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Abstract

“Missing markers problem”, that is, missing markers during a motion capture session, has

been raised for many years in Motion Capture field. We propose the locally weighted princi-

pal component analysis (PCA) regression method to deal with this challenge. The main

merit is to introduce the sparsity of observation datasets through the multivariate tapering

approach into traditional least square methods and develop it into a new kind of least square

methods with the sparsity constraints. To the best of our knowledge, it is the first least

square method with the sparsity constraints. Our experiments show that the proposed

regression method can reach high estimation accuracy and has a good numerical stability.

Introduction

Motion Capture (MoCap) technology is widely applied to our daily life, ranging from clinical

purposes, sport coaching to movie visual effect production, computer animation [1–4] and

VR/AR such as the iPad’s LiDAR sensor. We aim at one kind of MoCap data, i.e. 3D skeletal

motion data, since some of usual problems (e.g. missing markers or occlusion, short-duration

high frequency noise or jitter) always result in gaps in datasets, which is called as the “Missing

Marker Problem” [5]. Although there are some commercial software available which can pro-

vide powerful tools for aiding in the cleanup of MoCap data [6], it can still often take several

hours per capture and is almost always the most expensive and time consuming part of the

pipeline. A rising challenge is to improve the accuracy of recovering gaps and the computa-

tional efficiency for evergrowing data [7]. There have been a certain number of presented mea-

sures to address this problem. Traditional approaches [8–10], utilizing the linear interpolation,

spline interpolation, monotone piecewise cubic interpolation as well as Kalman filter, can suc-

cessfully recovery gaps. Resorting to the available temporal information, they can work in real-

time. However, these methods usually rely on the continuity of motion sequences. Manual

intervention is still required when markers are missing for a long period of time, or missing

from the very beginning [11, 12]. Thus this kind of methods may be unsuitable for long dura-

tion of missing joints [13, 14].

Besides, several methods, Li et al. [15, 16] and Tan et al. [17], employed the Linear Dynamic

System (LDS) technology and successfully applied it to real-time applications. But they failed in
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a large ratio of occluded markers [18]. Moreover, Singular Value Thresholding (SVT) [19] and

Non-negative Matrix Factorization (NMF) [11] approaches were employed as well in [12, 20,

21]. The distinct advantage is to take charge of the sparsest approximation to redundant motion

datasets. The further research [22] aimed to clean up motion data through the low-rank matrix

decomposition technology. However, such low rank approximation methods usually require

prior knowledge of skeleton constraints, or the availability of a prerecorded dataset to recalculate

skeleton constraints. Unfortunately they still led to unrealistic recovery [23], particularly the

multiple missing markers’ scenarios [5, 24]. [18] further shows that when joints move up and

down sharply and radically in motion sequences, all methods have to suffer too many “outliers”

in the context of interpolation. The numerical stability of algorithms should be given priority.

Apart from that, Federol [5, 24] employed the principal component analysis (PCA) approach to

the multiple missing markers’ scenarios. The improvement is limited since they didn’t utilize

training datasets. To take advantage of training datasets, Liu et al. [25] proposed a method of

combining PCA and K-mean clustering. Our previous work [26] also made an attempt to tackle

this issue. However, the numerical stability of algorithms is still a major challenge.

The main contribution of this paper is to introduce the multivariate tapering approach [27]

to traditional least square methods and further develop it into the locally weighted PCA regres-

sion method for the “missing marker problem”. To the best of our knowledge, it is the first

least square method with the sparsity constraints. Essentially, thanks to a sparse approximate

covariance, it effectively suppresses the errors from redundant observation data and drastically

improves the accuracy of estimations. The traditional least square methods just cannot handle

the redundancy of input data well. Our experiments validate that the proposed locally

weighted PCA regression method has a good numerical stability.

Methods

Our basic idea is to apply weighted least squares (WLS) to principal component analysis

regression. Unlike the traditional WLS, we introduce the locally weighted strategy into WLS

and conclude the locally weighted PCA algorithms. For clarity, we briefly address the weighted

PCA method, and then propose the locally weighted PCA in this section. After that, we address

extreme cases.

A sequence of 3D skeletal motion data is usually represented in a matrix form. Let a sample

of motion data be Ai 2 Rm×3n, i = 1‥K, wherem is the number of frames, n is the number of

markers, K is the number of training samples andm� n. All the training samples may be

stocked in a matrix A ¼ ðAT
1
; . . . ;ATKÞ

T
. Let the testing sample beM 2 Rm×3n, which contains

G gaps. Each gap does not only refer to some missing marker and also indicate the beginning

and ending time of missing this marker in a sample. We can apply these gaps to every training

sample Ai so that the resulting training sample ~Ai has the same gaps as the testing sampleM.

To emphasize every gap, we apply only one gap to all the training samples each time,

~Agi ; i ¼ 1‥K, where g denotes the index of gaps. As a result, we obtain a set of training samples

for each full motion matrix Ai, i.e., fAi; ~Ai; ~A1
i ; . . . ; ~AGi g; i ¼ 1‥K, and stack them by gaps into

the individual gap-groups, ~Ag ¼ ð~Ag1; . . . ; ~AgKÞ; g ¼ 1‥G.

Weighted PCA

Applying Singular Value Decomposition (SVD) to the training sample sets yields,

ATA ¼ USUT

~AgT ~Ag ¼ ~Ug ~Sg ~UgT ; g ¼ 1‥G

(

ð1Þ
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where U and ~Ug span the individual eigenspaces. In general, the principal component space is

regarded as the sub-eigenspace spanned by the first k eigen vectors. (We still use U and ~Ug to

denote the principal component spaces in the following.) There exists a linear mapping Tg

between the U and ~Ug . Thus we may assume that,

AiU � ~Agi ~UgTg; i ¼ 1‥K; g ¼ 1‥G ð2Þ

where Tg is a mapping of size k × k with regard to the g-th gap. The residual error is expressed

as,

B ¼
XG

g¼1

XK

i¼1

ðAi � ~Agi ~UgTgUTÞ ð3Þ

Applying SVD to the residual BTB yields the eigenvalues {δi}.
To weight the residual error, we can construct the weighted matrixW as a diagonal matrix

with the diagonal of {1/δi} through the training sample pairs. Usually, we need to set a thresh-

old. When the δi< threshold, let δi = threshold. In weighted least squares, theW can overcome

the issue of non-constant variance in samples.

We rewrite Eq 2 in a linear combination form as below,

Ai � ~Ai

 
XG

g¼1

ag
~UgTgUT

!

; i ¼ 1‥K ð4Þ

where ~Ai contains G gaps rather than one gap, and the regression coefficients αg correspond to

the gaps separately. To solve the unknown α, we employ the weighted least square method as

follows,

min
a

XK

i¼1

�
�
�
�
�

 

Ai � ~Ai

 
XG

g¼1

ag
~UgTgUT

!!

W

 

Ai � ~Ai

 
XG

g¼1

ag
~UgTgUT

!!T��
�
�
�

ð5Þ

It concludes the weighted PCA interpolation equation for the testing sampleM as,

M� ¼ M

 
XG

g¼1

ag
~UgTgUT

!

ð6Þ

whereM� denotes the reconstructed full motion matrix.

Locally weighted PCA

Although the weighted least square method has good numerical stability and high computa-

tional efficiency, particularly it can deal with “outliers”, it still suffers the underfitting issue.

When gaps stay at the areas where joints have the big fluctuations, it is hard for Eq 6 to

improve the interpolation accuracy. The locally weighted strategy is to introduce a weighting

mask over the motion matrixM, in which the entries far from the gaps will be given lower

weights and the entries near to the gaps are given higher weights. This will taper the distance

function to zero beyond a certain range. Mathematically, the mask will bring about some spar-

sity to covariance and result in an asymptotic optimal mean squared error. The mask is defined

as,

Qgij ¼ exp �
dist2ðg; pijÞ

s2

� �

; i ¼ 1‥m; j ¼ 1‥n; g ¼ 1‥G ð7Þ
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where p denotes an entry within a sample matrix, and σ denotes the window size of Gaussian

function. dist denotes the distance from an entry p to the gth gap within a sample matrix, that

is, a square root of the summation of the squared the makers’ spatial and temporal distances in

a motion matrix. 0i0 indicates time dimension and hence it is used to compute the temporal dis-

tance. 0j0 stands for the markers. But, we compute the spatial distance between markers using

the shortest path on a human skeleton model instead of the real distance between two markers

here.

Moreover, for each gap, we may construct the individual mask Qg and apply it to two sam-

ple sets A and ~Ag respectively, which updates Eq 1 to yield the eigenspaces Ug and ~Ug accord-

ingly. We rewrite Eq 3 as,

B ¼
XG

g¼1

 
XK

i¼1

ðAi � ~Ai ~U
gTgUgT Þ: � Qg

!

ð8Þ

where 0.�0 denotes the elementwise multiplication. The weighted matrixW can be constructed

according to the eigenvalues of the covariance BTB. The regression coefficient α is solved by

minimizing the residuals Eq 8 as,

min
a

XK

i¼1

�
�
�
�
�

 

Ai � ~Ai

 
XG

g¼1

ag
~UgTgUgT

!!

: � �QW

  

Ai � ~Ai

 
XG

g¼1

ag
~UgTgUgT

!!

: � �QÞT
�
�
�
�
�

ð9Þ

where �Q ¼
PG

j¼1
Qj and is quantified in [0‥1]. It concludes the interpolation equation for the

testing sampleM as,

M� ¼ M

 
XG

g¼1

ag
~UgTgUgT

!

ð10Þ

Compared to the weighted PCA, the highlighted issue is the locally weighted Q, which is

applied to the sample sets A and ~A separately and results in the tapered covariance matrices.

Essentially, the proposed locally weighted PCA is still a variant of weighed least square meth-

ods. Additionally, we only care about the interpolated items inM� of Eq 10. The others may be

neglected.

Remark. The strategy of locally weighted mask Q is from the multivariate tapering

approach, in which tapering, i.e., creating sparse approximate linear systems, has been shown

to be an efficient tool in both the estimation and prediction settings [27]. In the missing

marker interpolation scenario, we essentially construct the tapered covariances through a

direct product of the presumed covariance function and a positive definite but compactly sup-

ported correlation function, i.e., the mask Q. Theoretically, multivariate tapering has shown

asymptotic optimality for prediction, consistency, and asymptotic efficiency for estimation. In

the application of motion data interpolation, our basic idea is to take the traditional weighted

least square methods to suppress “outliers” and the covariance tapering technique to refine

estimations. The “outliers” usually result in non-constant variances that are remedied by the

traditional WLS. The sparsity of the tapered covariances can both remedy the underfitting

issues and amend “outliers”. The covariance tapering method that we use is a bit different

from the original version [27, 28], which applies the mask Q to the covariance to make it

sparse. However it requires the tapered covariance maintains positive definiteness. In our
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implementation, the mask Q is applied directly to the sample data, i.e., Eq 8. Although the pos-

itive definiteness is guaranteed by the weightW in Eq 9, an issue is rising, i.e., is the resulting

covariance Eq 9 sparse? In fact, Eq 9 is sparse, which may be simply explained as follows. Con-

sider a sparse matrix A with mean zero. Let the covariance C = AAT. The diagonal entries of C
indicate the squares of the norm of each row of A. The off diagonal entries indicate close and

distant relationship among the rows of A. When two rows of A are similar, their off diagonal

entry of C is high. Otherwise, the off diagonal entry is close to zero. If thresholding C, it can be

noted that covariance is limited to a local neighborhood in C. Thus, C is sparse. Moreover, in

terms of the multivariate tapering approach, the asymptotic mean squared error of the tapered

covariance, i.e., Eq 9, can converge to the optimal error.

Extreme case

—Missing whole frames. There are two extreme scenarios, missing whole frames and

missing markers throughout. Due to sudden high frequency noise (or jitter) from the output,

some frames are contaminated and have to be removed, which causes the issue of missing

whole frames. Moreover, due to the detachment of markers throughout the MoCap session,

this will result in the other issue of missing markers throughout. However, due to the de-

meaning of the samples (i.e. removing the mean from the samples) in the pre-process stage, an

accurate estimation of the mean is necessary to recover samples. In fact, it still remains chal-

lenging to estimate a proper mean in the scenario of missing markers throughout the MoCap

session. In contrast, there is no such difficulty in the missing whole frames scenario. Our previ-

ous work [26] also shows the recovered samples are very sensitive to the estimated mean. We

thus focus on the missing whole frames scenario in this paper.

Given an eigenspace V and the projection a of some sample P onto V, the sample can be

expressed as P = Va. If dividing V into two parts, VT ¼ ðVT
1
;VT

2
Þ, the Pmay be reconstructed

by them, P ¼ P1

P2

� �
¼ V1a

V2a

� �
, in which the same projection a is shared by these two parts of V.

Thus, it is possible to reconstruct a part of P by the other one, P2 ¼ V2ðVT
1
V1Þ

� 1VT
1
P1. More-

over, if P2 contains one row vector while P1 containing all other vectors, it will effectively

improve the estimation accuracy of P2. This is essentially a computation in terms of the corre-

lation between frames. To this end, we introduce the Gram Matrix into Eq 1, which represents

the inner product space, so that we can exploit the correlation between frames.

Let A = (A1, . . ., AK) and ~A ¼ ð~A1; . . . ; ~AKÞ, where each pair Ai and ~Ai share the same

shape but ~Ai contains the missing frames. Let ~Ai ¼
~Ai;1
~Ai;2

� �
, where ~Ai;1 and ~Ai;2 correspond to

the non-missing frame part and missing frame part respectively. Ai has the same partition,

Ai ¼
Ai;1
Ai;2

� �
. The eigenspaces can be constructed by SVD, AAT = VSVT and ~A ~AT ¼ ~V ~S ~VT .

There is a linear mapping T between V and ~V . We can divide V and ~V according to the non-

missing frame part and missing frame part,

VT ¼ ðVT
1
;VT

2
Þ ¼ TT ~VT ¼ ðTT ~VT

1
;TT ~VT

2
Þ ð11Þ

and obtain the residual error as,

B ¼ Ai;2 � ~V 2TðTT ~VT
1

~V 1TÞ
� 1TT ~VT

1
~Ai;1 ð12Þ

Unlike Eq 3, the weighted matrixW is constructed by the eigenvalues of BBT, which unlikely

results in zero eigenvalues due to a small number of missing frames in practice.

As the missing part on a sample is a set of whole frames, we may view each missing frame

as a gap and set the missing frame number as G here. Without consideration of the markers’
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spatial distances, we can remove the index 0j0 from the locally weighted mask Eq 7 and apply it

to two sample sets A and ~A to generate the individual eigenvectors Vg, ~Vg and the mapping Tg

between them g = 1‥G, respectively. After that, we can solve the regression coefficients α
through minimizing,

min
a

XK

i¼1

�
�
�
�
�

 

Ai;2 �
XG

g¼1

ag
~Vg

2Hg ~VgT
1 Ai;1

!T

W

 

Ai;2 �
XG

g¼1

ag
~Vg

2Hg ~VgT
1 Ai;1

!�
�
�
�
�

ð13Þ

whereHg ¼ TgðTgT ~VgT ~VgTgÞ� 1TgT , α is a vector with G unknown regression parameters. We

further conclude the locally weighted PCA regressor to recover the missing whole frames,

M�
2
¼
XG

g¼1

ag
~Vg

2Hg ~VgT
1 M1 ð14Þ

whereM1 denotes the non-missing frame part of the testing sampleM whileM�
2

for the recov-

ery of missing frame part.

Experiments

Dataset and experiment settings

We conduct experiments on two famous datasets, i.e., the Motion Capture database HDM05

[29] and the CMU Motion Capture Database [30]. These two datasets contain up to 4000

motion frames with 41 markers. For convenience, we denote them as HDM and CMU respec-

tively. In our experiments, two motion sequences are used for samples. Every sample is of 400

successive frames from the sequences.

Consider two scenarios in our experiments, i.e., one missing marker and multiple missing

markers in motion sequences. For the single missing marker case, we test each marker (or

joint) with one random gap, in which the gap refers to one missing marker as adopted in [24].

Each sample is a sequence of 400 consecutive frames and each gap lasts 380 consecutive frames

within it. For the multiple missing markers case, we produce three types of samples, including

3, 6 and 9 gaps randomly placed in a sample. Each gap occupies one marker. Fig 1 illustrates

missing markers in a sequence sample. To reduce the influence of the randomness of generat-

ing samples, all the settings are executed 50 times. The final result is an average of 50 recovery

errors. For the extreme case, we also produce four types of samples, including 3, 6, 9 and 12

consecutive whole frames separately as gaps. The gaps are randomly placed in a sample.

To compare with the state of the art methods, we focus on Probabilistic Model Averaging

(PMA) [18] and two kinds of PCA-based reconstruction methods separately from Gloersen

et al. [24] and our previous method [26]. Tits et al. [18] shows a good performance of their

PMA against the other existing methods. Gloersen et al. [24] mentioned two methods,

PCA_R1 and PCA_R2. Their experiments show that PCA_R2 outperforms PCA_R1. Our pre-

vious work [26] is closely related to [24] but the difference is to use training datasets. The other

methods do not share their source codes for comparison such as Kalman Filter based gap fill-

ing algorithm [14]. Hence, we compare our proposed algorithms, Weighted PCA (denoted as

WPCA) and Locally Weighted PCA (denoted as LWPCA), with PMA, PCA_R2 (denoted as

PCA) and our previous method [26] in our tests.

The recovery error in our experiments is estimated by Mean Square Error (MSE) as fol-

lows,

� ¼
jðM� � MgrdÞ: �Maskj

2

Frob

m
ð15Þ
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whereMask is a 0/1 matrix with the same shape as the sampleM�,Mgrd is the ground truth

matrix andm is the number of missing entries in a testing sample matrix. The mean recovery

error is to average the MSEs of 50 trials.

Results

Missing single marker. Table 1 shows a comparison of our proposed algorithms (WPCA

and LWPCA) and the other methods (PCA, PMA and [26]) on 5 markers(or joints). All the

methods are carried out on the missing single marker setting through 50 trials for each marker

respectively, that is, for each marker, a gap is randomly placed on its trajectory at each trial

and the average values resulting from five methods are shown in Table 1. Thanks to the locally

weighted mask strategy, our LWPCA outperforms the others. LWPCA’s results are noticeable

better than those of the other methods though it can be noted that our algorithms’ perfor-

mance(i.e., [26], WPCA and LWPCA) are very close on the CMU dataset compared to the

HDM dataset. This is because the algorithm in [26] and WPCA are essentially least square

method that can overcome noises but fails in “outliers”. LWPCA can overcome both noises

and outliers. Our algorithms employ the training dataset (see Eq 1). Compared to the HDM

Fig 1. Examples of missing a single marker and multiple markers in a sample. YELLOW indicates gaps. (a) a single gap in HDM dataset. (b) multiple gaps in HDM

dataset.

https://doi.org/10.1371/journal.pone.0272407.g001

Table 1. Mean recovery error for missing a single marker (The small value indicates small error according to Eq 15. The results of all joints in the S1 Appendix).

Joint index CMU Dataset HDM Dataset

PMA [18] PCA [24] [26] WPCA LWPCA PMA [18] PCA [24] [26] WPCA LWPCA

9 4.0622 51.68518 2.1921 1.8936 1.8708 0.9753 0.4465 0.1536 0.0534 0.0560

14 17.11449 212.79873 8.1765 8.17647 8.17622 0.9827 2.4344 0.3410 0.1756 0.1877

21 34.7798 7.8435 4.70464 4.70464 4.70468 2.82383 25.06438 0.6902 0.54236 0.52096

30 28.88857 97.82413 5.36026 5.36027 5.36048 5.35315 11.13264 0.46882 0.32857 0.27574

33 9.36036 17.9440 9.98718 9.9872 9.98718 1.16865 13.66654 0.23407 0.11858 0.11747

https://doi.org/10.1371/journal.pone.0272407.t001
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Fig 2. Comparison of the reconstruction for single missing gap at joints-9,14 on HDM data and joints-21,30,33 on

CMU data respectively. Dotted lines represent the ground truth trajectories of joints. As WPCA is very close to

LWPCA, it is not shown here.

https://doi.org/10.1371/journal.pone.0272407.g002
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training data, there are fewer outliers in the CMU training data. As a result, when performing

our algorithms on two datasets, there are more prominent differences on the HDM data than

on the CMU data.

Moreover it can be noted that the performance of our LWPCA on the joints-9,14 in the

HDM group and the joints-21,30,33 in the CMU group are not best in Table 1 (for all the

joints’ results, refer to the S1 Appendix). This is not strange. From a statistical perspective, the

statistics of joints in Table 1 only show a kind of statistical average values that conceals numeri-

cal variance. The reconstruction of some joint’s trajectory can disclose the numerical variance

of fitting curves and give us an insight to the methods. Fig 2 shows the trajectory reconstruc-

tion of these five joints with single missing marker. The ground truth trajectories of these five

joints have big fluctuations, which tends to overfitting when interpolating gaps on them. Thus

the stability of algorithms is prior to others here. We show the whole reconstructed trajectories

instead of the interpolated gaps to highlight the numerical performance of our method-

LWPCA, i.e., it can reach desired reconstruction accuracy. By contrast, the statistical averages

in Table 1 cannot always accurately reveal the methods’ numerical performance. The impor-

tant issue is that our algorithm-LWPCA demonstrates good numerical stability.

Missing multiple markers. Table 2 shows the average recovery errors with increasing the

number of missing markers in a testing sample. For a quantitative comparison, we give out the

percentage of gaps over the whole sample in Table 2. Our LWPCA outperforms the others.

Table 2. Mean recovery errors for missing multiple markers (the small figure indicates small error according to Eq 15).

Number of missing markers CMU Dataset HDM Dataset

PCA [24] PMA [18] [26] WPCA LWPCA PCA [24] PMA [18] [26] WPCA LWPCA

3 markers (�6% missing) 17.9949 5.7855 2.2986 2.3531 1.8650 0.4045 1.2494 0.2374 0.1156 0.0996

6 markers (�13% missing) 19.1731 8.0698 3.0958 2.6342 2.4313 0.4387 1.4056 0.2598 0.1380 0.1187

9 markers (�20% missing) 21.3471 8.1559 3.1711 2.5462 2.4623 0.5102 1.5147 0.2797 0.1383 0.1350

https://doi.org/10.1371/journal.pone.0272407.t002

Fig 3. Boxplot of recovery errors for missing 3, 6, 9 markers in a testing sample using CMU dataset.

https://doi.org/10.1371/journal.pone.0272407.g003
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Fig 4. Reconstruction of the trajectory of joint-33 in the scenarios of missing 3,6 and 9 markers. Dotted lines represent the ground

truth trajectories of the joint-33.

https://doi.org/10.1371/journal.pone.0272407.g004
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Moreover, Fig 3 shows a boxplot of the recovery errors for missing 3, 6 and 9 markers in a test-

ing sample. It can be noted that our algorithms ([26], WPCA and LWPCA) can gain a low var-

iance of errors while the PCA and PMA methods suffer a big variance of errors. This means

that our algorithms have a good numerical stability. It is also justified by Fig 4, which shows

the joint-33’s trajectories when there are 3, 6 and 9 gaps in a sample respectively and the trajec-

tory of joint-33 has gap all the time. Even if increasing the number of gaps, our LWPCA does

not show evident degradation in performance. This isn’t indeed surprising since our algo-

rithms employ training datasets.

Additionally, PMA [18] employs a “Spacing Constraint” as its post-process in case of outli-

ers, which can effectively enhance the algorithm robustness. We therefore use the PMA+-

constraints in our tests. For an intuitive comparison, we further perform our LWPCA on the

same settings in [18] and compare the results with Table 2 of [18] in Table 3. Such low p-values

indicate that the PMA suffers many “outliers” and heavily depends on the “Spacing Con-

straint” to suppress them. Furthermore, compared to Fig 3, it can be noted that our LWPCA

evidently decreases the risk of “outliers”. Thus our LWPCA demonstrates good robustness.

Extreme case–missing whole frames. We compare the LWPCA method with our previ-

ous method [26] in estimating the missed whole time frames in a sample since the other meth-

ods do not take into account such extreme cases. Table 4 shows the proposed LWPCA is

evidently better than our previous method [26]. Moreover, comparing Table 2 with Table 1, it

can be noted that the LWPCA performance is comparable. This justifies again that the pro-

posed LWPCA has a good numerical stability.

Conclusion

In this paper, we introduce the sparsity of observation data through the multivariate tapering

approach [27] into traditional least square methods and develop it into the locally weighted

least square scheme. It is the first least square method with the sparsity constraint and has a

Table 3. Mean recovery errors comparison with Table 2 of [18].

Dataset Name PMA no constraint PMA p-value(PMA) LWPCA

HDM_mm_01–02_03 (HDM1) 8.1 6.6 10e-5 0.98

HDM_mm_02–02_02 (HDM2) 4.8 4.4 0.46 0.70

HDM_mm_03–02_01 (HDM3) 5.5 5.2 0.07 1.17

HDM_mm_04–01_02 (HDM4) 8.5 7.4 0.08 0.59

HDM_bd_05–01_01 (HDM5) 4.5 3.0 0.001 0.70

85_02 (CMU1) 17.1 15.7 0.008 3.28

85_12 (CMU2) 14.4 13.5 10e-3 2.32

135_02 (CMU3) 10.5 8.4 10e-10 1.95

https://doi.org/10.1371/journal.pone.0272407.t003

Table 4. Mean recovery errors for missing whole frames.

Number of missing frames CMU Dataset HDM Dataset

[26] LWPCA [26] LWPCA

3 frames (0.75% missing) 7.1326 0.2181 3.1761 0.1788

6 frames (1.5% missing) 12.9794 0.4957 10.1500 0.2939

9 frames (2.25% missing) 30.1606 0.9831 15.5814 0.5337

12 frames (3% missing) 53.9757 1.1506 28.4376 0.9821

https://doi.org/10.1371/journal.pone.0272407.t004
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wide applications in prediction, estimation, regression analysis etc. To validate its numerical

performance, we apply the proposed locally weighted PCA regressor (i.e., LWPCA Eq 10 to

the “missing markers problem”. The experiment results show that the proposed LWPCA can

reach high estimation accuracy and has a good numerical stability.

For motion data interpolation, our LWPCA demonstrates a good numerical performance

though the extreme case-missing marker throughout is not taken into account. In fact, the dis-

tinct advantage of our methods (WPCA, LWPCA, [26]) is to employ training datasets. Using

training datasets does not add computational burden since the complexity of matrix decompo-

sition relies on the sample’s size rather than the amount of samples. Our LWPCA can work

nearly in real-time. However, selecting training data still remains challenging. This will be our

future work.
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