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Abstract

Augmented Reality (AR) technology achieves the seamless registration between virtual
scenes and the real world. Three-dimensional registration is a core method for integrat-
ing virtual information and the real world. Registration has always been treated as an
optimisation process, involving the design of objective functions and the estimation of
gradient directions. Learning-based optimisation methods learn the gradient directions
via the least-square methods acting on a parameter vector space and extracted features
from data. Learning-based optimisation methods do not require the design of objective
functions or the calculation of derivations. This advantage reduces the high complexity
and the large storage requirement for inverse Hessian approximation, which is common
when using traditional optimisation methods.

This thesis explores learning-based optimisation methods for point cloud registration
with the aim for augmented reality applications. Three methods and a computational
framework have been proposed: (1) A General Discriminative Optimisation method
(GDO) has been proposed to reduce the effect of perturbations on updating gradient
directions. The existing learning-based optimisation methods have several drawbacks,
one of which is using a single feature to learn gradient paths, which makes the learning
vulnerable to perturbations; (2) A Reweighted Discriminative Optimisation method (RDO)
has been put forward to explore the asymmetrical contributions of each component of
parameter vectors on registration to capture the influence of the component to improve the
registration accuracy; (3) A Graph-based Discriminative Optimisation method (GRDO)
has been proposed to reduce the storage requirement and computational cost; (4) Finally, a
computational framework, SGRTmreg, has been devised to achieve multiple point clouds
registration, which is a step forward in the state-of-the-art, since previous learning-based
optimisation algorithms have mainly focused on single point cloud registration. Each of the
new algorithms has been comprehensively compared with several state-of-the-art traditional
registration algorithms as well as recently developed deep learning-based algorithms using
public point cloud data sets in order to demonstrate key features (robustness, accuracy,
efficiency, stability) of algorithms and its registration performance.

In this thesis, theoretical convergence proofs for the proposed algorithms are also
provided in appendixA. The potential of GDO, RDO, and GRDO for 3D point cloud
registration is demonstrated through applications of 3D registration in real scenes and
object tracking.
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Chapter 1

Introduction

1.1 Background

Augmented Reality (AR) technology integrates our physical world with the virtual scene
to enhance the human perception of and interaction with the real world. AR has become
more widely used in education [1], entertainment [2], medicine [3] and other fields. The
core components of Augmented Reality technology include display technology, interaction
technology, and object recognition and tracking technology. With the development of
imaging equipment and hardware computing power, the current object tracking technology
based on computer vision has made significant progress. Optical tracking as a relatively
low-cost and accurate solution can be classified into two categories: marker-based tracking
and marker-less tracking. Marker-based tracking technique is unfeasible to be applied in
real scenes because it relies on artificial patterns placed in the scene to estimate the camera
pose. Therefore, most recent research has focused on developing efficient marker-less
tracking algorithms. Unlike marker-based tracking, the marker-less tracking method relies
not on artificial patterns but on natural objects found in the scene [4]. As the critical
technique in the marker-less tracking method, model-base tracking can be divided into
three stages: modelling, visual information processing and tracking. Tracking involves the
objects matching or point clouds registration. AR is defined as a combination of virtual and
real information, real-time interaction, and three-dimensional registration and summarises
that the registration problem is one of the most basic problems limiting AR applications [5].
Objects in the real world and the virtual world must be properly aligned with each other, or
the coexistence between the information in the two worlds will be compromised. Without
accurate registration, AR will not be viable in many applications, such as medicine and
navigation [6].

Three-dimensional registration, as a fundamental problem in AR, is to find a transfor-
mation T to be applied to a model point cloud M such that the difference between M and
scene point cloud S is minimised. Therefore, the registration problem can be cast as an
optimisation problem, where the transformation parameters in T are adjusted to obtain an
optimal solution of the matching problem.
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Formulating registration as an optimisation problem faces two main challenges: 1)
designing an objective function that has an optimal solution and is robust to various
perturbations; 2) selecting an efficient and suitable search method to search the optimal
solution for the designed objective function.

The objective function designed for registration is usually the combination of a least-
square method and various regular terms. The least-square method is always devised
based on different data spaces (coordinates, features, or density). Due to its conceptual
simplicity and high usability, the least-square method has been widely applied to model
objective functions for numerous tasks. Nevertheless, in the presence of noise, missing
data, outliers, and other perturbations, the least-square method will cause over-fitting and
lack robustness. In this case, regularisation or other constraints are added to the least-square
method to improve the robustness of algorithms and avoid over-fitting. However, different
regularisation has its strength and weakness. Thus, it is a challenge to design suitable
regularisation for various least-square functions and give full play to the maximum utility
of the ’cooperation’ of regularisation and least-square functions for avoiding over-fitting or
improving robustness.

The selection of search methods determines whether the optimal solution of the ob-
jective function can be found. The widely used search methods for optimisation tasks
are Gradient-based methods, which updates search directions according to the gradient
information of objective functions during iterations. Newton’s method [7], one of the
gradient-based optimisation algorithms, is a powerful technique due to its quadratic conver-
gence. Nevertheless, Newton’s method requires cost functions to be twice differentiable,
and the Hessian matrix needs to be positive definite, limiting its applications in many
cases. As the alternative to Newton’s method, the Quasi-Newton method [8] generates
an estimation of the inverse Hession matrix for finding the local maxima or minima of
objective functions, which is often used when the Jacobian or Hessian matrix is unavailable
or is too expensive to compute. However, the lack of precision in the Hessian estimation
may lead to slow convergence. Another potential disadvantage is the need to store inverse
Hessian approximation, which will require a large amount of memory. The calculation and
storage of the gradient information pose another challenge because of the large number of
parameters and high complexity of Hessian matrix inversion in many visualisation tasks

Learning-based optimisation is proven to be efficient in overcoming the mentioned
challenges. It learns gradient direction and updates gradient paths according to data
features without directly calculating the Jacobian matrix or the Hessian matrix of objective
functions. Supervised Descent Method (SDM) [9] [10] learns a sequence of linear maps
as gradient directions through minimising nonlinear least-squares functions in a feature
space, which avoids the expensive computation of the Jacobian and Hessian metrics. The
Discriminative optimisation (DO) method [11] extracts the data features and mimics
gradient descent based on the extracted features without the explicit modelling of the
objective function of registration.

Specifically, learning-based optimisation acts on the parameters space and learns the
updating gradients by making the currently estimated parameter vectors approximate the
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ground truth. The updating maps are learned from data features, which are more robust to
perturbations than the gradient calculated from the devised specific objective functions. The
learned updating map can also be directly used to estimate the transformation parameters
of the same point cloud under different transformations or different perturbations without
re-calculating the transformation of each point in the point cloud, and the whole process
avoids calculating the Hessian matrix inversion or the Jacobian matrix and achieves less
computational cost.

Although learning-based optimisation algorithms can learn gradient paths without
designing objective functions and calculating the Hessian inversion, they are primarily
used in computer image processing. In terms of point cloud registration, there is still room
to improve: (1) The existing learning-based optimisation algorithms use a single feature to
learn the gradient path, making the gradient path vulnerable to various perturbations. (2)
Learning-based optimisation algorithms estimate the final parameters by approaching the
currently estimated parameter vector to ground truth, ignoring the different influence of
each component of the vector on the registration results. (3) The existing learning-based
optimisation algorithms have limited ability to achieve multiple point clouds registration.
This research aims to improve the performance of the existing learning-based optimisation
algorithms on registration in terms of robustness, accuracy and efficiency and further
explore the potential of learning-based optimisation algorithms to make them able to
achieve multiple point clouds registration like deep learning algorithms.

1.2 Research Contributions

The existing learning-based optimisation algorithms utilise a single data feature to learn the
gradient path, causing the searching paths to fall into a local minimum. This thesis extracts
different features from point clouds and learns gradient paths based on the collaboration
of the extracted features to reduce the effect of perturbations on the search paths and
make the path converge to an optimal, further improving the robustness of learning-based
optimisation algorithms on registration. Besides, the existing learning-based optimisation
algorithms learn the updating map through a least-square method that makes a residual
vector approach to zeros to approximate the solution. Specifically, they directly minimise
the least-square function in parameter space to get the updating maps, which ignores the
influence of each component of parameter vectors on fitting errors, attaining the undesirable
local optima. In this case, the impact of each component and the asymmetrical contributions
of the components on fitting results are explored and an asymmetrical parameter treatment
scheme to improve the accuracy of parameter estimation in least-square problems is
proposed in this thesis. Moreover, the existing learning-based optimisation algorithms have
mainly focused on the single point cloud registration with limited ability to handle a large
number of multiple point clouds registration efficiently compared with deep learning-based
algorithms. To extend the existing learning-based optimisation algorithms on multiple point
cloud registration, a framework called SGRTmreg composed of search scheme, a learning-
based optimisation method called graph-based reweighted discriminative optimisation
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(GRDO), and the transfer learning technique is devised in this study. Due to the high storage
requirement and computational cost of the existing learning-based optimisation algorithms
on the registration of dense point cloud, a graph-based optimisation method is put forward
to make the learning-based optimisation algorithms efficient and less computation and
memory requirement. Each method is comprehensively compared with several state-of-the-
art traditional registration algorithms as well as recently developed deep learning-based
algorithms on public point cloud data sets. To evaluate the performance of the proposed
methods, comparative experiments on real scenes are conducted, such as point cloud
registration and object tracking. The experimental results show the better performances
of the proposed algorithms in terms of efficiency, accuracy, robustness, and stability than
other comparative registration algorithms.

More specifically, the main contributions of this work are:

1 General Discriminative optimisation for point cloud Registration
The existing learning-based optimisation algorithms learn the gradient maps via a
single feature extracted from data sets, causing the learned updating paths to be
vulnerable to perturbations, thus falling into a bad stationary point. The General Dis-
criminative optimisation method (GDO) extracts different features from point clouds
and adjusts updating paths in line with the collaboration of these features to reduce
the effect of perturbations on updating directions. Compared with the state-of-the-art
learning-based optimisation method (DO) [12], traditional registration algorithms,
and deep-learning-based algorithms, the proposed General Discriminative optimisa-
tion method is prominent in dealing with registration under various perturbations
with higher robustness. Experiments show that the registration accuracy of GDO is
almost 4.00% higher than that of DO on the Bunny [13], Chef [14], and Dancing
Children models. The registration accuracy of GDO is almost 25.00% higher than
that of DO on the Indoor Scene models [15]. And the successful Rate of GDO is
almost 14% higher than that of DO. GDO has higher stability than conventional
algorithms and deep-learning-based algorithms on the ModelNet40 data set [16].
The decline of the registration accuracy of GDO on the registration under higher
rotations is 6.91%, and the decline is as high as 78.49 % for PointNetLK [17]. The
registration accuracy of GDO is 26.00% higher than that of DO on the registration
under different noises. Meanwhile, the stability of GDO is 7.91% higher than that of
PointNetLK.

2 Reweighted Discriminative optimisation for Least-Squares Problems with Point
Cloud Registration
The learning process of the gradient paths in learning-based optimisation algorithms
is based on the least-square method, which directly learns the gradients paths by
approaching the residual parameter vectors to zeros, ignoring the influence of each
component of parameter vectors on final fitting results, causing the estimated parame-
ter vectors not accurate. The reweighted Discriminative optimisation method (RDO)
explores the influence of parameter components on final fitting results and devises an
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asymmetrical parameter treatment scheme to improve parameter estimation accuracy
in least-squares problems. Experimental results illustrate the higher robustness,
accuracy, and efficiency of RDO than the advanced learning-based optimisation
algorithms. The registration accuracy of RDO is almost 40.00% higher than that
of DO on the Happy [13] and Hand [18] models. RDO has 2.11% higher accuracy
than DO when achieving the registration on the Dancing Children model. And
the successful Rate of RDO is almost 5% higher than that of DO. In addition, the
computation time of RDO is almost 20% lower than that of DO. In addition, in the
registration experiment on the ModelNet40 data set, the registration success rate of
RDO is nearly 30% higher than that of PointNetLK.

3 SGRTmreg: A Learning Based optimisation Framework for Multiple Point
Clouds Registration
Although learning-based optimisation algorithms learn gradients from data without
designing objective functions to avoid calculating the inversion Hessian matrix, it has
mainly focused on the single point cloud registration with limited ability to handle a
large number of multiple point clouds registration efficiently compared with deep
learning-based algorithms. A framework, SGRTmreg, composed of a search scheme,
a learning-based optimisation method called graph-based reweighted discriminative
optimisation (GRDO), and transfer learning, is proposed to achieve multiple point
clouds registration, which maintains the high accuracy and robustness of GRDO also
develops the ability of GRDO for multiple point clouds registration. Experimental
results illustrate the higher robustness, accuracy, and efficiency of GRDO than the
conventional algorithms and other learning-based optimisation algorithms. The
registration accuracy of GRDO is almost 41.93% higher than that of BCPD on the
registration of synthetic data sets under various rotations. The accuracy of GRDO
when registering point clouds under various noises is almost twice that of BCPD
and is 15.33% higher than that of DO. The accuracy of GRDO is similar to the
accuracy of BCPD when achieving the registration under various outliers. They both
have almost 25.00% higher accuracy than DO. When handling the registration with
small rotations on the ModelNet40 data set, PointNetLK has higher accuracy than
other algorithms. When handling the registration with large rotations, GRDO has
4.78% higher accuracy than BCPD and 15.06% higher accuracy than PointNetLK.
In addition, GRDO has the greatest accuracy and stability than other algorithms
when achieving the registration with multiple perturbations.

1.3 Thesis Outline

Chapter 1: Introduction of research background and main contributions.
Chapter 2: Literature review on point cloud registration, and introductions of traditional
optimisation algorithms and learning-based optimisations for solving point cloud registra-
tion computer vision tasks, in terms of establishing the optimisation model and the solution
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of the optimisation model.
Chapter 3: A General Discriminative optimisation algorithm (GDO). This chapter pro-
posed a general learning-based optimisation method to improve the robustness of the
registration method through learning update directions via the collaboration of multiple
extracted features.
Chapter 4: A Reweighted Discriminative optimisation algorithm (RDO). This chapter
devised an asymmetrical parameter treatment scheme to improve the accuracy of parameter
estimation in least-squares problems.
Chapter 5: A framework called SGRTmreg for multiple point cloud registration. This
chapter described the framework SGRTmreg composed of search scheme, a learning-based
optimisation method called graph-based reweighted discriminative optimisation (GRDO),
and the transfer learning technique to achieve multiple point clouds registration.
Chapter 6: Experiments and applications of point clouds registration in real scenes and
object tracking.
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Chapter 2

Related Works

This chapter reviews several works on point cloud registration and numerical optimisation
related to our research’s aims and core technique. First of all, a thorough classification and
review of 3D point cloud registration methods are summarised according to the recent fast
development of registration methods (1992-2021), including both conventional algorithms
and current deep learning methods. Moreover, the registration problem is analysed in terms
of optimisation. After that, traditional numerical optimisation algorithms are discussed in
two parts: the establishment of the optimisation model and the solution of the optimisation
model. Finally, learning-based optimisation methods are introduced, which learn the
appropriate cost function for a given task and the search direction without first-order and
second-order information. In particular, the Discriminative optimisation method [19] is the
basis for the proposed algorithms in this thesis.

2.1 Point Cloud Registration

Point cloud registration is the process of finding a spatial transformation that aligns two
point clouds, which can be cast as the problem of minimising the difference between two
point clouds. The problem can be formulated as follows:

Let {M,S} be two finite-size point cloud in a finite-dimensional real vector space
R3, which contains Nm and Ns points, respectively. The problem is to find a desirable
transformation mapping T∗ to make the difference between the moving model M and the
target model S minimised. The output of the registration problem is therefore the optimal
transformation T∗ such that M is best aligned to S.

T∗ = argmin
T

dist (T(M) ,S) (2.1)

Where T denotes the set of all possible transformations, and T(M) represents the trans-
formed model. The dist shows the distance function acting on different spatial measure-
ments. Euclidean distance is widely used to measure spatial distance.

dist (T(M) ,S) = ∑
m∈T(M)

∥m− sm∥2
2 (2.2)
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sm = argmin
s∈S

∥s−m∥2
2 (2.3)

Where ∥·∥2 denotes the l2 norm, sm is the corresponding point in S that is closest to a
given point m in T(M).

The above equations formulate the point cloud registration process and involve four
significant factors: the way to transform models- T, the correspondences- sm, the spatial
measurement- dist and the methods searching for the optimal transformation T∗. To learn
the different roles of these factors in point cloud registration, 3D registration methods
proposed within 20 years are analysed and classified, as shown in Figure.2.1. In addition,
these significant factors constitute the optimisation modelling process for point cloud
registration. 3D registration will be cast into an optimisation problem and be discussed in
the subsequent chapter from the perspective of the optimisation modelling.
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Fig. 2.1 Overview of the most 3D point cloud registration methods
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The way to transform models- T. The registration involving a transformation that
only consists of translation and rotation is called rigid registration; otherwise, it is called
non-rigid registration. The latter is usually applied to transform deformable point clouds
(e.g. [3DSC] [20], [Nonrigid-ICP] [21], [APSR] [22] and [GMM-Tree] [23] ,etc.).

Correspondences- sm. Most of the registration algorithms achieve the registration via
the given correspondences or searching for the correspondences before optimisation, few
methods estimate the transformation mapping without correspondences (e.g. [DO] [19],
[FGR] [24], [Gogma] [25] and [SGO] [26], etc.).

Spatial measurement- dist. If the element in the distance function dist is represented
by the statistical distribution or the formulation of the distance function is designed as a
statistical model, such as Gaussian mixture model, Student’s t-distribution, and so on, these
registration methods are classified as statistic registration approaches (e.g. [GMMReg]
[27], [DLD] [28], [HGMR] [29] and [PM] [30],etc. ). The Least-Square regression and
Thin plate spline algorithm are categorised into the numerical registration approaches (e.g.
[ICP] [31], [CONReg] [32], [IRLS] [33] and [SSFR] [34],etc. ).

The methods searching for the optimal transformation T∗. In addition to designing
appropriate objective functions for registration, the way to search for the optimal transfor-
mation T∗ or the way to attain the solution of the eq.2.1 also determines the performance
of the registration methods. [SPSR] [35], [RPM-concave] [36], [LSR-CFP] [37] and
[CSCIF] [38] etc. achieve global point cloud alignment via global optimisation techniques,
such as Branch and bound (BnB) algorithm, Simulated annealing (SA) algorithm and
Evolutionary algorithm (EA). Due to the high computational cost for global optimisation,
gradient-based optimisation as the local optimisation technique is widely used to search for
the optimal transformation for most registration methods, such as Gradient-Descent method
used in [QPCCP] [39], Gauss-Newton method applied in [SDTM] [40] [RPM-L2E] [41]
[SWS] [42] and Levenberg–Marquardt method adopted in [PDA] [43].

Recently, the success of deep learning techniques in image processing has been ex-
tended to the 3D point clouds. Various deep learning models have been proposed to
achieve 3D point cloud registration. The way of deep learning to solve the 3D point cloud
registration is similar to that of the mentioned conventional algorithms. Its essence is also
to make the difference between point clouds minimised while estimating the transformation
information. Deep learning algorithms can be classified into two categories in terms of
the structures of the deep learning framework in 3D point cloud registration, as shown in
Figure.2.2.
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(a) The transformation is estimated through a deep learning model.

(b) The transformation is estimated via conventional methods.

Fig. 2.2 The structures of deep learning methods used for 3D point cloud registration

Figure.2.2 shows the structures of deep learning methods used to address the 3D point
cloud registration task. Both structures use neural networks to extract 3D point cloud
features and estimate the transformation parameters in a global/local feature space. The
difference between the two structures mainly focuses on the pose estimation module.
(a) displays a rough registration structure. The second network module in (a) can be
regarded as a regressor acting on the feature space, and the output of this structure is
often the transformed point cloud, which is always used in non-rigid registration, such as
[PRNet] [44], [3DRegNet] [45], [RelativeNet] [46], [D3feat] [47], [Geo-CNN] [48] and
[MVCNN] [49]. (b) shows a fine registration structure. Conventional registration methods
replace the second network module in (a). For example, singular value decomposition
(SVD) is used to solve the pose estimation based on the given correspondences in [RPM-
Net] [50], [DCP] [51] and [DeepICP] [52]. Lucas–Kanade method acts on global feature
space in [Pointnet-LK] [53] to address the registration task. [MVDesc-RMBP] [54]
leverages Belief Propagation to attain robust point cloud matching. The outputs of this
structure include the transformed point cloud and the transformation parameters. The
registration accuracy of this structure relies not only on the robustness of the extracted
features from the first network but also on the performance of the conventional registration
methods.

The critical steps in deep-learning-based registration methods are the feature extracting
for the regression-based pose estimation module and the correspondences seeking for the
pose estimation module based on conventional registration methods. Both significantly
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determine the accuracy and robustness of the registration. However, the latter not only
depends on the robustness of the features extracted but also hangs on the outlier rejections,
which often be converted as the selection of the inner points. [DCP] [51] and [StickyPil-
lars] [55] extract reliable correspondences through adding the attention module. Adding
the attention module in deep-learning-based registration is similar to regularisation or
constraints to the objective functions in conventional registration methods.

Overall, the point cloud registration method based on deep learning is similar to the
traditional point cloud registration method in structure, which can be summed up to feature
extraction and pose estimation. This thesis treats deep-learning-based registration only in
passing and focuses instead on the conventional registration methods. The subsequent part
will mainly focus on analysing conventional registration methods in terms of optimisation
modelling.

The design of the distance function dist and the selection of the metric space (co-
ordinates,features,etc.) in Equation.2.1 constitute the modelling process of registration
problems. The objective of the modelling is to find an optimal transformation T∗ to make
the difference between the source model M and the target model S minimised. Once the
registration model has been formulated, an optimisation algorithm can be used to find
its solution. Local optimisation algorithms seek a local solution at which the objective
function is smaller than at all other feasible nearby points. Global optimisation algorithms
search for the global solution, the point with the lowest function value among all feasible
points. The modelling process and the subsequent seeking for optimal solutions build the
optimisation modelling of registration tasks.

In short, in optimisation modelling, establishing an optimisation model is the process
of identifying objectives, variables, and constraints for a given problem. The solution of the
constructed model is to search for the optimal solution of objective functions in the solution
space. The construction of an appropriate model sometimes is the most critical step in the
optimisation modelling process. If the model is overly simple, it will miss the insightful
information on the practical problems. If it is excessively complex, it may be challenging
to search for its solution. Besides, the selection of search methods is also essential, as
it may determine whether the objective function is solved rapidly or slowly and whether
the effective solution can be found. The above issues greatly impact the performance
of traditional optimisation in handling practical problems. By contrast, learning-based
optimisation will overcome these challenges and achieve optimisation modelling more
concisely and efficiently.

In the ensuing sections, traditional optimisation and learning-based optimisation will
be discussed in terms of the establishment and the solution of the optimisation model.

2.2 Traditional Optimisation

A natural approach to address computer vision or graphics problems is to devise an
objective function f : Ŝ → R which models the phenomena of interest and then uses a
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suitable search method to find the best solution x∗:

x∗ = min
x∈Ŝ

f (x) (2.4)

Ŝ is the solution set including all possible solutions for the optimisation problem. For
traditional optimisation, the most common form of objective functions f is the summation
of several penalty functions:

f (x) =
J

∑
j=1

ϕ
(
g j (x)

)
(2.5)

g j (x) = 0d, j = 1, · · ·J, (2.6)

where ϕ : Rd → R is a penalty function and g j is the residual function which models tasks
of interest. Residual functions typically measure the difference between the observed data
and the expected value of the task model.

2.2.1 Optimisation Models in Point Cloud Registration

In point cloud registration, residual function g j measures the difference between the
target model S and the transformed source model T(M) in various metric space. Iterative
closest point (ICP) algorithm [31] and its variants [56] [57] [58] [59] aim at finding the
best transformation parameters to minimise the difference between two point clouds in
coordinates space. [JS] [60] and [NDT] [61] model point cloud by a probability density
function, then minimise the distance between these probability densities to achieve point
cloud registration. [FGR] [24] utilises the Fast Point Feature Histogram (FPFH) [62]
descriptor to extract features, seek correspondences, and then optimise transformation
pose based on the distance between correspondences. [GMM-Tree] [23] builds trees
of Gaussian mixtures to represent the feature of points, then matches points by finding
the most appropriate level of geometric detail based on the feature. Compared with
coordinates-based registration (ICP), feature-based registration (FGR) and density-based
registration (NDT, GMM-Tree) are more robust because they register point clouds using
local and global structure information rather than the single information between point pairs,
reducing the impact of perturbations on registration accuracy. However, the assumption
guaranteeing the feature-based registration’s better performance is that the feature must
be robust to various perturbations and be lower-dimensional, which will improve the
registration accuracy while reducing the computation cost.

Least-square regression is the most commonly used penalty function ϕ due to its
conceptual simplicity and high usability, the objective of which is to adjust the parameters
of a model function T(M) to fit the data set S best. Nevertheless, least-square regression
is sensitive to outliers because of the Euclidean norm formulation, which will be exposed
when dealing with the registration on the coordinates space. [RPM] [63] introduces slack
variables to the euclidean norm in least-square regression, which handles outliers in a
statistically robust manner. [IRLS] [33] utilises M-estimation to replace the least-squares
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function with a robust penalty function that is less sensitive to outliers. [TEASER] [64]
employs a truncated least-squares (TLS) estimator and introduces a pre-defined constant
that determines inliers and outliers to achieve robust registration. Gaussian kernel functions
are also used to represent the penalty function ϕ , which is most common in statistical
modelling of registration. Gaussian mixture models (GMM) are usually constructed in this
case, and EM (Expectation-maximisation) algorithm is used to update the parameters in the
mixture models. All point clouds are represented by a Gaussian mixture and the registration
is cast into a clustering problem in [JRMPS] [65]. [MLMD] [66] proposes a point cloud
registration algorithm that utilises GMM and a mixture decoupling technique to achieve
robust and accurate 3D point cloud registration. [HGMR] [29] develops a registration
algorithm using a Hierarchical Gaussian Mixture to efficiently perform point-to-model
association. Compared to the least-square regression, the statistical model can provide
better geometric matching. However, the typical shortcomings of this model are the high
computation and slow speeds. The more points there are, the longer it takes.

Regularisation terms or other constraints commonly cooperate with penalty functions
ϕ to enhance the robustness of algorithms, which improves the registration accuracy in the
presence of various perturbations(e.g., noise, occlusion, outliers). [RPM] [63] regularises
the affine transformation by penalising large values of the scale and shear components.
[RPM-L2E] [41] imposes a smooth constraint on transformation by adding a regularisation
term to the objective function. [MR] [67] introduces a manifold regularisation to penalise
transformation. [CPD] [68] formulates a regularisation on a displacement, which comes
from a prior displacement field. [GLR] [69] proposes a Graph-Laplacian regularisation to
preserve the intrinsic geometry of the point cloud to be displaced. [Nonrigid-ICP] [21]
utilises a stiffness term to regularise deformation and penalises the weighted difference of
the transformations of neighbouring vertices under the Frobenius norm using a weighting
matrix. [APSR] [22] integrates a local linear embedding (LLE)-based topology constraint
along with the CPD-based regularisation to encourage the global coherent motion and
the local deformation coherence of points. Most regularisation terms are used to impose
motion constraints to transformation to preserve the geometric structure of points in motion,
improving perturbation robustness.

Overall, the optimisation model in conventional registration methods involves designing
objective functions, which refers to three factors: the choice of metric space, the schemes
to devise penalty functions, and regularisation terms. Different combinations between
these factors will attain various transformation parameters.

2.2.2 Search Methods for Optimisation

Except for constructing an appropriate optimisation model, the selection of search methods
also determines whether the optimal transformation T∗ can be found. The typical search
methods (numerical optimisation methods) are gradient-based methods, which make
extensive use of the gradients information of objective functions during iterations. Gradient-
based algorithms have been broadly used for solving the optimisation models in the
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applications of registration, such as gradient descent for multi-view reconstruction [70],
Gauss-Newton for face alignment [71] and surface fitting [72], Levenberg-Marquardt for
structure from motion [73], Conjugate Gradient for surface reconstruction [74].

xt+1 = xt − [H f (xt)]
−1

∇ f (xt) (2.7)

Newton’s algorithm (2.7) is a popular gradient-based optimisation method due to
its quadratic convergence. Nevertheless, Newton’s algorithm requires cost functions
to be twice differentiable and the Hessian matrix H f (xt) needs to be positive definite.
Since the Hessian matrix H f (xt) may not always be positive definite, the direction
[H f (xt)]

−1
∇ f (xt) may not always be a descent direction, which will lead the solution for

optimisation model to converge to a bad local minimum. Moreover, although the quadratic
convergence rate of this method is desirable, computing the second derivative requires a lot
of computation. The computational cost for obtaining the second-order gradient informa-
tion for the Hessian matrix makes the method not feasible in many cases, especially for the
case with a large number of parameters. Therefore, to achieve fast computation for large
and complicated problems, many researchers [75] [76] have been using Quasi-Newton
methods to estimate the inverse Hession matrix for finding the local maxima or minima
of functions. However, the lack of precision in the Hessian estimation may lead to slow
convergence. Another potential disadvantage of the Quasi-Newton method (such as the
Broyden–Fletcher–Goldfarb–Shanno algorithm (BFGS)) is that storing the inverse Hessian
approximation takes a large memory space, which could be detrimental for solving large
complex tasks. Limited-memory BFGS (LBFGS) as the variant of the BFGS method,
only stores a set of vectors and calculates a reduced rank approximation to the Hessian
approximation, which needs much less memory to operate. Nevertheless, the amount of
storage required by LBFGS depends on the parameter setting which determines the number
of BFGS corrections saved.

Gradient-based searching methods are also applied to deep learning networks to search
for the optimal parameters of networks, such as gradient descent with momentum [77],
Nesterov accelerated gradient (NAG) [78], Adaptive Gradient Algorithm (Adagrad) [79],
Adadelta [80], etc. By comparison, the most widely used for training deep learning
model is Adam [81], which combines the advantages of Root Mean Square Propagation
(RMSProp) [82] and Adagrad, and computes individual adaptive learning rates for different
parameters. Despite the widespread popularity of Adam, some research papers [83] [84]
have noted that it can fail to converge to an optimal solution under specific settings.

2.3 Learning-based Optimisation

Considering the limitations of the design of optimisation models and the selection of
appropriate search methods for the optimal transformation T∗, some works propose to
learn the cost function and search path from the available training data. The former is
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achieved by using machine learning techniques, and the latter involves the supervised
sequential update (SSU) methods.

2.3.1 Learning Cost Functions

Several works propose to learn cost functions from existing training data through machine
learning rather than manually designing objective functions based on the feature of data.
[85] integrated the Support vector machines (SVMs) classifier and the optical-flow-based
tracker for object tracking. The cost function maximises the SVMs classification score in-
stead of minimising the intensity difference function between successive frames. However,
the cost function works on prior information- the initial image must be transformed into
an edge-based image. [86] proposed a data-driven approach to learn a metric for image
alignment to reduce the effect of local minimal, where the metric learning is posed as a
convex quadratic programming problem. [87] put forward a component-based discrimina-
tive approach for face alignment with initialisation. This approach regards the iterative
face alignment as the process of maximising the score of a trained two-class classifier used
to distinguish the correct and incorrect alignment. It is worth noting that this work trains
nine classifiers for each facial component, which means that the optimisation model works
based on the manually designed data features. [88] used random forest regressors trained
from data to detect features of deformable models. [89] employed regression analysis
and random forests with image features to learn the cost function for hand pose estimation
in RGBD images, where the solution of the learned optimisation model is obtained by
particle swarm search method.

A major downside of these approaches is that they need to impose the form of the
cost function, e.g., [86] requires the cost function to be quadratic. In addition, these
optimisation models are based on some prior information, such as the edge-based image
[85] and the nine facial components [87]. It can be found these learning-based optimisation
models are primarily used in the application of images, such as detecting image features
and tracking image objects. They work on the image patches or image features, limiting
the kinds of problems they can solve. It is not clear how to extend these models to
other applications, such as point cloud registration. [90] develops a continuous data
representation for point cloud registration, Support Vector–parameterised Gaussian Mixture
(SVGM), which is created by training a one-class Support Vector Machine and mapping
it to a Gaussian Mixture model, but the cost function of registration is still a least-square
regression based on Gaussian Mixture Models.

2.3.2 Learning Search Directions

Apart from learning cost functions, recent works also propose to use learning techniques
to compute the search direction of cost functions. This is done by learning a sequence
of regressors to replace gradient directions of cost functions. [91], [92] regarded weak
learner as functional gradient descent to update the parameter vector. These methods
perform updates through learning a fixed linear sequence of weak regressors, which does
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not take into account the feature of the data. [93] presented cascaded pose regression for
computing the 2D pose of objects in images. This regression builds different regressors via
the pose-indexed features, which depend on both the image data and the current estimate
of the pose. One of the drawbacks of this method is that designing weakly invariant pose-
indexed features can be quite challenging when applying this method to other applications.
[94] proposed a cascaded regression approach derived from a Gauss-Newton solution to a
non-linear least-squares problem, where the descent direction is replaced by a sequence of
averaged Jacobian and Hessian matrices learned from data. [95] presented an "Explicit
Shape Regression" approach for face alignment. This work learns a vectorial regression
function to infer the whole facial shape from the image and explicitly minimise the
alignment errors over the training data. [96] proposed an accurate learning-based tracking
algorithm combined with object detection, where the descent direction is replaced by a
linear regression function. [97] developed Iterative Error Bound Minimisation (IEBM),
where a support vector regression is used to learn a sequence of linear maps to update
transformation parameters for nonrigid image alignment. [98] used GentleBoost as the
regression function to map image intensity to an update vector to fit a set of local feature
models to an image. [9] learned a sequence of regressors matrices to update the shape
parameters based on the image features per iteration.

The mentioned works either learn a fixed regression or use the features of data to gain a
sequence of regressors, where the features are often available for image processing or pose
estimation, such as intensity difference, Scale-invariant feature transform descriptor (SIFT),
Histogram of oriented gradients (HOG), etc. Extending these methods to other problems
requires designing new features. [11] [19] [12] proposed discriminative optimisation
methods (DO) to address 3D registration and other computer vision tasks. The framework
proposed by DO can learn the gradient directions from training data without calculating the
Hessian matrix or Jacobian matrix. And experimental results illustrate the better robustness
and efficiency of DO in 3D point cloud registration than other conventional registration
methods.

The learning process for search direction in these methods is based on the supervised
sequential update (SSU) methods, which can be formulated as follows:

xt+1 = C (xt ,Ft+1 ◦h(xt)) (2.8)

Where xt ∈ Rp is the estimated parameters at time t, h : Rp → R f extracts some features
from the input data, and Ft+1 : Rp → Rd is a regressor that maps the feature h(xt) to an
update vector, and C : Rp ×Rd → Rp is the operator working on the parameter xt and the
update map Ft+1 ◦h.

Given a training set
{(

xi
0,x

i
∗,hi(xi

0)
)}N

i=1, including N problem instances, each instance
has its ground truth parameter xi

∗, the initial parameter xi
0, and the extracted features hi(xi

0).
The sequence of regressors Ft+1 can be learned through the following formulation:

Ft+1 = min
F∈F

N

∑
i=1

L
(
xi
∗,C

(
xi

t ,F◦hi(xi
t)
))

+R(F) (2.9)
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Where L : Rp ×Rp → R is a loss function, and R : Rd → R is a regularisation term.
The learned regressor sequence Ft+1 will be applied to estimate the transformation

parameters of test data. A summary of the details of the above algorithms is provided in
Table 2.1. This table shows that the mechanisms of the above algorithms are based on the
supervised sequential update methods, and most of them are applied to computer vision
via image features and fixed regressors. Thus, it is potential to extend these methods to
point cloud registration.

2.4 Discussion

Here, the similarities and differences between the supervised sequential update (SSU)
method and the neural network (NN) method are discussed and the issues in the DO
method for 3D point cloud registration are pointed out.

The most apparent similarity of the SSUs and NNs is that they have a similar structure-
multiple layers of regressors. However, their layers are very much different in the following
aspects: Training: NNs can be trained "end-to-end" through backpropagation; specifically,
all layers of the network can be affected by minimising the loss function at once. SSUs
need to be trained layer-by-layer, and the loss function in each layer is different, but the
essence is in common- make the currently estimated parameters approach to the ground
truth. Flexibility: NNs are more flexible, and the loss function can be different for different
applications, while the loss function in SSUs is limited to parameter estimation. Trained
NNs can be transferred to various applications, while regression in SSUs can only be
used for the same application or even the same data set. In addition, NNs are almost
purely data-driven, and SSUs are more model-driven, where model means the feature.
Computational Requirement: The number of parameters in each layer of SSUs is fixed,
which is much less than that of each layer in NNS, so NNs are more computationally
expensive on the same size of training data.

Although the advanced learning-based algorithm DO has shown superior results on 3D
registration, some limitations remain to be solved. Firstly, DO learns the gradient directions
utilising a single feature, making the learned updating map vulnerable to perturbations
(e.g., noises, outliers, occlusions). Secondly, the loss functions in DO are based on the
least-square regression, which ignores the influence of each component of parameter
vectors on the fitting results. Rotation and translation play different roles in 3D point cloud
registration actually. Namely, the contributions of the components of the transformation
parameter vectors are unequally for 3D registration. Finally, the learned map Ft+1 in DO
extensively depends on the extracted features h(xt), and the dimension of Ft+1 is relevant
to that of the extracted feature h(xt), which causes that the learned map Ft+1 can only
estimate the transformation parameters of the same cloud. This issue makes the learning-
based optimisation method DO unable to deal with multiple point cloud registration as the
deep learning-based methods.

Therefore, it is necessary to address these limitations and explore more robust and
efficient registration methods. The General Discriminative Optimisation (GDO) method is
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Table 2.1 A summary of the learning-based search methods
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proposed in Chapter.3 to improve the robustness of the learned gradient directions through
the collaboration of different features; the Reweighted Discriminative Optimisation (RDO)
method is put forward to improve the accuracy of estimating parameters in Chapter.4
through emphasising the different contribution of components of the parameter vector on
final fitting results. Although both GDO and RDO improve the robustness and accuracy
of registration by changing the way to learn the updating gradients, they have different
motivations and mechanisms and they can be extended to solve different tasks. Due to
GDO and RDO can only register point clouds under different perturbations, the framework
called SGRTmreg is developed to achieve multiple point clouds registration in Chapter.5.
Besides, the feature extraction approaches in GDO and RDO limit their abilities to deal with
dense point clouds, in this case, the Graph-based Reweighted Discriminative Optimisation
(GRDO) method is also explored in Chapter.5.



Chapter 3

General Discriminative Optimisation for
Point Set Registration

3.1 Introduction

Existing supervised sequential update (SSU) methods [19] use a single feature h of data to
gain a sequence of updating maps Ft+1. One single feature will make the learned gradient
path vulnerable significantly to the perturbations around data, thus falling into a bad
stationary point, especially when the single feature lacks robustness. In this case, a General
Discriminative Optimisation (GDO) is proposed to improve the robustness of SSUs on
registration. GDO learns the gradient updating map Ft+1 through different features of
the point sets, reducing the impact of perturbations on gradient directions and, as a result,
increasing the accuracy of the parameter estimation for registration. By balancing the
contribution of different extracted features on the updating gradient, a sequence of gradient
updating maps can be learned directly from training data sets while making the gradient
path converge to the optimal point as closely as possible.

3.2 Motivation

Discriminative Optimisation (DO) updates gradient directions according to the feature
of input data without calculating the Jacobian or Hessian matrix. More specifically, DO
splits gradient information as the updating map D ∈ Rp× f and the feature h : Rp → R f ,
and updates the map D through approaching the current estimated parameter vector xt to
ground truth x∗.

xt+1 = xt −Dt+1h(xt) (3.1)

Dt+1=min
D̃

1
N

N

∑
i=1

∥∥xi
∗−xi

t + D̃h
(
xi

t
)∥∥2

2 +
λ

2

∥∥D̃
∥∥2

F . (3.2)

Where ∥·∥F is the Frobenius norm, and λ is a hyperparameter. Equation.3.1 and Equa-
tion.3.2 illustrate the way to update estimated parameters and the way to learn gradient
paths respectively.
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Despite not calculating the Jacobian or Hessian matrix, DO still has several issues
theoretically. Equation.3.2 shows that DO uses a single feature h of data to gain a
sequence of updating maps Dt+1. The lack of other features of data increases the risk of
perturbations around data on the update of gradient directions. In this case, GDO explores
the collaboration of different features H f to reduce the impact of perturbations on the
gradient direction.

Another theoretical issue of DO is that the constraint for the convergence of DO
requires each Dh(x) to be strictly monotone at ground truth for all samples. Actually, not
all features are able to fulfil this constraint. In other words, the convergence constraint limits
the selection of feature function h. We provide a weaker constraint for the convergence of
the learning-based optimisation.

3.3 Methodology

Optimisation problems can be formulated as follows.

min
x

Φ(x) =
I

∑
i=1

γi
1
Ji

Ji

∑
ji=1

ϕi
(
g ji (x)

)
. (3.3)

Equation.3.3 formulates the optimisation problems. Where ϕi : Rd → R is a penalty
function, g ji : Rp → Rd models the problem of interest, Ji is the number of g ji correspond-
ing to the penalty function ϕi, γi is the coefficient of penalty function ϕi. The following
framework shows how to use the feature information of data to mimic the gradient descent
of unknown functions Φ.

For simplicity, just two different unknown penalty functions are considered, I = 2 and
assume Φ(x) is differentiable.

Φ(x)=
γ1

J1

J1

∑
j1=1

ϕ1
(
g j1 (x)

)
+

γ2

J2

J2

∑
j2=1

ϕ2
(
g j2 (x)

)
. (3.4)

Let us observe its derivative:

∂Φ(x)
∂x

=
2

∑
i=1

γi
1
Ji

Ji

∑
ji=1

[
∂g ji
∂x

]T[
∂ϕi

∂g ji

]

=
2

∑
i=1

γi
1
Ji

Ji

∑
ji=1

[
∂g ji
∂x

]T

φi
(
g ji
)

=
d

∑
k=1

2

∑
i=1

γi
1
Ji

Ji

∑
ji=1

[
∂g ji
∂x

]T

k,:

[
φi
(
g ji
)]

k .

(3.5)

Where g ji (x) is denoted as g ji and ϕi
(
g ji (x)

)
is denoted as ϕi to reduce notation

clutter. [Y ]k is the kth row of Y ,and [y]k means the kth element of y. Y means in general
any matrix. y generally refers to any vector. Then the derivative of ϕi is replaced with a
generic function φi.
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For simplicity, the lth element of ∂Φ(x)
∂x is denoted as [∆x]l . Then Equation (3.5) can be

rewritten as the following format:

[∆x]l =
d

∑
k=1

2

∑
i=1

γi
1
Ji

Ji

∑
ji=1

[
∂g ji
∂x

]
k,l

[
φi
(
g ji
)]

k

=
d

∑
k=1

2

∑
i=1

γi

Ji

Ji

∑
ji=1

[
∂g ji
∂x

]
k,l

∫
Rd

[φi (v)]k δ
(
v−g ji

)
dv

=
d

∑
k=1

2

∑
i=1

∫
Rd

[φi (v)]k
γi

Ji

Ji

∑
ji=1

[
∂g ji
∂x

]
k,l

δ
(
v−g ji

)
dv

=
d

∑
k=1

∫
Rd

[φ1 (v)]k
γ1

J1

J1

∑
j1=1

[
∂g j1
∂x

]
k,l

δ
(
v−g j1

)
+[φ2 (v)]k

γ2

J2

J2

∑
j1=2

[
∂g j2
∂x

]
k,l

δ
(
v−g j2

)
dv

=
d

∑
k=1

∫
Rd

[
φ1 (x) φ2 (x)

]
k
×

 γ1
J1

∑
J1
j1=1

[
∂g j1
∂x

]
k,l

δ
(
v−g j1

)
γ2
J2

∑
J2
j2=1

[
∂g j2
∂x

]
k,l

δ
(
v−g j2

)
dv

(3.6)

Where δ (x) is the Dirac function. Then[
∂Φ(x)

∂x

]
l
=

d

∑
k=1

∫
Rd

D(v,k)H f (v,k, l;x)dv. (3.7)

D(v,k) =
[
φ1 (x) φ2 (x)

]
k
. (3.8)

H f (v,k, l;x) =

[
γ1h1

γ2h2

]
. (3.9)

Where hi is the representation of the ith feature of data, and the coefficient γi means the
contribution of each feature on updating direction.

hi (v,k, l;x) =
1
Ji

Ji

∑
ji=1

[
∂g ji
∂x

]
k,l

δ
(
v−g ji

)
. (3.10)

γi =
Tr (Cov(hi))

∑
I
i=1 Tr (Cov(hi))

. (3.11)

Tr (Cov(hi)) is the trace of the covariance matrix of hi.
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3.4 GDO Framework

3.4.1 Learning for GDO

Given a set of training data
{(

xi
0,x

i
∗,H f (xi

0)
)}N

i=1, including N problem instances, each
instance has its ground truth parameter xi

∗, the initial parameter xi
0, and the extracted

features H f (xi
0). For simplicity, H f (xi

t) is denoted as Hi
f t to represent the feature of the

i-th sample at the t-th iteration. The goal of GDO is to learn a sequence of maps Dt+1 that
update xi

0 to xi
∗.

Dt+1=min
D̃

1
N

N

∑
i=1

∥∥xi
∗−xi

t + D̃Hi
f t
∥∥2

2
+

λ

2

∥∥D̃
∥∥2

F . (3.12)

Where ∥·∥F is the Frobenius norm, and λ is a hyperparameter.

The initial training data
{(

xi
0,x

i
∗,Hi

f 0

)}N

i=1
is applied to Equation (3.12) to learn map

D1 at first. Then, D1 will be applied to Equation (2.1) to get the current estimation x1. At
each step, a new parameter vector can be created by recursively applying the update rule in
Equation (2.1). The learning process is repeated until some termination criteria are met,
such as until the error does not decrease much or the maximum number of iterations T is
reached. The pseudocode for training GDO is shown in Alg.1.

Algorithm 1 Training a sequence of update maps

Input
{(

xi
0,x

i
∗,Hi

f 0

)}N

i=1
, T , λ

Output {Dt}T
t=1

1: for t = 0 to T −1 do
2: Compute Dt+1 with (3.12)
3: for i = 1 to N do
4: Update xi

t+1 := xi
t −Dt+1Hi

f t

5: end for
6: end for

3.4.2 Convergence Analysis of GDO

Theorem 3.4.1 (Convergence of GDO’s training error)

Given a training set
{(

xi
0,x

i
∗,Hi

f 0

)}N

i=1
, if there exists a linear map D̂ ∈ Rp× f where D̂H f

meets the condition ∑
N
i=1
(
xi
∗−xi

t
)T D̂Hi

f t > 0 at xi
∗ for all i, and if there exists an i where

xi
t ̸= xi

∗, then the update rule:

xi
t+1 = xi

t −DtHi
f t . (3.13)
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with Dt ⊂ Rp× f obtained from Equation (3.12), guarantees that the training error strictly
decreases in each iteration:

N

∑
i=1

∥∥xi
∗−xi

t+1
∥∥2

2 <
N

∑
i=1

∥∥xi
∗−xi

t
∥∥2

2 . (3.14)

If D̂H f is strongly monotone, and if there exist H > 0, M > 0 such that
∥∥∥D̂Hi

f

∥∥∥2

2
≤

H +M
∥∥xi

∗−xi
∥∥2

2 for all i, then the training error converges to zero.

Thm.3.4.1 says that for all instances, if D̂H f meets the condition ∑
N
i=1
(
xi
∗−xi

t
)T D̂Hi

f t > 0,
then the average training error will decrease in each iteration; if D̂H f is strongly monotone
at xi

∗, the average training error will converge to zero. Note that H f can be not only a single
function but also a combination of different functions of xi. DO also presents a similar
convergence result for a update rule, but it requires D̂Hi

f t to be strictly monotone at xi
∗ for

all i. Besides, different from the single feature h in DO, as the combination composed of
several feature functions, H f takes into account more features of data. The detailed proof
for convergence is provided in Appendix A.

3.5 Experimentation

This section describes how to apply GDO to the 3D point set registration with various
perturbations. We compare GDO with other classical registration methods on various data
sets. The data sets are shown as Figure.3.1.

(a) Stanford Bunny (b) Chef model (c) Dancing Children

(d) Airplane627 (e) Car201 (f) Chair964

(g) Toilet378 (h) Indoor Scene 01 (i) Indoor Scene 02

Fig. 3.1 Experimental data sets
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3.5.1 3D Point Set Registration

Let {M,S} be two point sets in a finite-dimensional real vector space R3, which contains
Nm and Ns points, respectively. Our goal is to find a rigid transformation T to be applied
to scene set S such that the difference between S and model set M is minimised. The
transformation matrix T is posed as the Lie algebra x ∈ R6 in our optimisation problem.

Feature for Registration

The feature H f for registration is combined by two different features: the coordinates-based
feature [h(x;S)]c and the density-based feature [h(x;S)]d .

We use the feature extraction method in [11] to extract the features [h(x;S)]c and
[h(x;S)]d , where h is devised to be a histogram indicating the weights of scene points on
the ’front’ and the ’back’ sides of each model point. As shown in Figure.3.2.

‘Front’

‘Back’

1n

1m

   0; 11 mxsFn b

T

   0; 11 mxsFn b

T
1s

1m
1s

Fig. 3.2 The positional relationship between scene points (square) s1 and model point
(hexagon) m1.

S+
a =

{
sb : nT

a (F(sb;x)−ma)> 0
}

(3.15)

S+
a indicates the set of scene points on the ’front’ of model point ma, and S−

a contains the
remaining scene points.; na ∈ R3 is the normal vector of the model point ma; F(sb;x) is
the function that applies rigid transformation with parameter x to scene point sb.

Then the feature [h(x;S)]c can be calculated through the following formulas:

[h(x;S)]ca+=
1
z ∑

sb∈S+
a

exp
(
−1
σ̂2 ∥F(sb;x)−ma∥2

)
. (3.16)

[h(x;S)]ca−=
1
z ∑

sb∈S−
a

exp
(
−1
σ̂2 ∥F(sb;x)−ma∥2

)
. (3.17)

Where z normalises h to sum to 1, and σ̂ controls the width of the exp function. The design
of the feature [h(x;S)]d can be divided into two stages. The first stage is to calculate the
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probability of measuring each point of S in the boxes of M, and the probability of each
point of M in the boxes of S, as shown in Figure.3.3. The second stage is to apply the
calculated probability to (3.16),(3.17) to extract the density feature [h(x;S)]d .

Fig. 3.3 The first stage for designing the density feature [h(x;S)]d .

Figure.3.3 shows the first stage for designing the density feature [h(x;S)]d . The Grid_S
represents the grids around the model S. The Grid_M represents the grids around the
model M. The grid marked by the red dotted line represents the grid where is no point,
which will be removed when calculating the mean µ and covariance σ2.

The probability of measuring each point of S in the boxes of M, Pm
(
s j
)
, can be

calculated as follows, and the probability of measuring the points of M in the boxes of S,
Ps (ma), can be calculated in a similar way.

1. The 3D space around the point set M is subdivided regularly into boxes with constant
size (e.g. the Grid_S, Grid_M in Figure.3.3).

2. For each box, the following is done:

• Collect all 3D points mi=1,2,··· ,Nm in M contained in this box. If there is no
point in a box, the box will be removed (e.g. the grids marked by the red dotted
line in Figure.3.3).

• Calculate the mean

µm =
1

Nm

Nm

∑
i=1

mi.

• Calculate the covariance matrix

σ
2
m =

1
Nm

Nm

∑
i=1

(mi −µm)(mi −µm)
T .
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3. The probability of measuring each point s j of S in this box is now modeled by the
normal distribution N

(
µm,σ

2
m
)
.

Pm
(
s j
)
∼ exp

(
−(s j −µm)

T(s j −µm)

2σ

)
.

[h(x;S)]da+=
1
z ∑

sb∈S+
a

exp
(
−1
σ̂2 ∥Pm(F(sb;x))−Ps(ma)∥2

)
. (3.18)

[h(x;S)]da−=
1
z ∑

sb∈S−a

exp
(
−1
σ̂2 ∥Pm(F(sb;x))−Ps(ma)∥2

)
. (3.19)

The final feature H f can be posed as:

H f =

[
γ1[h(x;S)]c

γ2[h(x;S)]d

]
. (3.20)

We get the coefficients γ1, γ2 using (3.11), which represent the contributions of features on
updating gradient direction.

3.5.2 GDO Training Settings

The parameters in the GDO training process are the same as those in the code provided
in the Github of DO [11] for the comparison experiments on the synthetic data sets. We
normalise a given model shape M to [−1,1]3 and uniformly sample from M with the
replacement of 400 to 700 points to generate a scene model. Then we apply the following
perturbations to the scene model: (i) Rotation and translation: The rotation is within
60 degrees and the translation is in [−0.3,0.3]3, which represents the ground truth x∗;
(ii) Noise and Outliers: Gaussian noise with the standard deviation 0.05 is added to the
scene model. 0 to 300 points within [−1.5,1.5]3 are added as the sparse outliers. Besides,
a Gaussian ball of 0 to 200 points with the standard deviation of 0.1 to 0.25 is used to
simulate the structured outliers; (iii) incomplete shape: We remove 40% to 90% points
from the scene model to simulate occlusions, the detailed removing approach can be found
in [11]. For all experiments, we generated 30000 training samples, set up iterations T = 30
and set λ as 2×10−4, β 2 as 0.03, and the initial transformation x0 is 06. For the second
feature [h(x;S)]d , we build the uniform grid in the range [−2,2] with 81 points in each
dimension.

For the comparison experiments on the Modelnet40 data set, we design three modes
for GDO training. (i) mode1: The rotation is within 45 degrees and the translations
is in [−0.5,0.5]3; (ii) mode2: The rotation is within 90 degrees and the translations
is in [−0.5,0.5]3; (iii) mode3: The rotation is within 90 degrees, the translations is in
[−0.5,0.5]3 and Gaussian noise with the standard deviation 0.05 is also applied. The first
two modes aim to compare the registration of all methods in terms of varying degrees of
rotation, named single-class training. The latter is to compare the performance of different
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methods on the registration with multiple perturbations, named multi-class training. We
generated 30000 training samples for all modes, and the training sample will be normalised
to [−1,1]3 without downsampling. The number of points of all samples is 5120.

3.5.3 Performance Metrics

Baselines. We compared GDO with the advanced learning-based approach DO [11], two
point-based approaches (ICP and IRLS), two density-based approaches (CPD and NDT)
and the feature-based approach (FGR).
We used the successful registration rate, average MSE and computation time as performance
metrics.
Successful Registration Rate. A registration is successful when the mean ℓ2 is less than
0.05 of the model’s largest dimension.
Average MSE. It is worth noting that the MSE is the mean ℓ2 error between the model and
scene sets, and the Average MSE is the average for MSE for all test sets.

In order to make the experimental results more clear, we use log10 MSE and log10

computing time to describe the accuracy and efficiency of the registration of all registration
methods on the ModelNet40 data set.

3.5.4 Parameters Settings

The maximum number of iterations of all registration methods was set to 30. For DO and
GDO, we set λ as 2×10−4, β 2 as 0.03. The value of the tolerance of absolute difference
between current estimation and ground truth in iterations is 1e-4; For ICP, the tolerance of
absolute difference in translation and rotation is 0.01 and 0.5 respectively; For IRLS, we
used Huber criterion function as the regression function, the remaining parameters were
set as the same as the setting of ICP. For CPD, the type of transformation is set to rigid,
and the expected percentage of outliers with respect to a normal distribution is 0.1, the
tolerance value is the same as that in DO. For NDT, the value of the expected percentage
of outliers is set to 0.55, and the tolerance value is set as the same as that in ICP; For FGR,
the value of the division factor used for graduated non-convexity is 1.4, the maximum
correspondence distance is 0.025, the value of the similarity measure used for tuples of
feature points is 0.95, the value of the maximum tuple numbers for trading off between
speed and accuracy is set to 1000.

For BCPD, the expected percentage of outliers is set to 0.1, the parameter in the
Gaussian kernel is 2.0 and the expected length of the displacement vector is 400. All
deep-learning-based registration networks are trained on an Nvidia Geforce 2080Ti GPU
with 12G memory. For PCRNet, the kernel sizes are 64, 64, 64, 128, 1024, 1024, 512, 512,
256 and 7. The iteration for rotation and translation is set to 8. Adam optimiser with an
initial learning rate of 0,1, 300 epochs and a batch size of 32 is used for the training process.
For PointnetLK, the kernel sizes are 64, 64, 64, 128, 1024. The maximum iteration for
rotation and translation is set to 30. Adam optimiser with an initial learning rate of 0.001,
250 epochs and a batch size of 10 is used for the training process. For DCP, the kernel
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sizes are 64, 64, 128, 256, 512, 1024, 256, 128, 64, 32 and 7. The iteration for rotation and
translation is set to 1. Adam optimiser with an initial learning rate of 0.001, 250 epochs
and a batch size of 32 is used for the training process. For ICPMCC, the error threshold is
set to 10−7, the iteration number is 30, and the number of nearest points for calculating
normal vectors is set to 10.Please note that the values of these parameters are the default
values set in their official codes.

3.5.5 Registration Experiments

We have used the Stanford Bunny model [13], Chef model [14], Dancing Children, Indoor
Scene [15] as the data sets for experiments Figure.3.1. Dancing Children are available at
the AIM@SHAPE shape repository http://visionair.ge.imati.cnr.it/ontologies/shapes/. The
model set M is generated by using the grid average downsample method in MATLAB to
select 477 points from the original model.

The performance of algorithms are evaluated by comparing the evaluation metrics
in the case of various perturbations: (1) rotation: We compare the performance metrics
when the initial angle is 0◦, 30◦, 60◦, 90◦, 120◦ and 150◦[default=0◦to60◦]; (2) noise: The
standard deviation of the noise is set to 0, 0.02, 0.04, 0.06, 0.08 and 0.1 [default=0]; (3)
outliers: We set the number of outliers to 0, 100, 200, 300, 400 and 500 respectively
[default=0]; (4) incomplete ratio: The ratio of incomplete scene shape is set to 0, 0.15, 0.3,
0.45, 0.6 and 0.75 [default=0]. The random translation of all generated scenes is within
[−0.3,0.3]3. When one parameter is changed, the values of other parameters are fixed
to default values. In addition, the scene points are sampled from the original model, not
from M. We will test 750 testing samples in each variable setting. It is noteworthy that
the training samples are generated by adding various perturbations to the model M and
assigning random parameters for the translation and rotation of the model M. The testing
samples are generated similarly, but the degree of perturbation and the parameters for
transformation are different, and the down-sampled model is the original model instead of
the model M.

We also conduct comparative registration experiments on the ModelNet40 data set
[16] with traditional methods (BCPD [99], FPFH-ICP [62] and ICPMCC [100]) and
other advanced deep-learning-based registration methods, such as PCRNet [101], Point-
netLK [17], and DCP [102] (as shown in (d)∼ (g) of Figure.3.1). There are three kinds
of comparison settings corresponding to the training modes in 3.5.2: for mode1: the initial
angle is 0◦, 15◦, 30◦, 45◦, 60◦ and 75◦; for mode2: the initial angle is 0◦, 30◦, 60◦, 90◦,
120◦ and 150◦; for mode3: the initial angle is 0◦, 30◦, 60◦, 90◦, 120◦ and 150◦ [default=0◦

to 90◦] and the standard deviation of Gaussian noise is set to 0, 0.02, 0.04, 0.06, 0.08 and
0.1 [default=0]. It is worth noting that when we change one parameter, the values of other
parameters are fixed to the default value. We will test 100 test samples in each variable
setting.

http://visionair.ge.imati.cnr.it/ontologies/shapes/
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Experimental Results

Registration results. Figure.3.4 and Figure.3.5 show the 3D registration results on Bunny
model and Chef model with various perturbations. The top is the Successful Registration
Rate (SRR). The middle is the Average MSE (AMSE). The bottom is the Computation Time.
It can be seen that in the presence of arbitrary perturbation, learning-based registration
algorithms (DO, GDO) can achieve more accurate registration results than the traditional
registration methods (ICP, CPD, NDT, IRLS, FGR). Compared with DO, the performance
of GDO is slightly better than DO. However, GDO is more time-consuming, the reason for
which is that the second feature [h(x;S)]d calculates the density probability of each point
in point sets, which involves the search of the closest box. Also, the calculation way of the
second feature determines that the running time of GDO and the size of the point set are
positively correlated.
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Fig. 3.4 Results of 3D registration with Bunny model under different perturbations.

Table.3.1 shows the quantitative results of the registration on the Bunny model. B
means the baseline method - Discriminative Optimisation method (DO); P is the proposed
method in this chapter - General Discriminative Optimisation method (GDO); C is the
outstanding conventional method in this registration experiments - Coherent Point Drift
method (CPD). We set the Successful Rate of DO, Mean Square Error of DO, and the
Computation Time of DO as the references of comparison. The value of the Successful
Rate is higher, the stability of the method is higher; the value of the Mean Square Error is
lower, the registration accuracy is higher; the shorter the computation time, the real-time
capability is better. The Bold in this table shows that the stability and registration accuracy
of GDO is better than DO and CPD. The computing time of GDO is almost six times that
of DO.



3.5 Experimentation 32

Table 3.1 The quantitative results of the registration on the Bunny model (B-Baseline DO;
P-Proposed GDO; C-Conventional method CPD)

Successful Rate Mean Square Error Computation Time
B P C B P C B P C

(R)60 1.00 1.00 1.00 1.00 0.90 20.0 1.00 6.00 80.0
(R)90 1.00 1.02 0.45 1.00 0.67 66.7 1.00 17.30 115.38
(R)120 1.00 1.03 0.06 1.00 0.95 2.15 1.00 4.50 35.00
(R)150 1.00 1.02 0.00 1.00 1.00 1.67 1.00 4.50 40.00
(N)0.04 1.00 1.00 1.00 1.00 0.80 2.00 1.00 4.00 20.00
(N)0.06 1.00 1.00 1.00 1.00 1.50 2.50 1.00 6.67 20.00
(N)0.08 1.00 1.00 1.00 1.00 0.75 2.25 1.00 6.00 28.57
(N)0.1 1.00 1.00 1.00 1.00 0.90 2.00 1.00 4.67 22.22
(O)200 1.00 1.00 1.00 1.00 0.71 12.9 1.00 6.67 33.33
(O)300 1.00 1.00 1.00 1.00 0.56 22.2 1.00 1.17 36.67
(O)400 1.00 1.00 1.00 1.00 1.00 40.0 1.00 5.63 28.75
(O)500 1.00 1.00 0.97 1.00 0.33 16.7 1.00 5.00 24.00
(I)0.30 1.00 1.00 1.00 1.00 0.33 2.67 1.00 6.00 20.00
(I)0.45 1.00 1.00 0.95 1.00 1.67 13.30 1.00 7.00 20.00
(I)0.60 1.00 0.98 0.94 1.00 1.12 6.25 1.00 9.00 23.33
(I)0.75 1.00 0.96 0.44 1.00 1.50 4.50 1.00 13.25 25.00
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Fig. 3.5 Results of 3D registration with Chef model under different perturbations
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Table.3.2 shows the quantitative results of the registration on the Chef model. C is the
outstanding conventional method in this registration experiments - Iteratively Reweighted
Least Squares method (IRLS). The Bold in this table shows that the stability and registration
accuracy of GDO is better than DO and IRLS. The registration accuracy of GDO is 4.7%
higher than that of DO.

Table 3.2 The quantitative results of the registration on the Chef model (B-Baseline DO;
P-Proposed GDO; C-Conventional method IRLS)

Successful Rate Mean Square Error Computation Time
B P C B P C B P C

(R)60 1.00 1.00 1.00 1.00 0.50 1.00 1.00 5.00 37.50
(R)90 1.00 1.08 1.08 1.00 0.86 2.28 1.00 10.97 48.78
(R)120 1.00 1.25 1.05 1.00 0.93 1.22 1.00 3.00 16.67
(R)150 1.00 1.11 0.11 1.00 0.94 1.00 1.00 3.00 20.00
(N)0.04 1.00 1.00 1.00 1.00 0.60 1.80 1.00 4.44 11.11
(N)0.06 1.00 1.00 1.00 1.00 2.50 2.50 1.00 5.44 13.04
(N)0.08 1.00 1.00 1.00 1.00 1.05 2.27 1.00 5.16 12.90
(N)0.1 1.00 1.00 1.00 1.00 0.83 3.33 1.00 5.00 12.00
(O)200 1.00 1.00 1.00 1.00 0.70 13.30 1.00 4.44 14.44
(O)300 1.00 1.00 1.00 1.00 0.80 13.10 1.00 5.43 16.30
(O)400 1.00 1.00 1.00 1.00 0.90 11.40 1.00 5.16 17.20
(O)500 1.00 1.00 1.00 1.00 8.00 100.00 1.00 6.00 16.00
(I)0.30 1.00 1.00 1.00 1.00 0.94 941.17 1.00 5.56 11.11
(I)0.45 1.00 1.00 1.00 1.00 0.86 476.19 1.00 4.70 10.59
(I)0.60 1.00 1.00 0.75 1.00 0.20 600.00 1.00 7.50 15.00
(I)0.75 1.00 1.01 0.35 1.00 0.93 6.67 1.00 5.56 11.11

Figure.3.6 shows the registration results on the Dancing Children model. The trend
and distribution of the running time of all algorithms on the Dancing Children model are
the same as that on the Bunny or Chef models. GDO is more capable when dealing with
the complex model than registering simple models (Bunny, Chef), which can be illustrated
by the Mean Square Error criteria.

Table.3.3 shows the quantitative results of the registration on the Dancing Children
model. C is the outstanding conventional method in this registration experiment - the
Coherent Point Drift method (CPD). We set the Successful Rate of DO, Mean Square Error
of DO, and the Computation Time of DO as the references of comparison. The Bold in
this table shows that the stability and registration accuracy of GDO is better than DO and
CPD. The registration accuracy of GDO is 3.86% higher than that of DO. The Successful
Rate of GDO is 0.86% higher than that of DO.

Figure.3.7 and Figure.3.8 show the results of 3D registration on Indoor Scenes. The
performances of NDT and GDO are prominent when registering real scene models.
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Fig. 3.6 Results of 3D registration with Dancing Children model under different perturba-
tions

Table 3.3 The quantitative results of the registration on the Dancing Children model (B-
Baseline DO; P-Proposed GDO; C-Conventional method CPD)

Successful Rate Mean Square Error Computation Time
B P C B P C B P C

(R)60 1.00 1.17 1.22 1.00 0.50 0.00 1.00 4.00 10.00
(R)90 1.00 1.33 1.70 1.00 0.88 0.47 1.00 3.08 3.85
(R)120 1.00 0.95 0.71 1.00 0.94 1.22 1.00 3.33 5.19
(R)150 1.00 0.93 0.00 1.00 0.97 1.27 1.00 3.33 6.67
(N)0.04 1.00 1.00 1.00 1.00 0.43 0.11 1.00 10.00 24.00
(N)0.06 1.00 1.00 1.00 1.00 0.56 1.19 1.00 8.67 20.00
(N)0.08 1.00 1.00 1.00 1.00 0.99 0.64 1.00 7.43 17.14
(N)0.1 1.00 1.00 1.00 1.00 0.98 0.92 1.00 8.57 18.57
(O)200 1.00 1.00 1.00 1.00 0.13 5.00 1.00 6.25 15.00
(O)300 1.00 1.00 1.00 1.00 0.13 14.28 1.00 5.78 13.30
(O)400 1.00 1.00 1.00 1.00 0.14 16.00 1.00 5.59 21.51
(O)500 1.00 1.00 1.00 1.00 0.22 11.11 1.00 5.80 23.00
(I)0.30 1.00 1.00 1.00 1.00 0.63 0.50 1.00 6.00 20.00
(I)0.45 1.00 1.00 0.93 1.00 0.61 11.63 1.00 5.00 22.50
(I)0.60 1.00 1.00 0.79 1.00 1.00 33.33 1.00 4.50 17.50
(I)0.75 1.00 1.00 0.22 1.00 1.50 50.00 1.00 5.00 30.00
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Fig. 3.7 Results of 3D registration with Indoor Scene01 model under different perturbations

Table.3.4 shows the quantitative results of the registration on the Indoor Scene01 model.
C is the outstanding conventional method in this registration experiment - the Coherent
Point Drift method (CPD). We set the Successful Rate of DO, Mean Square Error of DO,
and the Computation Time of DO as the references of comparison. The Bold in this table
shows that the stability and registration accuracy of GDO is better than DO and CPD. The
registration accuracy of GDO is 24.43% higher than that of DO and 11.31% higher than
that of CPD. The Successful Rate of GDO is 9.3% higher than that of DO.

Table.3.5 shows the quantitative results of the registration on the Indoor Scene02 model.
C is the outstanding conventional method in this registration experiment - the Coherent
Point Drift method (CPD). We set the Successful Rate of DO, Mean Square Error of DO,
and the Computation Time of DO as the references of comparison. The Bold in this table
shows that the stability and registration accuracy of GDO is better than DO and CPD. The
registration accuracy of GDO is 26.36% higher than that of DO and 12.63% higher than
that of CPD. The Successful Rate of GDO is 13.43% higher than that of DO.

While FGR and ICP required low computation time for all cases, they had low success
rates when the perturbations were high. CPD performed well in all cases except when the
number of outliers was high. The running time of IRLS was similar to that of CPD when
dealing with the registration of simple models (Bunny, Chef); it did not perform well when
the model was highly incomplete. NDT achieved more accurate registration of real scenes
than other algorithms; it was the most time-consuming for all cases. For the learning-based
algorithms, DO and GDO outperformed the baselines when registering simple models.
When dealing with the complex model (Dancing Children) and real large scene models,
GDO performed better than DO. This is because DO just considers one single feature that
does not consider the internal topology or density distribution of points, which makes it
lack the robustness than GDO.
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Table 3.4 The quantitative results of the registration on the Indoor Scene01 model (B-
Baseline DO; P-Proposed GDO; C-Conventional method CPD)

Successful Rate Mean Square Error Computation Time
B P C B P C B P C

(R)60 1.00 1.20 1.12 1.00 0.67 0.50 1.00 1.67 0.67
(R)90 1.00 1.22 1.22 1.00 0.71 0.62 1.00 1.54 0.62
(R)120 1.00 1.38 1.15 1.00 0.78 0.85 1.00 2.00 0.80
(R)150 1.00 1.00 1.00 1.00 0.86 0.88 1.00 1.50 0.57
(N)0.04 1.00 1.13 1.09 1.00 0.76 0.76 1.00 1.67 0.67
(N)0.06 1.00 1.09 1.04 1.00 0.77 0.79 1.00 1.62 0.62
(N)0.08 1.00 1.06 1.04 1.00 0.79 0.81 1.00 2.20 0.90
(N)0.1 1.00 1.09 1.07 1.00 0.70 0.69 1.00 1.57 0.71
(O)200 1.00 1.05 0.87 1.00 0.75 1.20 1.00 2.08 0.70
(O)300 1.00 1.04 0.84 1.00 0.79 1.21 1.00 2.13 0.60
(O)400 1.00 1.11 0.88 1.00 0.78 1.26 1.00 1.90 0.50
(O)500 1.00 1.12 0.91 1.00 0.87 1.24 1.00 1.86 0.50
(I)0.30 1.00 1.06 1.06 1.00 0.51 0.51 1.00 1.78 0.67
(I)0.45 1.00 1.07 1.09 1.00 0.67 0.65 1.00 1.87 0.73
(I)0.60 1.00 1.05 1.08 1.00 0.95 0.55 1.00 1.69 0.77
(I)0.75 1.00 1.06 0.88 1.00 0.68 1.17 1.00 1.82 0.73

Figure.3.9 displays the performance of all methods on registration with mode1. The
top is the computational time for registration. The bottom is the log10MSE of all the
comparison methods. It can be seen that the accuracy of BCPD is higher than other
methods, but BCPD takes almost dozens of times as long as other algorithms. DCP

Table 3.5 The quantitative results of the registration on the Indoor Scene02 model (B-
Baseline DO; P-Proposed GDO; C-Conventional method CPD)

Successful Rate Mean Square Error Computation Time
B P C B P C B P C

(R)60 1.00 1.18 1.56 1.00 0.64 0.45 1.00 3.00 1.20
(R)90 1.00 1.88 2.50 1.00 0.71 0.62 1.00 3.04 1.20
(R)120 1.00 1.64 1.64 1.00 0.72 0.84 1.00 3.06 1.20
(R)150 1.00 1.00 1.00 1.00 0.77 0.83 1.00 3.20 1.20
(N)0.04 1.00 1.14 1.12 1.00 0.76 0.76 1.00 2.80 1.40
(N)0.06 1.00 1.13 1.09 1.00 0.71 0.73 1.00 3.00 1.40
(N)0.08 1.00 1.10 1.06 1.00 0.77 0.81 1.00 2.14 1.00
(N)0.1 1.00 1.12 1.05 1.00 0.68 0.67 1.00 2.17 1.14
(O)200 1.00 1.08 0.89 1.00 0.73 1.19 1.00 3.60 1.00
(O)300 1.00 1.07 0.85 1.00 0.75 1.14 1.00 2.40 0.70
(O)400 1.00 1.09 0.86 1.00 0.72 1.17 1.00 2.46 0.62
(O)500 1.00 1.12 0.91 1.00 0.80 1.13 1.00 2.11 0.50
(I)0.30 1.00 1.09 1.09 1.00 0.47 0.53 1.00 3.11 1.00
(I)0.45 1.00 1.08 1.11 1.00 0.83 0.72 1.00 3.14 1.14
(I)0.60 1.00 1.03 1.10 1.00 0.90 0.68 1.00 3.60 1.20
(I)0.75 1.00 1.01 0.85 1.00 0.72 1.17 1.00 3.00 1.50
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Fig. 3.8 Results of 3D registration with Indoor Scene02 data set under different perturba-
tions

takes about the same time as BCPD, but its accuracy and stability are poor. The poor
performance also occurs on the PCRnet method. By contrast, PointnetLK can keep higher
stability and accuracy when dealing with the registration not over 60o. Compared with
the deep-learning methods, as the traditional learning-based method, DO and GDO can
achieve the registration with higher accuracy and stability. FPFH-ICP also performs well.
The stability of ICPMCC has a sharp decrease when ICPMCC registers the registration
over 60o.
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Fig. 3.9 The registration results on Modelnet40 with perturbation setting mode1.

Table.3.6 shows the log10 Mean Square Error of registration results on Modelnet40
with perturbation setting mode1. B means the baseline method - Discriminative Optimi-
sation method (DO); P is the proposed method in this chapter - General Discriminative
Optimisation method (GDO); C is the outstanding conventional method in this registration
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experiments - Iterative Closest Point algorithm based on maximum correntropy criterion
(ICPMCC). We set the absolute value of log10 Mean Square Error of DO as the reference
of comparison. The value of the absolute value of the log10 Mean Square Error is higher,
and the registration accuracy is higher. Q0, Q4 and IQR aim to measure data distribution
in boxplot figures. Q0 and Q4 are the minimum and maximum respectively. And IQR is
the interquartile range, which measures the distance between the upper and lower quar-
tiles; the shorter the distance, the more stability of the method. It can be seen that GDO,
ICPMCC and PointNetLK all have higher accuracy than DO, as shown the bold in this
table. Compared with ICPMACC and PointNetLK, GDO has higher stability.

Table 3.6 The log10 Mean Square Error of registration results on Modelnet40 with perturba-
tion setting mode1 (B-Baseline DO; P-Proposed GDO; C-Conventional method ICPMCC;
D-Deep learning method PointNetLK; Q0 - Minimum; Q4 - Maximum; IQR - Interquartile
range )

Q0 Q4 IQR
B P C D B P C D B P C D

627(45) 1.00 1.15 3.67 3.73 1.00 2.00 6.35 6.25 1.00 0.29 0.71 6.86
627(60) 1.00 1.33 3.94 3.94 1.00 2.35 0.59 0.71 1.00 0.33 9.50 5.50
627(75) 1.00 1.15 4.17 2.78 1.00 2.71 0.57 0.57 1.00 0.21 9.43 3.07
201(45) 1.00 1.21 3.82 3.92 1.00 1.39 6.08 2.61 1.00 0.29 0.71 6.14
201(60) 1.00 1.25 3.55 3.55 1.00 1.30 5.65 0.43 1.00 0.60 0.30 7.20
201(75) 1.00 1.20 3.75 1.75 1.00 1.30 5.48 0.35 1.00 1.00 2.00 4.00
964(45) 1.00 1.33 4.83 4.97 1.00 1.60 6.70 6.50 1.00 0.14 1.43 1.86
964(60) 1.00 1.72 6.00 6.00 1.00 1.78 0.56 0.44 1.00 0.71 17.14 12.86
964(75) 1.00 1.54 5.11 5.36 1.00 2.92 0.23 0.23 1.00 1.50 58.00 33.00
378(45) 1.00 1.29 3.89 3.89 1.00 1.40 5.20 5.60 1.00 1.33 2.33 1.00
378(60) 1.00 1.29 3.76 3.95 1.00 1.39 5.57 3.04 1.00 3.00 3.00 15.00
378(75) 1.00 1.29 3.95 3.95 1.00 1.52 0.43 0.43 1.00 1.50 62.50 35.00

Figure.3.10 shows the registration results on the perturbation of larger rotations mode2.
The stability and accuracy of ICPMCC and PointnetLK are worse when ICPMCC and
PointnetLK handle the registration over 60o. The performance of DCP and PCR is unstable
as ever. DO, GDO, and BCPD can keep the high accuracy and stability until they register
point sets with large rotations (over 120o). Nevertheless, the accuracy of GDO is higher
than that of BCPD and DO when dealing with the registration over 120o. FPFH-ICP still
keeps its high stability and accuracy, and the performance of ICPMCC is poor once it is
used to achieve the registration with larger rotations.

Table.3.7 shows the log10 Mean Square Error of registration results on Modelnet40 with
perturbation setting mode2. C is the outstanding conventional method in this registration
experiments - Iterative Closest Point based on Fast point feature histogram (FPFH-ICP).
We set the absolute value of log10 Mean Square Error of DO as the reference of comparison.
It can be seen that GDO can keep higher stability than other methods when handling the
registration with higher rotations. Compared with Table.3.6, we can find that the accuracy
of GDO on the registration with large rotations is 6.91% lower than that of the registration
with small rotations. This decline is as high as 78.49 % for PointNetLK.

Figure.3.11 illustrates the registration results on Modelnet40 data set with multiple
perturbations mode3. DO and GDO can keep the higher stability and accuracy on the
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Fig. 3.10 The registration results on Modelnet40 with perturbation setting mode2.

Table 3.7 The log10 Mean Square Error of registration results on Modelnet40 with perturba-
tion setting mode2 (B-Baseline DO; P-Proposed GDO; C-Conventional method FPFH-ICP;
D-Deep learning method PointnetLK; Q0 - Minimum; Q4 - Maximum; IQR - Interquartile
range )

Q0 Q4 IQR
B P C D B P C D B P C D

627(90) 1.00 1.20 2.29 1.14 1.00 2.67 1.33 0.53 1.00 0.30 2.50 1.10
627(120) 1.00 1.09 2.61 0.87 1.00 1.00 1.67 0.58 1.00 1.20 3.00 1.00
627(150) 1.00 1.17 2.94 0.83 1.00 1.25 1.50 0.50 1.00 0.17 2.00 0.33
201(90) 1.00 1.40 1.77 1.70 1.00 1.20 0.72 0.48 1.00 0.80 3.40 2.60
201(120) 1.00 1.11 2.67 1.11 1.00 1.50 1.67 0.42 1.00 0.50 3.50 0.50
201(150) 1.00 1.38 4.15 1.15 1.00 1.00 1.50 0.42 1.00 2.00 18.00 2.00
964(90) 1.00 1.20 1.83 0.70 1.00 1.20 0.64 0.48 1.00 2.00 11.00 1.50
964(120) 1.00 1.36 1.86 0.57 1.00 0.92 1.42 0.42 1.00 0.29 2.71 1.00
964(150) 1.00 1.09 5.09 0.91 1.00 0.92 1.33 0.42 1.00 2.00 21.00 2.00
378(90) 1.00 1.15 2.08 0.28 1.00 1.20 0.64 0.48 1.00 2.00 16.50 0.50
378(120) 1.00 1.11 1.50 0.28 1.00 0.80 1.00 0.33 1.00 9.33 7.00 0.67
378(150) 1.00 1.09 4.73 0.73 1.00 0.92 1.33 0.42 1.00 1.00 23.00 2.00
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registration with multiple perturbations, compared with other methods. The ability of
deep-learning methods to handle the registration with multiple perturbations is poor than
that of the traditional methods. The performance of FPFH-ICP is still stable, but the
accuracy is not high.
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Fig. 3.11 The registration results on Modelnet40 with perturbation setting mode3.

Table.3.8 shows the log10 Mean Square Error of registration results on Modelnet40 with
perturbation setting mode3. C is the outstanding conventional method in this registration
experiments - Iterative Closest Point algorithm based on maximum correntropy criterion
(ICPMCC). We set the absolute value of log10 Mean Square Error of DO as the reference
of comparison. It can be seen that the registration accuracy of GDO is 26% higher than that
of DO, 3.64% higher than that of ICPMCC and 81.99% higher than that of PointNetLK.
The stability of GDO is 7.91% higher than that of PointNetLK.

Table 3.8 The log10 MEan Square Error of registration results on Modelnet40 with perturba-
tion setting mode3 (B-Baseline DO; P-Proposed GDO; C-Conventional method ICPMCC;
D-Deep learning method DCP; Q0 - Minimum; Q4 - Maximum; IQR - Interquartile range )

Q0 Q4 IQR
B P C D B P C D B P C D

627(0.06) 1.00 1.26 0.66 0.66 1.00 1.73 0.91 0.82 1.00 0.33 0.56 0.56
627(0.08) 1.00 1.21 0.63 0.61 1.00 1.73 0.82 0.82 1.00 0.11 0.50 0.44
627(0.10) 1.00 1.25 0.55 0.53 1.00 1.77 0.82 0.59 1.00 0.38 0.40 0.40
201(0.06) 1.00 1.26 1.34 0.66 1.00 1.36 1.71 0.38 1.00 0.33 0.11 1.11
201(0.08) 1.00 1.39 1.48 0.79 1.00 1.36 1.64 0.46 1.00 0.11 0.22 0.33
201(0.10) 1.00 1.28 1.28 0.64 1.00 1.39 1.54 0.36 1.00 0.21 0.11 0.56
964(0.06) 1.00 1.19 1.59 0.78 1.00 1.48 0.22 0.74 1.00 0.33 5.67 0.33
964(0.08) 1.00 1.19 1.53 0.75 1.00 1.48 1.04 0.74 1.00 0.28 0.29 0.29
964(0.10) 1.00 1.19 1.56 0.75 1.00 1.48 0.22 0.87 1.00 1.00 15.50 0.50
378(0.06) 1.00 1.50 1.59 0.78 1.00 1.68 0.20 0.80 1.00 3.00 20.50 1.50
378(0.08) 1.00 1.20 1.23 0.60 1.00 1.68 1.88 0.72 1.00 1.25 0.25 1.25
378(0.10) 1.00 1.20 1.15 0.60 1.00 1.64 1.72 0.68 1.00 1.25 0.50 0.50

In summary, the learning-based methods (DO and GDO) have higher stability and
robustness compared with deep-learning methods (PCRnet, PointnetLK, and DCP) and
other traditional methods. FPFH-ICP performs well even on the registration with larger
rotations, but the accuracy of FPFH-ICP is not better, which may be caused by the fewer
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iterations for FPFH to find correspondences. The ability to achieve more accurate and stable
registration on larger rotations or multiple perturbations for the deep-learning methods and
ICPMCC is limited.

The benefit of the FPFH-ICP is the ability to handle registration with larger rotations
while maintaining higher stability. Comparing the registration results on mode2 and mode3,
it can be seen that the only drawback of the traditional learning-based methods (DO and
GDO) is the less ability to register point clouds over 120o, which illustrates that the
learning-based methods are more vulnerable on rotations, not noises. In addition, the
features in GDO can be replaced by any features extracted by 3D feature descriptors
such as Fast Point Feature Histograms (FPFH) descriptors, Signature of Histogram of
Orientations (SHOT), and so on. The potential issue of the usage of various descriptors is
whether it will increase the degree of over-fitting of the learning-based methods.

Verify Convergence. Figure.3.12 shows the Convergence Criteria and Training Error of
our method on different data sets. (a) shows the value of ∑

N
i=1
(
xi
∗− xi

t
)T D̂H f

(
xi

t
)
on dif-

ferent data sets. (b) illustrates the training error of our method on different data sets. We can
find that the D̂H f in our method meets the convergence condition ∑

N
i=1
(
xi
∗− xi

t
)T D̂H f

(
xi

t
)
>

0 for all data sets, and the training error of our method decreases in each iteration.
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Fig. 3.12 The Convergence Criteria and Training Error of our method on different data
sets.

3.6 Conclusion

This chapter proposes the general discriminative optimisation (GDO) method to solve the
transformation parameter estimation in point set registration by learning update directions
from different features of training samples. Specifically, GDO designs an approach to
achieve the collaboration of the different extracted features from point sets to reduce
the effect of perturbations on updating directions. GDO combines a coordinates-based
feature and a density-based feature to update the gradient map to improve the accuracy and
robustness of transformation estimation. GDO outperformed state-of-the-art registration
approaches on different data sets. The registration accuracy of GDO is almost 4.00%
higher than that of DO on the Bunny, Chef, and Dancing Children models. The registration
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accuracy of GDO is almost 25.00% higher than that of DO on the Indoor Scene models.
And the successful Rate of GDO is almost 14% higher than that of DO. GDO has higher
stability than conventional methods and deep-learning-based methods on the ModelNet40
data set. The decline of the registration accuracy of GDO on the registration under
higher rotations is 6.91%, and the decline is as high as 78.49 % for PointNetLK. The
registration accuracy of GDO is 26.00% higher than that of DO on the registration under
different noises. Meanwhile, the stability of GDO is 7.91% higher than that of PointNetLK.
The major advantage of GDO over traditional registration methods and learning-based
registration methods includes robustness to outliers and other perturbations, which is more
prominent when dealing with complex 3D models and real scene model registration. The
limitation of GDO is that the training point cloud and the test point cloud are highly
relevant, limiting its ability to train many point clouds and achieve multiple point clouds
registration like the registration methods based on deep learning. In addition, the feature
extraction approach of GDO takes longer as the number of points increases. Future works
of interest are to design a feature function that is more robust to perturbations and more
efficient and to design a registration framework to enable GDO to achieve multiple point
clouds registration. The strong theoretical foundation and good registration performance
of GDO suggest its usefulness as a general-purpose registration technique.



Chapter 4

Reweighted Discriminative Optimisation
for Least-Squares Problems with Point
Cloud Registration

4.1 Introduction

The General Discriminative Optimisation (GDO) method achieves the robust point cloud
registration via the collaboration of different features, and it learns the sequence of regres-
sions in the same way as supervised sequential update (SSU) methods. They all utilise the
least-square regression to estimate parameter vectors, that is, the updating gradients are
learned by approaching the currently estimated parameter vectors towards the ground truth.
However, that the ℓ2 norm of the residual vector approaches to 0 does not represent the best
fitting between the estimated and real models, because different components of parameter
vectors have various impacts on fitting results. Thus, GDO and other learning-based
optimisation methods ignore the fact that different components of parameter vectors play
different roles at registration.

In this case, Reweighted Discriminative Optimisation (RDO) is proposed to address the
issue of asymmetrical contributions of the components of the parameter vector on fitting
accuracy. The new method assigns different weights to components of parameter vectors in
each iteration to emphasise the impact of each component on the fitting results. It is worth
noting that RDO is different from the Iterative Reweighted Least Squares (IRLS) [103].
IRLS attains weights through an M-estimation criterion to emphasise specific components
or the range of equations, where the weighting matrix of ℓ2 norm is an identity matrix.
When IRLS is applied to point cloud registrations to reduce the influence of outliers [33],
the M-estimator of IRLS acts on the coordinates of points directly. The RDO method,
however, utilises the characteristics of fitting errors to adjust the weights which are assigned
to the components of parameter vectors.

More specifically, the aim in this chapter is the accurate estimations of parameter
vectors through reweighting the different components of parameter vectors in the learning
process. The potential of RDO is demonstrated in handling challenging visualisation
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tasks including 3D point cloud registration, object recognition and multi-view stitching.
Experimental results show that RDO outperforms the state-of-the-art algorithms in terms
of robustness and accuracy on both synthetic data sets and range-scan data sets.

4.2 Motivation

4.2.1 Motivation from SSU Methods

Supervised sequential update (SSU) algorithms predict a set of parameters by sequentially
refining previously estimated parameters. The refinement is performed by establishing a
sequence of regressors to update the parameters. The specific refinement process can be
cast as follows:

xt+1 = C (xt ,Ft+1 ◦h(xt)) (4.1)

Where xt ∈ Rp is the estimated parameter vector at time t, h : Rp → R f extracts features
from the input data, Ft+1 : R f → Rd is a regressor that maps the feature h(xt) to an update
vector, C : Rp ×Rd → Rp is the operator working on the parameter xt and the update map
Ft+1 ◦h.

The regressor Ft+1 can be attained through minimising the residual vector of the
estimated vector xt+1 and the ground truth x∗.

Ft+1 = min
F̂

N

∑
i=1

∥∥xi
t+1 −xi

∗
∥∥2

2

= min
F̂

N

∑
i=1

∥∥C
(
xi

t , F̂◦h(xi
t)
)
−xi

∗
∥∥2

2

(4.2)

Where N is the number of samples.

4.2.2 Motivation from Point Cloud Registration

Let M,S be two point sets in a finite-dimensional real vector space R3, which contains
Nm and Ns points respectively. Point cloud registration is to find a spatial transformation
T to be applied to the scene set S such that the difference between S and the model set
M is minimised. The rigid rotation matrix is not closed with respect to addition, which
limits the direct derivation of the objective function to the rotation matrix. To overcome
this challenge, Lie groups are used to represent the transformations in 2D and 3D spaces
[104] so that the point cloud registration can be turned into an optimisation problem over
the Lie group, where parameter vectors xt+1,x∗ ∈ R6.
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Assume x∗ = 06, xt+1 = x̂k, x̂k is the k-th column of the diagonal matrix A.

A =



0.1 0 0 0 0 0
0 0.1 0 0 0 0
0 0 0.1 0 0 0
0 0 0 0.1 0 0
0 0 0 0 0.1 0
0 0 0 0 0 0.1


= [x̂1, x̂2, x̂3, x̂4, x̂5, x̂6]

For any x̂k,k ∈ {1,2 · · ·6}, the ℓ2 norm of the residual vector ∥x∗− x̂k∥2
2 is 0.01. Each x̂k

as the parameter vector is applied to register the hand model, and the registration results
are shown in Figure.4.1.

Fig. 4.1 Registration results with different transformation parameter vectors x̂k,k ∈
{1,2 · · ·6}.

Figure.4.1 shows that although the norms of residual vectors ∥x̂k −x∗∥2
2 reach the same

value 0.01, the mean squared errors of the registration results are different, which means
that the components of a parameter vector have different impact on the registration results.

Figure.4.2 illustrates the impact of each component of parameter vectors on transfor-
mation. x̂k,k ∈ {1,2,3} represent the rotations along with the x-axis, y-axis, and z-axis.
x̂k,k ∈ {4,5,6} show the translation. It can be seen that each component plays a different
role in transforming the dark-green plane. Combining with Figure.4.1, we can find that
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Fig. 4.2 The transformation with x̂k,k ∈ {1,2 · · ·6}

although the components of parameter vectors have changed on the same scale 0.1, the
registration error is different, and the x̂k,k ∈ {1,2,3} is more robust with regard to per-
turbations than translation. Therefore, the goal of RDO is to improve the robustness of
translation to perturbations and maintain the robustness of rotation.

To reduce the registration error and improve robustness while the estimated parameter
vector xt+1 is approaching the ground truth x∗, RDO assigns different weights to the
components of the parameter vectors to emphasise the influence of each component of the
vectors on the final registration results.

4.2.3 Sequence of Update Maps

Let h : Rp → R f be a function that encodes features of a data set, and Dt+1 ∈ Rp× f be
a matrix that maps the feature h to a update vector. Given an initial parameter vector
x0 ∈ Rp, the iterative updating process can be defined as follows:

xt+1 = xt −Dt+1h(xt) (4.3)

The update process ends until xt+1 converges to a stationary point. And the sequence of
matrices Dt+1, t = 0,1 · · · are learned through approximating estimated parameter vector
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xi
t+1 to the ground truth xi

∗.

Dt+1 = min
D̂

1
N

N

∑
i=1

∥∥xi
t+1 −xi

∗
∥∥2

2

= min
D̂

1
N

N

∑
i=1

∥∥xi
t − D̂h

(
xi

t
)
−xi

∗
∥∥2

2

(4.4)

Where N is the number of samples, xi
t is the parameter vector of i-th sample at the t

-th iteration. For simplicity, we denote xi
t as xt when the formula/function applies to all

samples.
Considering that each component of the parameter vector xt can have a different impact

on the fitting error, RDO explores a weighting vector wt ∈ Rp to emphasise the impact of
each component of the parameter vector on fitting results.

wt = [w1, w2, w3, · · · wp]
T (4.5)

Dt+1 = min
D̂

1
N

N

∑
i=1

∥∥wt ⊙
(
xi

t+1 −xi
∗
)∥∥2

2

= min
D̂

1
N

N

∑
i=1

∥∥wt ⊙
(
xi

t − D̂h
(
xi

t
)
−xi

∗
)∥∥2

2

(4.6)

Where ⊙ represents Hadamard product. This weighting vector wt can be transformed into
a weighting diagonal matrix Wt ∈ Rp×p.

Wt =


w1 0 . . . 0
0 w2 . . . 0
... . . . ...
0 . . . wp


p×p

Then, we get

Dt+1 = min
D̂

1
N

N

∑
i=1

∥∥Wt
(
xi

t+1 −xi
∗
)∥∥2

2

= min
D̂

1
N

N

∑
i=1

∥∥Wt
(
xi

t − D̂h
(
xi

t
)
−xi

∗
)∥∥2

2

(4.7)

4.2.4 Design Weighting Matrix Wt

Before designing weights for components of parameter vectors, we explored the function
of weights on transformation, as shown in Figure.4.3. Figure.4.3 shows the transforma-
tion with different weights. (a) shows the transformation process from the dark-green to
green when wt = [0.2,0.6,0.1,1/30,1/30,1/30]T. The element of the vector at the top
of the sub-figure [0.1294,0.1878,−0.0710] corresponds to the rotation degree along with
the X, Y, Z axes respectively. (b) illustrates the rotation information with the weights
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[0.6,0.2,0.1,1/30,1/30,1/30]. It can be seen that the weights control the scale of trans-
formation. The greater the weight, the larger the scale of the transformation.

(a) (b)

Fig. 4.3 The transformation with different weights.

Figure.4.3 shows that the weights assigned to the components of parameter vectors
have the ability to control the scale of transformation, and the greater the weight, the larger
the scale of the transformation. To determine which component should be allocated a larger
weight, we introduce a ’detector’ x̃tk to ’probe’ the difference between the component of
the current estimation xt and that of x∗.

x̃tk = xt − ck, k ∈ {1,2, · · · , p} (4.8)

Where x̃tk is the changed parameter vector. ck ∈ Rp×1 is a vector with the length of p, and
the k-th element in this vector is a constant, and other elements are zero. Except for the
k-th element, x̃tk is the same as xt .

The matching error between the ’detector’ and ground-truth is the basis to assign
weights. The greater error means the larger difference between the kth component of the
current estimation xt and that of ground-truth x∗. We need to assign a greater weight to
reduce the difference. That is to say that the matching error determines the weights. And the
weights act on the component of transformation vectors, then influence the transformation
scale that determines the matching error. The relationship between weights and matching
error is provided in Figure.4.4. The principle to design the weights is that the weight
monotonically increases as the matching error increases, which guarantees that larger
weights corresponding to the greater matching error.

The weight wk depends on erri
k, which is the fitting error of the i-th ’detector’ on the

k-th dimension of the parameter vector space. erri
k involves the parameter vector pair〈

x̃i
tk ,x

i
∗
〉
.

erri
k =

1
Nqi

Nqi

∑
j=1

∥∥F
(
x̃i

tk ,q
i
j
)
−F

(
xi
∗,q

i
j
)∥∥2

2 (4.9)

Where qi
j represents the j-th elements of the i-th sample Qi, which can be the j-th point of

the i-th point cloud Qi; F is a function that applies the parameter vector to qi
j.
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Fig. 4.4 The relationship between weights and matching error

The fitting error of the Qi on parameter vector space is erri =
[
erri

1, erri
2, · · · erri

p
]T.

Erri
k =

erri
k −min(erri)

max(erri)−min(erri)
(4.10)

Erri =
[
Erri

1, Erri
2, · · · Erri

p
]T refers to the normalisation of vector erri. E is a N × p

matrix made up of vector Erri. N is the number of samples. We express [E]k as the k-th
row of matrix E, [E]:,k as the k-th column of matrix E.

Statistical skills are used to get the normal distributions of the registration errors of
point clouds on each dimension of the parameter vector space, as shown in Figure.4.5.
Figure.4.5 shows the normal distributions of registration errors with parameter vectors
pairs ⟨x̃tk ,x∗⟩, k ∈ {1,2, · · · , p}. Curves with different colours represent different distri-
butions. The normal distribution is plotted by fitting the histogram of the fitting errors
[E]:,k ,k = 1,2 · · · p. p is 6 for Lie-algebra of transformation matrices. It can be seen that
the distributions corresponding to the different parameter vector pair ⟨x̃tk ,x∗⟩ are different.

Fig. 4.5 Normal distributions of registration errors with parameter vectors pairs ⟨x̃tk ,x∗⟩, k∈
{1,2, · · · , p}.
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Weights wk is calculated according to the characteristics of normal distributions of
errors.

µk =
∑

N
i=1[E]i,k

N

σ
2
k =

∑
N
i=1
(
[E]i,k −µk

)2

N

(4.11)

f (µk) =
1

σl
√

2π
exp(− 1

2σ2
l
(µk −µl)

2) (4.12)

Where µk and σ2
k are the mean and variance of the fitting errors of all samples on the

k-th dimension of the parameter vector. f (µk) depicts the probability density of the
normal distribution N (µl,σl) on µk. µl is the maximum or the minimum of µk, and the
corresponding σl is the minimum. Details to select µl and σl will be explained in the
following.

Figure.4.6 shows the criteria for designing weights, µ1 < µ2 < µ3, δ3 < δ1 < δ2. The
orange circles are the f (µ1) and f (µ3), where the µl = µ2. It can be seen that although
µ1 < µ3, the f (µ1) ≈ f (µ3), which does not satisfy the principle of designing weights.
The blue plus signs illustrate the f (µ2) and f (µ3), where the µl = µ1. And the green
squares represent the f (µ1) and f (µ2), where the µl = µ3. The latter two cases ensure the
monotonicity of weight assignment. The black lines show the difference between f (µ2)

and f (µ3), f (µ2) and f (µ1). It can be seen that the difference between f (µ2) and f (µ1) is
larger than the difference between f (µ2) and f (µ3). Assume µ1 < µ2 < µ3 < µ4 < µ5 < µ6,

1

2

3

1 2 3

Fig. 4.6 The criteria for designing weights

we choose µ1 and µ6 as the candidates for µl due to the monotonicity of weight assignment.
if δ1 < δ6, µl = µ1

wk = exp(
1
2
(1− f (µk))

t) (4.13)

if δ1 > δ6, µl = µ6

wk = exp(
1
2
( f (µk))

t) (4.14)
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Designing weights in this way guarantees monotonicity and makes sure that the differ-
ence between weights is sufficiently to reflect the difference between matching errors.

4.2.5 Learning a SUM

Suppose we are given a set of training data
{(

xi
0,x

i
∗,h(xi

0),Qi
)}N

i=1, including N samples
Qi, where xi

0 ∈ Rp is the initial parameter vector of the i-th sample (e.g. the i-th points
cloud), xi

∗ ∈ Rp is the ground truth (e.g. the transformation parameters), h : Rp → R f

provides feature information of samples. For simplicity, we denote h(xi
t) as hi

t to represent
the feature of the i-th sample Qi at the t-th iteration.

The goal of RDO is to learn a sequence of maps Dt+1 that update xi
0 to xi

∗.

Dt+1=min
D̂

1
N

N

∑
i=1

∥∥Wt
(
xi
∗−xi

t+D̂hi
t
)∥∥2

2 (4.15)

In practice, to prevent over fitting, ridge regression is used to learn the maps:

Dt+1=min
D̂

1
N

N

∑
i=1

∥∥Wt
(
xi
∗−xi

t+D̂hi
t
)∥∥2

2+λ
∥∥D̂
∥∥2

F (4.16)

Where ∥·∥F is the Frobenius norm, and λ is a hyperparameter.
The initial training data

{
(xi

0,x
i
∗,hi

0,Qi)
}N

i=1 is applied to (4.8), (4.9), (4.10), (4.11),
(4.12) and (4.13) to get an initial weighting matrix W0 at first. Next, an initial update
map D1 can be learned by applying the initial training data

{(
xi

0,x
i
∗,hi

0,Qi
)}N

i=1 and the
weighting matrix W0 to (4.16), then D1 will be applied to (5.7) to get the current estimation
x1. At each step, a new parameter vector can be created by recursively applying the update
rule (4.16) to (5.7). The learning process is repeated until some termination criteria are
met, such as until the fitting error does not decrease much or the maximum number of
iterations is reached. The pseudocode for training a sequence of update maps is shown in
Alg.2.

Algorithm 2 Training a sequence of update maps

Input
{(

xi
0,x

i
∗,hi

0,Mi
)}N

i=1, T , λ , c
Output {Dt+1}T−1

t=0

1: for t = 0 to T −1 do
2: Compute Wt with (4.8), (4.9), (4.10), (4.11), (4.12), (4.13)
3: Compute Dt+1 with (4.16)
4: for i = 1 to N do
5: Update xi

t+1 := xi
t −Dt+1hi

t

6: end for
7: end for
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4.2.6 Convergence of Training Error

Theorem 4.2.1 (Convergence of RDO’s training error) Given training set
{(

xi
0,x

i
∗,hi

0
)}N

i=1,

if there exists a linear map D̂ ∈ Rp× f where D̂hi
t meets the condition ∑

N
i=1
(
xi

t − xi
∗
)T D̂hi

t >

0 at xi
∗ for all i where

[
hi

t
]

j,: ∈ (0,1), and if there exists an i where xi
t ̸= xi

∗, then the update
rule:

Dt+1=min
D̂

1
N

N

∑
i=1

∥∥Wt
(
xi
∗−xi

t+D̂hi
t
)∥∥2

2+λ
∥∥D̂
∥∥2

F (4.17)

where [Wt ] j, j > 1

xi
t+1 = xi

t −Dt+1hi
t (4.18)

guarantees that the training error strictly decreases in each iteration:

N

∑
i=1

∥∥xi
∗−xi

t+1
∥∥2

2 <
N

∑
i=1

∥∥xi
∗−xi

t
∥∥2

2 (4.19)

If D̂hi
t is strongly monotone at xi

∗, and if there exist H > 0, M > 0 such that
∥∥D̂hi

t
∥∥2

2 ≤
H +M

∥∥xi
∗−xi

t
∥∥2

2 for all i, then the training error converges to zero.

Thm.4.2.1 says that for all samples , if D̂hi
t meets the condition ∑

N
i=1
(
xi

t − xi
∗
)T D̂hi

t > 0,
then the average training error will decrease in each iteration; if D̂hi

t is strongly monotone at
xi
∗, the average training error will converge to zero. [11] also presents a similar convergence

result for an update rule, but it requires D̂hi
t to be strictly monotone at xi

∗ for all i.The detailed
proof for convergence is provided in Appendix A.

4.3 Experimentation

This section describes how to apply RDO to 3D point cloud registration (Synthetic data
and Range-scan data) and stitching. We provide a comparative study of RDO with other
classical registration methods on different data sets. The data sets are shown as Figure.4.7,
Figure.4.8 and Figure.4.9.
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(a) Happy Buddha (b) Skeleton Hand

(c) Bimba Model (d) Dancing Children

(e) Model (f) Scene

Fig. 4.7 3D registration data sets. (a) ∼ (d) are the Synthetic data, and (e),( f ) are the
Range-scan data

(a) ptCloudRef (b) ptCloudCurrent

Fig. 4.8 Point Cloud stitching experiments data sets. The rectangles show the major
differences between two different views. The ellipses marked by 1,2,3 show the obvious
differences in stitching experimental results.
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(a) Airplane0001 (b) Airplane0144

(c) Car0007 (d) Car0026

Fig. 4.9 3D point clouds for comparing the PointnetLK and RDO registration methods.

4.3.1 Experimental Design

Data sets

We performed 3D points cloud registration experiments on synthetic data sets: Happy
Buddha model [13], Skeleton Hand model [18], Dancing Children and Bimba Model http:
//visionair.ge.imati.cnr/ (as shown in (a)∼ (d) of Figure.4.7). And the registration experi-
ment on Range-scan data is conducted on the UWA data set [105] (as shown in (e),( f )
of Figure.4.7). Multi-view points clouds for the stitching experiment are as shown in
Figure.4.8. We also compare the performance of RDO and the advanced deep-learning-
based registration method PointnetLK [17] on the ModelNet40 data set [16], as shown in
Figure.4.9.

Design h

Let M ∈ R3×NM be a matrix containing the 3D coordinates of the original model and
S ∈ R3×NS for the scene model. Our method is applied to register S and M, where the
transformation matrix is represented by Lie algebra se(3) x ∈ R6. We use the feature
extraction method in [11] to extract the feature of the data sets, which designs h to be a
histogram indicating the weights of scene points on the ’front’ and the ’back’ sides of each
model point according to the coordinates in Figure.4.10.

http://visionair.ge.imati.cnr/
http://visionair.ge.imati.cnr/
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Fig. 4.10 The positional relationship between scene points (square) and model point
(hexagon) m1.

S+
a =

{
sb : nT

a (F (sb;x)−ma)> 0
}

(4.20)

S+
a indicates the set of scene points on the ’front’ of model point ma, and S−

a contains the
remaining scene points; na ∈ R3 is the normal vector of the model point ma; F(sb;x) is
the function that applies rigid transformation with parameter x to scene point sb. Then the
features in different divided areas of the model point ma can be calculated through the
following formulas:

[h(x;S)]a+=
1
z ∑

sb∈S+
a

exp
(
−1
β 2 ∥F(sb;x)−ma∥2

)
(4.21)

[h(x;S)]a−=
1
z ∑

sb∈S−
a

exp
(
−1
β 2 ∥F(sb;x)−ma∥2

)
(4.22)

z normalises h to sum to 1, and β controls the width of the exp function. h is specific to
model M, and it has a fixed size 2NM.

4.3.2 RDO Training

The parameters in the RDO training process are the same as those in the code provided in
the Github of DO [11]. We normalise a given model shape M to [−1,1]3 and uniformly
sample from M with the replacement 400 to 700 points to generate a scene model. Then
we apply the following perturbations to the scene model: (i) Rotation and translation:
The rotation is within 60 degrees, and the translation is in [−0.3,0.3]3, which represents
ground truth x∗; (ii) Noise and Outliers: Gaussian noise with the standard deviation 0.05
is added to the scene model. 0 to 300 points within [−1.5,1.5]3 are added as the sparse
outliers. Besides, a Gaussian ball of 0 to 200 points with the standard deviation of 0.1 to
0.25 is used to simulate the structured outliers; (iii) incomplete shape: We remove 40% to
90% points from the scene model to simulate occlusions, the detailed removing approach



4.3 Experimentation 56

can be found in [11]. For all experiments, we generated 30000 training samples, set up
iterations T = 30 and set λ as 2×10−4, β 2 as 0.03, and the initial transformation x0 is 06.

4.3.3 Experiments Metrics

Baselines

We compared RDO with the advanced learning-based approach DO [11] and deep-learning-
based method PointnetLK [17], two point-based approaches (ICP [31] and IRLS [33]) and
three density-based approaches (CPD [68], BCPD [99] and NDT [61]). The codes for
all methods were downloaded from the authors’ websites, except for ICP, where we used
MATLAB’s implementation. For IRLS, the Huber cost function was used. The code of
RDO was implemented in MATLAB.

Evaluation Metrics

We use the registration success rate, the average MSE, and the computation time as per-
formance metrics for comparing the performance of RDO with registration methods (DO,
ICP, NDT, CPD, BCPD, and IRLS). And registration success rate, the MSE, and the log10

average MSE are used for RDO and PoinnetLK comparison.

Registration Success Rate. Registration is successful when the mean ℓ2 is less than
0.05 of the model’s largest dimension.

Average MSE. It is worth noting that the MSE is the mean ℓ2 error between the model
and the scene sets, and the Average MSE is the average for MSE for all test sets.

4.3.4 Parameters Settings

The maximum number of iterations of all registration methods was set to 30. For DO and
RDO, we set λ as 2×10−4, β 2 as 0.03. The value of the tolerance of absolute difference
between current estimation and ground truth in iterations is 1e-4; For ICP, the tolerance of
absolute difference in translation and rotation is 0.01 and 0.5, respectively; For IRLS, we
used Huber criterion function as the regression function, the remaining parameters were
set as the same as the setting of ICP. For CPD, the type of transformation is set to rigid,
and the expected percentage of outliers with respect to a normal distribution is 0.1; the
tolerance value is the same as that in DO. For NDT, the value of the expected percentage
of outliers is set to 0.55, and the tolerance value is set as the same as that in ICP. For
BCPD, the expected percentage of outliers is set to 0.3, the parameter in the Gaussian
kernel is 0.2, and the expected length of the displacement vector is 1e9. For PointnetLK,
the PointnetLK network is trained on an Nvidia Geforce 2080Ti GPU with 12G memory.
The kernel sizes of the PointnetLK are 64, 64, 64, 128, 1024. The maximum iteration for
rotation and translation is set to 30. Adam optimiser with an initial learning rate of 0.001,
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250 epochs and a batch size of 10 are used for the training process. Please note that the
values of these parameters are the default values set in their official codes.

4.3.5 Registration Experiments

Synthetic Data

We perform registration experiments on Happy Buddha model, Skeleton Hand model,
Dancing Children and Bimba Model in Figure.4.7. The models are downsampled by
selecting 477 points from the original model as the model set M. The performance
of algorithms are evaluated by comparing the evaluation metrics in the case of various
perturbations: (1) rotation: The initial angle is 0◦, 30◦, 60◦, 90◦, 120◦ and 150◦ [default=0◦

to 60◦]; (2) noise: The standard deviation of Gaussian noise is set to 0, 0.02, 0.04, 0.06,
0.08 and 0.1 [default=0]; (3) outlier: We set the number of outliers to 0, 100, 200, 300,
400 and 500, respectively [default=0]; (4) incomplete ratio: The ratio of incomplete scene
shape is set to 0, 0.12, 0.243, 0.36, 0.48 and 0.6 [default=0]. The random translation of
all generated scenes is within [−0.3,0.3]3. It is worth noting that when we change one
parameter, the values of other parameters are fixed to the default value. In addition, the
scene points are sampled from the original model, not from M. We will test 750 test
samples in each variable setting.

Range-scan Data

We perform a registration experiment on the UWA data set in Figure.4.7. This data set
contains 50 cluttered scenes with five objects taken with the Minolta Vivid 910 scanner in
various configurations. All objects are heavily occluded (60% to 90%). From the original
model, ∼ 400 points were sampled using pcdownsample and used as model M. We also
downsampled the scene to ∼ 1000 points. We initialised the model from 0 to 60 degrees
from the ground truth orientation with random translation within [−0.3,0.3]3 (points can
move within [−0.3,0.3] on each dimension). We ran 75 initialisation for each parameter
setting, and we set the inlier ratio of ICP to 50% as an estimate for self-occlusion.

ModelNet40 Data set

We perform registration experiments on ModelNet40 Data set in Figure.4.9. For PointnetLK
training, We train the PointnetLK network on 20 categories of public ModelNet40 data
set, and all 3D point clouds are downsampled to 1024 points during training. For RDO
training, there are two training schemes: single-class training and multi-class training. The
former is to train RDO on each point cloud (such as Airplane0001), and the latter is to train
RDO on all data sets (four point clouds) in Figure.4.9. The following perturbation setting
is adaptable for RDO training (single-class and multi-class) and PointnetLK training.
There are three kinds of perturbation setting modes. (i)mode1: The rotation is within 45
degrees and the translations is in [−0.3,0.3]3; (ii) mode2: The rotation is within 60 degrees
and the translations is in [−0.3,0.3]3; (iii) mode3: The rotation is within 45 degrees, the
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translations is in [−0.3,0.3]3 and Gaussian noise with the standard deviation 0.05 is also
applied.
The performance of algorithms are evaluated by comparing the evaluation metrics in the
case of various perturbations: for mode1: the initial angle is 0◦, 15◦, 30◦, 45◦, 60◦ and
75◦; for mode2: the initial angle is 0◦, 30◦, 60◦, 90◦, 120◦ and 150◦; for mode3: the initial
angle is 0◦, 15◦, 30◦, 45◦, 60◦ and 75◦ [default=0◦ to 45◦] and the standard deviation of
Gaussian noise is set to 0, 0.02, 0.04, 0.06, 0.08 and 0.1 [default=0]. It is worth noting
that when we change one parameter, the values of other parameters are fixed to the default
value. We will test 100 test samples in each variable setting.

4.3.6 Stitching Experiments

We perform a multi-view points cloud stitching experiment on the data set in Figure.4.8,
which stitches together a collection of point clouds that were captured with a Kinect to
construct a larger 3D view of the scene. To align the two point clouds, we regard the first
point cloud as the reference and apply the transformation parameters to the second point
cloud. ∼ 400 points of the reference model were sampled using pcdownsample and used as
the model M. We also downsampled the second point cloud to ∼ 1000 points. We initialise
the reference model from 0 to 15 degrees with random translations within [−0.1,0.1]3. It
is worth noting that after attaining the estimated parameters, we use it to transform the
second point cloud to the reference coordinate system defined by the first point cloud.

4.3.7 Experimental Results and Discussion

Registration Results

Figure.4.11, Figure.4.12 represent the 3D registration results on Happy Buddha model
and Skeleton Hand model with various perturbations through Bar graphs. Top is the
Success Rate (SR). Middle is the Average MSE (AMSE). Bottom is the Computation
Time. It can be seen that the learning-based registration algorithms (DO, RDO) have better
performance than the traditional registration methods (ICP, CPD, BCPD, NDT, IRLS) on
all evaluation metrics, i.e., Successful Registration Rate, Average MSE, and Computation
Time. Specifically, in the presence of various perturbations, the Successful Registration
Rate of RDO is higher and more stable compared with other algorithms. And the values
of Average MSE illustrate that RDO can achieve more accurate and stable registration on
different data sets (Happy Buddha and Skeleton Hand) than DO. While ICP required less
computation time in all cases, it showed low success rates in high perturbations cases, and
the performance of CPD was similar to that of ICP. As another statistic-based algorithm,
NDT was more time-consuming and had higher registration errors and lower success rates
than CPD. BCPD had better performance and took less time dealing with registration under
all kinds of rotation and noise. However, when there were different degrees of outliers
and occlusion, the performance of the algorithm was not ideal. IRLS required a high
computation time and did not perform well when the model was highly incomplete.
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(a) Initial Angles
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(b) Noise SD
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Fig. 4.11 Results of 3D registration with Happy model under different perturbations.

Table.4.1 shows the quantitative results of the registration on the Happy model. B
means the baseline method - Discriminative Optimisation method (DO); P is the proposed
method in this chapter - Reweighted Discriminative Optimisation method (RDO); C is
the outstanding conventional method in this registration experiments - Bayesian Coherent
Point Drift method (BCPD). We set the Successful Rate of DO, Mean Square Error of
DO, and the Computation Time of DO as the references of comparison. The value of the
Successful Rate is higher, the stability of the method is higher; the value of the Mean
Square Error is lower, the registration accuracy is higher; the shorter the computation time,
the real-time capability is better. We can find that the Successful Rate of RDO is 12.62%
higher than that of DO, and the registration accuracy of RDO is almost 45.56% higher than
that of DO. The computation time of RDO is 21.73% lower than that of DO. By contrast,
the successful rate and registration accuracy of BCPD are not as good as DO, and BCPD
takes more time to achieve registration.

Table.4.2 shows the quantitative results of the registration on the Hand model. C is
the outstanding conventional method in this registration experiments - Bayesian Coherent
Point Drift method (BCPD). We can find that the Successful Rate of RDO is 5.31% higher
than that of DO, and the registration accuracy of RDO is almost 38.38% higher than that
of DO. The computation time of RDO is 24.31% lower than that of DO. BCPD takes 2.3
times as much time as RDO.

Figure.4.13 illustrates that the better performance of RDO in dealing with the reg-
istration with 60o rotation compared with other algorithms. Different colours show the
registration results of different registration algorithms. The rectangles illustrate the obvious
difference between the registration results.

Figure.4.14 and Figure.4.15 show the statistical registration results on the Bimba model
and Dancing children model with various perturbations by Box plots. Each column shows
the registration results in the presence of various perturbations with different degrees. The
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Table 4.1 The quantitative results of the registration on Happy model (B-Baseline DO;
P-Proposed RDO; C-Conventional method BCPD)

Successful Rate Mean Square Error Computation Time
B P C B P C B P C

(R)60 1.00 1.01 0.88 1.00 0.50 1.00 1.00 0.71 2.86
(R)90 1.00 1.13 1.11 1.00 0.76 0.80 1.00 0.80 2.67
(R)120 1.00 2.22 1.00 1.00 0.75 0.75 1.00 0.79 2.56
(R)150 1.00 1.25 0.63 1.00 0.80 0.80 1.00 0.91 2.22
(N)0.04 1.00 1.03 0.95 1.00 0.46 1.04 1.00 0.71 1.43
(N)0.06 1.00 1.02 0.93 1.00 0.40 0.88 1.00 0.86 1.43
(N)0.08 1.00 1.03 0.92 1.00 0.37 0.85 1.00 0.90 2.31
(N)0.10 1.00 1.03 0.92 1.00 0.34 0.80 1.00 0.90 2.50
(O)200 1.00 1.03 0.97 1.00 0.46 1.04 1.00 0.80 2.00
(O)300 1.00 1.03 0.95 1.00 0.40 0.88 1.00 0.75 1.25
(O)400 1.00 1.01 0.87 1.00 0.40 0.92 1.00 0.99 1.75
(O)500 1.00 1.06 0.72 1.00 0.43 0.94 1.00 1.01 2.47
(I)0.30 1.00 1.03 0.97 1.00 0.54 1.00 1.00 0.80 1.00
(I)0.45 1.00 1.02 0.94 1.00 0.90 2.00 1.00 0.75 1.12
(I)0.60 1.00 1.07 0.89 1.00 0.50 0.75 1.00 0.64 1.03
(I)0.75 1.00 1.05 0.81 1.00 0.70 0.93 1.00 0.43 1.14
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Fig. 4.12 Results of 3D registration with Hand model under different perturbations.
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Table 4.2 The quantitative results of the registration on Hand model (B-Baseline DO;
P-Proposed RDO; C-Conventional method BCPD)

Successful Rate Mean Square Error Computation Time
B P C B P C B P C

(R)60 1.00 1.05 0.97 1.00 0.67 0.94 1.00 0.85 1.79
(R)90 1.00 1.10 0.96 1.00 0.60 1.23 1.00 0.86 1.55
(R)120 1.00 1.01 0.72 1.00 0.50 0.97 1.00 0.60 1.95
(R)150 1.00 1.04 0.71 1.00 0.67 1.04 1.00 0.85 1.94
(N)0.04 1.00 1.01 0.83 1.00 0.50 0.81 1.00 0.89 1.91
(N)0.06 1.00 1.10 0.98 1.00 0.44 0.98 1.00 0.73 1.63
(N)0.08 1.00 1.00 0.93 1.00 0.69 0.90 1.00 0.64 1.80
(N)0.10 1.00 1.08 0.89 1.00 0.74 1.07 1.00 0.70 1.51
(O)200 1.00 1.08 0.75 1.00 0.65 1.08 1.00 0.84 1.71
(O)300 1.00 1.09 0.95 1.00 0.64 0.89 1.00 0.79 1.66
(O)400 1.00 1.01 0.99 1.00 0.59 1.26 1.00 0.76 1.58
(O)500 1.00 1.04 0.95 1.00 0.55 1.23 1.00 0.61 1.59
(I)0.30 1.00 1.03 0.81 1.00 0.76 1.21 1.00 0.85 1.71
(I)0.45 1.00 1.08 0.78 1.00 0.67 1.10 1.00 0.64 1.54
(I)0.60 1.00 1.04 0.81 1.00 0.40 0.88 1.00 0.71 1.80
(I)0.75 1.00 1.09 0.86 1.00 0.79 0.90 1.00 0.79 1.74

(a) DO (b) ICP (c) NDT (d) RDO

(e) BCPD (f) CPD (g) IRLS

Fig. 4.13 Registration results of Hand model with 60o rotation.
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X-axis represents different registration algorithms. The y-axis shows the log10 value of
the registration error of samples. The values with different colours represent different
degrees of perturbations. The log10 value of the registration error corresponding to the
inter-quartile ranges in Box Plots illustrates that the learning-based algorithms (DO and
RDO) are more robust than the traditional algorithms (ICP, CPD, BCPD, NDT, IRLS).
ICP, IRLS, and BCPD did not perform well when the model was highly incomplete. And
CPD and BCPD were less able to deal with registration with outliers, especially when the
number of outliers was high. DO and RDO outperformed the baselines in almost all test
scenarios. However, RDO achieved more accurate registration than DO as shown in the
positions of minimum, maximum, quartiles, and the skewness in Box plots.
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Fig. 4.14 Statistical results of 3D registration with the Bimba Model under different
perturbations.

Table.4.3 shows the log10 Mean Square Error of registration results on Bimba model. B
means the baseline method - Discriminative Optimisation method (DO); P is the proposed
method in this chapter - Reweighted Discriminative Optimisation method (RDO); C is
the outstanding conventional method in this registration experiments - Bayesian Coherent
Point Drift (BCPD). We set the absolute value of log10 Mean Square Error of DO as the
reference of comparison. The value of the absolute value of the log10 Mean Square Error is
higher, the registration accuracy is higher. Q0, Q4 and IQR aim to measure data distribution
in boxplot figures. Q0 and Q4 are the minimum and maximum respectively. And IQR is
the interquartile range, which measures the distance between the upper and lower quartiles;
the shorter the distance, the more stability of the method. It can be seen that RDO has
higher accuracy than DO, as shown the bold in this table. Compared with RDO and DO,
BCPD has higher stability.

Table.4.4 shows the log10 Mean Square Error of registration results on Dancing Chil-
dren model. C is the outstanding conventional method in this registration experiments -
Bayesian Coherent Point Drift (BCPD). It can be seen that BCPD has higher accuracy
than RDO and DO on the registration with larger rotations. In the case of registration with
other perturbations (Noises, Outliers and Occlusions), the registration accuracy of RDO is
2.11% higher than that of DO and almost twice that of BCPD.
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Table 4.3 The quantitative registration results on Bimba model (B-Baseline DO; P-Proposed
RDO; C-Conventional method BCPD; Q0 - Minimum; Q4 - Maximum; IQR - Interquartile
range)

Q0 Q4 IQR
B P C B P C B P C

(R)90 1.00 2.21 1.05 1.00 0.90 10.00 1.00 3.14 0.64
(R)120 1.00 0.92 1.58 1.00 1.00 5.00 1.00 1.00 1.88
(R)150 1.00 0.92 1.50 1.00 3.00 1.00 1.00 1.00 1.99
(N)0.06 1.00 1.06 0.48 1.00 1.05 0.13 1.00 0.60 0.16
(N)0.08 1.00 1.23 0.62 1.00 1.07 0.36 1.00 1.00 0.17
(N)0.10 1.00 1.03 0.59 1.00 3.50 0.70 1.00 0.85 0.50
(O)300 1.00 1.10 0.48 1.00 1.79 0.64 1.00 0.77 0.65
(O)400 1.00 1.00 0.48 1.00 1.20 0.50 1.00 0.65 0.62
(O)500 1.00 1.04 0.50 1.00 1.50 0.71 1.00 0.54 0.57
(I)0.45 1.00 1.10 0.48 1.00 0.94 0.27 1.00 1.67 0.83
(I)0.60 1.00 1.05 0.48 1.00 1.30 0.34 1.00 0.63 0.63
(I)0.75 1.00 1.00 0.41 1.00 1.18 1.18 1.00 1.07 0.34
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Fig. 4.15 Statistical results of 3D registration with Dancing Children model under different
perturbations.
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Table 4.4 The quantitative registration results on Dancing Children model (B-Baseline DO;
P-Proposed RDO; C-Conventional method BCPD; Q0 - Minimum; Q4 - Maximum; IQR -
Interquartile range)

Q0 Q4 IQR
B P C B P C B P C

(R)90 1.00 1.00 1.50 1.00 0.50 5.00 1.00 1.08 1.16
(R)120 1.00 1.11 2.78 1.00 0.50 5.00 1.00 1.00 3.50
(R)150 1.00 1.00 4.00 1.00 0.50 5.00 1.00 1.00 7.00
(N)0.06 1.00 1.05 0.58 1.00 1.04 0.40 1.00 1.20 1.40
(N)0.08 1.00 1.03 0.54 1.00 1.33 0.67 1.00 0.82 0.71
(N)0.10 1.00 0.97 0.54 1.00 1.27 0.60 1.00 0.88 0.75
(O)300 1.00 1.00 0.40 1.00 0.90 0.44 1.00 1.25 0.38
(O)400 1.00 0.94 0.40 1.00 1.00 0.42 1.00 0.87 0.40
(O)500 1.00 1.04 0.39 1.00 1.14 0.52 1.00 0.94 0.33
(I)0.45 1.00 1.04 0.36 1.00 1.00 0.22 1.00 1.33 0.33
(I)0.60 1.00 1.04 0.33 1.00 1.00 0.31 1.00 0.93 0.40
(I)0.75 1.00 1.08 0.35 1.00 1.00 0.33 1.00 1.19 0.19

Figure.4.16 shows the results of the registration with the UWA data set. The first row
shows the evaluation results of the performance of various methods on the UWA data set
. And the second and the third rows display the registration results of the UWA data set
with 60o rotation; different colours show the registration results of different registration
algorithms. While DO and RDO have outperformed other traditional registration algorithms
in terms of the Success Rate, Average MSE, and Computation Errors, RDO has shown
improvements over DO and maintained low computation time. RDO produces more
accurate results than DO when registering point clouds with large rotations.
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Fig. 4.16 Results of the registration on the UWA data set .

Table.4.5 shows the quantitative results of the registration on the UWA data set . C is
the outstanding conventional method in this registration experiments - Bayesian Coherent
Point Drift method (BCPD). We can find that RDO has higher registration accuracy and
successful registration rate than DO and BCPD.

Table 4.5 The quantitative registration results on UWA data set (B-Baseline DO; P-Proposed
RDO; C-Conventional method BCPD)

Successful Rate Mean Square Error Computation Time
B P C B P C B P C

(R)30 1.00 1.00 1.00 1.00 1.00 10.00 1.00 1.00 0.95
(R)45 1.00 1.00 0.92 1.00 1.00 10.00 1.00 1.25 1.00
(R)60 1.00 1.09 1.00 1.00 0.02 0.23 1.00 1.03 0.57

Figure.4.17, Figure.4.18, Figure.4.19 and Figure.4.20 illustrate the registration results
of RDO and PointnetLK on ModelNet40 with the single-class training scheme. Top shows
the Success Rate. The second shows the Mean Square Error (MSE). The third shows
the log10 average MSE. Bottom displays the registration results of ModelNet40 with 60o

rotation, and the turquoise shows the registration result of PointnetLK, and the dark orange
illustrates the registration results of RDO. The first two correspond to the evaluation
for perturbation setting modes mode1 and mode2, and the last two show the registration
results corresponding to the perturbation setting mode mode3. Figure.4.17 shows the
registration results when rotation is within 45o during the training process. It can be seen
that, compared with PointnetLK, RDO had a higher and more stable Success Rate and
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lower Mean Square Error (MSE). The number of outliers in box-plots of MSE illustrates
that the performance of PointnetLK is not stable when dealing with the registration with
rotation degree over 45o, which also can be verified by the registration accuracy showed in
log10 average MSE.
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Fig. 4.17 The registration results of the single-class training scheme with perturbation
setting mode1.

Figure.4.18 displays the registration results with the training rotation within 60o. It
can be seen that PointnetLK did not perform well when registering the point cloud with a
larger rotation, even it had low registration accuracy when dealing with registration with
60o.

Figure.4.19 and Figure.4.20 illustrate the registration results when the rotation is within
45o and the standard deviation of Gaussian noise is 0.05 during the training process.
Figure.4.19 also exposes the low robustness and instability of the PointnetLK method
when registering point clouds with rotation degrees over 45o.

Figure.4.20 shows that PointnetLK did not perform well when dealing with registration
with various degrees of noise.
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Fig. 4.18 The registration results of the single-class training scheme with perturbation
setting mode2.
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Fig. 4.19 The registration results of the single-class training scheme with perturbation
setting mode3.
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Fig. 4.20 The registration results of the single-class training scheme with perturbation
setting mode3.
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Figure.4.21, Figure.4.22, Figure.4.23 and Figure.4.24 illustrate the registration results
of RDO and PointnetLK on ModelNet40 with the multi-class training scheme. The first
two correspond to the evaluation for perturbation setting modes mode1 and mode2, and
the last two show the registration results corresponding to the perturbation setting mode
mode3. Figure.4.21 shows the registration results when rotation is within 45o during the
training process. It can be seen that, compared with PointnetLK, the performance of RDO
is stable but has lower accuracy, which also can be illustrated by Figure.4.22.
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Fig. 4.21 The registration results of the multi-class training scheme with perturbation
setting mode1.

However, in the case of multi-class and multi-perturbation training, the stability of
RDO and the accuracy of RDO are better, especially for registration when the perturbation
scale exceeds the prescribed range setting in the training process, as shown in Figure.4.23
and Figure.4.24. Besides, Figure.4.21 and Figure.4.23 show that the stability of PointnetLK
and the accuracy of PointnetLK are reduced in the case of multi-perturbations training. By
contrast, the performance of RDO is more stable. In Figure.4.23, the Success Rate shows
higher stability of RDO, and the MSE illustrates the higher accuracy of RDO when dealing
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Fig. 4.22 The registration results of the multi-class training scheme with perturbation
setting mode2.
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with registration with larger perturbations. In Figure.4.24, It can be seen that RDO can
keep its higher stability in the case of muti-class and multi-perturbations training.
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Fig. 4.23 The registration results of the multi-class training scheme with perturbation
setting mode3.

Table.4.6 shows the quantitative results of the registration on the ModelNet40 data
set . SR means the Successful Rate. This table compares the registration results of RDO
with PointNetLK on different models (0001, 0144, 0007,0026) under various perturba-
tions (mode1,mode2,mode3) after the different training process (single class and Multiple
classes). After training the model using a single data set (0001), RDO has 31.70% higher
successful rate than PointNetLK. And the registration accuracy of RDO is almost triple as
PointNetLK. However, the registration accuracy of RDO when dealing with large rotation
(120,150) is 30% of that when dealing with small rotation (60,90). There is a similar situa-
tion in PointNetLK. After training RDO using multiple data sets (0001, 0144, 0007 and
0026), RDO still can keep its higher stability, but its accuracy has dropped by almost 1/3.
In short, RDO has higher robustness than PointNetLK when dealing with the registration
under various perturbations, which will be outstanding, especially after using the single
data set to train the RDO method.
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Fig. 4.24 The registration results of the multi-class training scheme with perturbation
setting mode3.
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Table 4.6 The quantitative results of the registration on the ModelNet40 data set (SR-
Successful Rate)

Single Class Multiple Classes
RDO PointNetLK RDO PointNetLK

SR log10MSE SR log10MSE SR log10MSE SR log10MSE

0001

mode1
(R)60 1.00 -3.70 0.93 -2.50 1.00 -1.25 0.95 -2.50
(R)75 1.00 -3.70 0.78 -1.30 1.00 -1.10 0.78 -2.00

mode2
(R)120 0.50 -1.00 0.00 -0.50 0.25 -1.00 0.00 -0.80
(R)150 0.00 -1.00 0.00 -0.40 0.00 -0.75 0.00 -0.80

mode3

(R)60 1.00 -3.47 0.93 -1.60 1.00 -1.25 0.50 -0.85
(R)75 1.00 -3.46 0.93 -1.50 1.00 -1.10 0.30 -0.80
(N)0.08 1.00 -3.48 0.93 -1.60 1.00 -1.34 0.93 -1.70
(N)0.100 1.00 -3.46 0.93 -1.46 1.00 -1.34 0.93 -1.60

0144

mode1
(R)60 1.00 -3.74 0.95 -2.50 1.00 -1.50 0.95 -2.50
(R)75 1.00 -3.70 0.80 -2.30 1.00 -1.40 0.80 -2.40

mode2
(R)120 0.99 -1.20 0.20 -0.80 0.50 -1.10 0.20 -0.80
(R)150 0.95 -1.00 0.00 -0.80 0.30 -0.80 0.00 -0.80

mode3

(R)60 1.00 -3.20 0.70 -1.25 1.00 -1.50 0.65 -1.25
(R)75 1.00 -2.80 0.50 -1.00 0.99 -1.40 0.50 -1.00
(N)0.08 1.00 -3.35 0.89 -1.40 1.00 -1.40 0.90 -1.62
(N)0.100 1.00 -3.30 0.85 -1.37 1.00 -1.35 0.85 -1.60

0007

mode1
(R)60 1.00 -4.05 1.00 -2.50 0.30 -1.10 1.00 -2.50
(R)75 1.00 -3.95 0.81 -1.00 0.25 -0.90 0.80 -1.00

mode2
(R)120 0.15 -0.30 0.15 0.00 0.00 -0.25 0.20 0.00
(R)150 0.00 -0.30 0.00 0.00 0.00 -0.25 0.00 0.00

mode3

(R)60 0.20 -0.10 0.20 0.00 0.50 -1.45 0.90 -1.70
(R)75 0.00 -0.10 0.00 0.00 0.20 -1.40 0.82 -1.50
(N)0.08 0.20 -0.10 0.20 0.00 0.68 -1.18 0.95 -1.50
(N)0.100 0.00 -0.10 0.00 0.00 0.67 -1.15 0.80 -1.00

0026

mode1
(R)60 1.00 -3.95 0.98 -1.30 1.00 -2.00 0.20 -0.70
(R)75 1.00 -3.85 0.85 -1.00 0.98 -1.60 0.10 -0.60

mode2
(R)120 0.30 -0.80 0.30 -0.50 0.20 -0.50 0.20 -0.50
(R)150 0.00 -0.70 0.00 -0.10 0.00 0.00 0.00 0.00

mode3

(R)60 1.00 -3.95 0.85 -1.50 1.00 -1.90 0.85 -1.50
(R)75 1.00 -3.90 0.70 -1.00 0.99 -1.78 0.70 -1.00
(N)0.08 1.00 -3.99 0.95 -1.60 1.00 -2.00 0.95 -1.70
(N)0.100 1.00 -3.97 0.85 -1.30 1.00 -2.00 0.85 -1.20
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The comparative study demonstrates not only the ability of learning-based algorithms
in dealing with complex point cloud registration tasks in the presence of noise and the
incomplete data sets or occlusions but also shows the marked performance improvements
of our proposed Reweighted Discriminative Optimisation (RDO) over the learning-based
algorithm Discriminative Optimisation (DO) for registration tasks. And RDO maintains
high accuracy, robustness, and stability when dealing with point cloud registration with
large perturbations. Compared with the deep-learning-based method PointnetLK, RDO
has better stability and robustness in dealing with registration problems with large and
multiple perturbations.

Stitching Results

Figure.4.25 shows the 3D stitching results of the two-view point clouds. (a) is the value
of ∑

N
i=1
(
xi
∗− xi

t
)T D̂hi

ton different data sets. (b) is the training error of our method on
different data sets. (c) and (d) are the rates of Convergence of DO and RDO on different
data sets. The ellipses show the visible difference of the constructed 3D scenes, and
the obvious detailed information is exhibited in the rectangles. The labels (DC, BM,
etc.) are the abbreviations for the names of data sets; the rates of the convergence are
marked by squares for DO and circles for RDO, respectively. The ellipses show the visible
difference of reconstructed 3D scenes, and the obvious detailed information is exhibited in
the rectangles. It can be seen that RDO and NDT performed well than other algorithms.
RDO adjusts the degrees of rotation and translation by assigning weighting coefficients to
transformation matrices, which causes the difference between the stitching results of DO
and RDO.

(a) DO (b) ICP (c) NDT

(d) RDO

(e) BCPD (f) CPD (g) IRLS

Fig. 4.25 Results of Stitching experiment on Matlab data set .
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Proof of Convergence

Figure.4.26 shows the Convergence Criteria and Training Errors of RDO and DO on
different data sets.
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Fig. 4.26 The Convergence Criteria and Training Errors of RDO and DO on different data
sets.

We can find that our method meets the convergence condition ∑
N
i=1
(
xi
∗− xi

t
)T D̂hi

t > 0
for all data sets (as shown in (a)), and the training error of RDO decreases in each iteration
(as shown in(b)). (c) and (d) illustrate that DO and RDO converges sub-linearly and
logarithmically. It can be seen that the addition of weighting coefficients does not have
impact on the rate of convergence.

Space Complexity Analysis

The memory requirement of RDO per iteration is determined by the variable storage.
Calculating weighting matrix Wt needs maximum storage O(c1 ×N ×NM); Calculating
feature h needs maximum storage O(c2 ×N × (NM +NS)); Calculating the regressor D
needs maximum storage O(c3NM ×NM). Therefore, the memory requirement of RDO
per iteration is O

(
N (((c1 + c2)NM + c2NS))+ c3N2

M
)
, where NM,NS are the size of target

model M and the size of moving model S, ci, i = 1,2,3 are constant, and N is the number
of training samples.
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4.4 Discussion for DO and RDO

DO, as a classical Supervised sequential update (SSU) algorithm, utilises least-squares
to solve parameter estimation in computer vision by learning update directions from
training samples. DO is more robust to noise and outliers and other perturbations and
efficient than other traditional methods. RDO is highly inspired by the DO algorithm. As
an asymmetrical parameter treatment scheme, RDO aims to improve the robustness of
parameter estimation in least-squares problems. RDO considers the different impact of
each component of the parameter vector on the final fitting error, which is different from
DO. Section 4.3 shows the comparison of the experimental results of RDO, DO, and other
traditional registration methods and illustrates that RDO is more robust than DO.

This section discusses the substantial difference between DO and RDO, which focuses
on the training stage. The computational efficiency of DO and RDO is different in the
training stage and the same in the testing stage. The major difference in the training stage
is the calculation of the weighting matrix. The computation of the weighting matrix is
O(6N), where N is the number of training samples. We compared the transformation
status of DO and RDO at the end of the training process and when the iteration increases
(as shown in Figure.4.27 and Figure.4.28). In addition, the registration performance under
different perturbations is also discussed when the iteration number T increases (as shown
in Figure.4.29).

Figure.4.27 illustrates the transformation differences of DO, RDO, and RDO without
t at the end of the training process. The t is from the Eq.4.13 and Eq.4.14. The pink
plane in the first row and third row represent the ground truth, where the lines drawn
along rows and columns reflect the transformation difference. The lines in the second
column correspond with the leftmost lines of each plane in the first column. The lines at
the bottom are obtained by rotating the bottommost lines of the planes in the third column
90◦ clockwise. (a), (b) and (c) show the transformation of DO, RDO and RDO without t
at the 30th iteration respectively. (d) represents the transformation of RDO without t at the
29th iteration. Due to the higher robustness of rotation than translation shown in Figure.??,
the rotation plays a significant role in the transformation when handling perturbations.
The rotation difference between ground truth and the transformation is reflected by the
two adjacent edges of a plane. When the two adjacent edges of the plane are parallel or
coincident with that of the ground truth plane (pink plane), the rotation angle is the same
as that of the ground truth.

From (a) and (b), it can be seen that the rotation of RDO in the training process is
closer to the rotation of ground truth, compared with that of DO. (c) and (d) illustrate that
although allocating weights without t restriction can also guide the rotation to close to the
ground truth (compared with DO), the weight without t will guide the plane to rotate by a
large margin when the rotation has been close to the ground truth. (c) The shades in the
first and third columns indicate that the two planes intersect, which means that after the
29th iteration (d), the plane still rotates with a large degree.
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(a) DO Iteration=30 (b) RDO Iteration=30 (c) RDO without t
Iteration=30

(d) RDO without t
Iteration=29

Fig. 4.27 The transformation differences of DO, RDO, and RDO without t.
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Figure.4.28 shows the transformation at different iterations in the training stage. The
first row show the transformations of DO at the 30th, 34th, 37th and 40th respectively. The
values above each sub-figure correspond to sequential rotations about the X, Y, and Z axes.
The rotation of ground truth (pink plane) is expressed as a vector [-0.0518 -0.1513 0.1099].
The second row displays the transformation of RDO. The shades on the figures show the
intersection of the planes.

(a) Iteration=30 (b) Iteration=34 (c) Iteration=37 (d) Iteration=40

Fig. 4.28 The transformation with large t.

It can be seen that as the iteration number increases, the rotation of DO is far more dif-
ferent from that of the ground truth [-0.0518 -0.1513 0.1099]. Compared with DO, RDO’s
transformation changed a little. And there is no intersection between the transformation
plane and the ground truth plane (pink).

Figure.4.29 shows the Mean Square Error of registration with Synthetic data under
different perturbation when T = 30 and T = 50. Top involves the Happy Buddha model.
The second row is about Skeleton Hand. The third row is about Bimba Model. Bottom is
the result on the Dancing Children model. The plus and circle represent the MSE when
T = 50 and T = 30, respectively. It can be seen that in most cases, the MSE of RDO
registration is less than that of DO registration when T = 50, except for the registration
of the Bimba Model with different initial rotation and noises. Besides, we can find that if
the MSE of RDO registration when T = 30 is higher than the MSE of RDO registration
when T = 50, such as the MSE of Happy Buddha with different noises, the MSE of RDO
registration is still the least. Likewise, if the MSE of RDO registration when T = 30
is lower than that of RDO registration when T = 50, the MSE of RDO registration is
the smallest compared with the MSE of DO registration. In short, compared with DO,
RDO estimates a transformation vector closer to the ground-truth, when DO and RDO
registration errors are both smaller.

Besides, we also compared the decreasing rate of rotation matching error and translation
matching error between our algorithm and DO algorithm in each iteration. The rotation
matching error is calculated through fixing x̂k = 0,k ∈{1,2,3} and the translation matching
error is the mean square error of all samples when x̂k = 0,k ∈ {4,5,6}. Figure 4.30 shows
the decreasing rate of matching error on rotation and translation. It can be seen that the
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Fig. 4.29 The Mean Square Error of 3D registration with Synthetic data under different
perturbations with different iteration numbers.

Fig. 4.30 The decreasing rate of rotation matching error and translation matching error.
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weighting scheme in RDO accelerates the iterative process of convergence.
Summary
1) The asymmetrical parameter treatment scheme in RDO is able to adjust the scales
of transformation in registration and make the rotation closer to the ground truth in the
training process (as shown in (b), (c), (d) of Figure.4.27) and the weighting matrix can
accelerate the convergence process.
2) The t in the weights assignments Eq.4.13, Eq.4.14 controls the scale of transformation
in each iteration (compared (b), (c), (d) in Figure.4.27, as shown in Figure.4.28 ). As the
iteration number increases, DO’s transformation with the uniform weighting scheme has
been far more different from the ground truth in terms of rotation, and the difference is
more and more obvious. In contrast, RDO’s transformation has only changed a little bit at
each iteration. Besides, the accumulation of the little change of RDO’s transformation still
has successfully avoided the larger difference from the ground truth.
3) Increasing the number of iterations will influence the matching error (as shown in
Figure.4.29). In most cases, the benefit of RDO will remain when the iteration number T
increases. Besides, whatever the iteration number, when DO and RDO registration errors
are both smaller, we can find that the RDO always estimates the transformation vector
closer to the ground truth.

4.5 Discussion for RDO and PointnetLK

RDO and PointnetLK are both learning-based methods, and they have both similarities and
differences. The most obvious similarity of the RDO and PointnetLK is that they have a
similar structure- multiple layers of regressors. Training: PointnetLK can be trained "end-
to-end" through back-propagation; specifically, all layers can be affected by minimizing
the loss function at once. RDO needs to be trained layer-by-layer, and the loss function
in each layer is different, but the essence is in common- make the currently estimated
parameters approach to the ground truth. Flexibility: PointnetLK is more flexible. It can
deal with different kinds of data sets (such as ModelNet40) at the same time. The memory
requirement for learning Dt+1 is O

(
N (((c1 + c2)NM + c2NS))+ c3N2

M
)
, which does not

apply to dealing with many data sets at once like deep learning. Namely, PointnetLK
is almost purely data-driven, and RDO is more model-driven, where model means the
feature. Although PointnetLK can process a variety of data simultaneously, its stability
is far less than that of RDO. Even in the case of dealing with large perturbations, RDO
can still maintain stability, and the registration error is lower than that of PoinnetLK.
Besides, multi-perturbations training will affect the performance of PoinnetLK, but RDO
will maintain stability and robustness under the same conditions.
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4.6 Conclusion

A novel Reweighted Discriminative Optimisation (RDO) is proposed, an asymmetrical
parameter treatment scheme to improve the accuracy of parameter estimation in least-
squares problems. Specifically, RDO assigns different weights to components of parameter
vectors according to the characteristics of the fitting errors over parameter vectors space
to emphasise certain components of parameter vectors. We provide theoretical proof on
the convergence of RDO under mild conditions. We demonstrate the potential of RDO
in computer graphics and visualisation applications through the problems of 3D point
cloud registration and multi-view stitching. Our comparative study with state-of-the-art
algorithms illustrates that RDO produces more accurate and stable results. The registration
accuracy of RDO is almost 40.00% higher than that of DO on the Happy and Hand models.
RDO has 2.11% higher accuracy than DO when achieving the registration on the Dancing
Children model. And the successful Rate of RDO is almost 5% higher than that of DO.
The computation time of RDO is almost 20% lower than that of DO. In addition, in the
registration experiment on the ModelNet40 data set, the registration success rate of RDO is
nearly 30% higher than that of PointNetLK. Training with multiple data sets or with a single
data set will not impact the stability of RDO. However, the registration accuracy of RDO
is higher after the training with a single data set than after multiple data sets. Nevertheless,
RDO and PointNetLK both are unable to achieve accurate registration under large rotations
(such as 120◦ and 150◦). Future work is to design a generalised representation of parameter
vectors that is suitable for computer vision and graphics applications other than those
specific to the Lie Algebra for a rigid transformation matrix. On this basis, we believe RDO
can be applied to a much wider range of problems in computer graphics and computer
vision, such as non-rigid registration, image denoising, and so on.



Chapter 5

SGRTmreg: A learning-based
optimisation Framework for Multiple
Point Clouds Registration

5.1 Introduction

Although GDO and RDO can achieve the point cloud registration with more robustness and
accuracy, GDO and RDO have only been applied to train single data set at any one time
and test its relevant data accordingly. In contrast, deep-learning-based methods have shown
their flexibility to simultaneously train a large amount of data and test any relevant data
sets. This is since deep-learning-based methods can be considered data-driven, whereas
learning-based optimisation methods are more model- or feature-driven.

In this chapter, the issue of single point cloud registration of learning-based optimi-
sation methods is addressed via the devised computational framework called SGRTmreg
to achieve multiple point clouds registrations while maintaining the high accuracy and
robustness of the methods in the case of various perturbations. Given a collection of
training point clouds and a target point cloud, there are three steps for multiple point clouds
registration in this framework: (1) Finding a training point cloud similar to the target point
cloud via a searching scheme; (2) Learning a sequence of regressors from the selected
training point cloud through a learning-based optimisation method called Graph-based
Reweighted Discriminative Optimisation (GRDO); (3) Applying the learned sequence of
regressors in estimating the transformation parameters of the target point cloud via transfer
learning. It is worth noting that the learned sequence of regressors can not only be used to
register the selected training point cloud but also be applied to the registration of any target
point cloud similar to the selected training point cloud.A similar training point cloud is
selected via the devised searching scheme in terms of the graph structure of point clouds,
the similarity of the coordinates, the similarity between the importance of graph nodes,
and the similarity of the normal vectors of point clouds.

The way to extract features in GDO and RDO requires a large amount of memory
storage and computational time to deal with the registration of dense point clouds. The
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proposed Graph-based Reweighted Discriminative Optimisation (GRDO) method extract
features from the key points selected based on the graph structure of the selected train-
ing point cloud to learn the updating gradient path, reducing the memory storage and
computational cost for learning the sequence of regressors.

The potential of SGRTmreg on multiple point clouds registration is demonstrated on
Modelnet40 data sets and the high performance of GRDO in point clouds registration under
various perturbations is also evaluated. Experimental results show that SGRTmreg achieves
accurate and efficient multiple points clouds registration and illustrate that the GRDO
method outperforms the advanced registration methods, including deep learning-based
methods in terms of robustness, accuracy, and computational time.

5.2 Motivation

The memory requirement for learning Dt+1 of RDO and DO is O
(
N (((c1 + c2)NM + c2NS))+ c3N2

M
)
,

meaning that the larger the number of points, the longer it takes to extract feature points,
making it infeasible to achieve the registration of dense point clouds. Besides, they can
only train a single data set at any one time and test its relevant data accordingly, which is
determined by the criteria of updating regressors.

xt+1 = xt −Dt+1h(xt) (5.1)

Where h : Rp → R f is a function that encodes a feature of a point cloud, and Dt+1 ∈ Rp× f

is a matrix that maps the feature to an update vector, xt+1 is the updating parameter vector.
It can be seen that the prerequisite for the learned regressor Dt+1 being used to estimate
the parameter vector xt+1 of the target point cloud is that features of the training and
target point clouds must be similar and have the same dimension. Thus, the learning-based
optimisation methods are commonly used to achieve identical point set registration with
various perturbations.

Graph-based Discriminative Optimisation method is proposed in this paper to achieve
point clouds registration with less storage requirement and less computational time. A
framework called SGRTmreg is also devised for learning-based optimisation methods to
register multiple point clouds via a single learned sequence of regressors Dt+1.

5.3 Framework SGRTmreg

SGRTmreg aims to register multiple point clouds via a single sequence of learned regressor
Dt+1. The critical steps in this framework are: (1) Search for a training point cloud S which
is similar to the target point cloud M (Section 5.3.2); (2) Learn the sequence of regressors
Dt+1 via GRDO (Section 5.3.3); (3) Apply the sequence of the learned regressors Dt+1 to
estimate the transformation parameters of the target point cloud M via transfer learning
(Section 5.3.4). To make the registration accurate, stable, efficient, and with fewer storage
requirements, key points are extracted according to the structural information of the graph
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that is transformed from a point cloud. Then a feature f is designed based on the extracted
key points. The feature f of S will be used to learn the sequence of regressors Dt+1, and
the sequence of learned regressors Dt+1 will act on the feature f of M to estimate the
transformation parameters. The scheme of SGRTmreg is shown in Figure.5.1. The process
for multiple point clouds registration can be divided into three stages: (1) Extract key
points of the collection of training point clouds S̆ and the target point cloud M respectively.
At the same time, search for a similar training point cloud S for the target point cloud M via
the Searching scheme based on the Graph structure, Coordinates information, Importance
of nodes and Normal Vector information of point clouds (as shown in Figure.5.4). (2)
Utilise feature f of S to learn the gradient direction Dt+1 via GRDO. (3) The learned
gradient direction Dt+1 of S will be employed to the registration of M via transfer learning.

Fig. 5.1 The framework for multiple point clouds registration.

5.3.1 Key Points Extraction

Extracting key points aims to reduce the storage requirement for designing the feature f and
learning the updating map Dt+1, which will make the GRDO method less computational
cost. The process of extracting key points is shown in Figure.5.2. Triangulation is used
to transform point cloud M to a graph, then select the key points and the boundary of M
based on the degree of nodes in the graph and the edges connected with nodes. The nodes
whose degree has the most or the second most occurrence number will be selected as the
key points, such as the pink and the orange. The nodes connected by the edge not shared
by two triangles will be extracted as the boundary of M.
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Fig. 5.2 The process of key points extraction.

Delaunay triangulation acts on the point cloud M. One of the triangle sides along the
periphery of M is associated with only one triangle, all nodes connected by such edges on
that side form the boundary. Triangulation post the point cloud M as a graph, the degrees
of all nodes in which are counted. The degree of a node is the number of connections that
it has to other nodes in the graph. The node whose degree is the most and the second most
will be identified as the key point. The key points extraction can be cast as a downsample
problem, which can reduce the point number while keeping the detailed information of
the point cloud, as shown in Figure.5.3. Figure.5.3 shows that the proposed approach for
key points extraction is able to keep the detailed information of models compared with the
random and uniform downsample methods in MATLAB.

Fig. 5.3 The comparison of the proposed downsample approach with the random and
uniform downsample methods in MATLAB.

5.3.2 Searching Scheme

The searching scheme aims to find a similar training point cloud for a given target point
cloud, as shown in Figure.5.4.



5.3 Framework SGRTmreg 87

Fig. 5.4 The structure of searching scheme.

The searching scheme aims at searching for a similar training point cloud S for a
given target point cloud M from the collection of training point clouds S̆. Specifically, the
selection mechanism is based on four information sources: the graph structure of the point
clouds, the similarity of the coordinates of the point clouds, the similarity between the
importance of graph nodes, and the similarity of the normal vectors of the point clouds.
Training point cloud that does not meet the requirements of the selection mechanism
will be removed from the candidate list of similar samples. All training point clouds
will be selected based on different criteria: the Hamming distance between the graph
structure < DegreeS,DegreeM >, the clustering results based on the coordinates of points
< CoordinatesS,CoordinatesM > via Dirichlet Process Gaussian Mixture Model, the
difference between the importance of graph nodes < NodeS,NodeM > and the similarity
of normal vectors < NormalVectorS,NormalVectorM >. The collection of training point
clouds is denoted as S̆, the training point cloud as S, and the target point cloud as M. i is
the index of S in S̆. The number of points in M is NM, and the number of points in S is NS.

Similarity on graph structure

After the Delaunay triangulation of the point cloud, the degree of the nodes in the graph
is used to scan similar training point clouds initially. DegreeS =

[
de1

S, · · · ,dek
S, · · ·

]
and

DegreeM =
[
de1

M, · · · ,dek
M, · · ·

]
represent the degree list of training point cloud S and the

target point cloud M, where k is the index of degree list and each value in the degree
list represents the degree of nodes. The degrees are sorted according to the occurrences,
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respectively. The degree lists of S and M have the same length. If the length of DegreeS is
larger than that of DegreeM, the degree with less occurrence in DegreeS will be removed.
If it is shorter, the list DegreeS will be filled with 0 until the length of DegreeS is the same
as that of DegreeM.

Si
De = 1−

dH
(
Degreei

S,DegreeM
)

L
(5.2)

Where dH represents the Hamming distance, which shows the number of the corresponding
elements at the same position in Degreei

S and DegreeM that are different. The length of
the degree list of target point cloud DegreeM is noted as L. A training point cloud will be
passed to the second round as a candidate similar point cloud if the value of Si

De is larger
than β . β ∈ (0.5,1) always be set manually.

Similarity on coordinates

The selection based on the similarity of the graph structure eliminates a large number of
training point clouds that do not belong to the same category as the target point cloud. The
similarity of the distribution of point coordinates is used as a screening criterion to select
a similar training point cloud from the remaining collection of candidate training point
clouds. The similarity of the coordinates distribution is measured through the Dirichlet
Process Gaussian Mixture Model (DPGMM) [106], which clusters the mixture of extracted
points of similar point clouds candidate Coordinatesi

S and that of the target point cloud
CoordinatesM.

Suppose P = [Coordinatesi
S;CoordinatesM] represents the coordinates of the mixture

for clustering. And assuming the mixed set P has been divided into K clusters via DPGMM.
P = {C1, · · · ,CK} and Ck =

{
Ck

S,C
k
M
}

, k ∈ {1, · · · ,K}. Ck
S and Ck

M are the coordinates
of training points and test points in cluster Ck respectively. The number of training points
in Ck is Nk

S . The number of test points Ck is Nk
M.

RS =

[
N1

S
NS

, · · · ,
NK

S
NS

]
RM =

[
N1

M
NM

, · · · , NK
M

NM

]
RS illustrates the proportion of Ck

S in Coordinatesi
S. RM is the proportion of Ck

M in
CoordinatesM.

τS =
K

∑
k=1

(
k×δ

(
Nk

S
NS

−max(RS)

))
(5.3)

τM =
K

∑
k=1

(
k×δ

(
Nk

M
NM

−max(RM)

))
(5.4)
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Where δ is the Dirac delta function [107]. τS represents that the cluster CτS has the largest
number of training points (as shown the cluster circled by the black in Figure.5.4). The
cluster CτM groups the largest number of test points (as shown the cluster circled by the
blue in Figure.5.4). τ i

S = τM means that the coordinates distribution of Si is similar to the
coordinates distribution of M , thus the Si will be passed to the next round as the candidate
similar training point cloud. Please note that if CoordinatesM has been divided equally,
the training point cloud Si will also be regarded as the candidate similar training point
cloud.

Similarity on the importance of graph nodes

The similarity of the importance of graph nodes is also used as the screen criteria to narrow
the range of candidates chosen in the previous round. Eigenvector centrality [108] is used
to measure the importance of a node in a graph, which depicts the closeness of points in
a point cloud. For a given graph G := (V,E) with |V| number of nodes and |E| number
of edges, let Ad = (av,t) be the adjacency matrix, i.e. av,t = 1 if node v is linked to node
t, and av,t = 0 otherwise. The vth component of the largest eigenvector of the adjacency
matrix gives the relative centrality score of the node v in the graph [108]. The scores are
normalised such that the sum of all centrality scores is 1. The scores of the nodes with the
same background colour in Figure.5.4 are close to each other. Si will be the final selected
similar training point cloud if the average score of all nodes of Si is the closet to that of the
target point cloud M. If there is more than one point cloud whose average score is closest
to that of M, these training point clouds will participate in the final selection process based
the similarity of normal vectors of the point clouds.

Similarity on normal vectors

The similarity of the normal vectors of extracted points is employed to find the training
point cloud that is most similar to the target point cloud. NormalVectorS =

[
n1

S,n
2
S, · · ·nn

S

]
is the normal vectors set including the normal vectors of the collection of the candidate
similar training point clouds. n is the size of the candidate training collection in the current
round. Euclidean distance between each normal of M and NormalVectorS is calculated,
which will generate a distance matrix E with the size of NM×n×NS. Ep,q = dE < np

M,nq
S >,

p is the index of the normal vector of M, q is the index of NormalVectorS. dE is the
Euclidean distance. Ep,: represents the the pth row of the matrix E. E:,q represents the the
qth column of the matrix E. Another matrix Ec with the size of NM × n×NS is used to
count the similarity of the normal vectors of point clouds.

Ec
p,q =

{
1 Ep,q = min(Ep,:)

0 Ep,q ̸= min(Ep,:)
(5.5)

Ni
s =

NS×i

∑
j=NS×(i−1)+1

Ec
:, j, i ∈

{
1,2 · · ·n

′
}

(5.6)
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The ith training point cloud with the maximal value of Ni
s is the final selected similar

training point cloud S. The updating map of S will be applied to the transformation
parameter estimation of the target point cloud M.

5.3.3 Graph-based Reweighted Discriminative Optimisation

The graph-based reweighted discriminative optimisation method aims to achieve registra-
tion with less computational time and storage requirement, which involves learning the
updating maps and the design of features. The latter needs to make the dimensions of the
features of various point clouds are same.

Sequence of Update Maps

Let h : Rp → R f be a function encoding a feature of a point cloud, and Dt+1 ∈ Rp× f be a
matrix mapping the feature to an update vector. Given an initial parameter vector x0 ∈ Rp,
the iterative updating process can be defined as follows:

xt+1 = xt −Dt+1h(xt) (5.7)

The update process ends until xt+1 converges to a stationary point. And the sequence
of matrices Dt+1, t = 0,1 · · · are learned through approximating the estimated parameter
vector xi

t+1 to the ground truth xi
∗.

Dt+1 = min
D̂

1
N

N

∑
i=1

∥∥Wt
(
xi

t+1 −xi
∗
)∥∥2

2

= min
D̂

1
N

N

∑
i=1

∥∥Wt
(
xi

t − D̂h
(
xi

t
)
−xi

∗
)∥∥2

2

(5.8)

Where N is the number of point clouds which participate in the training process, xi
t is

the parameter vector of i-th point cloud at the t -th iteration. Wt ∈ Rp×p is a weighting
diagonal matrix. A detailed explanation of the weighting matrix and Equation.5.8 has been
provided in the previous work [109]. For simplicity, xi

t is denoted as xt for any point cloud.
The learned sequence of update maps Dt+1 will be utilised to estimate the transformation
parameters of M.

Design the feature function h

The function h in Equation.5.7 is used to extract the feature fS of S and the feature fM of
M. Equation.5.7 shows that the dimension of fS is related to the dimension of the learned
updating map Dt+1, which illustrates that the dimension of fM needs to be the same as the
dimension of fS. A sparse matrix Sp is designed to make the dimensions of both features
the same, as shown in Figure.5.5. h is a histogram indicating the position information of
each key point s1 in S. The space around the S is divided into the uniform grid G in the



5.3 Framework SGRTmreg 91

range [-2,2] in each dimension, and each grid stores the value of h evaluated at the centre
of each grid.

Fig. 5.5 The process of feature extraction.

A grid is denoted as g1, then the feature fS of S can be calculated as follows: Let n1

be a normal vector of s1 computed from its neighbouring points; F (y;x) applies rigid
transformation with parameter x to vector y; g+ =

{
g1 : nT

1 (F (g1;x)−S1)> 0
}

is the set
of grids on the ’front’ of s1 ; and g− =

{
g1 : nT

1 (F (g1;x)−S1)< 0
}

is the set of grids on
the ’back’ of s1.

[Sp]i, j = exp
(
− 1

σ̂2

∥∥F
(
g j;x

)
−Si

∥∥2
)

i = 1, · · ·dS j = 1, · · ·d3
G (5.9)

[hS (x;G)]+ =
1
z ∑

g1∈g+
exp
(
− 1

σ̂2 ∥F (g1;x)−S1∥2
)

(5.10)

[hS (x;G)]− =
1
z ∑

g1∈g−
exp
(
− 1

σ̂2 ∥F (g1;x)−S1∥2
)

(5.11)

fS =
[
[hS (x;G)]+ ; [hS (x;G)]

]
(5.12)

Where z as the normalisation factor normalises fS to sum to 1, and σ̂ as the inner scale
controls the width of the exp function. The element of the feature fS less than 10−6 is set
to 0. Then the feature fS will be used to learn the updating map Dt+1 via the Equation.5.8.

5.3.4 Transfer Learning

After learning the updating map Dt+1, the learned map Dt+1 will be utilised to estimate
the transformation of the target point cloud M via Equation.5.7. The counted number of
the key points falling into each uniform grid forms the vector cM. Then the feature fM can
be calculated as follows:

fM = cM ×Sp (5.13)
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Then the transformation parameters of the target point cloud M can be attained through
the following iterative formula:

xt+1 = xt −Dt+1 × fM (5.14)

Where Dt+1 is the learned updating map in the training stage of the selected training point
cloud S, which is reused as the gradient map to guide the transformation estimation of the
target point cloud M .

5.4 Experimentation

This section describes how to apply the proposed framework SGRTmreg for multiple
3D point clouds registration. Three kinds of experiments are conducted: one is the
comparison experiments with the traditional registration methods- Iterative Closest Point
(ICP), Coherent Point Drift (CPD), Normal Distributions Transform (NDT), and Bayesian
Coherent Point Drift (BCPD) and learning-based optimisation methods- Discriminative
optimisation method (DO), Reweighted Discriminative optimisation method (RDO) on
synthetic data sets to show the accuracy and efficiency of GRDO. Another is the comparison
with deep learning-based registration methods on the ModelNet40 data sets, which involves
the selection of training point clouds for target point clouds and the estimation of the
parameters via transfer learning. An experiment to verify the validity of transfer learning
on multiple point clouds registration is also conducted.

5.4.1 Experimental Design

Data sets

GRDO is compared with the registration methods (DO, RDO, ICP, CPD, NDT and
BCPD ) on synthetic data sets ((a) ∼ (d) of Figure.5.6): Stanford Bunny model [13],
Skeleton Hand model [18], Bimba Model and Dancing Children (http://visionair.ge.imati.
cnr/).Comparative registration experiments are also conducted on the ModelNet40 data
set[16] ((e)∼ (h) of Figure.5.6) with traditional methods and other advanced deep-learning-
based registration methods, such as PCRNet [101], PointnetLK [17], and DCP [51].

http://visionair.ge.imati.cnr/
http://visionair.ge.imati.cnr/
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(a) Bunny (b) SkeletonHand (c) BimbaModel (d) DancingChildren

(e) Airplane627 (f) Car201 (g) Chair964 (h) Toilet378

Fig. 5.6 3D registration data sets.

GRDO Training

Comparison on synthetic data sets

The parameters in the GRDO training process are similar to those in DO [11]. A given
model shape S is normalised to [−1,1]3 and a scene model is generated through uniformly
sampling from S with the replacement of almost 1500 points. Then the following perturba-
tions are applied to the scene model: (i) Rotation and translation: The rotation is within
60 degrees and the translation is in [−0.3,0.3]3, which represents the ground truth x∗; (ii)
Noise and Outliers: Gaussian noise with the standard deviation 0.05 is added to the scene
model. 0 to 300 points within [−1.5,1.5]3 are added as the sparse outliers. Besides, a
Gaussian ball of 0 to 200 points with a standard deviation of 0.1 to 0.25 is used to simulate
the structured outliers. For all experiments, 30000 training samples are generated, the
number of iterations is set to T = 30, and the initial transformation x0 is 06.

Comparison on the ModelNet40 data set

Three modes for GRDO training are designed in this chapter. (i) mode1: The rotation is
within 45 degrees and the translations is in [−0.5,0.5]3; (ii) mode2: The rotation is within
90 degrees and the translations is in [−0.5,0.5]3; (iii) mode3: The rotation is within 90
degrees, the translations is in [−0.5,0.5]3 and Gaussian noise with the standard deviation
0.05 is also applied. The first two modes aim to compare the registration of all methods in
terms of varying degrees of rotation, named single-class training. The latter is to compare
the performance of different methods on the registration with multiple perturbations, named
multi-class training. 30000 training samples are generated for all modes, and the training
samples are generated based on the selected point cloud according to the searching scheme
in Section5.3.2. Please note that the selected training point cloud will be normalised to
[−1,1]3 without downsampling. The number of points of all samples is 5120.
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Experiments Metrics

Baselines GRDO is compared with the advanced learning-based approaches (DO and
RDO), the classical point-based approach ICP and three density-based approaches (CP,
BCPD and NDT) and the deep-learning-based methods (PCRNet, PointnetLK and DCP).
The codes for all methods were downloaded from the authors’ websites, except for ICP
where MATLAB’s implementation is used. The code of GRDO was implemented in
MATLAB.

Evaluation Metrics log10 MSE, and computation time are the performance metrics for
comparing the performance of GRDO with registration methods (DO, RDO, ICP, NDT,
CPD, BCPD, PCRNet, PointnetLK and DCP).

Parameters settings

The maximum number of iterations of the learning-based optimisation registration methods
were set to 30. For DO and RDO, σ̂2 is set as 0.03. The value of the tolerance of absolute
difference between current estimation and ground truth in iterations is 1e-4; For ICP, the
tolerance of absolute difference in translation and rotation is 0.01 and 0.5 respectively; For
CPD, the type of transformation is set to rigid, and the expected percentage of outliers
with respect to a normal distribution is 0.1, the tolerance value is the same of that in DO.
For NDT, the value of the expected percentage of outliers is set to 0.55, and the tolerance
value is set as the same as that in ICP. For BCPD, the expected percentage of outliers
is set to 0.1, the parameter in the Gaussian kernel is 2.0 and the expected length of the
displacement vector is 400. All deep-learning-based registration networks are trained on
an Nvidia Geforce 2080Ti GPU with 12G memory. For PCRNet, the kernel sizes are 64,
64, 64, 128, 1024, 1024, 512, 512, 256 and 7. The iteration for rotation and translation is
set to 8. Adam optimiser with an initial learning rate of 0,1, 300 epochs and a batch size of
32 is used for the training process. For PointnetLK, the kernel sizes are 64, 64, 64, 128,
1024. The maximum iteration for rotation and translation is set to 30. Adam optimiser with
an initial learning rate of 0.001, 250 epochs and a batch size of 10 is used for the training
process. For DCP, the kernel sizes are 64, 64, 128, 256, 512, 1024, 256, 128, 64, 32 and 7.
The iteration for rotation and translation is set to 1. Adam optimiser with an initial learning
rate of 0.001, 250 epochs and a batch size of 32 is used for the training process.Please note
that the values of these parameters are the default values set in their official codes.

Registration Experiments

Comparison on synthetic data sets

3D registration experiments are executed on the Standford Bunny model, Skeleton Hand
model, Bimba model and Dancing Children in Figure.5.6. The models are downsampled
by selecting almost 1500 points from the original model as the model S. The performance
of methods are evaluated by comparing the evaluation metrics in the case of various
perturbations: (1) rotation: The initial angle is 0◦, 30◦, 60◦, 90◦, 120◦ and 150◦ [default=0◦
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to 60◦]; (2) noise: The standard deviation of Gaussian noise is set to 0, 0.02, 0.04, 0.06,
0.08 and 0.1 [default=0]; (3) outliers: the number of outliers is set to 0, 100, 200, 300, 400
and 500, respectively [default=0]. The random translation of all generated scenes is within
[−0.3,0.3]3. It is worth noting that when one parameter is changed, the values of other
parameters are fixed to the default value. In addition, the scene points are sampled from
the original model, not from S. 750 test samples in each variable setting are tested.

Comparison on the ModelNet40 data set

There are three kinds of comparison settings corresponding to the training modes in 5.4.1:
for mode1: the initial angle is 0◦, 15◦, 30◦, 45◦, 60◦ and 75◦; for mode2: the initial angle
is 0◦, 30◦, 60◦, 90◦, 120◦ and 150◦; for mode3: the initial angle is 0◦, 30◦, 60◦, 90◦, 120◦

and 150◦ [default=0◦ to 90◦] and the standard deviation of Gaussian noise is set to 0, 0.02,
0.04, 0.06, 0.08 and 0.1 [default=0]. It is worth noting that when one parameter is changed,
the values of other parameters are fixed to the default value. 100 test samples in each
variable setting are tested.

To verify the validity of the transfer learning of the learned updating map Dt+1, a
comparison experiment with the above settings is also conducted on the Modelnet40 data
set. The difference from the above comparison experiments is that the updating map
Dt+1 is learned from the target point cloud, not the selected training point cloud. This
experiment aims to compare the accuracy and robustness of the registration with transfer
learning and the registration without transfer learning.

5.4.2 Experimental Results and Discussion

Comparison on synthetic data sets

Figure.5.7 ∼ Figure.5.9 show the registration results on Bunny, Skeleton Hand, Bimba
Model, and Dancing Children data sets under various perturbations. The top shows the
computational time of registration in the presence of rotation. The middle shows the
log10 MSE of learning-based optimisation registration methods. The bottom shows the
log10 MSE of other traditional registration methods. It can be seen that BCPD and the
learning-based optimisation methods (DO, RDO, GRDO) have the ability to handle the
registration with rotation of 90◦, other methods fail to register point clouds with the rotation
over 60◦. Figure.5.7 shows that BCPD and the learning-based optimisation methods (DO,
RDO, GRDO) can handle the registration with rotation of 90◦, other methods fail to
register point clouds with the rotation over 60◦. The top rows in Figure.5.7 ∼ Figure.5.9
display the log10 computational time of all methods to register point clouds under various
perturbations. It can be seen that the computational time of BCPD is ten or even hundreds
of times that of other methods, although the log10 MSE of BCPD is the minimum. The
taken computational time and the accuracy of CPD are second only to BCPD. As can
be seen from Figure.5.9, the stability of CPD when it handles registration with outliers
is poor. By contrast, the learning-based optimisation registration methods (DO, RDO,
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and GRDO) can achieve registration with higher stability, and the registration results of
GRDO are more accurate. Although ICP takes the least computational time to achieve the
registration, the performance of ICP is poor no matter which perturbation the registration
with. Overall, GRDO can register point clouds with higher accuracy and more stability
within less computational time.
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Fig. 5.7 The registration results on different data sets under various rotations.

Table.5.1 shows the log10 Mean Square Error of registration under various rotations
on synthetic data sets (Bunny model, Skeleton Hand model, Bimba model and Dancing
Children model). B means the baseline method - Discriminative Optimisation method
(DO); P is the proposed method in this chapter - Graph-based Reweighted Discriminative
Optimisation method (GRDO); C is the outstanding conventional method in this registration
experiments - Bayesian Coherent Point Drift (BCPD). We set the absolute value of log10

Mean Square Error of DO as the reference of comparison. The value of the absolute
value of the log10 Mean Square Error is higher, and the registration accuracy is higher.
Q0, Q4 and IQR aim to measure data distribution in boxplot figures. Q0 and Q4 are the
minimum and maximum respectively. And IQR is the interquartile range, which measures
the distance between the upper and lower quartiles; the shorter the distance, the more
stability of the method. It can be seen that GRDO has higher accuracy than DO, as
shown the bold in this table. GRDO has 41.93% higher accuracy than BCPD. And the
performance of GRDO is better than that of BCPD when handling the registration with
large rotations (120◦ and 150◦). However, the stability of BCPD is 21.03% higher than
that of GRDO when achieving the registration under various rotations.

Table.5.2 shows the log10 Mean Square Error of registration under various noises
on synthetic data sets (Bunny model, Skeleton Hand model, Bimba model and Dancing
Children model). C is the outstanding conventional method in this registration experiment
- Bayesian Coherent Point Drift (BCPD). It can be seen that GRDO has higher accuracy
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Table 5.1 The quantitative registration results under various rotations. (B-Baseline method
DO; P-Proposed method GRDO; C-Conventional method BCPD)

Q0 Q4 IQR
B P C B P C B P C

Bunny
(R)90 1.00 1.10 1.59 1.00 1.03 1.97 1.00 1.33 0.33
(R)120 1.00 1.43 0.86 1.00 5.00 4.00 1.00 1.00 1.00
(R)150 1.00 2.00 1.20 1.00 5.00 4.00 1.00 1.00 1.00

Skeleton
Hand

(R)90 1.00 1.26 1.03 1.00 0.84 0.94 1.00 3.33 0.67
(R)120 1.00 1.60 1.00 1.00 4.00 2.00 1.00 0.57 0.86
(R)150 1.00 1.36 0.91 1.00 4.50 2.00 1.00 0.57 0.86

Bimba
Model

(R)90 1.00 1.12 1.54 1.00 1.09 1.81 1.00 1.40 0.40
(R)120 1.00 1.11 0.33 1.00 1.30 0.40 1.00 0.80 0.40
(R)150 1.00 1.50 0.50 1.00 1.30 0.40 1.00 1.50 1.00

Dancing
Children

(R)90 1.00 0.98 1.74 1.00 0.98 1.73 1.00 1.00 2.00
(R)120 1.00 1.08 0.24 1.00 1.14 0.23 1.00 1.00 2.00
(R)150 1.00 1.20 0.25 1.00 1.20 0.25 1.00 0.67 0.67
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Fig. 5.8 The registration results on different data sets under varying degrees of noise.
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than DO, as shown the bold in this table. The accuracy of GRDO when registering point
clouds under various noises is almost twice that of BCPD and is 15.33% higher than that
of DO. However, the stability of BCPD is the best among these three methods.

Table 5.2 The quantitative registration results under various Noises. (B-Baseline method
DO; P-Proposed method GRDO; C-Conventional method BCPD)

Q0 Q4 IQR
B P C B P C B P C

Bunny
(N)0.06 1.00 1.33 0.72 1.00 1.30 0.76 1.00 1.67 0.33
(N)0.08 1.00 1.38 0.74 1.00 1.35 0.77 1.00 1.67 0.33
(N)0.10 1.00 0.93 0.80 1.00 1.09 1.00 1.00 0.43 0.14

Skeleton
Hand

(N)0.06 1.00 1.14 0.64 1.00 1.12 0.76 1.00 2.00 1.00
(N)0.08 1.00 1.22 0.57 1.00 1.07 0.71 1.00 1.33 0.33
(N)0.10 1.00 1.03 0.56 1.00 1.20 0.70 1.00 0.50 1.00

Bimba
Model

(N)0.06 1.00 1.13 0.64 1.00 1.03 0.79 1.00 1.33 0.33
(N)0.08 1.00 1.10 0.56 1.00 1.08 0.71 1.00 1.00 0.33
(N)0.10 1.00 1.11 0.56 1.00 1.20 0.71 1.00 1.00 0.25

Dancing
Children

(N)0.06 1.00 1.12 0.76 1.00 1.04 0.92 1.00 1.22 0.22
(N)0.08 1.00 1.25 0.75 1.00 1.08 0.92 1.00 2.00 0.33
(N)0.10 1.00 1.10 0.71 1.00 1.08 0.89 1.00 1.18 0.22
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Fig. 5.9 The registration results on different data sets under varying numbers of outliers.

Table.5.3 shows the log10 Mean Square Error of registration under various outliers
on synthetic data sets (Bunny model, Skeleton Hand model, Bimba model and Dancing
Children model). C is the outstanding conventional method in this registration experiment
- Bayesian Coherent Point Drift (BCPD). It can be seen that the accuracy of GRDO is
similar to the accuracy of BCPD when achieving the registration under various outliers.
They both have almost 25.00% higher accuracy than DO. Nevertheless, the stability of
BCPD is the best among these three methods.
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Table 5.3 The quantitative registration results under various Outliers. (B-Baseline method
DO; P-Proposed method GRDO; C-Conventional method BCPD)

Q0 Q4 IQR
B P C B P C B P C

Bunny
(O)300 1.00 1.39 1.51 1.00 1.31 1.54 1.00 1.60 0.40
(O)400 1.00 1.38 1.59 1.00 1.38 1.60 1.00 1.60 0.40
(O)500 1.00 1.38 1.54 1.00 1.38 1.62 1.00 1.50 0.25

Skeleton
Hand

(O)300 1.00 1.24 1.29 1.00 1.21 1.43 1.00 2.33 0.67
(O)400 1.00 1.18 1.26 1.00 1.28 1.48 1.00 1.40 0.40
(O)500 1.00 1.18 1.25 1.00 1.26 1.48 1.00 1.14 0.29

Bimba
Model

(O)300 1.00 1.43 0.71 1.00 1.27 0.29 1.00 1.75 0.50
(O)400 1.00 1.29 0.66 1.00 1.27 0.29 1.00 0.80 0.40
(O)500 1.00 1.38 0.70 1.00 1.30 0.29 1.00 1.14 0.57

Dancing
Children

(O)300 1.00 1.10 1.47 1.00 1.06 1.54 1.00 1.00 0.40
(O)400 1.00 1.09 1.55 1.00 1.12 1.60 1.00 1.13 0.50
(O)500 1.00 1.10 1.47 1.00 1.06 1.54 1.00 1.25 0.50

Comparison on the ModelNet40 data set

Figure.5.10 shows the search results for a given point cloud. The top shows the given
target point clouds. The bottom shows the selected similar training point clouds for the
given models. This figure shows that the selected training point cloud is similar to the
given point cloud, which illustrates the effectiveness of the proposed search framework.

(a) Airplane (b) Car (c) Chair (d) Toilet

Fig. 5.10 The searching results for the given target models.

The registration results of the target point cloud via the learned regressors of the
selected training point cloud are shown in Figure.5.11 ∼ Figure.5.13. Please note that, for
the learning-based optimisation methods (DO, RDO, and GRDO), the registration results
here are obtained through the learned regressors of the selected training point clouds, which
are different from the settings of the comparative experiments with traditional methods.

Figure.5.11 displays the performance of all methods on registration with mode1. mode1

depicts the point clouds registration with small rotations. Top shows the log10 compu-
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tational time of all comparative methods; Second ∼ Bottom illustrate the log10 MSE of
all registration methods. It can be seen that BCPD and DCP, CPD, and PointnetLK take
about the same amount of time to register point clouds, respectively. The registration
accuracy of DCP is poor than that of BCPD. The stability of CPD is better than that of
PointnetLK, although the registration result of PointnetLK is more accurate when the rota-
tion angle is small (not over 60◦). The computational time of PCRnet is close to that of the
learning-based optimisation methods (DO and RDO), the registration accuracy of PCRnet
is poor by contrast. Also as a learning-based optimisation method, GRDO can register
point clouds with higher accuracy within less computational time while maintaining high
stability. It is challenging for NDT to handle registration over 60◦, and the performance of
ICP on registration with the rotation of 75◦ is poor. In summary, compared with the deep
learning methods, the traditional methods can achieve more accurate registration when the
rotation is 75◦; compared with the traditional methods, the benefits of the learning-based
optimisation methods (DO, RDO, and GRDO) are higher stability and less computation
time.

Figure.5.12 shows the registration results of all methods with the mode2 settings,
reflecting the performance of all methods on the point clouds registration under large
rotations. BCPD, CPD and other learning-based optimisation methods can handle the
registration with 90◦, and even the registration results of them on 120◦ are more accurate.
PCRnet, PointnetLK, and DCP are unable to keep higher accuracy when dealing with
registration with the rotation over 60◦, which also is reflected by the registration results of
NDT and ICP. A similar situation also occurs in the learning-based optimisation methods.
The difference is that when DO, RDO, and GRDO handle the registration with the rotation
over 120◦, the registration accuracy will fall off a cliff. The reason is that the learning-based
optimisation methods have not learned the feature regarding the relative position when the
point cloud rotates at a large angle. The rotation parameter set during the training process
is only 90 degrees. Nonetheless, the registration accuracy of GRDO is still higher than DO
and RDO.

Figure.5.13 shows the performance of all methods on the registration with mode3

(multiple perturbations). Specifically, the point clouds rotate arbitrarily in the range of
90◦ with varying extents of noise perturbation. DO, RDO, and GRDO are more robust in
terms of noise compared with other methods, and the existence of noise has little effect
on their performance. GRDO still keeps its higher accuracy, higher stability, and less
computational time. Comparing the registration results of them under the setting of mode2

and mode3, it can be found that the performance of CPD and BCPD is highly impacted by
noise. The accuracy and the stability of NDT and ICP are more vulnerable under multiple
perturbations. Besides, for PCRnet, PointnetLK and DCP, the higher the extent of the
noise perturbation, the worse the registration performance.

Table.5.4 shows the log10 Mean Square Error of registration on the ModelNet40 data
set. C is the outstanding conventional method in this registration experiment - Bayesian Co-
herent Point Drift (BCPD). D is the deep learning-based method with better performance -
PointNetLK. When handling the registration with small rotations (mode1), PointNetLK has
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Fig. 5.11 The registration results of different data sets with perturbation setting mode1.
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Fig. 5.12 The registration results of different data sets with perturbation setting mode2.
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Fig. 5.13 The registration results of different data sets with perturbation setting mode3.
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higher accuracy than other methods, but its stability is the lowest among these comparative
methods. Although the accuracy of DRDO is similar to that of BCPD, its stability is
not good as BCPD. When handling the registration with large rotations (mode2), GRDO
has 4.78% higher accuracy than BCPD and 15.06% higher accuracy than PointNetLK.
And the stability of GRDO is 31.02% higher than that of BCPD. GRDO has the greatest
accuracy and stability than other methods when achieving the registration with multiple
perturbations (mode3: rotation and noises).

Table 5.4 The quantitative registration results on the ModelNet40 data set. (B-Baseline
method DO; P-Proposed method GRDO; C-Conventional method BCPD; D- Deep-learning
method PointnetLK)

Q0 Q4 IQR
B P C D B P C D B P C D

mode1

Airplane
(R)45 1.00 1.37 1.06 4.29 1.00 2.10 1.75 2.50 1.00 0.60 0.40 8.00
(R)60 1.00 1.37 1.09 4.29 1.00 2.22 1.78 0.28 1.00 0.25 0.38 7.50
(R)75 1.00 1.44 1.19 3.13 1.00 2.67 2.20 0.33 1.00 0.19 0.38 5.00

Car
(R)45 1.00 1.32 2.44 3.95 1.00 1.43 3.31 1.79 1.00 1.00 0.004 10.00
(R)60 1.00 1.38 2.32 3.75 1.00 1.43 3.31 0.18 1.00 0.63 0.003 6.25
(R)75 1.00 1.33 2.32 1.75 1.00 1.43 3.31 0.18 1.00 0.63 0.005 3.75

Chair
(R)45 1.00 1.37 1.00 5.00 1.00 2.53 1.87 8.67 1.00 0.40 0.40 2.00
(R)60 1.00 1.53 1.09 5.45 1.00 2.53 1.87 0.67 1.00 0.60 0.40 18.00
(R)75 1.00 1.53 2.00 5.45 1.00 1.90 2.00 0.50 1.00 0.50 2.00 22.50

Toilet
(R)45 1.00 1.25 1.21 3.75 1.00 1.33 1.54 4.33 1.00 0.40 0.20 2.00
(R)60 1.00 1.25 1.21 3.75 1.00 1.43 1.65 2.68 1.00 0.60 0.20 10.00
(R)75 1.00 1.25 1.21 3.75 1.00 1.33 1.54 0.33 1.00 0.50 0.25 18.75

mode2

Airplane
(R)90 1.00 1.36 1.15 1.52 1.00 7.17 5.33 1.67 1.00 0.07 0.67 1.67
(R)120 1.00 1.36 1.73 1.36 1.00 1.71 0.71 1.43 1.00 0.10 0.10 0.60
(R)150 1.00 2.50 4.75 1.25 1.00 3.00 0.71 1.14 1.00 1.00 1.00 4.00

Car
(R)90 1.00 1.36 2.73 1.52 1.00 1.56 3.56 0.40 1.00 0.07 0.07 2.00
(R)120 1.00 2.00 1.00 2.00 1.00 5.00 4.50 5.00 1.00 0.80 0.20 1.00
(R)150 1.00 3.36 3.33 3.67 1.00 4.50 4.50 5.00 1.00 1.00 1.00 10.00

Chair
(R)90 1.00 1.33 2.67 0.83 1.00 1.90 0.10 0.85 1.00 0.50 0.50 2.50
(R)120 1.00 1.40 0.07 0.67 1.00 2.50 0.25 4.25 1.00 0.40 0.10 0.15
(R)150 1.00 1.71 0.29 2.57 1.00 2.50 0.25 4.25 1.00 1.00 1.00 1.00

Toilet
(R)90 1.00 1.26 1.84 0.53 1.00 1.74 0.09 0.74 1.00 0.75 5.00 0.50
(R)120 1.00 1.43 0.23 0.57 1.00 10.00 7.00 17.00 1.00 0.93 0.07 0.11
(R)150 1.00 2.86 1.14 2.57 1.00 10.00 7.00 17.00 1.00 0.25 0.25 0.25

mode3

Airplane
(N)0.06 1.00 1.28 0.72 0.64 1.00 2.67 1.67 0.67 1.00 0.50 0.33 1.33
(N)0.08 1.00 1.23 0.62 0.64 1.00 2.53 1.53 0.67 1.00 0.50 0.33 0.83
(N)0.10 1.00 1.23 0.56 0.51 1.00 2.40 1.40 0.67 1.00 0.43 0.14 0.29

Car
(N)0.06 1.00 1.15 0.77 0.64 1.00 1.36 0.68 0.36 1.00 0.75 0.25 1.00
(N)0.08 1.00 1.29 0.80 0.57 1.00 1.36 0.68 0.36 1.00 1.50 0.50 1.50
(N)0.10 1.00 1.23 0.69 0.51 1.00 1.36 0.68 0.36 1.00 0.75 0.25 0.50

Chair
(N)0.06 1.00 1.40 1.00 0.83 1.00 1.71 1.38 0.62 1.00 0.60 0.20 0.60
(N)0.08 1.00 1.40 0.93 0.73 1.00 1.75 1.35 0.65 1.00 0.75 0.25 0.50
(N)0.10 1.00 1.50 0.96 0.68 1.00 1.75 1.30 0.65 1.00 0.60 0.20 0.20

Toilet
(N)0.06 1.00 1.67 0.93 0.83 1.00 1.73 1.32 0.59 1.00 1.50 0.50 1.50
(N)0.08 1.00 1.37 0.77 0.63 1.00 1.73 1.27 0.59 1.00 1.50 0.50 1.25
(N)0.10 1.00 1.37 0.71 0.57 1.00 1.73 1.18 0.59 1.00 3.00 1.00 2.00

Figure.5.14 shows the registration results of GRDOT F (GRDO with transfer learning)
and GRDONT F (GRDO without transfer learning) on ModelNet40 data sets. Left shows
the registration results with the setting mode1. Middle depicts the registration results with
the setting mode2. Right presents the comparison results with the setting mode3. Top
displays the comparison of computation time. The computation time for registration via
GRDOT F is presented by the solid line with squares. The dashed line with the circle shows
the computation time of GRDONT F . The log10 MSE of the GRDOT F and GRDONT F are
presented by the orange and the dark green respectively. It can be seen that the registration
accuracy of GRDONT F is better, and the robustness and the stability of both are similar.
The computational time of GRDONT F is less than that of GRDOT F in most cases.
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Fig. 5.14 The comparison of GRDO with transfer learning (GRDOT F ) and GRDO without
transfer learning (GRDONT F ) under different perturbation settings.

Discussion. Compared with the deep-learning methods, the learning-based optimisa-
tion methods (DO, RDO, and GRDO ) can achieve registration with more stability and
robustness, especially under multiple perturbations. This is because the deep-learning
methods largely belong to the data-driven model. The addition of perturbations (such as
noises, and outliers) makes it challenging for networks to converge to an optimal. The
learning-based optimisation methods are model-driven, and the performance depends on
the designed feature. Besides, the learning-based optimisation methods and the deep-
learning methods can hardly handle the registration with large rotations, which may be due
to the local optimisation or the over-fitting issues.

Transfer learning is the critical technique to achieve multiple point clouds registration
for the learning-based optimisation methods. Although the accuracy of GRDO with
transfer learning is less than that of the GRDO without transfer learning, the GRDO with
transfer learning still maintains high robustness and stability. And the accuracy of GRDO
registration based on transfer learning is better than that of most comparative registration
methods.

5.5 Discussion

Although learning-based optimisation methods can not deal with the multiple point clouds
registration within a limited time, SGRTmreg provides a new perspective for them to
achieve multiple point clouds registration. Maybe a more general feature is a breakthrough
to increase the number and the kinds of samples to be registered within a limited period.
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Compared with DO and RDO, the storage requirement of GRDO for learning the
updating map is reduced. The memory requirement for learning Dt+1 in DO and RDO
is O

(
N (((c1 + c2)NM + c2NS))+ c3N2

M
)

[109], which largely depends on the number of
points in a point cloud. The feature in this framework SGRTmreg is designed based on the
extracted key points, and the way to extract key points keeps the details of the point cloud.
The usage of key points greatly reduces the requirement for storage space.

5.6 Conclusion

This chapter describes a framework SGRTmreg composed of a novel learning-based
optimisation algorithm that shares the same principles with deep learning for learning
regressors, a searching scheme for selecting point clouds, and transfer learning for applying
the learned regressors. Specifically, given a target point cloud and a collection of training
point clouds, a search scheme is to find a similar training point cloud for the target
point cloud from the collection; the Graph-based Reweighted Discriminative optimisation
method (GRDO) is used to learn a sequence of regressors from the selected similar training
point cloud; transfer learning focuses on storing the learned sequence of regressors while
applying it to the transformation estimation of the target point cloud. The key point in
SGRTmreg is that the learned gradient direction is from a selected training point cloud
that is different but similar to the target point cloud. The potential of the framework
SGRTmreg is demonstrated in 3D multiple point clouds registration with higher accuracy
and robustness, and efficiency than the state-of-the-art deep learning-based methods and
traditional optimisation-based registration methods. The registration accuracy of GRDO is
almost 41.93% higher than that of BCPD on the registration of synthetic data sets under
various rotations. The accuracy of GRDO when registering point clouds under various
noises is almost twice that of BCPD and is 15.33% higher than that of DO. GRDO has
almost 25.00% higher accuracy than DO when achieving the registration under various
outliers. When handling the registration with large rotations, GRDO has 4.78% higher
accuracy than BCPD and 15.06% higher accuracy than PointNetLK. In addition, GRDO
has the greatest accuracy and stability than other methods when achieving the registration
with multiple perturbations, and the computation time of GRDO is 1/10 of that of DO.
Future work is to design a generalised representation of parameter vectors that is suitable
for computer vision and graphics applications other than those specific to the Lie Algebra
for a rigid transformation matrix. On this basis, the learning-based optimisation algorithm
(GRDO) together with the search scheme and transfer learning can be applied to a wider
range of problems in computer graphics and computer vision, such as non-rigid registration,
and image denoising, and more.



Chapter 6

Application on Computer Vision

The data sets for conducting the point clouds registration experiments in the previous three
chapters are most of the public, synthetic data sets, which are not convincing to evaluate
the performance of these proposed methods on augmented reality applications. Because
the augmented reality technique involves object tracking in real scenes. And the object
tracking is achieved via the point cloud registration. In this case, this chapter applies the
previously proposed algorithms (GDO, RDO, and GRDO) to achieve the point clouds
registration and object tracking in real scenes. Specifically, the rigid registration of medical
instruments in the intraoperative scene is accomplished. The registration between models
and scenes reconstructed through the images captured by Kinect is also conducted. And
the experiment on object tracking is also carried out in this chapter.

6.1 Registration of Medical Instruments

The point clouds of the medical intraoperative scene can be attained from the previous
work [110], as shown in Figure.6.1. Specifically, the intraoperative medical scene is
reconstructed from the adjacent frames of the public available Hamlyn Centre Laparoscop-
ic/Endoscopic video data sets [111]. It can be seen that the organ and the instrument are
merged. And the organ has obscured the partial instrument (as shown in Figure.6.1(b)).
Due to the proposed methods focusing on rigid registration, it is necessary to segment
the instruments from the reconstructed scenes. Therefore, a segmentation scheme to
separate the instruments is proposed. The scheme can be divided into two stages: rough
segmentation and fine segmentation. The former is to separate the instruments from the
organs roughly via Dirichlet Process Gaussian Mixture Models (DPGMM) based on the
colour and the coordinates of point clouds, and the latter is to remove the remaining points
in the segmented area.
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(a) (b)

Fig. 6.1 The point clouds of the medical intraoperative scene.

6.1.1 Point Cloud Segmentation

Rough Segmentation

There are three key steps to achieve the rough segmentation: (1) The medical scene will be
clustered via the colour information colourβ = median(SceneC)

max(SceneC)
, where SceneC is the colour

vector of the medical scene, and the number of clusters depends on the number of different
values of colourβ . (2) DPGMM (Dirichlet Process Gaussian Mixture Models) is used for
the partition of the clusters. Please note that DPGMM acts on the combination of colour
and coordinates information α ×SceneC +ρ ×SceneP, where SceneP is the coordinates
vector of the cluster grouped through the colourβ . And α and ρ are coefficients, α +ρ = 1.
The criteria for assigning weights are to keep the size of the combination the same as that
of the coordinates in the cluster. The partition results will be manually merged as the organ
and the instrument. (3) The denoising technique [112] in Matlab will be applied to remove
the noise in merged results. As shown in Figure.6.2.

Fig. 6.2 The framework for rough segmentation.

Fine Segmentation

To completely segment the instruments from the medical scene, a fine segmentation scheme
is designed to remove the remaining points in the blank partitioned area. The function
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fitgmdist in Matlab is used to fit Gaussian mixture models to the organ data. Then the
boundary of each component of the Gaussian mixture models will be extracted [113],
and the boundary points will be selected if the distribution of their normals is irregular.
Univariate linear regression will be applied to the selected boundary points to generate a
linear model to screen those points to be removed. As shown in Figure.6.3.

Fig. 6.3 The framework for fine segmentation.

Segmentation Results

Figure.6.4 displays that the segmented instrument is incomplete and has outliers. The
reason causing the incompleteness of the instrument is that the colour of the instrument’s
tip in Figure.6.1 is similar to that of the organ near the tip, and the colour is darker. The
difference between the colours of the tip and the organ is not apparent, which leads to the
poor performance of the cluster that is only based on colour information.

(a) (b)

Fig. 6.4 The segmentation results of instruments.
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6.1.2 Parameter Settings

The parameters in the training processes of DO, GDO, GDO and GRDO are the same
in the instruments registration experiment. A given model shape M is normalised to
[−1,1]3 and a scene model is generated through uniformly sampling from M with the
replacement of almost 1500 points. Then the following perturbations are applied to the
scene model: (i) Rotation and translation: The rotation is within 60 degrees and the
translation is in [−0.2,0.2]3; (ii) Noise and Outliers: Gaussian noise with the standard
deviation 0.05 is added to the scene model. 0 to 300 points within [−1.5,1.5]3 are added as
the sparse outliers. For all experiments, 30000 training samples are generated, the number
of iterations is set to T = 30, and the initial transformation x0 is 06. And σ̂2 is set as 0.03.
The value of the tolerance of absolute difference between current estimation and ground
truth in iterations is 1e-4. For ICP, the tolerance of absolute difference in translation and
rotation is 0.01 and 0.5 respectively; For CPD, the type of transformation is set to rigid,
and the expected percentage of outliers with respect to a normal distribution is 0.1, the
tolerance value is the same of that in DO. For NDT, the value of the expected percentage
of outliers is set to 0.55, and the tolerance value is set as the same as that in ICP. All
deep-learning-based registration networks are trained on an Nvidia Geforce 2080Ti GPU
with 12G memory. For PCRNet, the kernel sizes are 64, 64, 64, 128, 1024, 1024, 512, 512,
256 and 7. The iteration for rotation and translation is set to 8. Adam optimiser with an
initial learning rate of 0,1, 300 epochs and a batch size of 32 is used for the training process.
For PointnetLK, the kernel sizes are 64, 64, 64, 128, 1024. The maximum iteration for
rotation and translation is set to 30. Adam optimiser with an initial learning rate of 0.001,
250 epochs and a batch size of 10 is used for the training process. For DCP, the kernel
sizes are 64, 64, 128, 256, 512, 1024, 256, 128, 64, 32 and 7. The iteration for rotation and
translation is set to 1. Adam optimiser with an initial learning rate of 0.001, 250 epochs
and a batch size of 32 is used for the training process.

6.1.3 The Registration Results

Figure.6.5 shows the registration results of instruments on the mentioned perturbations
(occlusion and outliers). The rectangles show the overlap at the tips of the instruments.
The overlap parts (rectangles) illustrate that the optimisation-based registration methods
(DO, GDO, RDO, and GRDO) have better performance than other registration methods.
The deep learning-based methods (DCP, PCR, and PointnetLK) cannot register the real
data sets under various perturbations.
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(a) ICP (b) NDT (c) CPD (d) DO (e) GDO

(f) RDO (g) GRDO (h) DCP (i) PCR (j) PointnetLK

Fig. 6.5 The registration results of instruments.

Table.6.1 shows the quantitative results of the registration on instruments. MSE
represents the mean square error. It can be seen that the registration accuracy of the learned
optimisation methods is higher than that of other methods.

Table 6.1 The quantitative results of the registration on instruments. (MSE-Mean Square
Error)

ICP NDT CPD DO GDO RDO GRDO DCP PCR PointNetLK
MSE 0.0097 0.0054 0.0151 0.0037 0.0023 0.0028 0.0045 0.4888 0.0381 0.1056

6.2 Registration between Model and Scene

In this section, 3D registration experiments are conducted on the real scenes ( A person
is holding a chicken or parasaurolophus), which are captured by Microsoft KinectV2, as
shown in Figure.6.6.Top shows the 3D model chicken and parasaurolophus. Bottom shows
the 3D scene captured by KinectV2.

The parameter settings in this section are similar to the settings in Section6.1.2, the
only difference is that the rotation range is extended to 90 degrees for DO, GDO, GDO
and GRDO.

Registration Results

Figure.6.7 and Figure.6.8 show the registration results on the chicken and parasaurolophus
models respectively. It can be seen that although the optimisation-based methods (DO,
GDO, RDO, and GRDO) can register models and scenes with higher accuracy than deep-
learning-based registration methods (DCP, PCR, and PointnetLK) and traditional methods
(ICP, CPD, and NDT), they all failed to achieve registration with larger rotation. Besides,
it will be a huge challenge for these methods to register models in the case of self-rotation,
as shown in Figure.6.8, where the direction of the parasaurolophus’ head is opposite.
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(a) Chicken (b) Parasaurolophus

Fig. 6.6 The models and scenes for registration.

(a) ICP (b) NDT (c) CPD (d) DO (e) GDO

(f) RDO (g) GRDO (h) DCP (i) PCR (j) PointnetLK

Fig. 6.7 The registration results of chicken model.
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(a) ICP (b) NDT (c) CPD (d) DO (e) GDO

(f) RDO (g) GRDO (h) DCP (i) PCR (j) PointnetLK

Fig. 6.8 The registration results of parasaurolophus model.

6.3 Object Tracking

In this section, 3D registration methods are applied to 3D object tracking, as shown in
Figure.6.9. Microsoft KinectV2 is used to capture RGBD videos at 20fps, which is similar
to the setting of DO in [11], then a 3D point cloud will be reconstructed from depth images
and colour images. In this video, the objects moving is recorded from different orientations.
For GDO and GRDO, the approach to extract their features determines that the point clouds
to be matched should be in the same space and not far away from each other; otherwise, it
needs a high requirement for memory space that may be beyond the scope of the memory
for the coding software. Therefore, the first frame is manually initialised to make the
point clouds in the same space, and the subsequent frames were initialised via the pose
of the previous frames. In addition, the depth image will be downsampled to reduce the
computational cost. The parameter settings in this section are similar to the settings in
6.2. Besides, the ratio of incomplete scene shape is set between 0.3 and 0.8 in the training
process for DO, GDO, GDO and GRDO.

Fig. 6.9 The scenes for object tracking.

Tracking Results

Figure.6.10 and Figure.6.11 show the object tracking results of model bunny. Each column
shows the same frame. Each row displays the tracking results of each method. Odd
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columns illustrate the reprojection on RGB images, and even columns show the registered
3D point clouds in scene. Please note that the orientations of the bunny model in different
columns of Figure.6.10 and Figure.6.11 are different. Compared with other methods, DO,
RDO, GDO and GRDO can seek the position and the orientation of 3D model in scenes
roughly. And if more areas of the models are exposed in the scene, the performance of
these methods will be better, which can be found by comparing the 3D point clouds in the
second column and the fourth column in Figure.6.11. Nevertheless, RDO still has a better
performance than other learning-based methods, significantly better than DO and GRDO,
as shown in the black rectangles in Figure.6.10. The reason for the worse performance
of GRDO is that the exposed small area only provides limited information to GRDO to
construct the graph and to extract key points. The tracking results of model chicken with
different orientations, as shown in Figure.6.12 and Figure.6.13, also expose the above
issues. The difference between Figure.6.12 and Figure.6.13 is that the orientations of the
chicken model in these two figures are different.

The deep-learning-based registration methods (DCP, PCR, and PointnetLK) and tra-
ditional methods (ICP, CPD, and NDT) failed to handle the registration with structured
outliers and could not track rotation well. The optimisation-based registration methods
(DO, GDO, RDO, GRDO) could robustly track the 3D object under various perturbations
but failed to follow the object with more missing areas. Because the approach extracting
features for GRDO is based on the graph information, and it lacks sufficient graph infor-
mation to track objects when dealing with the registration with large missing areas, the
performance of GRDO is worse than other optimisation-based methods (DO, GDO, and
RDO). The optimisation-based registration methods (DO, GDO, RDO, and GRDO) have
better performance than other methods in tracking targets. But the accuracy is not good,
which will be the focus of the follow-up research.
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Fig. 6.10 Results for object tracking of model bunny (1).
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Fig. 6.11 Results for object tracking of model bunny (2).
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Fig. 6.12 Results for object tracking of model chicken (1).
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Fig. 6.13 Results for object tracking of model chicken (2).



Chapter 7

Conclusions and Future Works

7.1 Conclusions

Three learning-based optimisation methods and a framework called SGRTmreg are pro-
posed in this thesis to improve the accuracy and robustness of point cloud registration
which is the basic problem in augmented reality technology.

Specifically, General Discriminant optimisation (GDO) proposed in Chapter 3 makes
use of the cooperation of different features to reduce the influence of various perturbations
on the learning gradient path. The experimental results show the higher robustness and
accuracy of GDO. The registration accuracy of GDO is almost 4.00% higher than that
of DO on the Bunny, Chef, and Dancing Children models. For the registration on the
complex and real scene, the accuracy of GDO is 25.00% higher than that of DO. The
registration accuracy of GDO is 26.00% higher than that of DO on the registration under
different noises. In addition, the stability of GDO is 7.91% higher than that of PointNetLK
regarding the registration on the ModelNet40 data set. Nevertheless, the computation time
of GDO is about triple that of DO.

Reweighted Discriminative optimisation (RDO) proposed in Chapter 4 designs an
asymmetrical parameter treatment scheme to assign different weights to components of
vectors according to the characteristics of fitting errors over parameter vectors space. The
experimental results illustrate the higher accuracy and efficiency of RDO. Specifically,
the registration accuracy of RDO is almost 40.00% higher than that of DO on the Happy
and Hand models and 2.11% higher than that of DO when achieving the registration on
the Dancing Children model. And the computation time of RDO is almost 20% lower
than that of DO. The registration success rate of RDO is nearly 30% higher than that of
PointNetLK in the registration on the ModelNet40 data set. However, RDO is unable to
handle the dense point clouds registration, because the memory requirement for learning
Dt+1 is O

(
N (((c1 + c2)NM + c2NS))+ c3N2

M
)
.

Graph-based Reweighted Discriminative optimisation (GRDO) proposed in Chapter 5
aims to achieve more accurate and robust registration with less computational cost and less
memory requirement. Also, a framework, called SGRTmreg, is designed in Chapter 5 for
optimisation-based methods to achieve multiple point clouds registration while maintaining
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high accuracy and robustness when dealing with the registration in the case of various
perturbations. Experimental results display the higher accuracy and robustness of GRDO.
The registration accuracy of GRDO is almost 41.93% higher than that of BCPD on the
registration of synthetic data sets under various rotations. The accuracy of GRDO when
registering point clouds under various noises is almost twice that of BCPD and is 15.33%
higher than that of DO. When handling the registration with large rotations, GRDO has
4.78% higher accuracy than BCPD and 15.06% higher accuracy than PointNetLK. In
addition, GRDO has the greatest accuracy and stability than other methods when achieving
the registration with multiple perturbations, and the computation time of GRDO is 1/10 of
that of DO.

Experimental results in Chapter 6 show that the proposed three methods perform
better than traditional and deep learning-based registration methods when applied to real
applications. Nevertheless, the experimental results also expose the defects of the above
methods, which will be explored in the next section.

7.2 Future Works

Although the proposed approaches have shown better performance than other registration
methods (traditional methods and deep learning-based methods), there are still some issues
to be solved, which will provide promising research directions for future work.

• Improvement on the registration with large rotations.
The registration results in Chapter 3 show that learning-based optimisation methods
are not good at handling the registration with larger rotations (over 90 degrees). In
comparison, the ICP method based on the FPFH descriptor shows better performance
when registering point clouds with large rotations. Except for the optimisation-
based methods, the registration with larger rotation also poses a challenge for deep
learning-based methods. Therefore, how to improve the registration accuracy in
the case of large rotations will be a research direction. Designing a feature that
extracts correspondences while avoiding falling into the local mnimum or preventing
overfitting is the breakthrough to achieving the registration with large rotations.

• Improvement on the registration with longer distance.
The features of GDO and GRDO are all based on the grids dividing the space of
3D point clouds, which is not suitable for the registration with a longer distance. In
this thesis, the distance between the two models has to be manually adjusted before
registration; otherwise, the memory storage requirement is a challenge for software.
Thus, it is necessary to address this issue to improve registration accuracy under
longer distances.

• Registration with self-rotation.
The registration results of the parasaurolophus model in Chapter 6 show that learning-
based optimisation methods and the other comparison methods are not able to handle
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the registration with self-rotation. The process for registration with self-rotation
can be cast into two steps: 1) approaching the positions of point clouds; 2) rotating
the source point cloud around its centring axis. How to combine these two steps,
formulating the process is critical to exploring the potential of registration methods
for the achievement of self-rotation registration.

• Extension to non-rigid Registration.
The parameter vector Xt in these learning-based optimisation methods represents
the transformation parameter and is adopted in rigid registration. There is no fixed
parameter formulation for non-rigid registration, so extending these learning-based
optimisation methods to non-rigid registration is a significant challenge. If applying
rigid registration to each point to accomplish the non-rigid registration, finding
the substitutes for the ground truth X∗ is still a difficulty. Dealing with non-rigid
registration via learning-based optimisation methods could be a potential direction
in the future.

• Improvement on multiple point clouds registration.
Although learning-based optimisation methods can achieve multiple point clouds
registration via the framework SGRTmreg proposed in Chapter 5, it works on the
premise that the point clouds to be matched must be similar, which still limits the
flexibility of the learning-based optimisation methods to deal with multiple point
clouds registration like deep learning-based methods. One of the reasons for this is
that the designed features are not general enough. Therefore, to handle this case, it
is vital to develop a general feature to lessen the recline of the sequence of learned
regressors Dt+1 on features.
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[76] H. Hadizadeh and I. V. Bajić, “Soft video multicasting using adaptive compressed
sensing,” IEEE Transactions on Multimedia, vol. 23, pp. 12–25, 2020.

[77] N. Qian, “On the momentum term in gradient descent learning algorithms,” Neural
networks, vol. 12, no. 1, pp. 145–151, 1999.

[78] Y. Nesterov, “A method for unconstrained convex minimization problem with the
rate of convergence o (1/kˆ 2),” in Doklady AN USSR, vol. 269, 1983, pp. 543–547.

[79] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods for online learning
and stochastic optimization,” Journal of Machine Learning Research, vol. 12, no.
Jul, pp. 2121–2159, 2011.

[80] M. D. Zeiler, “Adadelta: an adaptive learning rate method,” arXiv preprint
arXiv:1212.5701, 2012.

[81] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv
preprint arXiv:1412.6980, 2014.

[82] T. Tieleman and G. Hinton, “Lecture 6.5-rmsprop: Divide the gradient by a run-
ning average of its recent magnitude,” COURSERA: Neural networks for machine
learning, vol. 4, no. 2, pp. 26–31, 2012.

[83] S. J. Reddi, S. Kale, and S. Kumar, “On the convergence of adam and beyond,”
arXiv preprint arXiv:1904.09237, 2019.

[84] A. C. Wilson, R. Roelofs, M. Stern, N. Srebro, and B. Recht, “The marginal value of
adaptive gradient methods in machine learning,” in Advances in Neural Information
Processing Systems, 2017, pp. 4148–4158.

[85] S. Avidan, “Support vector tracking,” in Proceedings of the 2001 IEEE Computer
Society Conference on Computer Vision and Pattern Recognition. CVPR 2001, vol. 1.
IEEE, 2001, pp. I–I.

[86] M. H. Nguyen and F. De la Torre, “Metric learning for image alignment,” Interna-
tional Journal of Computer Vision, vol. 88, no. 1, pp. 69–84, 2010.

[87] L. Liang, R. Xiao, F. Wen, and J. Sun, “Face alignment via component-based
discriminative search,” in European conference on computer vision. Springer,
2008, pp. 72–85.

[88] T. F. Cootes, M. C. Ionita, C. Lindner, and P. Sauer, “Robust and accurate shape
model fitting using random forest regression voting,” in European Conference on
Computer Vision. Springer, 2012, pp. 278–291.

[89] K. Paliouras and A. A. Argyros, “Towards the automatic definition of the objective
function for model-based 3d hand tracking,” in ICMMI, 2015.



References 128

[90] D. Campbell and L. Petersson, “An adaptive data representation for robust point-set
registration and merging,” in Proceedings of the IEEE international conference on
computer vision, 2015, pp. 4292–4300.

[91] L. Mason, J. Baxter, P. L. Bartlett, and M. R. Frean, “Boosting algorithms as gradient
descent,” in Advances in neural information processing systems, 2000, pp. 512–518.

[92] J. H. Friedman, “Greedy function approximation: a gradient boosting machine,”
Annals of statistics, pp. 1189–1232, 2001.

[93] P. Dollár, P. Welinder, and P. Perona, “Cascaded pose regression,” in 2010 IEEE
Computer Society Conference on Computer Vision and Pattern Recognition. IEEE,
2010, pp. 1078–1085.

[94] G. Tzimiropoulos, “Project-out cascaded regression with an application to face
alignment,” in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2015, pp. 3659–3667.

[95] X. Cao, Y. Wei, F. Wen, and J. Sun, “Face alignment by explicit shape regression,”
International Journal of Computer Vision, vol. 107, no. 2, pp. 177–190, 2014.

[96] O. Tuzel, F. M. Porikli, P. Meer et al., “Learning on lie groups for invariant detection
and tracking.” in CVPR. Citeseer, 2008, pp. 8–9.

[97] J. Saragih and R. Goecke, “Iterative error bound minimisation for aam alignment,”
in 18th International Conference on Pattern Recognition (ICPR’06), vol. 2. IEEE,
2006, pp. 1196–1195.

[98] D. Cristinacce and T. F. Cootes, “Boosted regression active shape models.” in BMVC,
vol. 2. Citeseer, 2007, pp. 880–889.

[99] O. Hirose, “A bayesian formulation of coherent point drift,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, pp. 1–1, 2020.

[100] S. Du, G. Xu, S. Zhang, X. Zhang, Y. Gao, and B. Chen, “Robust rigid registration
algorithm based on pointwise correspondence and correntropy,” Pattern Recognition
Letters, vol. 132, pp. 91–98, 2020.

[101] V. Sarode, X. Li, H. Goforth, Y. Aoki, R. A. Srivatsan, S. Lucey, and H. Choset,
“Pcrnet: Point cloud registration network using pointnet encoding,” arXiv preprint
arXiv:1908.07906, 2019.

[102] Y. Wang and J. M. Solomon, “ns for point cloud registration,” in Proceedings of the
IEEE/CVF International Conference on Computer Vision, 2019, pp. 3523–3532.

[103] C. S. Burrus, “Iterative reweighted least squares,” OpenStax CNX. Available online:
http://cnx. org/contents/92b90377-2b34-49e4-b26f-7fe572db78a1, vol. 12, 2012.

[104] E. Eade, “Lie groups for 2d and 3d transformations,” URL http://ethaneade. com/lie.
pdf, revised Dec, 2013.

[105] A. S. Mian, M. Bennamoun, and R. Owens, “Three-dimensional model-based object
recognition and segmentation in cluttered scenes,” IEEE transactions on pattern
analysis and machine intelligence, vol. 28, no. 10, pp. 1584–1601, 2006.

[106] D. Görür and C. E. Rasmussen, “Dirichlet process gaussian mixture models: Choice
of the base distribution,” Journal of Computer Science and Technology, vol. 25,
no. 4, pp. 653–664, 2010.



References 129

[107] R. N. Bracewell and R. N. Bracewell, The Fourier transform and its applications.
McGraw-Hill New York, 1986, vol. 31999.

[108] M. E. Newman, “The mathematics of networks,” The new palgrave encyclopedia of
economics, vol. 2, no. 2008, pp. 1–12, 2008.

[109] Y. Zhao, W. Tang, J. Feng, T. Wan, and L. Xi, “Reweighted discriminative opti-
mization for least-squares problems with point cloud registration,” Neurocomputing,
2021.

[110] L. Xi, Y. Zhao, L. Chen, Q. H. Gao, W. Tang, T. R. Wan, and T. Xue, “Recovering
dense 3d point clouds from single endoscopic image,” Computer Methods and
Programs in Biomedicine, vol. 205, p. 106077, 2021.

[111] P. Mountney, D. Stoyanov, and G.-Z. Yang, “Three-dimensional tissue deformation
recovery and tracking,” IEEE Signal Processing Magazine, vol. 27, no. 4, pp. 14–24,
2010.

[112] R. B. Rusu, Z. C. Marton, N. Blodow, M. Dolha, and M. Beetz, “Towards 3d point
cloud based object maps for household environments,” Robotics and Autonomous
Systems, vol. 56, no. 11, pp. 927–941, 2008.

[113] M. Awrangjeb, “Using point cloud data to identify, trace, and regularize the outlines
of buildings,” International Journal of Remote Sensing, vol. 37, no. 3, pp. 551–579,
2016.



Appendix A

Convergence proofs

The convergence proofs of GDO and RDO are provided here. The learning process of
updating maps in GRDO is the same as that of RDO, so there is no convergence proof for
GRDO.

A.1 Convergence Proof for GDO

Theorem A.1.1 (Convergence of GDO’s training error)

Given a training set
{(

xi
0,x

i
∗,Hi

f 0

)}N

i=1
, if there exists a linear map D̂ ∈ Rp× f where D̂H f

meets the condition ∑
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f t > 0 at xi
∗ for all i, and if there exists an i where
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with Dt ⊂ Rp× f obtained from (A.2), guarantees that the training error strictly decreases
in each iteration:
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If D̂H f is strongly monotone, and if there exist H > 0, M > 0 such that
∥∥∥D̂Hi

f t

∥∥∥2
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≤
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2 for all i, then the training error converges to zero.

Proof.
First, the proof in this case that D̂H f meets the condition ∑
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f t > 0 is
illustarted.

According to Equation.(A.2), the following equation can be attained:
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Let D̄ = αD̂
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Since ∑
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f t > 0, both β and η are both positive, and thus α is also positive.
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Then :
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Based on the definition of strongly monotone at a point and the assumption in this
theorem, the following equation is attained
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Also, let us denote the training error in the t th iteration as Et :
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Form Equation.(A.9),
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Recursively applying the above inequality, it can be found that
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Since Et ≥ 0 for all t, and
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thus

lim
t→+∞

Et+1 = 0 (A.15)

Next, the case where H = 0 is considered. In this case,
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This proves that the training error converges linearly to zero.

A.2 Convergence Proof for RDO

Theorem A.2.1 (Convergence of RDO’s training error)
Given a training set

{(
xi

0,x
i
∗,hi

0
)}N

i=1, if there exists a linear map D̂ ∈ Rp× f where D̂hi
t

meets the condition ∑
N
i=1
(
xi

t − xi
∗
)T D̂hi

t > 0 at xi
∗ for all i where

[
hi

t
]

j,: ∈ (0,1), and if
there exists an i where xi

t ̸= xi
∗, then the update rule:

Dt+1=min
D̂

1
N

N

∑
i=1

∥∥Wt
(
xi
∗−xi

t+D̂hi
t
)∥∥2

2+λ
∥∥D̂
∥∥2

F (A.17)
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where [Wt ] j, j > 1

xi
t+1 = xi

t −Dt+1hi
t (A.18)

guarantees that the training error strictly decreases in each iteration:

N

∑
i=1

∥∥xi
∗−xi

t+1
∥∥2

2 <
N

∑
i=1

∥∥xi
∗−xi

t
∥∥2

2 (A.19)

If D̂hi
t is strongly monotone at xi

∗, and if there exist H > 0, M > 0 such that
∥∥D̂hi

t
∥∥2

2 ≤
H +M

∥∥xi
∗−xi

t
∥∥2

2 for all i, then the training error converges to zero.

Proof.
First, the proof in this case that D̂hi

t meets the condition ∑
N
i=1
(
xi

t − xi
∗
)T D̂hi

t > 0 is illus-
trated. Assume that not all xi

∗ = xi
t , otherwise all xi

∗ are already at their stationary points.
Let us denote

f (D) =
1
N

N

∑
i=1

∥∥Wt
(
xi
∗−xi

t+Dhi
t
)∥∥2

2+λ ∥D∥2
F (A.20)

g(D) =
1
N

N

∑
i=1

∥∥xi
∗−xi

t+Dhi
t
∥∥2

2+λ
∥∥W−1

t D
∥∥2

F (A.21)

q(D) =
1
N

N

∑
i=1

∥∥xi
∗−xi

t+Dhi
t
∥∥2

2+λ ∥D∥2
F (A.22)

Derive f (D), g(D) and q(D) with respect to D, the following equation can be attained

Dt+1 = min
D

f (D) = min
D

g(D) (A.23)

D̄t+1 = min
D

q(D) (A.24)

Where D̄t+1 ̸= Dt+1. From Equation A.22, A.23 and A.24, it can be seen that

λN
∥∥D̄t+1

∥∥2
F −λN ∥Dt+1∥2

F

≤
N

∑
i=1

∥∥xi
∗−xi

t+Dt+1hi
t
∥∥2

2−
N

∑
i=1

∥∥xi
∗−xi

t+D̄t+1hi
t
∥∥2

2

≤ λN
∥∥Wt

−1D̄t+1
∥∥2

F −λN
∥∥Wt

−1Dt+1
∥∥2

F

(A.25)

Solve Equation A.23 and Equation A.24,

Dt+1

N

∑
i=1

hi
th

i
t
T
+(WtWt)

−1
λNDt+1=

N

∑
i=1

(
xi

t−xi
∗
)

hi
t
T

(A.26)
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D̄t+1

N

∑
i=1

hi
th

i
t
T
+λND̄t+1=

N

∑
i=1

(
xi

t−xi
∗
)

hi
t
T

(A.27)

Due to
[
hi

t
]

j,: ∈ (0,1), hi
t and [Wt ] j, j > 1, where j ∈ {1,2, · · · p}. Thus

∥Dt+1∥2
F ≥

∥∥D̄t+1
∥∥2

F (A.28)

Similarly,

λN
∥∥Wt

−1Dt+1
∥∥2

F ≥ λN
∥∥Wt

−1D̄t+1
∥∥2

F (A.29)

Then

N

∑
i=1

∥∥xi
∗−xi

t+Dt+1hi
t
∥∥2

2 ≤
N

∑
i=1

∥∥xi
∗−xi

t+D̄t+1hi
t
∥∥2

2 (A.30)

Let D̂ = 1
α

D̄t+1

α =
η

γ
(A.31)

η =
N

∑
i=1

(
xi

t −xi
∗
)T D̂hi

t (A.32)

γ =
N

∑
i=1

∥∥D̂hi
t
∥∥2

2 (A.33)

Since ∑
N
i=1
(
xi

t − xi
∗
)T D̂hi

t > 0 , both η and γ are both positive, and thus α is also positive.
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N
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∥∥xi
t+1 −xi
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t
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∥∥2

2 −
η2

γ

<
N

∑
i=1

∥∥xi
∗−xi

t
∥∥2

2 .

(A.34)

Based on the definition of strongly monotone at a point and the assumption in this theorem,
the following equation can be attained

η =
N

∑
i=1

(
xi

t −xi
∗
)T D̂hi

t ≥ m
N

∑
i=1

∥∥xi
t −xi

∗
∥∥2

2 (A.35)

γ =
N

∑
i=1

∥∥D̂hi
t
∥∥2

2 ≤ NH +M
N

∑
i=1

∥∥xi
∗−xi

t
∥∥2

2 (A.36)

Also, let us denote the training error in the t th iteration as Et :

Et =
N

∑
i=1

∥∥xi
∗−xi

t
∥∥2

2 (A.37)

According to Equation.(A.34),

Et+1 ≤ Et −
η2

γ

≤ Et −
m2E2

t
NH +MEt

=

(
1− m2Et

NH +MEt

)
Et

(A.38)
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Recursively applying the above inequality, then

Et+1 ≤ E0

t

∏
l=0

(
1− m2El

NH +MEl

)
(A.39)

Since Et ≥ 0 for all t, and

0 <

(
1− m2El

NH +MEl

)
< 1 (A.40)

thus

lim
t→+∞

Et+1 = 0 (A.41)

Next, the case where H = 0 is considered. In this case,

0 ≤ Et+1 ≤ Et

(
1− m2

M

)
= E0

(
1− m2

M

)t+1

(A.42)

This proves that the training error converges linearly to zero.



Appendix B

Codes

B.1 General Discriminative Optimisation Method

Learning regressors

1 f u n c t i o n [DM, e r r o r 4 ] = learnGDO ( Xmodel , X, Y, nMap , sigmaSq ,
g r i d S t e p )

2 % Input: Xmodel,X,sigmaSq,gridStep are used to calculate the feature Hf
3 % Xmodel - orinigal model
4 % X - the model with perturbations
5 % Y - groundtruth (parameter vector)
6 % Output: The learned regressor
7

8 f p r i n t f ( ’Training GDO with %d maps\n’ , nMap )
9 f p r i n t f ( ’#data: %d \n’ , l e n g t h (X) )

10

11 D = c e l l ( 1 , nMap ) ;
12 e r r o r 4 = i n f ( nMap , 1 ) ;
13 Xor i = X;
14 Yor i = Y;
15

16 [ pcmptFeat , no rma l s ] = p r e c o m p u t e F e a t u r e ( Xmodel , sigmaSq ,
g r i d S t e p ) ;

17 Ygoal = t ransMatToParam ( Yor i ) ;
18 Y i n i t = z e r o s ( 6 , l e n g t h (X) ) ;% the parameters are initialized to 0
19 Y = Y i n i t ;
20 f p r i n t f ( ’It: %d, err: %f\n’ , 0 , norm ( Ygoal −Y, ’fro’ ) . ^ 2 / l e n g t h

(X) )
21

22 g r i d S t e p = 0 . 0 5 ;
23 x = −2: g r i d S t e p : 2 ;
24 [ X1 , Y1 , Z1 ] = meshgrid ( x , x , x ) ;
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25 D1 = [ X1 ( : ) Y1 ( : ) Z1 ( : ) ] ’ ;
26 [ F , Mdl ] = PDFnorm ( Xmodel ’ , D1 ) ; % calculate the probability density function
27

28 f o r i tMap =1: nMap
29 f e a t X = e x t F e a t (X, pcmptFea t ) ; % extract the coordinate-based feature
30 f ea tXF = c o m p u t e F e a t u r e t p d f 0 1 ( Xmodel ’ ,X, sigmaSq , normals , F ,

Mdl ) ;% extract the density-based
feature

31 [ lameda1 , lameda2 ] = FEATXFXGDO( fea tX , fea tXF ) ;% calculate the
weights for features

32 FeatX =[ lameda2 * f e a t X ; lameda1 * fea tXF ] ;% achieve the cooperation of
different features

33 f e a t Y = Y − Ygoal ;
34 D{ itMap } = ( f e a t Y * FeatX ’ ) / ( FeatX * FeatX ’ / l e n g t h (X) +1e −4*(

eye ( s i z e ( FeatX , 1 ) ) ) ) / l e n g t h (X) ;% attain the learned
regressor

35 c l e a r f e a t X FeatX fea tXF f e a t Y
36

37 r o tM a t = paramToTransMatnew (Y) ;
38 X = t r a n s C e l l n e w ( ro tMat , Xori , 0 ) ;
39 e r r o r 4 ( i tMap ) = norm ( Ygoal −Y, ’fro’ ) ^ 2 / l e n g t h (X) ;
40 f p r i n t f ( ’It: %d, err: %f\n’ , i tMap , e r r o r 4 ( i tMap ) )
41

42 s =0;
43 i f ~( i tMap ==1)
44 d e l t a D =D{ itMap }−D{ itMap −1};
45 f o r j =1 : s i z e ( de l t aD , 2 )
46 s = s+ norm ( d e l t a D ( : , j ) ) ;
47 DD=s / s i z e ( de l t aD , 2 ) ;
48 end
49 i f DD<10^( −4)
50 break ;
51 end
52 end
53 end
54

55 % save data
56 DM = s t r u c t ( ) ;
57 DM. Dmap = D;
58 DM. r u n O r d e r = 1 : l e n g t h (D) ;
59 DM. t r a i n E r r = e r r o r 4 ;
60 DM. Xmodel = Xmodel ;
61 DM. pcmptFea t = pcmptFea t ;
62 end
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Calculating Coordinate-based feature

1 f u n c t i o n [ pcmptFeat , no rma l s ] = p r e c o m p u t e F e a t u r e ( Xmodel ,
sigmaSq , g r i d S t e p )

2 %PRECOMPUTEFEATURE
3

4 % set parameters
5 s p a r s e M a p T h r e s h o l d = 1e −6;
6 x = −2: g r i d S t e p : 2 ;
7 [X, Y, Z ] = meshgrid ( x , x , x ) ;
8 D = [X ( : ) Y ( : ) Z ( : ) ] ’ ;
9

10 % Compute the grids by finding all pairwise distance between all points in
11 % the model and the grids. This could cause error if memory is not large
12 % enough. If it happens, reduce the grid size or write a loop instead.
13 pcmptFea t . map = exp ( − pwSqDist ( Xmodel ,D) / sigmaSq ) ;
14 pcmptFea t . minVal = −2;
15 pcmptFea t . s i z e = l e n g t h ( x ) * [1 1 1 ] ;
16 pcmptFea t . maxSize = pcmptFea t . s i z e ( 1 ) ;
17 pcmptFea t . numStepPerUni t = 1 / g r i d S t e p ;
18

19 % calculate normal vector
20 [ no rma l s ] = f i n d P o i n t N o r m a l s ( Xmodel ’ , 6 , [ 0 0 0 ] ) ;
21 d i rM a t = b sx f un ( @gt , no rma l s *D, sum ( no rma l s . * Xmodel ’ , 2 ) ) ;
22

23 c l e a r D
24

25 % compute grid in front and in the back of normal vectors
26 mapTmp1 = pcmptFea t . map ;
27 mapTmp1 ( d i r Ma t ) = 0 ;% mapTmp1 means the grid is on the front of the model

point
28 mapTmp2 = pcmptFea t . map ;
29 mapTmp2(~ d i r Ma t ) = 0 ;
30 pcmptFea t . map = [ mapTmp1 ; mapTmp2 ] ;
31

32 c l e a r mapTmp1
33 c l e a r mapTmp2
34 % set small values to zero and make the matrix sparse
35 i f s p a r s e M a p T h r e s h o l d > 0
36 spPcmptFeatTmp = pcmptFea t . map ;
37 spPcmptFeatTmp ( spPcmptFeatTmp < s p a r s e M a p T h r e s h o l d ) =

0 ;
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38 % pcmptFeat.map = sparse(spPcmptFeatTmp);
39 pcmptFea t . map = sp ar se ( spPcmptFeatTmp ) ;
40 end
41

42 c l e a r spExpMapTmp
43 end

1 f u n c t i o n [ f e a t X ] = e x t F e a t (X, pcmptFea t )
2 %EXTFEAT extract features from precomputed map
3 sizeMapVec = [ s i z e ( pcmptFea t . map , 2 ) 1 ] ;
4

5 f e a t X = z e r o s ( s i z e ( pcmptFea t . map , 1 ) , l e n g t h (X) ) ;
6

7 % loop over each shape in X
8 f o r i = 1 : l e n g t h (X)
9 tmp = X{ i } ;

10

11 % remove points too far
12 tmp ( : , any ( abs ( tmp ) > 2 , 1 ) ) = [ ] ;
13

14 % compute index of each point in the map
15 tmp = round ( ( tmp− pcmptFea t . minVal ) * pcmptFea t .

numStepPerUni t +1) ;
16 tmp = tmp ( 2 , : ) +( tmp ( 1 , : ) −1) * pcmptFea t . s i z e ( 2 ) +( tmp

( 3 , : ) −1) * pcmptFea t . s i z e ( 2 ) * pcmptFea t . s i z e ( 1 ) ;
17

18 % compute the feature
19 f e a t X ( : , i ) = pcmptFea t . map* accumar ray ( tmp ’ , 1 ,

sizeMapVec , [ ] , [ ] , 1 ) ;
20 end
21

22 % normalise
23 i f l e n g t h (X) > 2
24 f e a t X = bsx fu n ( @rdivide , fea tX , sum ( fea tX , 1 ) ) ;
25 e l s e
26 f e a t X = f e a t X / sum ( f e a t X ) ;
27 end
28 f e a t X (~ i s f i n i t e ( f e a t X ) ) = 0 ;
29

30 end

Calculating density-based feature
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1 f u n c t i o n [ F , Mdl ] = PDFnorm ( modelSmp ,D)
2 Xmodel=modelSmp ’ ;
3 Mdl = c r e a t e n s (D’ , ’Distance’ , ’euclidean’ ) ;
4 IdxNN = k n n s e a r c h ( Mdl , Xmodel ’ , ’K’ , 1 ) ;% for each point in Q, to

find the nearest k points in Mdl;
5 I1 =IdxNN ( : , 1 ) ;
6 I1U= u n iq ue ( I1 ) ;
7 f o r i =1 : l e n g t h ( I1U )
8 [M{ i , 1 } , n ] = f i n d ( I1 ==I1U ( i , 1 ) ) ;
9 MC{ i ,1}= Xmodel ( : ,M{ i , 1 } ( 1 ) ) ’ ;

10 s igma= z e r o s ( 3 ) ;
11 f o r k =1: s i z e (MC{ i , 1 } , 2 )
12 s igma = ( (MC{ i , 1 } ( : , k ) −mean (MC{ i , 1 } , 2 ) ) * (MC{ i

, 1 } ( : , k ) −mean (MC{ i , 1 } , 2 ) ) ’+ sigma ) ;
13 end
14 Mmu{ i ,1}= mean (MC{ i , 1 } , 2 ) ;
15 Sigmamat r ix { i , 1}= sigma / k ;
16 end
17 f o r i =1 : l e n g t h ( Xmodel )
18 a= f i n d ( I1U== I1 ( i , 1 ) ) ;
19 F ( i , 1 ) = exp ( −1*( Xmodel ( : , i ) −Mmu{a , 1 } ) ’* pinv (

S igmamat r ix {a , 1 } ) * ( Xmodel ( : , i ) −Mmu{a , 1 } ) / 2 ) ;
20 end
21 end

1 f u n c t i o n [ f e a t X ] = c o m p u t e F e a t u r e t p d f 0 1 ( model , X, sigmaSq ,
normals , F , Mdl )

2 f o r i =1 : l e n g t h (X) % the X is the cell
3 X{ i }=X{ i } ( 1 : 3 , : ) ;
4 tmp=X{ i } ;
5 [ F1 ] = PDFnorm02 ( tmp , Mdl ) ;
6 c r i t e r i a = exp ( − p w S q D i s t f e a t u r e ( F , F1 ) / sigmaSq ) ;
7 d i rM a t = b sx f un ( @gt , no rma l s *tmp , sum ( no rma l s . * model ’ , 2 )

) ;
8 mapXmodel21 = c r i t e r i a ;
9 mapXmodel21 ( d i rM a t ) =0 ;% scene is in the front of the object

10 mapXmodel22 = c r i t e r i a ;
11 mapXmodel22 (~ d i rM a t ) = 0 ;% scene is in the back of the object
12 mapXmodel21=mapXmodel21 / sum ( mapXmodel21 ) ;
13 mapXmodel22=mapXmodel22 / sum ( mapXmodel22 ) ;
14 f e a t X ( : , i ) = [ mapXmodel21 ; mapXmodel22 ] ;
15 f e a t X (~ i s f i n i t e ( f e a t X ) ) = 0 ;
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16 f o r j =1 : l e n g t h ( f e a t X ( : , i ) )
17 i f f e a t X ( j , i ) <10^( −6)
18 f e a t X ( j , i ) =0 ;
19 end
20 end
21 end
22 end

Calculating weights of features

1 f u n c t i o n [ lameda1 , lameda2 ] = FEATXFXGDO( fea tX , fea tXF )
2 A=cov ( featXF ’ ) ;
3 B=cov ( fea tX ’ ) ;
4 a= t r a c e (A) ;
5 b= t r a c e (B) ;
6 lameda1=a / ( a+b ) ;
7 lameda2=b / ( a+b ) ;
8 end

Estimating transformation

1 f u n c t i o n [Y, Ystep , Xstep ] = inferGDO (D, X, maxI t e r , s t o p T h r e s ,
sigmaSq , normals , F , Mdl )

2 %INFER Infer the transformation
3 %
4 % INPUT
5 % D object contains the precomputed features
6 % X : 3 x n matrix - 3D scene shape
7 % maxIter : 1 x 1 matrix - maximum number of iterations
8 % stopThres : 1 x 1 matrix - stop threshold for terminating update
9 %

10 % OUTPUT
11 % Y : 3 x 4 matrix - output transformation
12 % Ystep : cell of 3 x 4 matrices - transformation in each step
13 % Xstep : cell of 3 x n matrices - transformed scene in each step
14 %
15 Y = z e r o s ( 6 , l e n g t h (X) ) ;
16 Xmodel = D. Xmodel ;
17 i d = c e l l f u n ( ’length’ ,D . Dmap) ;
18 D. Dmap( i d ==0) = [ ] ;
19 n = l e n g t h (D. Dmap) ;
20 Xout = c e l l ( n , 1 ) ;
21 Ystep = c e l l ( n , 1 ) ;
22 Xstep = c e l l ( n , 1 ) ;
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23 Xor i = X;
24

25 f o r i = 1 : l e n g t h (X)
26 X{ i } ( : , any ( abs (X{ i } ) > 3) ) = [ ] ;
27 end
28 f o r i tMap = 1 : n
29 f e a t X = e x t F e a t (X,D. pcmptFea t ) ;
30 f ea tXF = c o m p u t e F e a t u r e t p d f 0 1 ( Xmodel ’ ,X, sigmaSq , normals , F ,

Mdl ) ;
31 [ lameda1 , lameda2 ] = FEATXFXGDO( fea tX , fea tXF ) ;
32 FeatX =[ lameda2 * f e a t X ; lameda1 * fea tXF ] ;
33 u p d a t e = D. Dmap{ i tMap }* FeatX ;
34 Y = Y − u p d a t e ;
35 r o tM a t = paramToTransMat (Y) ;
36 X = t r a n s C e l l ( ro tMat , Xori , 0 ) ;
37

38 % save transformation in each step
39 Ystep { i tMap } = { reshape ( paramToTransMat (Y) , 3 , 4 ) } ;
40

41 % save shape in each step
42 Xout { i tMap } = X;
43

44 % save update
45 u p d a t e L i s t ( : , i tMap ) = u p d a t e ;
46 end
47

48 % continue loop iwith last map f update is still large
49 whi le norm ( upda te , 2 ) > s t o p T h r e s && itMap < m a x I t e r
50 i tMap = itMap + 1 ;
51 f e a t X = e x t F e a t (X,D. pcmptFea t ) ;
52 f ea tXF = c o m p u t e F e a t u r e t p d f 0 1 ( Xmodel ’ ,X, sigmaSq , normals

, F , Mdl ) ;
53 [ lameda1 , lameda2 ] = FEATXFXGDO( fea tX , fea tXF ) ;
54 FeatX =[ lameda2 * f e a t X ; lameda1 * fea tXF ] ;
55 u p d a t e = D. Dmap{end }* FeatX ;
56 Y = Y − u p d a t e ;
57 % transform X
58 r o tM a t = paramToTransMatnew (Y) ;
59 X = t r a n s C e l l n e w ( ro tMat , Xori , 0 ) ;
60

61

62 Ystep { i tMap } = { reshape ( paramToTransMat (Y) , 3 , 4 ) } ;
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63 Xout { i tMap } = X;
64 u p d a t e L i s t ( : , i tMap ) = u p d a t e ;
65 end
66

67 % last step
68 % Yout = rotMat;
69 Yout = { reshape ( paramToTransMat (Y) , 3 , 4 ) } ;
70

71 Xstep = Xout ;
72 % if size(Xmodel,2)>3
73 [Y, Ystep , Xstep ] = i n v e r t I n f e r D O C e l l ( Yout , Ystep , Xmodel ’ ) ;
74 e l s e
75 [Y, Ystep , Xstep ] = i n v e r t I n f e r D O C e l l ( Yout , Ystep , Xmodel ) ;
76 end
77 end
78

79 f u n c t i o n [Y, Ystep , Xstep ] = i n v e r t I n f e r D O C e l l (Y, Ystep ,X)
80 %INVERTINFERDOCELL Invert the result of DO to get transformation that
81 %transforms model to scene
82 %
83 % Input
84 % Y : 3 x 4 matrix - transformation matrix that is output from INFER, i.e.,
85 % transform scene to 3D model
86 % Ystep : cell of 3 x 4 matrices - transformation matrix that is output from INFER, i.e.,
87 % transform scene to 3D model in each step
88 % X : 3 x n matrix - 3D model of object
89 %
90 % Output
91 % same as input
92 i f ~ e x i s t ( ’Ystep’ , ’var’ )
93 Ystep = [ ] ;
94 end
95

96 i f ~ e x i s t ( ’X’ , ’var’ )
97 X = [ ] ;
98 end
99

100 % invert Y
101 f o r i = 1 : l e n g t h (Y)
102 Y{ i } = [Y{ i } ( 1 : 3 , 1 : 3 ) ’ −Y{ i } ( 1 : 3 , 1 : 3 ) ’*Y{ i } ( 1 : 3 , 4 ) ] ;
103 end
104
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105 Xstep = [ ] ;
106

107 % invert Ystep
108 i f ~ i sempty ( Ys tep )
109 f o r i tMap = 1 : l e n g t h ( Ys tep )
110 f o r i = 1 : l e n g t h ( Ys tep { i tMap } )
111 Ystep { i tMap }{ i } = [ Ystep { i tMap }{ i } ( 1 : 3 , 1 : 3 ) ’ −

Ystep { i tMap }{ i } ( 1 : 3 , 1 : 3 ) ’* Ystep { i tMap }{ i
} ( 1 : 3 , 4 ) ] ;

112 end
113 end
114

115 % invert X back
116 i f ~ i sempty (X)
117 Xstep = c e l l ( l e n g t h ( Ys tep ) , 1 ) ;
118

119 f o r i tMap = 1 : l e n g t h ( Ys tep )
120

121 Xstep { i tMap } = c e l l ( l e n g t h ( Ys tep { i tMap } ) , 1 ) ;
122

123 f o r i = 1 : l e n g t h ( Ys tep { i tMap } )
124 Xstep { i tMap }{ i } = X;
125 Xstep { i tMap }{ i } ( : , 4 ) = 1 ;
126 Xstep { i tMap }{ i } = Ystep { i tMap }{ i }* Xstep {

i tMap }{ i } ’ ;
127 end
128

129 end
130

131 end
132

133

134 end
135 end
136

137 %

B.2 Rewighted Discriminative Optimisation Method

Learning regressors
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1 f u n c t i o n [DM, error ] = learnRDO ( Xmodel , X, Y, nMap , pcmptFeat ,
no rma l s )

2

3 f p r i n t f ( ’Training DO with %d maps\n’ , nMap )
4 f p r i n t f ( ’#data: %d \n’ , l e n g t h (X) )
5

6 D1 = c e l l ( 1 , nMap ) ;
7 error = i n f ( nMap , 1 ) ;
8 Xor i = X;
9 Yor i = Y;

10 Ygoal = t ransMatToParam ( Yor i ) ;
11 Y i n i t = z e r o s ( 6 , l e n g t h (X) ) ;
12 Y = Y i n i t ;
13 R= c e l l ( nMap , 1 ) ;
14 f p r i n t f ( ’It: %d, err: %f\n’ , 0 , norm ( Ygoal −Y, ’fro’ ) . ^ 2 /

l e n g t h (X) )
15 Ykm=0.1* eye ( 6 ) ;
16 ykm= z e r o s ( 6 ) ;
17 lameda =1e −4;
18 f o r i tMap = 1 : nMap
19 f o r k =1: l e n g t h (X)
20 YY1=Ygoal ( : , k ) ;% groundtruth
21 YY2=Y ( : , k ) ; % estimated
22 ro tMat22 = paramToTransMatnew (YY2) ;
23 XX2= t r a n s C e l l n e w ( rotMat22 , Xmodel , 0 ) ;
24 f o r j =1 :6
25 ykm ( : , j ) =YY1 ( : , 1 ) −Ykm ( : , j ) ;
26 rotMatkm = paramToTransMatnew ( ykm ( : , j ) ) ;
27 Xkm = t r a n s C e l l n e w ( rotMatkm , Xmodel , 0 ) ;
28 MSEkm2( k , j ) =immseNAN (XX2’ ,Xkm’ ) ;
29 end
30 end
31 N = n o r m a l i z e (MSEkm2, 2 ) ;
32 f o r i =1 :6
33 [mu( i , 1 ) , s igma ( i , 1 ) ]= n o r m f i t (N ( : , i ) ) ;
34 end
35 Mu=min (mu) ;
36 Index = f i n d (mu==Mu) ;
37 f o r p =1:6
38 Yy ( p , 1 ) =normpdf (mu( p , 1 ) ,mu( Index , 1 ) , s igma ( Index

, 1 ) ) ;
39 end
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40 N2ory = 0 . 5 * ( ones ( 6 , 1 ) −Yy ) . ^ i tMap ;
41 MSEMSE=exp ( N2ory ) ;
42 A=pinv ( diag (MSEMSE. ^ 2 ) ) * lameda * l e n g t h (X) ;
43 f e a t X = e x t F e a t (X, pcmptFea t ) ;
44 B= f e a t X * fea tX ’ ;
45 f e a t Y = Y − Ygoal ;
46 C= f e a t Y * fea tX ’ ;
47 D1{ itMap } = s y l v e s t e r (A, B , C) ;
48 Y = Y − D1{ itMap }* f e a t X ;
49 r o tM a t = paramToTransMatnew (Y) ;
50 R{ itMap ,1}= ro tM a t ;
51 X = t r a n s C e l l n e w ( ro tMat , Xori , 0 ) ;
52 error ( i tMap ) = norm ( Ygoal −Y, ’fro’ ) ^ 2 / l e n g t h (X) ;
53 end
54

55 DM = s t r u c t ( ) ;
56 DM. Dmap = D1 ;
57 DM. r u n O r d e r = 1 : l e n g t h ( D1 ) ;
58 DM. t r a i n E r r = error ;
59 DM. Xmodel = Xmodel ;
60 DM. pcmptFea t = pcmptFea t ;
61 DM. norma l s = norma l s ;
62 end

Estimating transformation

1 f u n c t i o n [Y, Ystep , Xstep , error , Ygoal ] = i n f e r J X (D, X, Yori ,
maxI t e r , s t o p T h r e s )

2 %INFER Infer the transformation
3 %
4 % INPUT
5 % D object contains the precomputed features
6 % X : 3 x n matrix - 3D scene shape
7 % maxIter : 1 x 1 matrix - maximum number of iterations
8 % stopThres : 1 x 1 matrix - stop threshold for terminating update
9 %

10 % OUTPUT
11 % Y : 3 x 4 matrix - output transformation
12 % Ystep : cell of 3 x 4 matrices - transformation in each step
13 % Xstep : cell of 3 x n matrices - transformed scene in each step
14 %
15 Y = z e r o s ( 6 , l e n g t h (X) ) ;
16 Xmodel = D. Xmodel ;
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17 n = l e n g t h (D. Dmap) ;
18 Xout = c e l l ( n , 1 ) ;
19 Ystep = c e l l ( n , 1 ) ;
20 Xor i = X;
21 Ygoal = t ransMatToParam ( Yor i ) ;
22 % for i = 1:length(X)
23 % Xi(:,any(abs(Xi) > 3)) = [];
24 % end
25

26 f o r i tMap = 1 : n
27

28 % compute ture
29 f e a t X = e x t F e a t (X,D. pcmptFea t ) ;
30

31 % update
32 u p d a t e = D. Dmap{ i tMap }* f e a t X ;
33 Y = Y − u p d a t e ;
34

35

36 % convert to tansformation and transform X
37 r o tM a t = paramToTransMat (Y) ;
38 X = t r a n s C e l l ( ro tMat , Xori , 0 ) ;
39

40 % save transformation in each step
41 Ystep { i tMap } = { reshape ( paramToTransMat (Y) , 3 , 4 ) } ;
42

43 % save shape in each step
44 Xout { i tMap } = X;
45

46 % end
47

48 % continue loop iwith last map f update is still large
49 whi le norm ( u p d a t e ) > s t o p T h r e s && itMap < m a x I t e r
50 i tMap = itMap + 1 ;
51

52 % extract feature
53 f e a t X = e x t F e a t (X,D. pcmptFea t ) ;
54

55 % update
56 u p d a t e = D. Dmap{end }* f e a t X ;
57 Y = Y − u p d a t e ;
58
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59 % transform X
60 r o tM a t = paramToTransMat (Y) ;
61 X = t r a n s C e l l ( ro tMat , Xori , 0 ) ;
62

63 % save param
64 Ystep { i tMap } = { reshape ( paramToTransMat (Y) , 3 , 4 ) } ;
65 Xout { i tMap } = X;
66 % updateList(:,itMap) = update;
67 end
68 Ystep1 = Ystep ;
69 % last step
70 Yout = { reshape ( paramToTransMat (Y) , 3 , 4 ) } ;
71 error = norm ( Ygoal −Y, ’fro’ ) ^ 2 / l e n g t h (X) ;
72 % invert transformation
73 [Y, Ystep , Xstep ] = i n v e r t I n f e r D O C e l l ( Yout , Ystep , Xmodel ) ;
74 % [YCHANG,Ystep1,XstepCHANG] = invertInferDOCell(Yout,Ystep1,modelFull);
75 end
76

77 f u n c t i o n [Y, Ystep , Xstep ] = i n v e r t I n f e r D O C e l l (Y, Ystep ,X)
78 %INVERTINFERDOCELL Invert the result of DO to get transformation that
79 %transforms model to scene
80 %
81 % Input
82 % Y : 3 x 4 matrix - transformation matrix that is output from INFER, i.e.,
83 % transform scene to 3D model
84 % Ystep : cell of 3 x 4 matrices - transformation matrix that is output from INFER, i.e.,
85 % transform scene to 3D model in each step
86 % X : 3 x n matrix - 3D model of object
87 %
88 % Output
89 % same as input
90 i f ~ e x i s t ( ’Ystep’ , ’var’ )
91 Ystep = [ ] ;
92 end
93

94 i f ~ e x i s t ( ’X’ , ’var’ )
95 X = [ ] ;
96 end
97

98 % invert Y
99 f o r i = 1 : l e n g t h (Y)

100 Y{ i } = [Y{ i } ( 1 : 3 , 1 : 3 ) ’ −Y{ i } ( 1 : 3 , 1 : 3 ) ’*Y{ i } ( 1 : 3 , 4 ) ] ;
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101 end
102

103 Xstep = [ ] ;
104

105 % invert Ystep
106 i f ~ i sempty ( Ys tep )
107 f o r i tMap = 1 : l e n g t h ( Ys tep )
108 f o r i = 1 : l e n g t h ( Ys tep { i tMap } )
109 Ystep { i tMap }{ i } = [ Ystep { i tMap }{ i } ( 1 : 3 , 1 : 3 ) ’ −

Ystep { i tMap }{ i } ( 1 : 3 , 1 : 3 ) ’* Ystep { i tMap }{ i
} ( 1 : 3 , 4 ) ] ;

110 end
111 end
112

113 % invert X back
114 i f ~ i sempty (X)
115 Xstep = c e l l ( l e n g t h ( Ys tep ) , 1 ) ;
116

117 f o r i tMap = 1 : l e n g t h ( Ys tep )
118

119 Xstep { i tMap } = c e l l ( l e n g t h ( Ys tep { i tMap } ) , 1 ) ;
120

121 f o r i = 1 : l e n g t h ( Ys tep { i tMap } )
122 Xstep { i tMap }{ i } = X;
123 Xstep { i tMap }{ i } ( 4 , : ) = 1 ;
124 Xstep { i tMap }{ i } = Ystep { i tMap }{ i }* Xstep {

i tMap }{ i } ;
125 end
126

127 end
128

129 end
130

131

132 end
133 end

B.3 SGRTmreg

Extracting key points
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1 [ G1 , SH1 ,UW1, T B i n d e x t r a i n , B O t t r a i n , DT1] = Graphdraw02 ( d ou b l e
( modelSmp ) ) ;

2 i n d e x e x 3 t = f i n d ( (UW1== T B i n d e x t r a i n ( end ) ) | ( UW1== T B i n d e x t r a i n
( end −1) ) ) ;

3 i n d e x t r a i n = un iqu e ( [ B O t t r a i n ; i n d e x e x 3 t ] ) ;
4 M o d e l t E x t r a c t e d O = modelSmp ( : , i n d e x t r a i n ) ;

1 f u n c t i o n [ G1 , SH , DSH, T B i n d e x t e s t , i ndexboundary , DT, model tP1 ]
= Graphdraw02 ( model tP )

2 model tP2 = u n iq ue ( modeltP ’ , ’rows’ ) ;
3 model tP1 =modeltP2 ’ ;
4 DT = d e l a u n a y T r i a n g u l a t i o n ( model tP1 ( 1 : 2 , : ) ’ ) ;
5 D t m a t r i x = z e r o s ( l e n g t h ( model tP ) , l e n g t h ( model tP ) ) ;
6 DTC=DT . C o n n e c t i v i t y L i s t ;
7 f o r i =1 : l e n g t h (DTC)
8 D t m a t r i x (DTC( i , 1 ) ,DTC( i , 2 ) ) = D t m a t r i x (DTC( i , 1 ) ,DTC( i , 2 ) )

+1 ;
9 D t m a t r i x (DTC( i , 1 ) ,DTC( i , 3 ) ) = D t m a t r i x (DTC( i , 1 ) ,DTC( i , 3 ) )

+1 ;
10 D t m a t r i x (DTC( i , 2 ) ,DTC( i , 3 ) ) = D t m a t r i x (DTC( i , 2 ) ,DTC( i , 3 ) )

+1 ;
11 D t m a t r i x (DTC( i , 2 ) ,DTC( i , 1 ) ) = D t m a t r i x (DTC( i , 2 ) ,DTC( i , 1 ) )

+1 ;
12 D t m a t r i x (DTC( i , 3 ) ,DTC( i , 1 ) ) = D t m a t r i x (DTC( i , 3 ) ,DTC( i , 1 ) )

+1 ;
13 D t m a t r i x (DTC( i , 3 ) ,DTC( i , 2 ) ) = D t m a t r i x (DTC( i , 3 ) ,DTC( i , 2 ) )

+1 ;
14 end
15 t f = i s s y m m e t r i c ( D t m a t r i x ) ;
16 G1= graph ( D t m a t r i x ) ;
17 UW= d e g r e e ( G1 ) ;
18 TB= s o r t r o w s ( t a b u l a t e (UW) , 2 ) ;
19 a1=DT . C o n n e c t i v i t y L i s t ;
20 SH= s u b g r a p h ( G1 , un i qu e ( a1 ) ) ;
21 DSH= d e g r e e (SH) ;
22 TBDSH= s o r t r o w s ( t a b u l a t e (DSH) , 2 ) ;
23 i f l e n g t h (TBDSH) <10
24 a=10− l e n g t h (TBDSH) ;
25 T B i n d e x t e s t =[ z e r o s ( a , 1 ) ;TBDSH ( : , 1 ) ] ;
26 e l s e
27 T B i n d e x t e s t =TBDSH( end −9: end , 1 ) ;
28 end



B.3 SGRTmreg 152

29 [ b i d s t X 2 t , EtX2t , NetX2t ] = f i n d t d e l a u n a y t b o u n d a r y 0 3 f i g 1 (
do ub l e ( modeltP1 ’ ) , 0 . 4 ) ;

30 i n d e x b o u n d a r y = [ ] ;
31 f o r i =1 : l e n g t h ( b i d s t X 2 t )
32 i n d e x b o u n d a r y =[ b i d s t X 2 t {1 , i } ; i n d e x b o u n d a r y ] ;
33 end
34 c l o s e ;
35 end

Searching scheme

1 c l c ; c l e a r ;
2 load ( ’E:\BaiduNetdiskDownload\Dataset\

MOdelNet40tplytdataset\ModelNet40tplytdownsamplingt1024\
car\matlab.mat’ )

3 % the key points in a Car model
4 p t c l o u 0 1 = m o d e l t P t C a r { 1 , 2 } ;
5 f o r k =1: l e n g t h ( m o d e l t P t C a r ) −1
6 i f k==1
7 p t C l o u d 0 1 t S c r e e n 0 1 {k ,1}= m o d e l t P t C a r {1 , k } ;
8 e l s e
9 p t C l o u d 0 1 t S c r e e n 0 1 {k ,1}= m o d e l t P t C a r {1 , k +1} ;

10 end
11 end
12 % similarity on degree list
13 [C , B] = Screen01 ( TBindexCar ) ;
14 cs = C{ 2 , 1 } ;
15 f o r j =1 : l e n g t h ( c s )
16 p t C l o u d 0 2 t S c r e e n 0 2 { j ,1}= m o d e l t P t C a r {1 , j } ;% Candidates
17 end
18 % DPGMM
19 f o r i =1 : l e n g t h ( p t C l o u d 0 2 t S c r e e n 0 2 )
20 p tCloud03 { i , 1 } = [ p t C l o u d 0 2 t S c r e e n 0 2 { i , 1 } , p t c l o u 0 1 ] ’ ;
21 [ n , d ] = s i z e ( p tCloud03 { i , 1 } ) ;
22 s s = 0 . 1 ;
23 sm = 3 0 ;
24 % if niw1=niw2=niw,partition of the final transformed model groups one cluster
25 % if niw1 =niw2 =niw, partition groups two clusters
26 [ niw1 ] = G a u s s t i n i t i t p 0 1 ( d , p t C l o u d 0 2 t S c r e e n 0 2 { i , 1 } ’ ,

sm , s s ) ; % the initial guass information for the fixed
model

27 [ niw2 ] = G a u s s t i n i t i t p 0 1 ( d , p t c l o u 0 1 ’ , sm , s s ) ; % the initial
guass information for the moving model

28 [ niw ] = Gauss01 ( d , ss , sm ) ; % the intial guass for unknown cluster
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29 [dpmm, d p mm t po s t e r i o r , dpmmttime ] = DPMMtgauss01 (
p tCloud03 { i , 1 } , niw1 , niw2 , niw , 5 0 ) ;

30 dpmm1 = dpmm . z ( 1 : 1 0 2 4 ) ;
31 dpmm2 = dpmm . z ( 1 0 2 5 : end ) ;
32 c 1 t t r a i n i n g = l e n g t h ( f i n d (dpmm1==1) ) ;
33 c 2 t t r a i n i n g = 1024− c 1 t t r a i n i n g ;
34 c 1 t r e f e r e n c e = l e n g t h ( f i n d (dpmm2==1) ) ;
35 c 2 t r e f e r e n c e = 1024− c 1 t r e f e r e n c e ;
36 R t r a i n i n g ( i , 1 ) = c 1 t t r a i n i n g / 1 0 2 4 ;
37 R t r a i n i n g ( i , 2 ) = c 2 t t r a i n i n g / 1 0 2 4 ;
38 R r e f e r e n c e ( 1 , 1 ) = c 1 t r e f e r e n c e / 1 0 2 4 ;
39 R r e f e r e n c e ( 1 , 2 ) = c 2 t r e f e r e n c e / 1 0 2 4 ;
40 end
41 R t r a i n i n g 0 1 = R t r a i n i n g ( : , 1 ) − R t r a i n i n g ( : , 2 ) ;
42 R r e f e r e n c e 0 1 = R r e f e r e n c e ( 1 , 1 ) − R r e f e r e n c e ( 1 , 2 ) ;
43 i n d e x s c r e e n 0 2 = f i n d ( R t r a i n i n g 0 1 * R r e f e r e n c e 0 1 >0) ;
44 f o r j =1 : l e n g t h ( i n d e x s c r e e n 0 2 )
45 p t C l o u d 0 3 t S c r e e n 0 3 { j , 1 } = p t C l o u d 0 2 t S c r e e n 0 2 {

i n d e x s c r e e n 0 2 ( j , 1 ) , 1 } ;%
Candidates

46 [ b i d s t X 2 t , EtX2t , NetX2t ] =
f i n d t d e l a u n a y t b o u n d a r y 0 3 f i g 1 ( do ub l e (
p t C l o u d 0 3 t S c r e e n 0 3 { j , 1 } ’ ) , 0 . 1 ) ;

47 G1{1 , j }= graph ( NetX2t+NetX2t ’ ) ;
48 Score1 ( : , j ) = c e n t r a l i t y ( G1{1 , j } , ’eigenvector’ ) ;
49 end
50 % similarity on closeness
51 [ b i d s t X 2 2 t , EtX22t , NetX22t ] = f i n d t d e l a u n a y t b o u n d a r y 0 3 f i g 1

( do ub l e ( p t c l o u 0 1 ) ’ , 0 . 1 ) ;
52 G2= graph ( NetX22t+NetX22t ’ ) ;
53 Score2 = c e n t r a l i t y ( G2 , ’eigenvector’ ) ;
54 Sm2=mean ( Score2 ) ;
55 Sm1=mean ( Score1 ) ;
56 i n d e x s c r e e n 0 3 = f i n d (Sm1==Sm2) ;
57 f o r j =1 : l e n g t h ( i n d e x s c r e e n 0 3 )
58 p t C l o u d 0 4 t S c r e e n 0 4 { j ,1}= p t C l o u d 0 3 t S c r e e n 0 3 {

i n d e x s c r e e n 0 3 ( j ) , 1 } ;%
Candidates

59 end
60 % similarity on normal vector
61 PTcloud01= p o i n t C l o u d ( p t c l o u 0 1 ’ ) ;
62 normal01 = pcnorma l s ( PTcloud01 ) ;
63 f o r k =1: l e n g t h ( p t C l o u d 0 4 t S c r e e n 0 4 )
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64 PTc loud02 t1 {k ,1}= p o i n t C l o u d ( p t C l o u d 0 4 t S c r e e n 0 4 {k , 1 } ’ ) ;
65 n o r m a l 0 2 t 1 {k ,1}= pcno rma l s ( PTc loud02 t1 {k , 1 } ) ;
66 end
67 NormalVec to r s = [ n o r m a l 0 2 t 1 { 1 , 1 } ; n o r m a l 0 2 t 1 { 2 , 1 } ] ;
68 NE= z e r o s ( l e n g t h ( NormalVec to r s ) , l e n g t h ( normal01 ) ) ;
69 f o r i =1 : s i z e (NE, 1 )
70 f o r j =1 : s i z e (NE, 2 )
71 NE( i , j ) = s q r t ( sum ( ( NormalVec to rs ( i , 1 ) −normal01 ( j , 1 )

) . ^ 2 ) ) ;
72 end
73 end
74 f o r k =1: s i z e (NE, 2 )
75 a= f i n d (NE ( : , k ) ==min (NE ( : , k ) ) ) ;
76 i n d e x f i n a l ( k , 1 ) = a ( 1 ) ;
77 end
78 i n d e x f 0 1 = s o r t ( i n d e x f i n a l ) ;
79 a1= l e n g t h ( f i n d ( i ndex f01 <=1024) ) ;
80 a2= l e n g t h ( f i n d ( i ndex f01 >1024) ) ;
81 i f a1 >a2
82 s e l e c t e d t p t c l o u d = p t C l o u d 0 4 t S c r e e n 0 4 { 1 , 1 } ;
83 e l s e
84 s e l e c t e d t p t c l o u d = p t C l o u d 0 4 t S c r e e n 0 4 { 2 , 1 } ;
85 end
86

87 f i g u r e ;
88 s u b p l o t ( 1 , 2 , 1 )
89 pcshow ( p t c l o u 0 1 ’ )
90 s u b p l o t ( 1 , 2 , 2 )
91 pcshow ( s e l e c t e d t p t c l o u d ’ )

1 f u n c t i o n [C , B , C o r r e c t i o n t m a t r i x ] = Screen01 ( T B i n d e x a i r p l a n e
)

2 TBindex1= T B i n d e x a i r p l a n e ;
3 TBindex=TBindex1 ( 4 : end , : ) ;
4 C o r r e c t i o n t m a t r i x = z e r o s ( l e n g t h ( TBindex ) , l e n g t h ( TBindex )

) ;
5 f o r i =1 : l e n g t h ( TBindex )
6 f o r j =1 : l e n g t h ( TBindex )
7 C o r r e c t i o n t m a t r i x ( i , j ) =1− p d i s t 2 ( TBindex ( : , i ) ’ ,

TBindex ( : , j ) ’ , ’hamming’ ) ;%
similarity

8 end
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9 end
10 B= C o r r e c t i o n t m a t r i x ;
11 B( b o o l e a n ( eye ( l e n g t h ( C o r r e c t i o n t m a t r i x ) ) ) ) = −100;
12 C= c e l l ( l e n g t h (B) , 1 ) ;
13 f o r i =1 : l e n g t h (C)
14 C{ i ,1}= f i n d (B( i , : ) >0 .8 ) ;
15 end
16 end

1 f u n c t i o n [ niw1 ] = G a u s s t i n i t i t p 0 1 ( d , X1 , sm , s s )
2 niw1 . d = d ; % the dimensions of data
3 niw1 . mu0 = ( mean ( X1 , 1 ) ) ’ ; %prior mean
4 niw1 . k0 = 1 ; %how strongly we believe in m0

prior
5 niw1 . S0 = diag ( diag ( cov ( X1 ) ) ) ;
6 niw1 . nu0 = d +1; %how strongly we believe in S0 prior (dof)

nu0>D-1
7 niw1 . s s = ( sm*sm ) / ( s s * s s ) ; %cluster spread
8 niw1 . r r = 1 / niw1 . s s ; %1/cluster spread
9 niw1 . SS = niw1 . nu0 * niw1 . S0 ; %nu0 * S0

10 end

1 f u n c t i o n [ niw ] = Gauss01 ( d , ss , sm )
2 % Dtermine the parameters of initial guass
3 niw . d = d ; % the dimensions of data
4 niw . mu0 = z e r o s ( d , 1 ) ; %prior mean
5 niw . k0 = 1 ; %how strongly we believe in m0 prior
6 niw . S0 = 2* s s * s s * eye ( d ) ; %prior mean for Sigma
7 niw . nu0 = d +1; %how strongly we believe in S0 prior (dof) nu0>D-1
8 niw . s s = ( sm*sm ) / ( s s * s s ) ; %cluster spread
9 niw . r r = 1 / niw . s s ; %1/cluster spread

10 niw . SS = niw . nu0 *niw . S0 ; %nu0 * S0
11 end

1 f u n c t i o n [dpmm, d p mm t po s t e r i o r , dpmmttime ] = DPMMtgauss01 (X
, niw1 , niw2 , niw , numgibbs )

2 %
3 %clear all; close all;
4 rng ( ’default’ ) ;
5 o p t i o n s . g e n e r a t e p l o t s = 1 ;
6

7 %
8 [ n , d ] = s i z e (X) ;
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9

10 t r ueK =4; %true number of clusters
11 t r u e Z = c e i l ( t rueK * ( 1 : n ) / n ) ; %true labels
12

13 K = 2 ; %init number of clusters
14 t r u e K f a k e =K;
15 a l p h a = 0 . 0 1 ; %concentration parameter
16 z= c e i l ( t r u e K f a k e * ( 1 : n ) / n ) ; %true labels
17

18 %init dpmm
19 ga us s1 = g a u s s i n i t ( niw1 ) ; %init gauss struct
20 ga us s2 = g a u s s i n i t ( niw2 ) ; %init gauss struct
21 g a u s s = g a u s s i n i t ( niw ) ; %init gauss struct
22 Gauss= c e l l ( 3 , 1 ) ;
23 Gauss {1 ,1}= ga us s1 ;
24 Gauss {2 ,1}= ga us s2 ;
25 Gauss {3 ,1}= g a u s s ;
26 [dpmm] = dpmmini t01 (K, a lpha , Gauss , X, z ) ;
27 recordK = z e r o s ( numgibbs , 1 ) ;
28 dpmmttime = z e r o s ( numgibbs , 1 ) ;
29 Ns = [1 2 3 10 50 100 150 numgibbs ] ; c n t = 1 ;
30

31 f o r i t e r =1 : numgibbs
32

33 recordK ( i t e r ) = dpmm .K;
34 i f ( i t e r == Ns ( c n t ) && o p t i o n s . g e n e r a t e p l o t s == 1)
35 c n t = c n t + 1 ;
36 end
37 f p r i n t f ( ’gibbs iter: %d\n’ , i t e r ) ;
38 %if (iter == numgibbs)
39 numK = dpmm .K+1;
40 d p m m t p o s t e r i o r = z e r o s ( n , numK) ;
41 end
42

43 t i c ;
44 f o r i i = 1 : n
45 k = dpmm . z ( i i ) ;
46 %remove xi statistics from component zi
47 dpmm . nk ( k ) = dpmm . nk ( k ) − 1 ;
48 dpmm . gm{k} = d e l i t e m (dpmm . gm{k } , dpmm .X( i i , : ) ) ;
49

50 i f (dpmm . nk ( k ) == 0)
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51 %delete empty component
52 dpmm . gm( k ) = [ ] ;
53 dpmm .K = dpmm .K − 1 ;
54 dpmm . nk ( k ) = [ ] ;
55 i d x = f i n d (dpmm . z>k ) ;
56 dpmm . z ( i d x ) = dpmm . z ( i d x ) − 1 ; %re-label component
57 end
58 l o g p z i = l o g ( [ dpmm . nk ; dpmm . a l p h a ] ) ;
59 f o r kk =1:dpmm .K+1
60 l o g p z i ( kk ) = l o g p z i ( kk ) + l o g p r e d i c t i v e (dpmm . gm{

kk } , dpmm .X( i i , : ) ) ;
61 end
62 p z i = exp ( l o g p z i − max ( l o g p z i ) ) ; %numerical stability
63 p z i = p z i / sum ( p z i ) ;
64 i f ( i t e r == numgibbs ) , d p m m t p o s t e r i o r ( i i , 1 : numK) =

p z i ( 1 : numK) ; end
65

66 u = rand ;
67 k = f i n d ( u < cumsum ( p z i ) , 1 , ’first’ ) ;
68

69 i f ( k==dpmm .K+1)
70 %create a new cluster
71 dpmm . gm{k+1} = dpmm . gm{k } ; %warm init
72 dpmm .K = dpmm .K + 1 ;
73 dpmm . nk= [dpmm . nk ; 0 ] ;
74 end
75 dpmm . z ( i i ) = k ;
76 dpmm . nk ( k ) = dpmm . nk ( k ) + 1 ;
77 dpmm . gm{k} = add i t em (dpmm . gm{k } , dpmm .X( i i , : ) ) ;
78

79 end
80 dpmmttime ( i t e r ) = t o c ;
81 end
82

83 SAVEtPATH = ’./’ ;
84 save ( [ SAVEtPATH , ’dpmm.mat’ ] ) ;
85

86 %if (options.generateplots)
87 f i g u r e ; p l o t ( recordK )
88 end
89

90 end
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91

92 f u n c t i o n [dpmm] = dpmmini t (K, a lpha , gauss , X, z )
93

94 dpmm .K = K;
95 dpmm .N = s i z e (X, 1 ) ;
96 dpmm . a l p h a = a l p h a ;
97 dpmm . gm = c e l l ( 1 ,K+1) ; %cell of structs!
98 dpmm .X = X;
99 dpmm . z = z ;

100 dpmm . nk = z e r o s (K, 1 ) ;
101

102 %init mixture components
103 f o r kk = 1 :K+1
104 dpmm . gm{ kk } = g a u s s ;
105 end
106

107 %add data items to mixture components
108 f o r i = 1 :dpmm .N
109 k = z ( i ) ;
110 dpmm . gm{k} = add i t em (dpmm . gm{k } ,X( i , : ) ) ;
111 dpmm . nk ( k ) = dpmm . nk ( k ) + 1 ;
112 end
113

114 end
115

116 f u n c t i o n [ g a u s s ] = add i t em ( gauss , x i )
117

118 x i = x i ( : ) ;
119 g a u s s . n = g a u s s . n + 1 ;
120 g a u s s . r r = g a u s s . r r + 1 ;
121 g a u s s . nu0 = g a u s s . nu0 + 1 ;
122 g a u s s . Sigma = c h o l u p d a t e ( g a u s s . Sigma , x i ) ;
123 g a u s s . mu = g a u s s . mu + x i ;
124

125 end
126

127 f u n c t i o n [ g a u s s ] = d e l i t e m ( gauss , x i )
128

129 x i = x i ( : ) ;
130 g a u s s . n = g a u s s . n − 1 ;
131 g a u s s . r r = g a u s s . r r − 1 ;
132 g a u s s . nu0 = g a u s s . nu0 − 1 ;
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133 g a u s s . Sigma = c h o l u p d a t e ( g a u s s . Sigma , xi , ’-’ ) ;
134 g a u s s . mu = g a u s s . mu − x i ;
135

136 end
137

138 f u n c t i o n [ g a u s s ] = g a u s s i n i t ( niw )
139 %create a gaussian struct with no data items
140

141 g a u s s . d = niw . d ;
142 g a u s s . n = 0 ; % init number of items.
143 g a u s s . r r = niw . r r ;
144 g a u s s . nu0 = niw . nu0 ;
145 g a u s s . Sigma = cho l ( niw . SS + niw . r r *niw . mu0*niw . mu0 ’ ) ; %

Cholesky factorization
146 g a u s s . mu = niw . r r *niw . mu0 ;
147 g a u s s . Z0 = ZZ ( niw . d , g a u s s . n , g a u s s . r r , g a u s s . nu0 , g a u s s . Sigma ,

g a u s s . mu) ;
148

149 end
150

151 f u n c t i o n l l = l o g p r e d i c t i v e ( gauss , x i )
152 x i = x i ( : ) ;
153 l l = ZZ ( g a u s s . d , g a u s s . n +1 , g a u s s . r r +1 , g a u s s . nu0 +1 ,

c h o l u p d a t e ( g a u s s . Sigma , x i ) , g a u s s . mu+ x i ) . . .
154 − ZZ ( g a u s s . d , g a u s s . n , g a u s s . r r , g a u s s . nu0 ,

g a u s s . Sigma , g a u s s . mu) ;
155 end
156

157 f u n c t i o n zz = ZZ ( dd , nn , r r , vv , CC,XX)
158

159 zz = − nn*dd / 2 * l o g ( pi ) . . .
160 − dd / 2 * l o g ( r r ) . . .
161 − vv*sum ( l o g ( diag ( c h o l u p d a t e (CC,XX/ s q r t ( r r ) , ’-’ ) ) ) )

. . .
162 + sum ( gammaln ( ( vv − ( 0 : dd −1) ) / 2 ) ) ;
163

164 end
165

166 f u n c t i o n y = l o g d e t (A)
167 % Compute log(det(A)) where A is positive-definite
168 % This is faster and more stable than using log(det(A)).
169 t r y
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170 U = cho l (A) ;
171 y = 2*sum ( l o g ( diag (U) ) ) ;
172 c a t c h
173 y = 0 ;
174 warn ing ( ’logdet:posdef’ , ’Matrix is not positive

definite’ ) ;
175 end
176

177 end
178

179 f u n c t i o n [ p i p d f ]=GEM(K, a l p h a )
180 %stick-breaking construction
181 beta = z e r o s (K, 1 ) ;
182 p i p d f = z e r o s (K, 1 ) ;
183

184 f o r k =1:K
185 beta ( k ) = b e t a r n d ( 1 , a l p h a ) ;
186 p i p d f ( k ) = beta ( k ) *prod (1 − beta ) ;
187 end
188

189 end
190

191 f u n c t i o n [ ] = dpmmplot (dpmm)
192

193 cmap = hsv (dpmm .K) ;
194

195 f o r kk = 1 :dpmm .K
196 [mu sigma ] = r a n d s a m p l e (dpmm . gm{ kk } ) ;
197 p l o t e l l i p s e 0 1 (mu , sigma , ’color’ , cmap ( kk , : ) , ’linewidth’ , 2 ) ;
198 hold on
199 i i = f i n d (dpmm . z==kk ) ;
200 d= l e n g t h (mu) ;
201 i f ( d > 2)
202 [ x c o e f f , x s c o r e ] = pca (dpmm .X) ;
203 xpca = x s c o r e ( : , 1 : 3 ) ;
204 xx = xpca ( i i , : ) ;
205 e l s e
206 xx = dpmm .X( i i , : ) ;
207 end
208 end
209

210 end
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211

212 f u n c t i o n e l = p l o t e l l i p s e ( xx , var , v a r a r g i n )
213 % plot ellipse with centre xx and shape given by positive definite matrix var
214 [ v , d ] = e i g ( v a r ) ;
215 d = s q r t ( d ) ;
216 t h e t a = ( 0 : . 0 5 : 1 ) *2* pi ;
217 xy = repmat ( xx , 1 , l e n g t h ( t h e t a ) ) +d ( 1 , 1 ) *v ( : , 1 ) * s i n ( t h e t a ) +d

( 2 , 2 ) *v ( : , 2 ) * cos ( t h e t a ) ;
218 dim = s i z e ( v , 1 ) ;
219 i f ( dim <= 3)
220 e l = p l o t 3 ( xy ( 1 , : ) , xy ( 2 , : ) , xy ( 3 , : ) , v a r a r g i n { : } ) ;
221 end
222 end
223

224 f u n c t i o n [mu , s igma ] = r a n d s a m p l e ( g a u s s )
225 % [mu, sigma] = rand(qq)
226 % generates random mean mu and covariance sigma from the posterior of
227 % component parameters given data items in component.
228

229 CC = c h o l u p d a t e ( g a u s s . Sigma , g a u s s . mu / s q r t ( g a u s s . r r ) , ’-’ ) \
eye ( g a u s s . d ) ;

230

231 s igma = i w i s h r n d (CC, g a u s s . nu0 , CC) ;
232 mu = mvnrnd ( g a u s s . mu ’ / g a u s s . r r , s igma / g a u s s . r r ) ’ ;
233

234 end
235

236

237 %

1 f u n c t i o n [ b id s , E , Ne ] = f i n d t d e l a u n a y t b o u n d a r y 0 3 f i g 1 (X, Fd )
2 %inputs:
3 %X = n by 3 array (Easting, Northing, Height) or (X,Y,Z)
4 %Fd = dmax (max point to point distance
5 %outputs
6 %bids: IDs to X that presents the sequence of points in the extracted
7 %boundary
8 %Please refer the paper: M. Awrangjeb, "Using point cloud data to identify,
9 %trace, and regularize the outlines of buildings" International Journal of Remote Sensing,

Volume 37, Issue 3, February 2016, pages 551-579
10 %Open access at: http://www.tandfonline.com/doi/pdf/10.1080/01431161.2015.1131868
11



B.3 SGRTmreg 162

12 %just identification of boundary, no tracking (blocked/commented)
13 aThresh = 2 2 . 5 / 2 ; %standard 45 degree
14 dFd = 2*Fd ;
15 msd = dFd*dFd ;
16 msd1 = Fd*Fd ;
17 TRI = d e l a u n a y (X( : , 1 ) ,X( : , 2 ) ) ;
18 TRI = s o r t ( TRI , 2 ) ;
19 %draw
20 f i g u r e ;
21 t r i p l o t ( TRI ,X( : , 1 ) ,X( : , 2 ) , ’-c’ ) ; hold on ;
22 xl im ( [ − 3 0 , − 9 . 5 ] ) ; y l im ( [ − 3 2 , + 3 2 ] ) ;%for A-shape
23

24 %for X
25 mnX = min (X( : , 1 ) ) ;
26 mxX = max (X( : , 1 ) ) ;
27 mnY = min (X( : , 2 ) ) ;
28 mxY = max (X( : , 2 ) ) ;
29 bb = 0 . 5 ; x l im ( [ mnX−bb ,mxX+bb ] ) ; y l im ( [ mnY−bb ,mxY+bb ] ) ;%for

noisy shape
30

31

32 nP = s i z e (X, 1 ) ;
33 E = z e r o s ( nP , nP ) == 1 ;
34 Ne = z e r o s ( nP , nP ) ;%number of times an edge is shared by triangles (max 2, min 0)
35 Xr = [ ] ;%removed edges
36 f o r i = 1 : s i z e ( TRI , 1 )
37 T = TRI ( i , : ) ;
38 Ne ( T ( 1 , 1 ) ,T ( 1 , 2 ) ) = Ne ( T ( 1 , 1 ) ,T ( 1 , 2 ) ) + 1 ;
39 Ne ( T ( 1 , 2 ) ,T ( 1 , 3 ) ) = Ne ( T ( 1 , 2 ) ,T ( 1 , 3 ) ) + 1 ;
40 Ne ( T ( 1 , 1 ) ,T ( 1 , 3 ) ) = Ne ( T ( 1 , 1 ) ,T ( 1 , 3 ) ) + 1 ;
41

42 E ( T ( 1 , 1 ) ,T ( 1 , 2 ) ) = 1 ;
43 E ( T ( 1 , 2 ) ,T ( 1 , 1 ) ) = 1 ;
44 E ( T ( 1 , 2 ) ,T ( 1 , 3 ) ) = 1 ;
45 E ( T ( 1 , 3 ) ,T ( 1 , 2 ) ) = 1 ;
46 E ( T ( 1 , 1 ) ,T ( 1 , 3 ) ) = 1 ;
47 E ( T ( 1 , 3 ) ,T ( 1 , 1 ) ) = 1 ;
48 end
49

50 %show boundary edges
51 f o r i = 1 : nP
52 f o r j = 1 : nP
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53 i f Ne ( i , j ) == 1
54 p l o t ( [X( i , 1 ) X( j , 1 ) ] , [X( i , 2 ) X( j , 2 ) ] , ’-m’ ) ; hold

on ;
55 end
56 end
57 end
58 p l o t (X ( : , 1 ) , X( : , 2 ) , ’.k’ , ’markersize’ , 10 ) ; hold on ;
59 t v = [ 2 9 4 ; 295 ; 326 ; 3 2 7 ] ;
60 Q = [ ] ;
61 f o r i = 1 : nP
62 f o r j = 1 : nP
63 i f ( i < j && E ( i , j ) == 1 && Ne ( i , j ) == 1)
64 sd = (X( i , 1 ) −X( j , 1 ) ) * (X( i , 1 ) −X( j , 1 ) ) + (X( i

, 2 ) −X( j , 2 ) ) * (X( i , 2 ) −X( j , 2 ) ) ;
65 i f sd > msd
66 ou t1 = [ i j ]
67 i f i == 2986 | | j == 2986
68 h e r e = 1 ;
69 end
70 %remove this
71 p l o t ( [X( i , 1 ) X( j , 1 ) ] , [X( i , 2 ) X( j , 2 ) ] , ’-r’ )

; hold on ;
72 Xr = [ Xr ; [X( i , 1 : 2 ) , X( j , 1 : 2 ) ] ] ;
73 E ( i , j ) = 0 ;
74 E ( j , i ) = 0 ;
75 Ne ( i , j ) = 0 ;
76

77 i f sum ( i == t v ) == 1 | | sum ( j == t v ) == 1
78 h e r e = 1 ;
79 end
80 %find other vertex k of triangle ijk and add edge ik and jk
81 %as suspects
82 k = f i n d ( E ( i , : ) & E ( j , : ) == 1) ;
83 i f s i z e ( k , 2 ) >1
84 h e r e = 1 ;
85 P1 = X( i , : ) ;
86 P2 = X( j , : ) ;
87 i f ( P2 ( 1 , 1 ) − P1 ( 1 , 1 ) ) == 0
88 P1 ( 1 , 1 ) = P1 ( 1 , 1 ) + 0 . 0 0 1 ;
89 X( i , 1 ) = P1 ( 1 , 1 ) ;
90 end
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91 m = ( P2 ( 1 , 2 ) − P1 ( 1 , 2 ) ) / ( P2 ( 1 , 1 ) − P1
( 1 , 1 ) ) ;

92 c = P1 ( 1 , 2 ) − m*P1 ( 1 , 1 ) ;
93 Pks = X( k ’ , : ) ;
94 num = s q r t (1 + m*m) ;
95 den = m* Pks ( : , 1 ) − Pks ( : , 2 ) + c ;
96 dks = abs ( den / num ) ;
97 [mn i d ] = min ( dks ) ;
98 k = k ( 1 , i d ) ;
99 end

100 i f s i z e ( k , 2 ) == 1%found
101 %for edge (i,k)
102 i f i < k
103 Ne ( i , k ) = Ne ( i , k ) −1;
104 Q = [Q; [ i k ] ] ;
105 e l s e
106 Ne ( k , i ) = Ne ( k , i ) −1;
107 Q = [Q; [ k i ] ] ;
108 end
109 %for edge (j,k)
110 i f j < k
111 Ne ( j , k ) = Ne ( j , k ) −1;
112 Q = [Q; [ j k ] ] ;
113 e l s e
114 Ne ( k , j ) = Ne ( k , j ) −1;
115 Q = [Q; [ k j ] ] ;
116 end
117 e l s e%not found, error! check if happen
118 end
119 e l s e
120

121 end
122 end
123 end
124 end
125

126 whi le s i z e (Q, 1 ) >0
127 i = Q( 1 , 1 ) ; j = Q( 1 , 2 ) ;
128 i f E ( i , j ) == 1
129 %plot([X(i,1) X(j,1)], [X(i,2) X(j,2)],’-y’); hold on;
130 sd = (X( i , 1 ) −X( j , 1 ) ) * (X( i , 1 ) −X( j , 1 ) ) + (X( i , 2 ) −X( j

, 2 ) ) * (X( i , 2 ) −X( j , 2 ) ) ;
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131 i f sd > msd
132 ou t2 = [ i j ]
133 i f i == 2986 | | j == 2986
134 h e r e = 1 ;
135 end
136 %remove this
137 p l o t ( [X( i , 1 ) X( j , 1 ) ] , [X( i , 2 ) X( j , 2 ) ] , ’-r’ ) ;

hold on ;
138 Xr = [ Xr ; [X( i , 1 : 2 ) , X( j , 1 : 2 ) ] ] ;
139 E ( i , j ) = 0 ;
140 E ( j , i ) = 0 ;
141 Ne ( i , j ) = 0 ;
142 %find other vertex k of triangle ijk and add edge ik and jk
143 %as suspects
144 i f sum ( i == t v ) == 1 | | sum ( j == t v ) == 1
145 h e r e = 1 ;
146 end
147 k = f i n d ( E ( i , : ) & E ( j , : ) == 1) ;
148 i f s i z e ( k , 2 ) >1
149 h e r e = 1 ;
150 P1 = X( i , : ) ;
151 P2 = X( j , : ) ;
152 i f ( P2 ( 1 , 1 ) − P1 ( 1 , 1 ) ) == 0
153 P1 ( 1 , 1 ) = P1 ( 1 , 1 ) + 0 . 0 0 1 ;
154 X( i , 1 ) = P1 ( 1 , 1 ) ;
155 end
156 m = ( P2 ( 1 , 2 ) − P1 ( 1 , 2 ) ) / ( P2 ( 1 , 1 ) − P1 ( 1 , 1 ) )

;
157 c = P1 ( 1 , 2 ) − m*P1 ( 1 , 1 ) ;
158 Pks = X( k ’ , : ) ;
159 num = s q r t (1 + m*m) ;
160 den = m* Pks ( : , 1 ) − Pks ( : , 2 ) + c ;
161 dks = abs ( den / num ) ;
162 [mn i d ] = min ( dks ) ;
163 k = k ( 1 , i d ) ;
164 end
165 i f s i z e ( k , 2 ) == 1%found
166 %for edge (i,k)
167 i f i < k
168 Ne ( i , k ) = Ne ( i , k ) −1;
169 Q = [Q; [ i k ] ] ;
170 e l s e
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171 Ne ( k , i ) = Ne ( k , i ) −1;
172 Q = [Q; [ k i ] ] ;
173 end
174 %for edge (j,k)
175 i f j < k
176 Ne ( j , k ) = Ne ( j , k ) −1;
177 Q = [Q; [ j k ] ] ;
178 e l s e
179 Ne ( k , j ) = Ne ( k , j ) −1;
180 Q = [Q; [ k j ] ] ;
181 end
182 e l s e%not found, error! check if happen
183 end
184 e l s e
185

186 end
187 end
188 %elseif size(Q,1)>1
189 Q = Q( 2 : end , : ) ;
190 e l s e
191 Q = [ ] ;
192 end
193 %end
194 end
195

196

197 %make removed edges white
198 f o r i i = 1 : s i z e ( Xr , 1 )
199 p l o t ( [ Xr ( i i , 1 ) Xr ( i i , 3 ) ] , [ Xr ( i i , 2 ) Xr ( i i , 4 ) ] , ’-w’ ) ;

hold on ;
200 end
201 %show boundary edges
202 f o r i = 1 : nP
203 f o r j = 1 : nP
204 i f Ne ( i , j ) == 1
205 p l o t ( [X( i , 1 ) X( j , 1 ) ] , [X( i , 2 ) X( j , 2 ) ] , ’-m’ ) ; hold

on ;
206 end
207 end
208 end
209 p l o t (X ( : , 1 ) , X( : , 2 ) , ’.k’ , ’markersize’ , 10 ) ; hold on ;
210
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211

212 Se = [ ] ;
213 F = z e r o s ( nP , nP ) == 1 ;%F(i,j) = 0: not checked before or decided to remove, 1:

checked before and decided not to remove
214 whi le ( 1 )
215 dE = 0 ;
216 f o r i = 1 : nP
217 f o r j = 1 : nP
218 i f i == 2935 && j == 2986
219 h e r e = 1 ;
220 end
221 i f ( i < j && E ( i , j ) == 1 && Ne ( i , j ) == 1 && F ( i

, j ) == 0)
222 %plot([X(i,1) X(j,1)], [X(i,2) X(j,2)],’-k’); hold on;
223 sd = (X( i , 1 ) −X( j , 1 ) ) * (X( i , 1 ) −X( j , 1 ) ) + (X( i

, 2 ) −X( j , 2 ) ) * (X( i , 2 ) −X( j , 2 ) ) ;
224 k = f i n d ( E ( i , : ) & E ( j , : ) == 1) ;
225 i f s i z e ( k , 2 ) >1
226 h e r e = 1 ;
227 P1 = X( i , : ) ;
228 P2 = X( j , : ) ;
229 m = ( P2 ( 1 , 2 ) − P1 ( 1 , 2 ) ) / ( P2 ( 1 , 1 ) − P1

( 1 , 1 ) ) ;
230 c = P1 ( 1 , 2 ) − m*P1 ( 1 , 1 ) ;
231 Pks = X( k ’ , : ) ;
232 num = s q r t (1 + m*m) ;
233 den = m* Pks ( : , 1 ) − Pks ( : , 2 ) + c ;
234 dks = abs ( den / num ) ;
235 [mn i d ] = min ( dks ) ;
236 k = k ( 1 , i d ) ;
237 end
238 i f s i z e ( k , 2 ) == 1%found
239 %find angle at vertex k for triangle ijk
240 A = X( i , : ) ;
241 B = X( j , : ) ;
242 C = X( k , : ) ;
243 asq = (B( 1 , 1 ) −C( 1 , 1 ) ) * (B( 1 , 1 ) −C( 1 , 1 ) ) +

(B( 1 , 2 ) −C( 1 , 2 ) ) * (B( 1 , 2 ) −C( 1 , 2 ) ) ;
244 a = s q r t ( a sq ) ;
245 bsq = (A( 1 , 1 ) −C( 1 , 1 ) ) * (A( 1 , 1 ) −C( 1 , 1 ) ) +

(A( 1 , 2 ) −C( 1 , 2 ) ) * (A( 1 , 2 ) −C( 1 , 2 ) ) ;
246 b = s q r t ( bsq ) ;
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247 csq = (B( 1 , 1 ) −A( 1 , 1 ) ) * (B( 1 , 1 ) −A( 1 , 1 ) ) +
(B( 1 , 2 ) −A( 1 , 2 ) ) * (B( 1 , 2 ) −A( 1 , 2 ) ) ;

248

249 gamma = 180* acos ( ( a sq + bsq − csq ) / ( 2 * a

*b ) ) / pi ; %angle at
C

250 i f (gamma > 90 && sd > msd1 ) | | abs
(180 −gamma ) <= aThresh %abtuse
angle

251 dE = dE + 1 ;
252 p l o t ( [X( i , 1 ) X( j , 1 ) ] , [X( i , 2 ) X( j

, 2 ) ] , ’-r’ ) ; hold on ;
253 Xr = [ Xr ; [X( i , 1 : 2 ) , X( j , 1 : 2 ) ] ] ;
254 E ( i , j ) = 0 ;
255 E ( j , i ) = 0 ;
256 Ne ( i , j ) = 0 ;
257 %for edge (i,k)
258 i f i < k
259 Ne ( i , k ) = Ne ( i , k ) −1;
260 %Q = [Q; [i k]];
261 e l s e
262 Ne ( k , i ) = Ne ( k , i ) −1;
263 %Q = [Q; [k i]];
264 end
265 %for edge (j,k)
266 i f j < k
267 Ne ( j , k ) = Ne ( j , k ) −1;
268 %Q = [Q; [j k]];
269 e l s e
270 Ne ( k , j ) = Ne ( k , j ) −1;
271 %Q = [Q; [k j]];
272 end
273 e l s e
274 F ( i , j ) = 1 ;
275 end
276 e l s e%not found, error! check if happen
277 %mark this edge as a straight edge without forming a

triangle
278 Se = [ Se ; [ i j ] ] ;
279 end
280 end
281 end
282 end



B.3 SGRTmreg 169

283 i f dE == 0
284 break
285 end
286 end%while
287

288 %make removed edges white
289 f o r i i = 1 : s i z e ( Xr , 1 )
290 p l o t ( [ Xr ( i i , 1 ) Xr ( i i , 3 ) ] , [ Xr ( i i , 2 ) Xr ( i i , 4 ) ] , ’-w’ ) ;

hold on ;
291 end
292 %show boundary edges
293 f o r i = 1 : nP
294 f o r j = 1 : nP
295 i f Ne ( i , j ) == 1
296 p l o t ( [X( i , 1 ) X( j , 1 ) ] , [X( i , 2 ) X( j , 2 ) ] , ’-m’ ) ; hold

on ;
297 end
298 end
299 end
300 p l o t (X ( : , 1 ) , X( : , 2 ) , ’.k’ , ’markersize’ , 10 ) ; hold on ;
301

302 chkV = E ;
303 fv = 0 ; PVs = [ ] ;
304 f o r i = 1 : nP
305 f o r j = 1 : nP
306 i f i < j && E ( i , j ) == 1 && Ne ( i , j ) == 1
307 s = s t r u c t ( ’f0’ , [ ] , ’f1’ , [ i j ] , ’f2’ , [ i ; j ] ,

’f3’ , [ ] ) ;%f0: parent struct, f1: edges, f2: vertices list, f3:
children structs

308 fv = i ;%first vertex
309 cv = j ;%current vertex
310 pv = i ;%previous vertex
311 p l o t ( [X( pv , 1 ) X( cv , 1 ) ] , [X( pv , 2 ) X( cv , 2 ) ] , ’-c’ ,

’linewidth’ , 2 ) ; hold on ;
312 break ;
313 end
314 chkV ( i , j ) = 0 ;
315 chkV ( j , i ) = 0 ;
316 end
317 i f fv > 0
318 break ;
319 end



B.3 SGRTmreg 170

320 end
321 %i = 9;
322 j = 1 3 ;
323 s = s t r u c t ( ’f0’ , [ ] , ’f1’ , [ i j ] , ’f2’ , [ i ; j ] , ’f3’ , [ ] ) ;
324 %if fv>0
325 S{1} = s ;
326 El = [ i j 1 1 ] ;
327 chkV ( i , j ) = 0 ;
328 chkV ( j , i ) = 0 ;
329 c o u n t = 1 ;
330 Q = [ c o u n t ] ;%queue for structs to explore
331 i s = i ;
332 j s = j ;
333 Q a c t i v e = 1 ;
334 e l s e
335 Q = [ ] ;
336 Q a c t i v e = [ ] ;
337 end
338 %B = []; B1 = [];
339 c c o u n t = 1 ; PVa l l ={} ;
340 I n s e r t L o o p = [ ] ;
341 whi le s i z e (Q, 1 ) >0
342 found = 0 ;
343 prevSQ = s i z e (Q, 1 ) ;
344 f o r qc = prevSQ : − 1 : 1
345 q = Q( qc , 1 ) ;%struct number
346 i f Q a c t i v e ( qc , 1 ) == 1%if this sturct is not marked inactive
347 found = 1 ;
348 break ;
349 end
350 end
351 i f found == 0
352 Q = [ ] ;
353 Q a c t i v e = [ ] ;
354 break ;
355 end
356 e = S{q } . f1 ;%starting edge
357 pv = e ( 1 , 1 ) ;%previous and current vertices
358 cv = e ( 1 , 2 ) ;
359 p l o t ( [X( pv , 1 ) X( cv , 1 ) ] , [X( pv , 2 ) X( cv , 2 ) ] , ’-g’ , ’

linewidth’ , 2 ) ; hold on ;
360 i f s i z e ( PVs , 1 ) == 0
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361 PVs = [ [ pv q ] ; [ cv q ] ] ;
362 s t q = q ;%starting q of this connected commponent of the graph
363 e l s e
364 PVs = [ PVs ; [ cv q ] ] ;%previous vertics, which are left column of

Sq.f1
365 end
366 %explore the current struct
367 whi le ( 1 )
368 vs = f i n d ( E ( cv , : ) == 1) ; %all vertices that are connected to cv
369 %find all vertices, other than pv, which are along boundary (remove non
370 %boundary vertices
371 bv = [ ] ;
372 i f cv == 1628 | | cv == 156
373 h e r e = 1 ;
374 end
375 f o r m = 1 : s i z e ( vs , 2 )
376 k = vs ( 1 ,m) ;
377 i f q == 13 && k == 42 && cv == 1
378 h e r e = 1 ;
379 end
380 chk = ( El ( : , 1 ) == cv & El ( : , 2 ) == k ) | ( El ( : , 1 )

== k & El ( : , 2 ) == cv ) ; %check if edge (cv,k) or (k,cv)
is already visited

381 i f sum ( chk ) > 0 && k ~= pv%the current edge is already
visited, so a close boundary is found and mark it

382 e l = El ( chk , : ) ;
383 S{ s t q } . f0 = q ;
384 I n s e r t L o o p ( ccoun t , : ) = [ s t q q ] ;
385 end
386 i f e l ( 1 , 3 ) < q
387 %this edge was added in the Q and S to be explored
388 %latter, but it has now come to be an edge of contour
389 %found from q, so make this Q and S entry inactive so
390 %that it is not used latter
391 chkq = Q == e l ( 1 , 3 ) ;
392 i f sum ( chkq ) >0
393 Q a c t i v e ( chkq , 1 ) = 0 ;
394

395 %and add this to be a nextly visited edge
396 bv = [ bv ; k ] ;
397 %plot(X(bv,1), X(bv,2), ’dk’); hold on;
398 p l o t ( [X( k , 1 ) X( cv , 1 ) ] , [X( k , 2 ) X( cv , 2 )

] , ’-y’ , ’linewidth’ , 2 ) ; hold on ;
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399 e l s e
400 p l o t ( [X( k , 1 ) X( cv , 1 ) ] , [X( k , 2 ) X( cv

, 2 ) ] , ’-w’ , ’linewidth’ , 2 ) ; hold
on ;%ignore already visited

edge
401 end
402 e l s e
403 p l o t ( [X( k , 1 ) X( cv , 1 ) ] , [X( k , 2 ) X( cv , 2 )

] , ’-k’ , ’linewidth’ , 2 ) ; hold on ;
404 c o n t i n u e ;
405 end
406 end
407 i f k ~= pv && sum ( chk ) == 0 && ( Ne ( cv

, k ) == 1 | | Ne ( k , cv ) == 1)
408 bv = [ bv ; k ] ;
409 p l o t ( [X( k , 1 ) X( cv , 1 ) ] , [X( k , 2 ) X( cv , 2 ) ] , ’-

y’ , ’linewidth’ , 2 ) ; hold on ;
410 end
411 end
412

413 i f s i z e ( bv , 1 ) == 0
414 break ;
415 e l s e i f s i z e ( bv , 1 ) == 1
416 %only 1 option, so go forward tracking boundary
417 k = bv ( 1 , 1 ) ;
418

419 chkV ( cv , k ) = 0 ;
420 chkV ( k , cv ) = 0 ;
421

422 S{q } . f1 = [ S{q } . f1 ; [ cv k ] ] ;%update edge list for Sq
423 S{q } . f2 = [ S{q } . f2 ; k ] ;%update vertices list for Sq
424 El = [ El ; [ cv k q s i z e ( S{q } . f1 , 1 ) ] ] ;
425 pv = cv ;
426 cv = k ;
427 p l o t ( [X( pv , 1 ) X( cv , 1 ) ] , [X( pv , 2 ) X( cv , 2 ) ] , ’-m’ ,

’linewidth’ , 2 ) ; hold on ;
428

429 i f cv == 2935
430 h e r e = 1 ;
431 end
432

433 PVs = [ PVs ; [ cv q ] ] ;
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434

435 e l s e%more than one option, generate new structs to explore latter
436 c l o c k w i s e i d s = c l o c k w i s e t c h o i c e (X( [ cv ; pv ; bv ] , : )

) ;
437 b v c l o c k w i s e = bv ( c l o c k w i s e i d s , 1 ) ;
438 f o r l = s i z e ( bvc lockwise , 1 ) : −1 : 1
439 k = b v c l o c k w i s e ( l , 1 ) ;
440

441 chkV ( cv , k ) = 0 ;
442 chkV ( k , cv ) = 0 ;
443

444 c o u n t = c o u n t +1 ;
445 %create a new struct and set q as a parent of new, and new
446 %as a child of q
447 S{ c o u n t } = s t r u c t ( ’f0’ , q , ’f1’ , [ cv k ] , ’

f2’ , [ cv ; k ] , ’f3’ , [ ] ) ;
448 El = [ El ; [ cv k c o u n t 1 ] ] ;
449 S{q } . f3 = [ S{q } . f3 ; c o u n t ] ;
450 Q = [Q; c o u n t ] ;
451 Q a c t i v e = [ Q a c t i v e ; 1 ] ;
452 end
453 break ;
454 end
455 end
456

457 %if prevSQ > qc
458

459 Q1 = Q( 1 : qc − 1 , : ) ;
460 Qa1 = Q a c t i v e ( 1 : qc − 1 , : ) ;
461

462 Q2 = Q( prevSQ +1: end , : ) ;
463 Qa2 = Q a c t i v e ( prevSQ +1: end , : ) ;
464

465 Q = [ Q1 ; Q2 ] ;
466 Q a c t i v e = [ Qa1 ; Qa2 ] ;
467 %end
468

469 i f sum ( Qac t ive , 1 ) == 0 | | s i z e (Q, 1 ) == 0
470 Q = [ ] ;
471 Q a c t i v e = [ ] ;
472 PVal l { c c o u n t } = PVs ;
473 i f s i z e ( I n s e r t L o o p , 1 ) < c c o u n t
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474 I n s e r t L o o p ( ccoun t , : ) = [0 0 ] ;
475 end
476

477 c c o u n t = c c o u n t +1;
478 %end
479

480 %if size(Q,1) <= qc || size(Q,1) == 0
481 % Q = [];
482 % Qactive = [];
483

484 %look for another boundary edge, if any
485 fv = 0 ;
486 bm = ( E & chkV ) & ( Ne == 1) ;
487 hasB = sum ( sum (bm) ) ;
488 i f hasB > 0
489 f o r i = i s : nP
490 f o r j = j s : nP
491 i f i < j && bm( i , j )
492 s = s t r u c t ( ’f0’ , [ ] , ’f1’ , [ i j

] , ’f2’ , [ i ; j ] , ’f3’ , [ ] ) ;%
f0: parent struct, f1: edges, f2: vertices list,
f3: children structs

493 fv = i ;%first vertex
494 cv = j ;%current vertex
495 pv = i ;%previous vertex
496

497 %show
498 %plot(X(fv,1), X(fv,2), ’og’); hold on;
499 %plot(X(pv,1), X(pv,2), ’sy’); hold on;
500 %plot(X(cv,1), X(cv,2), ’db’); hold on;
501 p l o t ( [X( pv , 1 ) X( cv , 1 ) ] , [X( pv

, 2 ) X( cv , 2 ) ] , ’-c’ , ’
linewidth’ , 2 ) ; hold on ;

502 break ;
503 end
504 chkV ( i , j ) = 0 ;
505 chkV ( j , i ) = 0 ;
506 end
507 i f fv > 0
508 break ;
509 end
510 end
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511 i f fv > 0% a new edge is found
512 c o u n t = c o u n t +1 ;
513 S{ c o u n t } = s ;
514 El = [ El ; [ i j c o u n t 1 ] ] ;
515 chkV ( i , j ) = 0 ;
516 chkV ( j , i ) = 0 ;
517 i s = i ;
518 j s = j ;
519 Q = [Q; c o u n t ] ;%queue for structs to explore
520 Q a c t i v e = [ Q a c t i v e ; 1 ] ;
521 PVs = [ ] ;
522 end
523 end
524 i f s i z e (Q, 1 ) == 0
525 break ;
526 end
527 %else
528 % Q = Q(qc+1:end,:);
529 % Qactive = Qactive(qc+1:end,:);
530 end
531 end
532

533 f o r pv =1: s i z e ( PVal l , 2 )
534 %find loops
535 PV1 = PVal l { pv } ;
536 l o o p s { pv } = [ ] ;
537 f o r n i d = 1 : s i z e ( PV1 , 1 ) −2
538 node = PV1 ( nid , 1 ) ;
539 chk = PV1 ( n i d +1: end , 1 ) == node ;
540 i f sum ( chk ) == 1
541 %a loop found
542 l o o p s { pv } = [ l o o p s { pv } ; [ n i d f i n d ( chk ==1)+ n i d ] ] ;
543 end
544 end
545 end
546

547 %for each loop try to find two segment loops
548 b i d s = { } ;
549 bc ou n t = 0 ;
550 f o r pv =1: s i z e ( PVal l , 2 )
551 %find loops
552 l c o u n t = 0 ; l o o p i d s = { } ;
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553 l e n t r i e s = l o o p s { pv } ;
554 i n s l o o p = I n s e r t L o o p ( pv , : ) ;
555 PVs = PVal l { pv } ;
556 f o r i = 1 : s i z e ( l e n t r i e s , 1 )
557 %try to find a loop starting from one end to another end. so, maximum loops

will be 2 for this entry
558 l p = l e n t r i e s ( i , : ) ;
559 s t q = PVs ( l p ( 1 , 1 ) , 2 ) ;
560 enq = PVs ( l p ( 1 , 2 ) , 2 ) ;
561 i f ( i n s l o o p ( 1 , 1 ) == s t q && i n s l o o p ( 1 , 2 ) == enq ) | |

( i n s l o o p ( 1 , 1 ) == enq && i n s l o o p ( 1 , 2 ) == s t q )
562 %inserted loop, call only once
563 [ l o o p i d s 1 f l g 1 ] = check loop01 ( PVs , S , l p ( 1 , 1 ) ,

l p ( 1 , 2 ) ) ;
564

565 i f f l g 1 == 1
566 i f l c o u n t > 0
567 [ i d r f l g r ] = c h e c k S u b s e t ( l o o p i d s ,

l o o p i d s 1 ) ;
568 %flgr: 0 new, so add; -1 loopids1 is a superset of an existing, so

replace by loopids1;
569 %1 loopids1 is a subset of an existing, so no replace
570 i f f l g r == 0%new
571 l c o u n t = l c o u n t +1;
572 l o o p i d s { l c o u n t } = l o o p i d s 1 ;
573 p l o t (X( l o o p i d s 1 , 1 ) ,X( l o o p i d s 1 , 2 ) , ’-m’ ,

’linewidth’ , 2 ) ; hold on ;
574 e l s e i f f l g r == −1%replace
575 l o o p i d s { i d r } = l o o p i d s 1 ;
576 p l o t (X( l o o p i d s 1 , 1 ) ,X( l o o p i d s 1 , 2 ) , ’-m’ ,

’linewidth’ , 2 ) ; hold on ;
577 end
578 e l s e
579 l c o u n t = l c o u n t +1;
580 l o o p i d s { l c o u n t } = l o o p i d s 1 ;
581 p l o t (X( l o o p i d s 1 , 1 ) ,X( l o o p i d s 1 , 2 ) , ’-g’ ,

’linewidth’ , 2 ) ; hold on ;
582 end
583 end
584 e l s e%call twice
585 [ l o o p i d s 1 f l g 1 ] = check loop01 ( PVs , S , l p ( 1 , 1 ) ,

l p ( 1 , 2 ) ) ;
586
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587 i f f l g 1 == 1
588 i f l c o u n t > 0
589 [ i d r f l g r ] = c h e c k S u b s e t ( l o o p i d s ,

l o o p i d s 1 ) ;
590 %flgr: 0 new, so add; -1 loopids1 is a superset of an existing, so

replace by loopids1;
591 %1 loopids1 is a subset of an existing, so no replace
592 i f f l g r == 0%new
593 l c o u n t = l c o u n t +1;
594 l o o p i d s { l c o u n t } = l o o p i d s 1 ;
595 p l o t (X( l o o p i d s 1 , 1 ) ,X( l o o p i d s 1 , 2 ) , ’-m’ ,

’linewidth’ , 2 ) ; hold on ;
596 e l s e i f f l g r == −1%replace
597 l o o p i d s { i d r } = l o o p i d s 1 ;
598 p l o t (X( l o o p i d s 1 , 1 ) ,X( l o o p i d s 1 , 2 ) , ’-m’ ,

’linewidth’ , 2 ) ; hold on ;
599 end
600 e l s e
601 l c o u n t = l c o u n t +1;
602 l o o p i d s { l c o u n t } = l o o p i d s 1 ;
603 p l o t (X( l o o p i d s 1 , 1 ) ,X( l o o p i d s 1 , 2 ) , ’-g’ ,

’linewidth’ , 2 ) ; hold on ;
604 end
605 end
606 [ l o o p i d s 2 f l g 2 ] = check loop01 ( PVs , S , l p ( 1 , 2 ) ,

l p ( 1 , 1 ) ) ;
607

608 i f f l g 2 == 1
609 i f l c o u n t > 0
610 [ i d r f l g r ] = c h e c k S u b s e t ( l o o p i d s ,

l o o p i d s 2 ) ;
611 %flgr: 0 new, so add; -1 loopids1 is a superset of an existing, so

replace by loopids1;
612 %1 loopids1 is a subset of an existing, so no replace
613 i f f l g r == 0%new
614 l c o u n t = l c o u n t +1;
615 l o o p i d s { l c o u n t } = l o o p i d s 2 ;
616 p l o t (X( l o o p i d s 2 , 1 ) ,X( l o o p i d s 2 , 2 ) , ’-m’ ,

’linewidth’ , 2 ) ; hold on ;
617 e l s e i f f l g r == −1%replace
618 l o o p i d s { i d r } = l o o p i d s 2 ;
619 p l o t (X( l o o p i d s 2 , 1 ) ,X( l o o p i d s 2 , 2 ) , ’-m’ ,

’linewidth’ , 2 ) ; hold on ;
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620 end
621 e l s e
622 l c o u n t = l c o u n t +1;
623 l o o p i d s { l c o u n t } = l o o p i d s 2 ;
624 p l o t (X( l o o p i d s 2 , 1 ) ,X( l o o p i d s 2 , 2 ) , ’-g’ ,

’linewidth’ , 2 ) ; hold on ;
625 end
626 end
627 end
628 end
629

630 f o r j = 1 : s i z e ( l o o p i d s , 2 )
631 bc ou n t = bc ou n t + 1 ;
632 b i d s { bc ou n t } = l o o p i d s { j } ;
633 end
634 end
635 h e r e = 1 ;
636 end

B.4 Segmentation

1 c l c ; c l e a r ;
2 p tC loud = p c r e a d ( ’C:\Users\zy080\Documents\MATLAB\Medicaldata

\dataset\1177tDataset9.ply’ ) ;
3 f i g u r e
4 pcshow ( p tC loud ) ; %123200
5 %modelFull =ptCloud.Location’;
6 m o d e l F u l l = bs x fu n ( @minus , mode lFu l l , min ( mode lFu l l , [ ] , 2 ) ) ;
7 m o d e l F u l l = bs x fu n ( @minus , mode lFu l l , max ( mode lFu l l , [ ] , 2 ) / 2 ) ;
8 m o d e l F u l l = m o d e l F u l l / max ( abs ( m o d e l F u l l ( : ) ) ) ;
9 %LocationtO=modelFull’ ;

10 Color tO = p tC loud . Co lo r ;
11 i i n d e x = f i n d ( Color tO ( : , 3 ) ==0) ;
12 L o c a t i o n t O ( i i n d e x , : ) = [ ] ;
13 Color tO ( i i n d e x , : ) = [ ] ;
14 p t = p o i n t C l o u d ( L o c a t i o n t O ) ;
15 p t . Co lo r = Color tO ;
16 % pcshow(pt);
17 %[ColortO1,I1,J1]=unique(ColortO,’rows’);
18 [ r2 , r3 , r4 , RtC1tkeep ] = C o l o r f ( Color tO ) ;
19 [ rc1 , c i , c j ]= un iq ue ( RtC1tkeep ) ;
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20 f o r k =1: l e n g t h ( r c 1 )
21 IJC {k , 1 } = f i n d ( r c 1 ( k , 1 ) == RtC1tkeep ( : , 1 ) ) ;
22 end
23 Par = [ ] ;
24 P t i n d e x = [ ] ;
25 f o r p =1: l e n g t h ( r c 1 )
26 i f l e n g t h ( IJC {p , 1 } ) <10
27 Par =[ Par ; IJC {p , 1 } ] ;
28 P t i n d e x =[ P t i n d e x ; p ] ;
29 end
30 end
31 l 2 = l i n s p a c e ( 1 , 1 2 , 1 2 ) ;
32 l 2 ( 1 , P t i n d e x ) =100;
33 P t i n d e x t l e f t = f i n d ( l 2 ( : ) ~=100) ;
34 f o r i =1 : l e n g t h ( P t i n d e x t l e f t )
35 f l g ( i , 1 ) = l e n g t h ( IJC { P t i n d e x t l e f t ( i , 1 ) , 1 } ) ;
36 L o c a t i o n t i = L o c a t i o n t O ( IJC { P t i n d e x t l e f t ( i , 1 ) , 1 } , : ) ;
37 C o l o r t i = Color tO ( IJC { P t i n d e x t l e f t ( i , 1 ) , 1 } , : ) ;
38 p t c l o u d t i = p o i n t C l o u d ( L o c a t i o n t i ) ;
39 p t c l o u d t i . Co lo r = C o l o r t i ;
40 PT{ i ,1}= p t c l o u d t i ;
41 s u b p l o t ( 1 , l e n g t h ( P t i n d e x t l e f t ) , i ) ;
42 pcshow ( p t c l o u d t i ) ;
43 end
44 % seperate into two groups
45 [m1 , n1 ]= s o r t ( f l g ) ; % less to more
46 p t t n 1 =PT{ n1 ( end ) , 1 } ;
47 p t t n 2 =PT{ n1 ( end −1) , 1 } ;
48 PT{ n1 ( end ) , 1 } = { } ;
49 PT ( c e l l f u n ( @isempty , PT ) ) = [ ] ;
50 PT{end , 1 } = { } ;
51 PT ( c e l l f u n ( @isempty , PT ) ) = [ ] ;
52 L o c a t i o n t n 3 = L o c a t i o n t O ( Par , : ) ;
53 C o l o r t n 3 = Color tO ( Par , : ) ;
54 f o r i =1 : l e n g t h ( PT )
55 L o c a t i o n t n 3 =[PT{ i , 1 } . L o c a t i o n ; L o c a t i o n t n 3 ] ;
56 C o l o r t n 3 =[PT{ i , 1 } . Co lo r ; C o l o r t n 3 ] ;
57 end
58 p t t n 3 = p o i n t C l o u d ( L o c a t i o n t n 3 ) ;
59 p t t n 3 . Co lo r = C o l o r t n 3 ;
60 % figure
61 % subplot(1,3,1)
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62 % pcshow(pttn1); Locationl1=0.8*single(pttn1.Color)/256;+0.2*(pttn1.Location);
63 [ nnp1 , ip1 , j p 1 ]= un iq ue ( L o c a t i o n l 1 , ’rows’ ) ;
64 [ nnc1 , i c1 , j c 1 ]= un iq ue ( p t t n 1 . Color , ’rows’ ) ;
65 [ p t n 1 t 0 1 , p t n 1 t 0 2 , p t n 1 t 0 3 , i n d x t P 1 ] = P o s i t i o n t S p l i t ( nnp1 ,

nnc1 , 3 0 , 5 ) ;
66 f o r k =1: l e n g t h ( i n d x t P 1 )
67 f o r j =1 : l e n g t h ( i n d x t P 1 {k , 1 } )
68 I J C t n n 1 {k , 1 } { j , 1 } = f i n d ( i n d x t P 1 {k , 1 } ( j , 1 ) == j p 1 ( : , 1 )

) ;
69 end
70 end
71 f o r k =1: l e n g t h ( I J C t n n 1 )
72 IJCtNN1 {k ,1}= c e l l 2 m a t ( I J C t n n 1 {k , 1 } ) ;
73 end
74 f i g u r e
75 f o r i =1 : l e n g t h ( IJCtNN1 )
76 s u b p l o t ( 1 , l e n g t h ( IJCtNN1 ) , i ) ;
77 p t n 1 t { i , 1}= p o i n t C l o u d ( p t t n 1 . L o c a t i o n ( IJCtNN1 { i , 1 } , : ) ) ;
78 p t n 1 t { i , 1 } . Co lo r = p t t n 1 . Co lo r ( IJCtNN1 { i , 1 } , : ) ;
79 [ r n 1 t 1 { i , 1 } , r n 2 t 1 { i , 1 } , r n 3 t 1 { i , 1 } , R t C 1 t k e e p t 1 { i , 1 } ] =

C o l o r f ( p t n 1 t { i , 1 } . Co lo r ) ;
80 m e r g e t c r i 1 ( i , 1 ) =mean ( r n 2 t 1 { i , 1 } ) ;
81 pcshow ( p t n 1 t { i , 1 } ) ;
82 end
83 [ a1 , b1 ]=max ( m e r g e t c r i 1 ) ;
84 p t n 1 t I n s t r = p t n 1 t {b1 , 1 } ;
85 p t n 1 t {b1 , 1 } = [ ] ;
86 p t n 1 t ( c e l l f u n ( @isempty , p t n 1 t ) ) = [ ] ;
87 o r l o c a t i o n = [ ] ;
88 o r c o l o r = [ ] ;
89 f o r i =1 : l e n g t h ( p t n 1 t )
90 o r l o c a t i o n =[ p t n 1 t { i , 1 } . L o c a t i o n ; o r l o c a t i o n ] ;
91 o r c o l o r =[ p t n 1 t { i , 1 } . Co lo r ; o r c o l o r ] ;
92 end
93 p t n 1 t o r g a n = p o i n t C l o u d ( o r l o c a t i o n ) ;
94 p t n 1 t o r g a n . Co lo r = o r c o l o r ;
95 f i g u r e
96 s u b p l o t ( 1 , 2 , 1 )
97 pcshow ( p t n 1 t o r g a n ) ;%79368
98 s u b p l o t ( 1 , 2 , 2 )
99 pcshow ( p t n 1 t I n s t r ) ;%1509

100 %pttn2
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101 L o c a t i o n l 2 =0 .3* s i n g l e ( p t t n 2 . Co lo r ) / 2 5 6 ; + 0 . 7 * ( p t t n 2 . L o c a t i o n
) ;

102 [ nnp2 , ip2 , j p 2 ]= un iq ue ( L o c a t i o n l 2 , ’rows’ ) ;
103 [ nnc2 , i c2 , j c 2 ]= un iq ue ( p t t n 2 . Color , ’rows’ ) ;
104 [ p t n 2 t 0 1 , p t n 2 t 0 2 , p t n 2 t 0 3 , i n d x t P 2 ] = P o s i t i o n t S p l i t ( nnp2 ,

nnc2 , 5 0 , 2 0 ) ;
105 f o r k =1: l e n g t h ( i n d x t P 2 )
106 f o r j =1 : l e n g t h ( i n d x t P 2 {k , 1 } )
107 I J C t n n 2 {k , 1 } { j , 1 } = f i n d ( i n d x t P 2 {k , 1 } ( j , 1 ) == j p 2 ( : , 1 )

) ;
108 end
109 end
110 f o r k =1: l e n g t h ( I J C t n n 2 )
111 IJCtNN2 {k ,1}= c e l l 2 m a t ( I J C t n n 2 {k , 1 } ) ;
112 end
113 f i g u r e
114 f o r i =1 : l e n g t h ( IJCtNN2 )
115 s u b p l o t ( 1 , l e n g t h ( IJCtNN2 ) , i ) ;
116 p t n 2 t { i , 1}= p o i n t C l o u d ( p t t n 2 . L o c a t i o n ( IJCtNN2 { i , 1 } , : ) ) ;
117 p t n 2 t { i , 1 } . Co lo r = p t t n 2 . Co lo r ( IJCtNN2 { i , 1 } , : ) ;
118 [ r n 1 t 2 { i , 1 } , r n 2 t 2 { i , 1 } , r n 3 t 2 { i , 1 } , R t C 1 t k e e p t 2 { i , 1 } ] =

C o l o r f ( p t n 2 t { i , 1 } . Co lo r ) ;
119 m e r g e t c r i 2 ( i , 1 ) =mean ( r n 2 t 2 { i , 1 } ) ;
120 pcshow ( p t n 2 t { i , 1 } ) ;
121 end
122 [ a2 , b2 ]=max ( m e r g e t c r i 2 ) ;
123 p t n 2 t I n s t r = p t n 2 t {b2 , 1 } ;
124 p t n 2 t {b2 , 1 } = [ ] ;
125 p t n 2 t ( c e l l f u n ( @isempty , p t n 2 t ) ) = [ ] ;
126 o r l o c a t i o n = [ ] ;
127 o r c o l o r = [ ] ;
128 f o r i =1 : l e n g t h ( p t n 2 t )
129 o r l o c a t i o n =[ p t n 2 t { i , 1 } . L o c a t i o n ; o r l o c a t i o n ] ;
130 o r c o l o r =[ p t n 2 t { i , 1 } . Co lo r ; o r c o l o r ] ;
131 end
132 p t n 2 t o r g a n = p o i n t C l o u d ( o r l o c a t i o n ) ;
133 p t n 2 t o r g a n . Co lo r = o r c o l o r ;
134 f i g u r e
135 s u b p l o t ( 1 , 2 , 1 )
136 pcshow ( p t n 2 t o r g a n ) ;%79368
137 s u b p l o t ( 1 , 2 , 2 )
138 pcshow ( p t n 2 t I n s t r ) ;%1509
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139

140 Organ =[ p t n 1 t o r g a n . L o c a t i o n ; p t n 2 t o r g a n . L o c a t i o n ; p t t n 3 .
L o c a t i o n ] ;

141 p t t O r g a n = p o i n t C l o u d ( Organ ) ;
142 p t t O r g a n . Co lo r =[ p t n 1 t o r g a n . Co lo r ; p t n 2 t o r g a n . Co lo r ; p t t n 3 .

Co lo r ] ;
143 pcshow ( p t t O r g a n ) ; %103968
144

145 I n s t r =[ p t n 1 t I n s t r . L o c a t i o n ; p t n 2 t I n s t r . L o c a t i o n ] ;
146 p t t I n s t r = p o i n t C l o u d ( I n s t r ) ;
147 p t t I n s t r . Co lo r =[ p t n 1 t I n s t r . Co lo r ; p t n 2 t I n s t r . Co lo r ] ;
148 pcshow ( p t t I n s t r ) %19226
149 p c s h o w p a i r ( p t tOrgan , p t t I n s t r ) ;
150

151 [ l a b e l s , n u m C l u s t e r s ] = p c s e g d i s t ( p t t I n s t r , 0 . 0 6 ) ;
152 pcshow ( p t t I n s t r . Loca t i on , l a b e l s )
153 colormap ( hsv ( n u m C l u s t e r s ) )
154 t t l a b e l s = t a b u l a t e ( l a b e l s ) ;
155 [ t1 , t 2 ]= s o r t ( t t l a b e l s ( : , 2 ) , ’descend’ ) ; % t2 is label, t1 is number
156 i n d e x t i n s t r 1 = f i n d ( ( l a b e l s == t 2 ( 1 , 1 ) ) | ( l a b e l s == t 2 ( 2 , 1 ) ) ) ;
157 p t i n s t r u m e n t = p t t I n s t r . L o c a t i o n ;
158 p t i n s t r u m e n t ( i n d e x t i n s t r 1 , : ) = [ ] ;
159 c t i n s t r u m e n t = p t t I n s t r . Co lo r ;
160 c t i n s t r u m e n t ( i n d e x t i n s t r 1 , : ) = [ ] ;
161 p t t I n s t r 0 1 = p o i n t C l o u d ( p t t I n s t r . L o c a t i o n ( i n d e x t i n s t r 1 , : ) ) ;
162 p t t I n s t r 0 1 . Co lo r = p t t I n s t r . Co lo r ( i n d e x t i n s t r 1 , : ) ;
163 pcshow ( p t t I n s t r 0 1 ) ;%18004
164

165 p t t O r g a n 0 1 = p o i n t C l o u d ( [ p t i n s t r u m e n t ; p t t O r g a n . L o c a t i o n ] ) ;
166 p t t O r g a n 0 1 . Co lo r =[ c t i n s t r u m e n t ; p t t O r g a n . Co lo r ] ;
167 pcshow ( p t t O r g a n 0 1 ) ;%105190
168

169

170

171

172

173 %[bidstX2t, EtX2t, NetX2t] =
findtdelaunaytboundary03tfig1(double(pttInstr01.Location),0.008);

174 [ Bid1 , Bid2 , B i d 1 t ] = bound t ( b i d s t X 2 t ) ;
175 [ I n s t r t i n d e x t r e t , p 0 t I n s t r ] = boundt2 ( p t t I n s t r 0 1 , B i d 1 t ) ;
176 Bidd0= un iq ue ( [ I n s t r t i n d e x t r e t ; c e l l 2 m a t ( Bid1t ’ ) ] ) ;%96
177 p t i t l o = p t t I n s t r 0 1 . L o c a t i o n ;
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178 c t i t l o = p t t I n s t r 0 1 . Co lo r ;
179 p t i t l o ( Bidd0 , : ) = [ ] ;
180 c t i t l o ( Bidd0 , : ) = [ ] ;
181 P T t i n s t r = p o i n t C l o u d ( p t i t l o ) ;
182 P T t i n s t r . Co lo r = c t i t l o ;
183 pcshow ( P T t i n s t r ) %18000 flag=1;
184 %PtitLo = PTtinstr;
185 whi le f l a g
186 i f l e n g t h ( b i d s t X 2 t ) ~=2
187 f l a g =1;
188 [ P t i t L o , b i d s t X 2 t , Bid3 , Bid4 ] = p a r t i t i o n t r e p e a t (

P t i t L o , 0 . 0 0 4 ) ;
189 e l s e
190 f l a g =0;
191 end
192 end
193 p p p t i 1 = P t i t L o . L o c a t i o n ( Bid3 , : ) ;
194 p p p t i 2 = P t i t L o . L o c a t i o n ( Bid4 , : ) ;
195 [ I n s t r t n ] = boundt3 ( p p p t i 1 , p p p t i 2 , P t i t L o . L o c a t i o n ) ;
196 P t i n s t r = p o i n t C l o u d ( P t i t L o . L o c a t i o n ( I n s t r t n , : ) ) ;
197 P t i n s t r . Co lo r = P t i t L o . Co lo r ( I n s t r t n , : ) ;
198 pcshow ( P t i n s t r ) ; %17855
199

200 [ ~ , i n d e x t i n s t r ]= ismember ( P t i n s t r . Loca t i on , p t t I n s t r 0 1 .
Loca t i on , ’rows’ ) ;

201 p t t = p t t I n s t r 0 1 . L o c a t i o n ;
202 p t t ( i n d e x t i n s t r , : ) = [ ] ;
203 c t t = p t t I n s t r 0 1 . Co lo r ;
204 c t t ( i n d e x t i n s t r , : ) = [ ] ;
205 Organ =[ p t t O r g a n 0 1 . L o c a t i o n ; p t t ] ;
206 p t t O r g a n = p o i n t C l o u d ( Organ ) ;
207 p t t O r g a n . Co lo r =[ p t t O r g a n 0 1 . Co lo r ; c t t ] ;
208 pcshow ( p t t O r g a n ) ;%105339
209

210 %PTtO=pttOrgan.Location;
211 xtO=PTtO ( : , 1 ) ;
212 xmtO=mean ( xtO ) ;
213 i ndex tO1 = f i n d ( xtO >xmtO ) ;
214 i ndex tO2 = f i n d ( xtO <=xmtO ) ;
215 p t tO1 = p t t O r g a n . L o c a t i o n ( indextO1 , : ) ;
216 c t t O 1 = p t t O r g a n . Co lo r ( indextO1 , : ) ;
217 p t tO2 = p t t O r g a n . L o c a t i o n ( indextO2 , : ) ;
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218 c t t O 2 = p t t O r g a n . Co lo r ( indextO2 , : ) ;
219 pcshow ( p o i n t C l o u d ( p t tO1 ) )
220 pcshow ( p o i n t C l o u d ( p t tO2 ) )
221 p t t O 1 t y = p t tO1 ( : , 2 ) ;
222 % pttO2ty=pttO2(:,2);
223 GMModeltO1= f i t g m d i s t ( p t t O 1 t y , 2 ) ;
224 MmO1=GMModeltO1 . mu ;
225 i n d e x t O 1 t y = f i n d ( ( ( min (MmO1) + s q r t ( GMModeltO1 . Sigma

( : , : , 2 ) ) ) <= p t t O 1 t y ) &( p t t O 1 t y <=(max (MmO1) − s q r t (
GMModeltO1 . Sigma ( : , : , 1 ) ) ) ) ) ;

226 p t t O 1 t y 1 = p t tO1 ( index tO1 ty , : ) ;
227 c t t O 1 t y 1 = c t t O 1 ( index tO1 ty , : ) ;
228 PTtO1tY1= p o i n t C l o u d ( p t t O 1 t y 1 ) ;
229 PTtO1tY1 . Co lo r = c t t O 1 t y 1 ;
230 pcshow ( PTtO1tY1 ) ;
231 p t t O 2 t y = p t tO2 ( : , 2 ) ;
232 GMModeltO2= f i t g m d i s t ( p t t O 2 t y , 2 ) ;
233 MmO2=GMModeltO2 . mu ;
234 i n d e x t O 2 t y = f i n d ( ( ( min (MmO2) + s q r t ( GMModeltO2 . Sigma

( : , : , 2 ) ) ) <= p t t O 2 t y ) &( p t t O 2 t y <=(max (MmO2) − s q r t (
GMModeltO2 . Sigma ( : , : , 1 ) ) ) ) ) ;

235 p t t O 2 t y 1 = p t tO2 ( index tO2 ty , : ) ;
236 c t t O 2 t y 1 = c t t O 2 ( index tO2 ty , : ) ;
237 PTtO2tY1= p o i n t C l o u d ( p t t O 2 t y 1 ) ;
238 PTtO2tY1 . Co lo r = c t t O 2 t y 1 ;
239 % pcshow(PTtO2tY1);
240 %[ptto1ty1,Bid,OU1] = partitiontrepeat02(PTtO1tY1,0.004);
241 [ PTtO1tY2 , O u t l i e r s 1 , F t m a t r i x 3 ] =BoundtPTO1Y1 ( p t t o 1 t y 1 ,

Bid ) ;
242 f i g u r e ;
243 p c s h o w p a i r ( PTtO1tY2 , p o i n t C l o u d ( [ O u t l i e r s 1 ] ) ) ;
244 %[ptto1ty2,Bidt,OU1t] = partitiontrepeat02(PTtO1tY2,0.004);
245 [ PTtO1tY3 , O u t l i e r s 1 t , F t m a t r i x 1 t , p0 ] = BoundtPTO1Y2 (

p t t o 1 t y 2 , B i d t ) ;
246 f i g u r e ;
247 p c s h o w p a i r ( p t t o 1 t y 2 , p o i n t C l o u d ( [ O u t l i e r s 1 t ; p0 ; OU1t ] ) )

;
248 %[ptto1ty3,Bidt2,OU1t2] = partitiontrepeat02(PTtO1tY3,0.004);
249 [ O u t l i e r s 1 t 2 , F t m a t r i x 1 t 2 ] =BoundtPTO1Y3 ( p t t o 1 t y 3 , B i d t 2

) ;
250 f i g u r e ;
251 p c s h o w p a i r ( p t t o 1 t y 3 , p o i n t C l o u d ( O u t l i e r s 1 t 2 ) ) ;
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252 Otf01 =[OU1; O u t l i e r s 1 ; OU1t ; O u t l i e r s 1 t ; p0 ; OU1t2 ;
O u t l i e r s 1 t 2 ] ;

253 f i g u r e ;
254 p c s h o w p a i r ( p o i n t C l o u d ( Otf01 ) , PTtO1tY1 ) ;
255

256

257 %[ptto2ty1,Bid2,OU2] = partitiontrepeat02(PTtO2tY1,0.005);
258 p t 1 t I n s t r L o c a t i o n = p t t o 2 t y 1 . L o c a t i o n ;
259 p t t O 2 t y = p t 1 t I n s t r L o c a t i o n ( : , 2 ) ;
260 GMModeltO1= f i t g m d i s t ( p t 1 t I n s t r L o c a t i o n ( : , 2 ) , 2 ) ;
261 MmO1=GMModeltO1 . mu ;
262 i n d e x t O 1 t y = f i n d ( ( ( min (MmO1) + s q r t ( GMModeltO1 . Sigma ( : , : , 2 ) ) )

<= p t t O 2 t y ) &( p t t O 2 t y <=(max (MmO1) − s q r t ( GMModeltO1 . Sigma
( : , : , 1 ) ) ) ) ) ;

263 p t t O 2 t y 1 = p t 1 t I n s t r L o c a t i o n ( index tO1 ty , : ) ;
264 f i g u r e
265 s u b p l o t ( 1 , 2 , 1 )
266 p c s h o w p a i r ( p o i n t C l o u d ( p t t O 2 t y 1 ) , p o i n t C l o u d (

p t 1 t I n s t r L o c a t i o n ) ) ;
267 s u b p l o t ( 1 , 2 , 2 )
268 pcshow ( p o i n t C l o u d ( p t t O 2 t y 1 ) ) ;
269

270 %[pttO2ty1t,Bid2t,OU2t] = partitiontrepeat02(pointCloud(pttO2ty1),0.003);
271 f i g u r e
272 p c s h o w p a i r ( p t t O 2 t y 1 t , p o i n t C l o u d ( OU2t ) ) ;
273 [ F t m a t r i x 2 , O u t l i e r s 2 ] = BoundtPTO2Y1 ( p t t O 2 t y 1 t , B i d 2 t ) ;
274 p t11 = p t 1 t I n s t r L o c a t i o n ;
275 p t11 ( index tO1 ty , : ) = [ ] ;
276 p t t O 2 t y 2 = p o i n t C l o u d ( p t11 ) ;
277 f i g u r e
278 pcshow ( p t11 ) ;
279 [ l a b e l s , n u m C l u s t e r s ] = p c s e g d i s t ( p t tO2 ty2 , 0 . 0 5 ) ;
280 pcshow ( pt11 , l a b e l s )
281 colormap ( hsv ( n u m C l u s t e r s ) )
282 t = t a b u l a t e ( l a b e l s ) ;
283 [ a t , b t ]= min ( t ( : , 2 ) ) ;
284 o u t l i e r s t t i n d e x = f i n d ( l a b e l s == b t ) ;
285 o u t l i e r s t = p t11 ( o u t l i e r s t t i n d e x , : ) ;
286 F t m a t r i x 3 = p t11 ;
287 F t m a t r i x 3 ( o u t l i e r s t t i n d e x , : ) = [ ] ;
288

289 Oft02 =[OU2; OU2t ; O u t l i e r s 2 ; o u t l i e r s t ] ;
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290 p c s h o w p a i r ( p o i n t C l o u d ( Of t02 ) , PTtO2tY1 ) ;
291

292 O r g a n t o u t l i e r s =[ Of t02 ; Otf01 ] ;
293 %figure;
294 p c s h o w p a i r ( p o i n t C l o u d ( O r g a n t o u t l i e r s ) , p t t O r g a n ) ;
295 [ ~ , index tOo ]= ismember ( O r g a n t o u t l i e r s , p t t O r g a n . Loca t i on , ’

rows’ ) ;
296 p t t I n s t r =[ P t i n s t r . L o c a t i o n ; p t t O r g a n . L o c a t i o n ( indextOo , : ) ] ;
297 p t t I n s t r c =[ P t i n s t r . Co lo r ; p t t O r g a n . Co lo r ( indextOo , : ) ] ;
298 P t c l o u d t i n s t r = p o i n t C l o u d ( p t t I n s t r ) ;
299 P t c l o u d t i n s t r . Co lo r = p t t I n s t r c ;
300

301 p t t O r g a n f 0 = p t t O r g a n . L o c a t i o n ;
302 p t t O r g a n c 0 = p t t O r g a n . Co lo r ;
303 p t t O r g a n f 0 ( indextOo , : ) = [ ] ;
304 p t t O r g a n c 0 ( indextOo , : ) = [ ] ;
305

306 P t c l o u d t o r g a n = p o i n t C l o u d ( p t t O r g a n f 0 ) ;
307 P t c l o u d t o r g a n . Co lo r = p t t O r g a n c 0 ;
308 pcshow ( P t c l o u d t o r g a n ) ;
309 % pcshow(pttOrganc0);
310 p t t O r g a n c 0 1 = s i n g l e ( p t t O r g a n c 0 ) / 2 5 5 ;
311 [ rn2 , rn3 , rn4 , R01 ] = C o l o r f ( p t t O r g a n c 0 1 ) ;
312 i n de x1 = f i n d ( ( rn4 < 0 . 0 6 ) &(round ( p t t O r g a n c 0 1 ( : , 1 ) ) ==0) ) ;
313 hold on
314 pcshow ( P t c l o u d t o r g a n . L o c a t i o n ( index1 , : ) )
315 p t t I n s t r =[ p t t I n s t r ; P t c l o u d t o r g a n . L o c a t i o n ( index1 , : ) ] ;
316 p t t I n s t r c =[ p t t I n s t r c ; P t c l o u d t o r g a n . Co lo r ( index1 , : ) ] ;
317 P t c l o u d t i n s t r = p o i n t C l o u d ( p t t I n s t r ) ;
318 P t c l o u d t i n s t r . Co lo r = p t t I n s t r c ;
319

320 p t o r g a n = P t c l o u d t o r g a n . L o c a t i o n ;
321 p t o r g a n ( index1 , : ) = [ ] ;
322 c t o r g a n = P t c l o u d t o r g a n . Co lo r ;
323 c t o r g a n ( index1 , : ) = [ ] ;
324

325 p t t I n s t r =[ p t t I n s t r ; P t c l o u d t o r g a n . L o c a t i o n ( index1 , : ) ] ;
326 p t t I n s t r c =[ p t t I n s t r c ; P t c l o u d t o r g a n . Co lo r ( index1 , : ) ] ;
327 P t c l o u d t i n s t r = p o i n t C l o u d ( p t t I n s t r ) ;
328 P t c l o u d t i n s t r . Co lo r = p t t I n s t r c ;
329

330 P t c l o u d t o r g a n = p o i n t C l o u d ( p t o r g a n ) ;



B.4 Segmentation 187

331 P t c l o u d t o r g a n . Co lo r = c t o r g a n ;
332

333 % figure
334 % subplot(1,2,1)
335 % pcshow(Ptcloudtorgan);
336 % subplot(1,2,2)
337 % pcshow(Ptcloudtinstr);
338

339 ptCloudOut = p c d e n o i s e ( P t c l o u d t i n s t r ) ;
340 [ p t C l o u d I n s t r , i n l i e r I n d i c e s , o u t l i e r I n d i c e s ] = p c d e n o i s e (

P t c l o u d t i n s t r ) ;
341 ptCloudOrgan = p o i n t C l o u d ( [ P t c l o u d t i n s t r . L o c a t i o n (

o u t l i e r I n d i c e s , : ) ; P t c l o u d t o r g a n . L o c a t i o n ] ) ;
342 ptCloudOrgan . Co lo r =[ P t c l o u d t i n s t r . Co lo r ( o u t l i e r I n d i c e s , : ) ;

P t c l o u d t o r g a n . Co lo r ] ;
343 f i g u r e
344 s u b p l o t ( 1 , 3 , 1 )
345 pcshow ( ptCloudOrgan ) ;
346 s u b p l o t ( 1 , 3 , 2 )
347 pcshow ( p t C l o u d I n s t r ) ;
348 s u b p l o t ( 1 , 3 , 3 )
349 pcshow ( p tC loud ) ;

1 f u n c t i o n [ r2 , r3 , r4 , RtC1tkeep ] = C o l o r f ( Color tO )
2 f o r i =1 : s i z e ( Color tO , 1 )
3 c01= s i n g l e ( Color tO ( i , : ) ) ;
4 c01 tmin =min ( c01 ) / 2 5 6 ;
5 c01tmax=max ( c01 ) / 2 5 6 ;
6 c01 tmed ian =median ( c01 ) / 2 5 6 ;
7 r2 ( i , : ) =c01tmax / c01 tmin ;
8 r3 ( i , : ) = c01 tmed ian / c01 tmin ;
9 r4 ( i , : ) = Color tO ( i , 1 ) − Color tO ( i , 2 ) ;

10 RtC1tkeep ( i , : ) =round ( r3 ( i , : ) ) / round ( r2 ( i , : ) ) ;
11 end
12 end

1 f u n c t i o n [ pt01 , pt02 , pt03 , indxP ] = P o s i t i o n t S p l i t ( Loca t ion tO
, Color tO , Sm, Number )

2 %Position
3 [dpmmP , XRP] = P a r t i t i o n t s i n g l e ( Loca t ion tO , Sm, Number ) ;
4 f o r i =1 : l e n g t h (XRP)
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5 [ ~ , indxP { i , 1 } ] = ismember (XRP{ i , 1 } , Loca t ion tO , ’
rows’ ) ; %
repeat

6 LP ( i , 1 ) = l e n g t h ( indxP { i , 1 } ) ;
7 end
8 i f l e n g t h (XRP) ==2
9 Loca t ion tOP1 = L o c a t i o n t O ( indxP { 1 , 1 } , : ) ;

10 p t01 = p o i n t C l o u d ( Loca t ion tOP1 ) ;
11 Color tOP1= Color tO ( indxP { 1 , 1 } , : ) ; %60555
12 p t01 . Co lo r =Color tOP1 ;
13 Loca t ion tOP2 = L o c a t i o n t O ( indxP { 2 , 1 } , : ) ;
14 Color tOP2= Color tO ( indxP { 2 , 1 } , : ) ; %62645
15 p t02 = p o i n t C l o u d ( Loca t ion tOP2 ) ;
16 p t02 . Co lo r =Color tOP2 ;
17 f i g u r e
18 s u b p l o t ( 1 , 2 , 1 )
19 pcshow ( p t01 ) ;
20 s u b p l o t ( 1 , 2 , 2 )
21 pcshow ( p t02 ) ;
22 f i g u r e
23 p c s h o w p a i r ( pt01 , p t02 ) ;
24 p t03 = [ ] ;
25 e l s e i f l e n g t h (XRP) ==3
26 Loca t ion tOP1 = L o c a t i o n t O ( indxP { 1 , 1 } , : ) ;
27 p t01 = p o i n t C l o u d ( Loca t ion tOP1 ) ;
28 Color tOP1= Color tO ( indxP { 1 , 1 } , : ) ; %60555
29 p t01 . Co lo r =Color tOP1 ;
30 Loca t ion tOP2 = L o c a t i o n t O ( indxP { 2 , 1 } , : ) ;
31 Color tOP2= Color tO ( indxP { 2 , 1 } , : ) ; %62645
32 p t02 = p o i n t C l o u d ( Loca t ion tOP2 ) ;
33 p t02 . Co lo r =Color tOP2 ;
34 Loca t ion tOP3 = L o c a t i o n t O ( indxP { 3 , 1 } , : ) ;
35 Color tOP3= Color tO ( indxP { 3 , 1 } , : ) ; %62645
36 p t03 = p o i n t C l o u d ( Loca t ion tOP3 ) ;
37 p t03 . Co lo r =Color tOP3 ;
38 f i g u r e
39 s u b p l o t ( 1 , 3 , 1 )
40 pcshow ( p t01 ) ;
41 s u b p l o t ( 1 , 3 , 2 )
42 pcshow ( p t02 ) ;
43 s u b p l o t ( 1 , 3 , 3 )
44 pcshow ( p t03 ) ;
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45 f i g u r e
46 pcshow ( p t01 ) ;
47 hold on
48 pcshow ( p t02 ) ;
49 hold on
50 pcshow ( p t03 ) ;
51 e l s e
52 Loca t ion tOP1 = L o c a t i o n t O ( indxP { 1 , 1 } , : ) ;
53 p t01 = p o i n t C l o u d ( Loca t ion tOP1 ) ;
54 Color tOP1= Color tO ( indxP { 1 , 1 } , : ) ; %60555
55 p t01 . Co lo r =Color tOP1 ;
56 Loca t ion tOP2 = L o c a t i o n t O ( indxP { 2 , 1 } , : ) ;
57 Color tOP2= Color tO ( indxP { 2 , 1 } , : ) ; %62645
58 p t02 = p o i n t C l o u d ( Loca t ion tOP2 ) ;
59 p t02 . Co lo r =Color tOP2 ;
60 Loca t ion tOP3 = L o c a t i o n t O ( indxP { 3 , 1 } , : ) ;
61 Color tOP3= Color tO ( indxP { 3 , 1 } , : ) ; %62645
62 p t03 = p o i n t C l o u d ( Loca t ion tOP3 ) ;
63 p t03 . Co lo r =Color tOP3 ;
64 Loca t ion tOP4 = L o c a t i o n t O ( indxP { 4 , 1 } , : ) ;
65 Color tOP4= Color tO ( indxP { 4 , 1 } , : ) ; %62645
66 p t04 = p o i n t C l o u d ( Loca t ion tOP4 ) ;
67 p t04 . Co lo r =Color tOP4 ;
68 f i g u r e
69 s u b p l o t ( 1 , 4 , 1 )
70 pcshow ( p t01 ) ;
71 s u b p l o t ( 1 , 4 , 2 )
72 pcshow ( p t02 ) ;
73 s u b p l o t ( 1 , 4 , 3 )
74 pcshow ( p t03 ) ;
75 s u b p l o t ( 1 , 4 , 4 )
76 pcshow ( p t04 ) ;
77 f i g u r e
78 pcshow ( p t01 ) ;
79 hold on
80 pcshow ( p t02 ) ;
81 hold on
82 pcshow ( p t03 ) ;
83 hold on
84 pcshow ( p t04 ) ;
85

86 end
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87

88 end

1 f u n c t i o n [dpmm,XR] = P a r t i t i o n t s i n g l e ( X1 , sm , i t e r a t i o n )
2 t = s i z e ( X1 , 2 ) ;
3 X=X1 ( : , 1 : t ) ;
4 X2=X1 ( : , 1 : t ) ;
5 [ n , d ] = s i z e (X) ;
6 a1= diag ( cov ( X2 ) ) ;
7 s s = s q r t ( ( median ( a1 ) ) / 2 ) ;
8 [ niw1 ] = G a u s s t i n i t i t p ( d , X2 , sm , s s ) ; % the initial guass

information for the fixed model
9 [ niw2 ] = G a u s s t i n i t i t p ( d , X2 , sm , s s ) ; % the initial guass

information for the moving model
10 [ niw ] = Gauss01 ( d , ss , sm ) ; % the intial guass for unknown cluster
11 [dpmm, d p mm t po s t e r i o r , dpmmttime ] = DPMMtgauss01 (X,

niw1 , niw2 , niw , i t e r a t i o n ) ;
12 [XR] = P a r t i t o n t S i n g l e 0 1 (dpmm, X1 ) ;
13 end

1 f u n c t i o n [ Bid1 , Bid2 ,A] = bound t ( b i d s t X 2 t )
2 % select the longest boundary Bid1 and the second longer boundary Bid2
3 % A is the left boundary points
4 f o r i =1 : l e n g t h ( b i d s t X 2 t )
5 D t i n s t r ( i , 1 ) = l e n g t h ( b i d s t X 2 t {1 , i } ) ;
6 end
7 [ Di , Dj ]= s o r t ( D t i n s t r ) ;
8 Bid1 =[ b i d s t X 2 t {1 , Dj ( end ) } ] ;
9 i f Di ( end −1) >50

10 Bid2 =[ b i d s t X 2 t {1 , Dj ( end −1) } ] ;
11 e l s e
12 Bid2 = [ ] ;
13 end
14 b i d s t X 2 t {1 , Dj ( end ) } = [ ] ;
15 i f Di ( end −1) >50
16 b i d s t X 2 t {1 , Dj ( end −1) } = [ ] ;
17 end
18 A= b i d s t X 2 t ;
19 A=A(~ c e l l f u n ( ’isempty’ ,A) ) ;
20 end

1 f u n c t i o n [ I n s t r t i n d e x t r e , p0 ] = boundt2 ( p t t I n s t r , B i d t )
2 p t 1 t I n s t r L o c a t i o n = p t t I n s t r . L o c a t i o n ;
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3 I n s t r t i n d e x t r e = [ ] ;
4 f o r i =1 : l e n g t h ( B i d t )
5 PT1= p t 1 t I n s t r L o c a t i o n ( B i d t {1 , i } , : ) ;
6 [ p t 1 t x y z ] = F f e a t u r e ( PT1 ) ;
7 I n s t r 1 t i n d e x = f i n d ( ( p t 1 t x y z . xm<= p t 1 t I n s t r L o c a t i o n

( : , 1 ) ) &( p t 1 t I n s t r L o c a t i o n ( : , 1 ) <= p t 1 t x y z .xM) &(
p t 1 t x y z . ym<= p t 1 t I n s t r L o c a t i o n ( : , 2 ) ) &(
p t 1 t I n s t r L o c a t i o n ( : , 2 ) < p t 1 t x y z .yM) ) ;

8 I n s t r t i n d e x t r e =[ I n s t r 1 t i n d e x ; I n s t r t i n d e x t r e ] ;
9 end

10 p0= p t 1 t I n s t r L o c a t i o n ;
11 p0 ( I n s t r t i n d e x t r e , : ) = [ ] ;
12 end

1 f u n c t i o n [ P t i t L o , b i d s t X 3 t , Bid3 , Bid4 ] = p a r t i t i o n t r e p e a t (
P T t i n s t r , s )

2

3 [ b i d s t X 3 t , EtX2t , NetX2t ] = f i n d t d e l a u n a y t b o u n d a r y 0 3 t f i g 1 (
do ub l e ( P T t i n s t r . L o c a t i o n ) , s ) ;

4 [ Bid3 , Bid4 , B i d t ] = bound t ( b i d s t X 3 t ) ;
5 [ I n s t r t i n d e x t r e ] = boundt2 ( P T t i n s t r , B i d t ) ;
6 B i d d t = un iq ue ( [ I n s t r t i n d e x t r e ; c e l l 2 m a t ( Bid t ’ ) ] ) ;
7 p t i t l o = P T t i n s t r . L o c a t i o n ;
8 c t i t l o = P T t i n s t r . Co lo r ;
9 p t i t l o ( Biddt , : ) = [ ] ;

10 c t i t l o ( Biddt , : ) = [ ] ;
11 P t i t L o = p o i n t C l o u d ( p t i t l o ) ;
12 P t i t L o . Co lo r = c t i t l o ;
13 f i g u r e ;
14 pcshow ( P t i t L o )
15 end

1 f u n c t i o n [ p t t o 1 t y 1 , Bid ,OU, b i d s t X ] = p a r t i t i o n t r e p e a t 0 2 (
PTtO1tY1t2 , s )

2 PTtO1=PTtO1tY1t2 ;
3 OU= [ ] ;
4 f l a g =1;
5 whi le ( f l a g )
6 [ p t t o 1 t y 1 , O u t l i e r 0 , Bid3 , Bid4 , b i d s t X ] =

R e p e a t t P 2 ( PTtO1tY1t2 , s ) ;%8804
7 OU=[OU; O u t l i e r 0 ] ;
8 i f ( l e n g t h ( b i d s t X ) ~=2)&&( l e n g t h ( b i d s t X ) ~=1)
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9 f l a g =1;
10 PTtO1tY1t2= p t t o 1 t y 1 ;
11 e l s e
12 f l a g =0;
13 end
14 end
15

16 i f l e n g t h ( Bid3 ) <= l e n g t h ( Bid4 )
17 Bid ={ Bid3 } ;
18 e l s e
19 Bid ={ Bid4 } ;
20 end
21 end

1 f u n c t i o n [ PTtO1tY2 , O u t l i e r s 1 , F t m a t r i x ] =BoundtPTO1Y1 (
p t t o 1 t y 1 , Bid )

2 p t o 1 y 1 t I n s t r L o c a t i o n = p t t o 1 t y 1 . L o c a t i o n ;
3 f o r i =1 : l e n g t h ( Bid )
4 PT1= p t o 1 y 1 t I n s t r L o c a t i o n ( Bid {1 , i } , : ) ; %

boundary data
5 end
6 [ I n s t r t i n d e x t r e , p0 ] = boundt2 ( p t t o 1 t y 1 , Bid ) ;
7 r e = [ ] ;
8 PT2 =[ p t o 1 y 1 t I n s t r L o c a t i o n ( I n s t r t i n d e x t r e , : ) ; r e ] ;
9 [ normals , c u r v a t u r e ] = f i n d P o i n t N o r m a l s ( PT1 , 3 ) ;

10 contour ( no rma l s ) ;
11 di sp ( ’Please select the key points for normals !’ ) ;
12 prompt = ’The key point will be %d: ’ ;
13 r a = input ( prompt ) ;
14 di sp ( ’Please select the key boundary !’ ) ;
15 prompt = ’The beta will be %d: ’ ;
16 beta = input ( prompt ) ;
17 i f beta ==1
18 p t 2 =PT1 ( 1 : ra , : ) ;% contour normals
19 e l s e
20 p t 2 =PT1 ( r a : end , : ) ;
21 end
22 % pt2=PT1(1:ra,:);pcshowpair(pointCloud(pt2),pointCloud(PT2))
23 Idx = f i n d ( ( PT2 ( : , 1 ) <=max ( p t 2 ( : , 1 ) ) ) &(PT2 ( : , 2 ) <=max (

p t 2 ( : , 2 ) ) ) ) ; % narrow the
partition

24 p c s h o w p a i r ( p o i n t C l o u d ( PT2 ( Idx , : ) ) , p o i n t C l o u d ( p t 2 ) ) ;
25 pm=PT2 ( Idx , : ) ;
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26 pm1=PT2 ;
27 pm1 ( Idx , : ) = [ ] ; %1040 keep Organ 1
28 Pm= p o i n t C l o u d (pm) ;
29 % cm=CT2(Idx,:);
30 % Pm.Color=cm;
31 [ a01 , a02 ]=max ( p t 2 ( : , 1 ) ) ;
32 [ b01 , b02 ]= min ( p t 2 ( : , 1 ) ) ;
33 p l o t (pm ( : , 1 ) ,pm ( : , 2 ) , ’b.’ ) ;
34 hold on
35 p l o t ( p t 2 ( : , 1 ) , p t 2 ( : , 2 ) , ’r.’ ) ;
36 hold on
37 p l o t ( p t 2 ( a02 , 1 ) , p t 2 ( a02 , 2 ) , ’yo’ ) ;
38 hold on
39 p l o t ( p t 2 ( b02 , 1 ) , p t 2 ( b02 , 2 ) , ’ys’ ) ;
40 di sp ( ’Please select the way of fitting !’ ) ;
41 prompt = ’The note1 value will be %d: ’ ;
42 n o t e 1 = input ( prompt ) ;
43 i f n o t e 1 ==1
44 f i t o b j e c t = f i t ( p t 2 ( : , 1 ) , p t 2 ( : , 2 ) , ’poly1’ ) ;
45 p1= f i t o b j e c t . p1 ;
46 p2= f i t o b j e c t . p2 ;
47 e l s e
48 p1 =( p t 2 ( b02 , 2 ) − p t 2 ( a02 , 2 ) ) / ( p t 2 ( b02 , 1 ) − p t 2 ( a02 , 1 ) ) ;
49 p2= p t 2 ( a02 , 2 ) −p1* p t 2 ( a02 , 1 ) ;
50 end
51 A t m a t r i x = z e r o s ( l e n g t h (pm) , 6 ) ;
52 A t m a t r i x ( : , 1 : 3 ) =pm ;
53 [ ~ , i nd ex2 ]= ismember ( pt2 , pm , ’rows’ ) ;
54 A t m a t r i x ( index2 , 4 ) =1;
55 A t m a t r i x ( : , 5 ) =p1* A t m a t r i x ( : , 1 ) +p2 ;
56 hold on
57 p l o t ( A t m a t r i x ( : , 1 ) , A t m a t r i x ( : , 5 ) , ’yo’ ) ;
58 di sp ( ’Please select the range of non-outliers !’ ) ;
59 prompt = ’The note2 value will be %d: ’ ;
60 n o t e 2 = input ( prompt ) ;
61 i f n o t e 2 ==1
62 r r =1 ;
63 e l s e
64 r r = −1;
65 end
66 A t m a t r i x ( : , 6 ) = r r * s i g n ( A t m a t r i x ( : , 2 ) − A t m a t r i x ( : , 5 ) ) ;
67 i n d e x = f i n d ( A t m a t r i x ( : , 6 ) == −1) ;
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68 hold on
69 p l o t ( A t m a t r i x ( index , 1 ) , A t m a t r i x ( index , 2 ) , ’y+’ ) ;
70 F t m a t r i x = un iq ue ( [ A t m a t r i x ( index , 1 : 3 ) ; p t 2 ; pm1 ] , ’rows’ )

; %1431
71 [ ~ , i nd ex1 ]= ismember ( F t m a t r i x , PT2 , ’rows’ ) ;
72 O u t l i e r s 1 =PT2 ;
73 O u t l i e r s 1 ( index1 , : ) = [ ] ; %24
74 hold on
75 p l o t ( O u t l i e r s 1 ( : , 1 ) , O u t l i e r s 1 ( : , 2 ) , ’ms’ ) ;
76 [ ~ , i nd ex1 ]= ismember ( PT2 , p t t o 1 t y 1 . Loca t i on , ’rows’ ) ;
77 p t l = p t t o 1 t y 1 . L o c a t i o n ;
78 p t l ( index1 , : ) = [ ] ;
79 PTtO1tY2= p o i n t C l o u d ( p t l ) ;
80 end

1 f u n c t i o n [ PTtO1tY3 , O u t l i e r s 1 , F t m a t r i x , p0 ] = BoundtPTO1Y2 (
p t t o 1 t y 2 , B i d t )

2 p t o 1 y 1 t I n s t r L o c a t i o n = p t t o 1 t y 2 . L o c a t i o n ;
3 f o r i =1 : l e n g t h ( B i d t )
4 PT1= p t o 1 y 1 t I n s t r L o c a t i o n ( B i d t {1 , i } , : ) ; % boundary

data
5 end
6 [ I n s t r t i n d e x t r e , p0 ] = boundt2 ( p t t o 1 t y 2 , B i d t ) ;
7 p c s h o w p a i r ( p o i n t C l o u d ( p0 ) , p t t o 1 t y 2 )
8 r e = [ ] ;
9 PT2 =[ p t o 1 y 1 t I n s t r L o c a t i o n ( I n s t r t i n d e x t r e , : ) ; r e ] ;

10 [ normals , c u r v a t u r e ] = f i n d P o i n t N o r m a l s ( PT1 , 3 ) ;
11 contour ( no rma l s ) ;
12 di sp ( ’Please select the key boundary !’ ) ;
13 prompt = ’The beta will be %d: ’ ;
14 beta = input ( prompt ) ;
15 i f beta ==1
16 di sp ( ’Please select the key points for normals !’ ) ;
17 prompt = ’The key point will be %d: ’ ;
18 r a = input ( prompt ) ;
19 p t 2 =PT1 ( 1 : ra , : ) ;% contour normals
20 e l s e i f beta ==0
21 di sp ( ’Please select the key points for normals !’ ) ;
22 prompt = ’The key point will be %d: ’ ;
23 r a = input ( prompt ) ;
24 p t 2 =PT1 ( r a : end , : ) ;
25 e l s e
26 di sp ( ’Please select the key points for normals !’ ) ;
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27 prompt = ’The ra will be %d: ’ ;
28 r a = input ( prompt ) ;
29 prompt = ’The rb will be %d: ’ ;
30 rb = input ( prompt ) ;
31 p t 2 =PT1 ( r a : rb , : ) ;
32 end
33 % pt2=PT1(1:ra,:);pcshowpair(pointCloud(pt2),pointCloud(PT2))
34 Idx = f i n d ( ( PT2 ( : , 1 ) <=max ( p t 2 ( : , 1 ) ) ) &(PT2 ( : , 2 ) <=max ( p t 2

( : , 2 ) ) ) ) ; % narrow the
partition

35 p c s h o w p a i r ( p o i n t C l o u d ( PT2 ( Idx , : ) ) , p o i n t C l o u d ( p t 2 ) ) ;
36 pm=PT2 ( Idx , : ) ;
37 pm1=PT2 ;
38 pm1 ( Idx , : ) = [ ] ; %1040 keep Organ 1
39 Pm= p o i n t C l o u d (pm) ;
40 % cm=CT2(Idx,:);
41 % Pm.Color=cm;
42 [ a01 , a02 ]=max ( p t 2 ( : , 1 ) ) ;
43 [ b01 , b02 ]= min ( p t 2 ( : , 1 ) ) ;
44 p l o t (pm ( : , 1 ) ,pm ( : , 2 ) , ’b.’ ) ;
45 hold on
46 p l o t ( p t 2 ( : , 1 ) , p t 2 ( : , 2 ) , ’r.’ ) ;
47 hold on
48 p l o t ( p t 2 ( a02 , 1 ) , p t 2 ( a02 , 2 ) , ’yo’ ) ;
49 hold on
50 p l o t ( p t 2 ( b02 , 1 ) , p t 2 ( b02 , 2 ) , ’ys’ ) ;
51 di sp ( ’Please select the way of fitting !’ ) ;
52 prompt = ’The note1 value will be %d: ’ ;
53 n o t e 1 = input ( prompt ) ;
54 i f n o t e 1 ==1
55 f i t o b j e c t = f i t ( p t 2 ( : , 1 ) , p t 2 ( : , 2 ) , ’poly1’ ) ;
56 p1= f i t o b j e c t . p1 ;
57 p2= f i t o b j e c t . p2 ;
58 e l s e
59 p1 =( p t 2 ( b02 , 2 ) − p t 2 ( a02 , 2 ) ) / ( p t 2 ( b02 , 1 ) − p t 2 ( a02 , 1 ) ) ;
60 p2= p t 2 ( a02 , 2 ) −p1* p t 2 ( a02 , 1 ) ;
61 end
62 A t m a t r i x = z e r o s ( l e n g t h (pm) , 6 ) ;
63 A t m a t r i x ( : , 1 : 3 ) =pm ;
64 [ ~ , i nd ex2 ]= ismember ( pt2 , pm , ’rows’ ) ;
65 A t m a t r i x ( index2 , 4 ) =1;
66 A t m a t r i x ( : , 5 ) =p1* A t m a t r i x ( : , 1 ) +p2 ;
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67 hold on
68 p l o t ( A t m a t r i x ( : , 1 ) , A t m a t r i x ( : , 5 ) , ’yo’ ) ;
69 di sp ( ’Please select the range of non-outliers !’ ) ;
70 prompt = ’The note2 value will be %d: ’ ;
71 n o t e 2 = input ( prompt ) ;
72 i f n o t e 2 ==1
73 r r =1 ;
74 e l s e
75 r r = −1;
76 end
77 A t m a t r i x ( : , 6 ) = r r * s i g n ( A t m a t r i x ( : , 2 ) − A t m a t r i x ( : , 5 ) ) ;
78 i n d e x = f i n d ( A t m a t r i x ( : , 6 ) == −1) ;
79 hold on
80 p l o t ( A t m a t r i x ( index , 1 ) , A t m a t r i x ( index , 2 ) , ’y+’ ) ;
81 F t m a t r i x = un iq ue ( [ A t m a t r i x ( index , 1 : 3 ) ; p t 2 ] , ’rows’ ) ; %1431
82 [ ~ , i nd ex1 ]= ismember ( F t m a t r i x , Pm . Loca t i on , ’rows’ ) ;
83 O u t l i e r s 1 =Pm . L o c a t i o n ;
84 O u t l i e r s 1 ( index1 , : ) = [ ] ; %24
85 hold on
86 p l o t ( O u t l i e r s 1 ( : , 1 ) , O u t l i e r s 1 ( : , 2 ) , ’ms’ ) ;
87 % [ ,index1]=ismember(Outliers1,PT2,’rows’);
88 % ptl=ptto1ty2.Location;
89 % ptl(index1,:)=[];
90 PTtO1tY3= p o i n t C l o u d ( pm1 ) ;
91 end

1 f u n c t i o n [ O u t l i e r s f , F t m a t r i x f ] =BoundtPTO1Y3 ( p t t o 1 t y 3 , B i d t 2
)

2 p t o 1 y 1 t I n s t r L o c a t i o n = p t t o 1 t y 3 . L o c a t i o n ;
3 f o r i =1 : l e n g t h ( B i d t 2 )
4 PT1= p t o 1 y 1 t I n s t r L o c a t i o n ( B i d t 2 {1 , i } , : ) ; % boundary

data
5 end
6 [ I n s t r t i n d e x t r e , p0 ] = boundt2 ( p t t o 1 t y 3 , B i d t 2 ) ;
7 p c s h o w p a i r ( p o i n t C l o u d ( p0 ) , p t t o 1 t y 3 )
8 r e = [ ] ;
9 PT2 =[ p t o 1 y 1 t I n s t r L o c a t i o n ( I n s t r t i n d e x t r e , : ) ; r e ] ;

10 [ normals , c u r v a t u r e ] = f i n d P o i n t N o r m a l s ( PT1 , 3 ) ;
11 contour ( no rma l s ) ;
12 di sp ( ’Please select the key boundary !’ ) ;
13 prompt = ’The beta will be %d: ’ ;
14 beta = input ( prompt ) ;
15 i f beta ==1
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16 di sp ( ’Please select the key points for normals !’ ) ;
17 prompt = ’The key point will be %d: ’ ;
18 r a = input ( prompt ) ;
19 p t 2 =PT1 ( 1 : ra , : ) ;% contour normals
20 e l s e i f beta ==0
21 di sp ( ’Please select the key points for normals !’ ) ;
22 prompt = ’The key point will be %d: ’ ;
23 r a = input ( prompt ) ;
24 p t 2 =PT1 ( r a : end , : ) ;
25 e l s e
26 di sp ( ’Please select the key points for normals !’ ) ;
27 prompt = ’The ra will be %d: ’ ;
28 r a = input ( prompt ) ;
29 prompt = ’The rb will be %d: ’ ;
30 rb = input ( prompt ) ;
31 p t 2 =PT1 ( r a : rb , : ) ;
32 end
33 % pt2=PT1(1:ra,:);pcshowpair(pointCloud(pt2),pointCloud(PT2))
34 Idx = f i n d ( ( PT2 ( : , 1 ) <=max ( p t 2 ( : , 1 ) ) ) &(PT2 ( : , 2 ) <=max ( p t 2

( : , 2 ) ) ) ) ; % narrow the
partition

35 p c s h o w p a i r ( p o i n t C l o u d ( PT2 ( Idx , : ) ) , p o i n t C l o u d ( p t 2 ) ) ;
36 pm=PT2 ( Idx , : ) ;
37 pm1=PT2 ;
38 pm1 ( Idx , : ) = [ ] ; %1040 keep Organ 1
39 Pm= p o i n t C l o u d (pm) ;
40 % cm=CT2(Idx,:);
41 % Pm.Color=cm;
42 [ a01 , a02 ]=max ( p t 2 ( : , 1 ) ) ;
43 [ b01 , b02 ]= min ( p t 2 ( : , 1 ) ) ;
44 p l o t (pm ( : , 1 ) ,pm ( : , 2 ) , ’b.’ ) ;
45 hold on
46 p l o t ( p t 2 ( : , 1 ) , p t 2 ( : , 2 ) , ’r.’ ) ;
47 hold on
48 p l o t ( p t 2 ( a02 , 1 ) , p t 2 ( a02 , 2 ) , ’yo’ ) ;
49 hold on
50 p l o t ( p t 2 ( b02 , 1 ) , p t 2 ( b02 , 2 ) , ’ys’ ) ;
51 di sp ( ’Please select the way of fitting !’ ) ;
52 prompt = ’The note1 value will be %d: ’ ;
53 n o t e 1 = input ( prompt ) ;
54 i f n o t e 1 ==1
55 f i t o b j e c t = f i t ( p t 2 ( : , 1 ) , p t 2 ( : , 2 ) , ’poly1’ ) ;
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56 p1= f i t o b j e c t . p1 ;
57 p2= f i t o b j e c t . p2 ;
58 e l s e
59 p1 =( p t 2 ( b02 , 2 ) − p t 2 ( a02 , 2 ) ) / ( p t 2 ( b02 , 1 ) − p t 2 ( a02 , 1 ) ) ;
60 p2= p t 2 ( a02 , 2 ) −p1* p t 2 ( a02 , 1 ) ;
61 end
62 A t m a t r i x = z e r o s ( l e n g t h (pm) , 6 ) ;
63 A t m a t r i x ( : , 1 : 3 ) =pm ;
64 [ ~ , i nd ex2 ]= ismember ( pt2 , pm , ’rows’ ) ;
65 A t m a t r i x ( index2 , 4 ) =1;
66 A t m a t r i x ( : , 5 ) =p1* A t m a t r i x ( : , 1 ) +p2 ;
67 hold on
68 p l o t ( A t m a t r i x ( : , 1 ) , A t m a t r i x ( : , 5 ) , ’yo’ ) ;
69 di sp ( ’Please select the range of non-outliers !’ ) ;
70 prompt = ’The note2 value will be %d: ’ ;
71 n o t e 2 = input ( prompt ) ;
72 i f n o t e 2 ==1
73 r r =1 ;
74 e l s e
75 r r = −1;
76 end
77 A t m a t r i x ( : , 6 ) = r r * s i g n ( A t m a t r i x ( : , 2 ) − A t m a t r i x ( : , 5 ) ) ;
78 i n d e x = f i n d ( A t m a t r i x ( : , 6 ) == −1) ;
79 hold on
80 p l o t ( A t m a t r i x ( index , 1 ) , A t m a t r i x ( index , 2 ) , ’y+’ ) ;
81 F t m a t r i x = un iq ue ( [ A t m a t r i x ( index , 1 : 3 ) ; p t 2 ] , ’rows’ ) ; %

1431
82 [ ~ , i nd ex1 ]= ismember ( F t m a t r i x , Pm . Loca t i on , ’rows’ ) ;
83 O u t l i e r s 1 =Pm . L o c a t i o n ;
84 O u t l i e r s 1 ( index1 , : ) = [ ] ; %24
85 hold on
86 p l o t ( O u t l i e r s 1 ( : , 1 ) , O u t l i e r s 1 ( : , 2 ) , ’ms’ ) ;
87 [ b i d s t X 3 t , EtX2t , NetX2t ] =

f i n d t d e l a u n a y t b o u n d a r y 0 3 t f i g 1 ( d ou b l e ( O u t l i e r s 1 )
, 0 . 0 0 4 ) ;

88 [ I n s t r t i n d e x t r e t , p 0 t ] = boundt2 ( p o i n t C l o u d ( O u t l i e r s 1 ) ,
b i d s t X 3 t ) ;

89 O u t l i e r s f =[ p 0 t ; p0 ] ;
90 f i g u r e ;
91 p c s h o w p a i r ( p t t o 1 t y 3 , p o i n t C l o u d ( O u t l i e r s f ) ) ;
92 [ ~ , i ndex01 ]= ismember ( O u t l i e r s f , p t o 1 y 1 t I n s t r L o c a t i o n , ’

rows’ ) ;
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93 p t o 1 y 1 t I n s t r L o c a t i o n ( index01 , : ) = [ ] ;
94 F t m a t r i x f = p t o 1 y 1 t I n s t r L o c a t i o n ;
95 end

1 f u n c t i o n [ F t m a t r i x , O u t l i e r s 1 ] = BoundtPTO2Y1 ( p t t O 2 t y 1 t ,
B i d 2 t )

2 p t 1 1 2 t I n s t r L o c a t i o n = p t t O 2 t y 1 t . L o c a t i o n ;
3 pm= p t 1 1 2 t I n s t r L o c a t i o n ;
4 f o r i =1 : l e n g t h ( B i d 2 t )
5 PT112= p t 1 1 2 t I n s t r L o c a t i o n ( B i d 2 t {1 , i } , : ) ; % boundary data
6 end
7 % pcshow(PT112)
8 [ normals , c u r v a t u r e ] = f i n d P o i n t N o r m a l s ( PT112 , 4 ) ;
9 contour ( no rma l s ) ;

10 di sp ( ’Please select the key boundary !’ ) ;
11 prompt = ’The beta will be %d: ’ ;
12 beta = input ( prompt ) ;
13 i f beta ==1
14 di sp ( ’Please select the key points for normals !’ ) ;
15 prompt = ’The key point will be %d: ’ ;
16 r a = input ( prompt ) ;
17 p t 2 =PT112 ( 1 : ra , : ) ;% contour normals
18 e l s e i f beta ==0
19 di sp ( ’Please select the key points for normals !’ ) ;
20 prompt = ’The key point will be %d: ’ ;
21 r a = input ( prompt ) ;
22 p t 2 =PT112 ( r a : end , : ) ;
23 e l s e
24 di sp ( ’Please select the key points for normals !’ ) ;
25 prompt = ’The ra will be %d: ’ ;
26 r a = input ( prompt ) ;
27 prompt = ’The rb will be %d: ’ ;
28 rb = input ( prompt ) ;
29 p t 2 =PT112 ( r a : rb , : ) ;
30 end
31 f i g u r e
32 p c s h o w p a i r ( p o i n t C l o u d ( p t 2 ) , p t t O 2 t y 1 t ) ;
33 f i g u r e
34 [ a01 , a02 ]=max ( p t 2 ( : , 1 ) ) ;
35 [ b01 , b02 ]= min ( p t 2 ( : , 1 ) ) ;
36 p l o t (pm ( : , 1 ) ,pm ( : , 2 ) , ’b.’ ) ;
37 hold on
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38 p l o t ( p t 2 ( : , 1 ) , p t 2 ( : , 2 ) , ’r.’ ) ;
39 hold on
40 p l o t ( p t 2 ( a02 , 1 ) , p t 2 ( a02 , 2 ) , ’yo’ ) ;
41 hold on
42 p l o t ( p t 2 ( b02 , 1 ) , p t 2 ( b02 , 2 ) , ’ys’ ) ;
43 di sp ( ’Please select the way of fitting !’ ) ;
44 prompt = ’The note1 value will be %d: ’ ;
45 n o t e 1 = input ( prompt ) ;
46 i f n o t e 1 ==1
47 f i t o b j e c t = f i t ( p t 2 ( : , 1 ) , p t 2 ( : , 2 ) , ’poly1’ ) ;
48 p1= f i t o b j e c t . p1 ;
49 p2= f i t o b j e c t . p2 ;
50 e l s e
51 p1 =( p t 2 ( b02 , 2 ) − p t 2 ( a02 , 2 ) ) / ( p t 2 ( b02 , 1 ) − p t 2 ( a02 , 1 ) ) ;
52 p2= p t 2 ( a02 , 2 ) −p1* p t 2 ( a02 , 1 ) ;
53 end
54 A t m a t r i x = z e r o s ( l e n g t h (pm) , 6 ) ;
55 A t m a t r i x ( : , 1 : 3 ) =pm ;
56 [ ~ , i nd ex2 ]= ismember ( pt2 , pm , ’rows’ ) ;
57 A t m a t r i x ( index2 , 4 ) =1 ;
58 A t m a t r i x ( : , 5 ) =p1* A t m a t r i x ( : , 1 ) +p2 ;
59 hold on
60 p l o t ( A t m a t r i x ( : , 1 ) , A t m a t r i x ( : , 5 ) , ’yo’ ) ;
61 di sp ( ’Please select the range of non-outliers !’ ) ;
62 prompt = ’The note2 value will be %d: ’ ;
63 n o t e 2 = input ( prompt ) ;
64 i f n o t e 2 ==1
65 r r =1 ;
66 e l s e
67 r r = −1;
68 end
69 A t m a t r i x ( : , 6 ) = r r * s i g n ( A t m a t r i x ( : , 2 ) − A t m a t r i x ( : , 5 ) ) ;
70 i n d e x = f i n d ( A t m a t r i x ( : , 6 ) == −1) ;
71 hold on
72 p l o t ( A t m a t r i x ( index , 1 ) , A t m a t r i x ( index , 2 ) , ’y+’ ) ;
73 F t m a t r i x = un iq ue ( [ A t m a t r i x ( index , 1 : 3 ) ; p t 2 ] , ’rows’ ) ; %1431
74 [ ~ , i nd ex1 ]= ismember ( F t m a t r i x , pm , ’rows’ ) ;
75 O u t l i e r s 1 =pm ;
76 O u t l i e r s 1 ( index1 , : ) = [ ] ; %24
77 f i g u r e ;
78 p c s h o w p a i r ( p o i n t C l o u d ( O u t l i e r s 1 ) , p o i n t C l o u d (pm) ) ;
79 end
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