based on evolution of 
dislocation substructures. In: Chandra T. and Sakai T. (editors). Proc. Intern. Conf, 
On Thermornechanical Processing of Steels and Other Materials (THERMEC'97), 
1997, The Minerals,, Metals and Materials Society, 2039-2045. 

Zhu, Q. and Sellars, C. M. 1998. Dislocation substructures of aluminium alloys 
during thennomechanical processing. In: Sao T. et al. (editors). Sixth International 
conference on Aluminium allas, Toyohashi, Japan, July 1998,523-528. 

Zhu, Q. and Sellars, C. M. 2001. Effect of transient strain rate conditions on 
recrystallisation behaviour of high purity and commercial Al-5%Mg alloys. In: The 
first Joint international conference on recrystallization and grain growth. August 27- 
31,2001, Aachen, Germany. 

Zieniiewicz, O. C. et al. 1981. General formulation for coupled thermal flow of 
metals using finite elements. International Journal for Numerical Methods in 
Enginýýý, 17(10), 1497-1514. 


