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Abstract

In this thesis, we develop a scalable distributed approach for object de-
tection model training and inference, using low cost embedded devices.
Examples of the usage of such an approach is automatic beach litter collec-
tion using mobile robots, IoT based intelligent video surveillance system
for traffic monitoring, indoor monitoring, crime and violence detection
etc. Another important part of this study is using Embedded systems for
distributed training, as application of above mentioned scenarios. These
devices have brought about a revolution in technology due to the facts
that they consume low power, are of a small size and their cost is low
per-unit. Since data are distributed over devices and to speed-up the
training for object detection on embedded devices, we adopt the concept
of Parameter Server based distributed training, where each embedded de-
vice works as node or worker and can communicate through Parameter
server(s). We develop a distributed training approach keeping in mind the
resource constraints e.g. memory limitation, computational power, energy
limitation etc for embedded devices. Use of Transfer Learning technique,
Data Parallelism and Model Parallelism in this study reduces the resource
consumption of such devices. Besides, retraining the model with continu-
ous streaming data helps to improve the accuracy of the model as well as
to further reduce resource consumption of embedded devices. Therefore,
we combine the distributed training with online learning or incremental
learning, where our model not only predicts in real time but also learns in
real time. Additionally, this incremental learning approach discards data,
once training has been done, thus save huge amount of memory on de-
vices. Concurrent use of Knowledge Distillation and Exemplary Dataset
during incremental training exhibits higher accuracy (upto 16%) com-
pare to batch learning, most importantly without forgetting old classes.
Our experiment shows that the Distributed Training (using 3-GPUs sys-
tem) reduces the training time of object detection models by upto 67%
comparing with non-distributed system. We test the performance of our
Distributed Incremental Training approach using Fruits dataset as well as
it’s practical applicability on our own collected Cigarette Filter dataset.
Some other associated issues such as Catastrophic Forgetting and Small
Object Detection problem have also been studied in this thesis.

Keywords: Parameter Server, Online Learning, Incremental Learning,
Distributed Machine Learning, Object Detection, Embedded Device, Trans-
fer Learning, Small Object Detection, Catastrophic Forgetting, Knowl-
edge Distillation
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Chapter 1

Introduction

A Deep Neural Network (DNN) training procedure is typically labor-intensive due
to the vast amount of training data and weight calculation required. Deep learning
comes in for addressing such issues using convolutional transformations while focusing
on important features of interest for subsequent training. Given the requirement of a
large number of training data to train a DNN, distributed training approaches such as
multi-GPU platforms are extensively used to accelerate the training process through
parallel execution [27][54][1]. Additionally, it is important for embedded devices to
reduce the training time of DNN model through distributed training. Because these
devices have limited computational power, memory, and energy. On the other hand,
distributed training is also necessary for use cases such as mobile robots to collect
garbage to clean up beaches or streets, IoT-based intelligent video surveillance sys-
tems for traffic monitoring, indoor monitoring, crime and violence detection etc. In
all such scenarios, distributed training is important because the training data are
distributed over different embedded devices. From the various distributed system ar-
chitecture[65], Parameter Server based distributed system has been implemented in
this work. This Parameter Server strategy reduces resource consumption on embed-
ded devices by allowing simultaneous usage of data parallelism and model parallelism.
In data parallelism, the dataset is divided into ’N’ portions, where ’N’ is the number
of GPUs. Then, these components are allocated to parallel computing systems. Sim-
ilar to data parallelism, every model in model parallelism is divided into ’N’ portions,
where ’N’ is the total number of GPUs. Then, each model is put on a separate GPU.

Apart from distributed training approach mentioned above, new data can be use-
ful for a model to keep model up to date. Traditionally, this requires training the
model from scratch again, which is costly for embedded devices. Online Learning (al-
ternatively known as Incremental Learning, IL) allows training with continuous data
without the requirement of training from scratch. This technique saves an enormous
amount of space in embedded devices. Because in IL, data can be discarded after
the training is completed. We combine both the distributed training and Incremental
Learning approaches with an aim to reduce training time and increase the accuracy of
the object detection model. However, there is a trade-off between reducing training
time and increasing accuracy. In this thesis, we accomplish the reduction of training
time and increased accuracy of object detection model by following 2 steps. Firstly,
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by implementing Parameter Server based distributed training, and secondly by incor-
porating distributed training with incremental learning approach. Our experiments
showed that it is possible to achieve good accuracy (comparable accuracy for real-
time object detection) with reduced training time. Although somewhat similar work
has been described in [59] and [25]. A significant difference with our work is that we
consider embedded devices crucial for our use-cases mentioned above. Considering
significant embedded device usage as well as other related literature, we have con-
cluded that our study—which combines distributed training with IL using embedded
devices—is the first experimental work in this field. This is the core contribution of
this thesis.

Incremental Learning suffers from Catastrophic Forgetting. It forgets about past
tasks (for both classification and regression problems) while training with new data [50]
[2][70][24][38]. Our use-case belongs to classification problem. Therefore, in this the-
sis, we discuss problems associated with classification only. It is to be noted that
IL belongs to 2 cases as mentioned in [36], namely, (1) continuous learning of known
classes with new data and (2) continuous learning with new data of new classes. In
this work, both cases have been handled by using Knowledge Distillation[30]. To
make the IL approach more robust, an Exemplary Dataset is preserved. It consists
of some old images from training dataset through augmentation. Overall, our ex-
periments demonstrated that Catastrophic Forgetting is successfully solved for both
the cases via utilizing Knowledge Distillation and using Exemplary Dataset. In other
words, our Distributed Incremental Training approach is capable of learning new
classes without forgetting old classes.

In order to prove the efficacy of our Distributed Incremental Training approach, 3
one-stage state-of-the-art object detection models such as MobileNet-SSD[31], SqueezeNet-
SSD[33] and RetinaNet[52] have been trained. The backbones of all the 3 models are
pre-trained on Imagenet[17] dataset. Two datasets, namely Fruits and Cigarette Fil-
ter (abbreviated as Filter) have been used in this work, to build a fruit picking robot
and garbage collector from beach. Our experiment shows that using only Distributed
Incremental Training approach (3-GPU system), the training time has been decreased
by up to 67% compared with single GPU system. Moreover, the accuracy is increased
up to 16% compared with batch training. All the 3 models have been trained and
tested for the first scenario (continuous learning of known classes with new data)
of Incremental Learning mentioned above. However, regarding the second scenario,
we only consider training RetinaNet[52] model by adding a new class for the sake of
simplicity.

After discussing the motivation and overview of this thesis, next section mentions
the objectives of this work.

1.1 Aims and Objectives

Aims and objectives of this research are as follows:

1. Building a scalable parameter server based distributed training approach fusing
with incremental learning technique, with an aim to reduce training time as
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well as to achieve a comparable accuracy for real-time object detection.

2. From the academic literature, identify the scope and limitations associated with
distributed training and incremental learning approaches.

3. Provide a solution for Catastrophic Forgetting for both the cases of incremental
learning mentioned above.

4. Design the whole methodology of Distributed Incremental Learning approach
considering the resource constraints of embedded devices. Strategies such as
distributed training, Transfer Learning, Incremental Learning help to reduce
resource consumption of embedded devices to a great extent.

5. Perform extensive analysis and comparison of the performance of the proposed
Distributed Incremental Learning approach by training 3 one-stage state-of-art
object detection models.

Chapter 2 discusses relevant literature on distributed systems and Incremental
learning. It also discusses the importance of distributed training on embedded devices,
architecture and properties of a Parameter Server based system. Then, it describes
the 3 object detection models and Single Shot Detection(SSD). Moreover, it explains
the concept of Transfer Learning and how it can be applied for our use cases. Chapter
2 ends with discussing our contributions.

In Chapter 3, the methodological pipeline has been discussed, followed by overview
of datasets and experimental setup. Then, algorithm of Parameter Server is provided.
Next, in-detailed discussion has been carried out on incorporating Incremental Learn-
ing and handling Catastrophic Forgetting. Some miscellaneous issues have been dis-
cussed briefly such as small object detection problem, class imbalance problem. This
chapter concludes with how to transform the best model among the stored models
for real-time inference with the help of TensorRT[63] engine.

Chapter 4 provides rigorous analysis of the results by comparing the loss curves,
training time and accuracy of the Distributed Incremental approach.

Chapter 5 reiterates and claims the outcome of this study. Then it discusses some
limitations of this work. At the end, some potential directions of future works have
been mentioned shortly, including Federated Learning.
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Chapter 2

Literature Review

2.1 Distributed Systems

Various distributed Deep Learning algorithms have been proposed in the field of dis-
tributed computing [12] [42]. However, efficient distribution of regular Machine Learn-
ing algorithm is challenging due to distinct communication approaches for embedded
devices [34] [62] [71] [75] [82]. In general, the machine learning technique involves
two steps, namely, training and prediction, and both of them are not mutually exclu-
sive. Incremental Learning (IL) combines both of the phases by continuously training
the model with the new data obtained using a prequential approach. In prequential
approach, labels become available after the prediction phase [84].

To design a distributed Machine Learning system, choosing an appropriate topol-
ogy is very important. That means the structure in which the embedded devices
within the cluster are organized. According to [5], there are four possible topologies
shown in Figure 2.1, namely, Centralized, Decentralized (Tree), Decentralized (Pa-
rameter Server) and Fully Distributed (Peer to Peer). The aggregation process in
centralized systems (Figure 2.1a) is rigidly hierarchical and takes place in one cen-
tral location. Decentralized systems enable intermediate aggregation, either through
the use of a replicated model that is continuously updated when the aggregate is
broadcast to all nodes, as in tree topologies (Figure 2.1b), or through the use of a
partitioned model that is sharded across numerous parameter servers (Figure 2.1c). A
fully distributed system (Figure 2.1d) is made up of a network of autonomous nodes
that work together to provide the solution without any assigned roles.

We conform to implement Parameter Server based distributed system. The advan-
tages of using a Parameter Server-based distributed system include (1)efficient com-
munication via asynchronous weight updates, (2)the ability to add resources without
having to restart the entire calculation, (3)the use of Model Parallelism etc. Unlike
centralized systems, decentralized systems such as Parameter Server maintains a set
of decentralized workers. Model parameters are stored in one or more Parameter
Servers. Workers can read and write parameters as key-value pairs. Architecture and
some properties of Parameter Server are discussed later in this chapter.

An open-sourced project called Ray [61] implemented Parameter Server based
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Figure 2.1: Topologies for Distributed ML depending on Degree of Distribution [84]

Reinforcement Learning (RL) training system. However, it particularly focuses on
RL paradigm. Authors showed that their framework is capable of achieving better
performance than existing approaches for challenging reinforcement learning applica-
tions. Apart from Ray[61] and Parameter Server[46], there are some other distributed
ML frameworks such as Mahout[4], MLlib(MLBase, currently merged with Apache
Spark)[60], GraphLab[57], SystemML[22], DistBelief[16] etc.

In terms of distributed training concept, there are two fundamental ways to par-
tition the problem across multiple machines: Data-Parallel approach and Model-
Parallel approach [65]. These two approaches can also be applied simultaneously
[86]. In the former case, the data is partitioned into different subsets and all worker
nodes apply the same algorithm to different subsets of data. The global model is
accessible through the concept of centralization or replication, to produce a unified
output. In the latter approach, worker nodes process the entire datasets by operating
on different parts of the model. The global model then aggregates all model parts.
[10] claimed that data parallelism incurs huge amount of inter-GPU communication
overhead. It requires parameter synchronization among the GPUs frequently. In
contrast to data parallelism, model parallelism suffers from weight staleness issues.
While a worker is computing its gradient, model updates may have happened. As a
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result, the gradients are often computed with outdated parameters. These gradients
are called stale gradients. Thus, authors of [10] proposed an efficient and robust model
parallel approach. This approach effectively handles the weight staleness. However,
after analysing the Server-worker communication time using cProfiler of Python, our
experiments showed that the simultaneous application of both the data parallelism
and model parallelism reduce the time of inter-GPU communication. Hence, we con-
ducted the experiments using both the data and model parallelism.

After reviewing important and relevant literature on distributed ML training sys-
tem, let us discuss the importance of distributed ML system on embedded devices.

2.1.1 Importance and Application of Distributed ML on Em-
bedded Devices

From the literature, it is evident that the importance of distributed ML using em-
bedded systems is vast. According to Figure 2.2, some applications of distributed
Deep Learning using embedded systems are intelligent video surveillance system [13]
such as crime and violence detection, traffic monitoring [66] [89] [83]; Smart City[85],
Smart Industry[45][77]. Additionally, many studies employ Edge Computing, Fog
Computing, Internet-of-Things(IoT) by designing distributed Deep Learning systems
using embedded systems. These studies concentrate on reducing communication
cost and latency. Alternatively, these studies improve the Quality-of-Service(QoS)
[90][48][88][44][87][45].

Figure 2.2: Some Applications of Distributed ML on Embedded Devices

[13] proposes an edge computing based Distributed Intelligent Video Surveillance
(DIVS) system. Their experiments show that the DIVS reduces huge network commu-
nication overhead and latency by migrating network workload to edges. To improve
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the balance between the computational power and workload of edge devices of the
DIVS system, authors propose a dynamic data migration method. Authors of [18]
propose a methodology to distribute the computation (layers) of Convolutional Neu-
ral Network (CNN) to the IoT devices. This methodology minimizes the latency.
They design the methodology as an optimization problem. By periodical execution
of this optimization step, the removal and insertion of IoT components take place in
the IoT network configuration. This CNN based distributed platform achieves high
QoS and low latency. Because the configuration of the network changes according
to the optimization algorithm. Similarly, [79] reduces communication cost by over
20x by locally processing major portion of the sensor data on end-devices instead of
offloading the raw sensor data to cloud for processing.

2.1.2 Applying Parallelism in Distributed Training

After discussing the importance of distributed ML on embedded devices, we need to
discuss few more issues related to distributed or parallel training.

• Model Parallelism versus Data Parallelism As discussed earlier, some
neural networks models are required to be split into multiple devices (GPUs).
The reason is they cannot fit in memory of a single device. How many layers to
put on a device is a contention. The disadvantage of this approach is that while
training on a particular GPU is in progress, other GPUs are idle as shown in
Figure 2.3.

Figure 2.3: Data Parallelism and Model Parallelism[80]

Data parallelism allows us to use the same model for training on every device(s).
The distinction is that each device uses different training examples to train the
model. Gradients are then calculated on every device and eventually averaged
by Parameter Server for a distributed system. Figure 2.3 shows both the Model
Parallelism and Data Parallelism approaches.

• Model Parallelism and Data Parallelism Simultaneously It is possible
to train the model by using both model parallelism and data parallelism. In
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fact, we use both of them at the same time while training all the 3 models.
The rationale of applying model parallelism is to save memory of embedded de-
vices. Moreover, memory have been saved significantly by applying incremental
learning, which is explained in section 3.4.

• Synchronous versus Asynchronous Distributed Training Stochastic gra-
dient descent (SGD) is one of the most popular algorithms for training Neural
Networks and it tries to find optimal values by iteration. It requires multiple
iterations of training. It combines the results of each iteration into the model
in order to update gradients for the next iteration. All the iterations can be
run either synchronously or asynchronously among multiple devices.

In synchronous training, all of the devices use their different parts of data ob-
tained from a single mini-batch to train their local model. Then, they send
their locally calculated gradients to all devices through server. The model is
updated only when all devices have successfully computed and sent their gradi-
ents. The updated model is then sent to all nodes along with splits for the next
mini-batch. Devices train on non-overlapping splits or subset of the mini-batch,
as SGD uses mini-batch of the training data.

In case of asynchronous training, there is no inter-dependency on any other
devices for the updates of the model. In this type of training, devices com-
pute gradients independently and share results through one or more central
servers known as Parameter Servers. In the centralized architecture, the de-
vices send their locally calculated gradients to the parameter servers. These
gradients are collected and aggregated by the servers. One key difference be-
tween synchronous and asynchronous training is that, in synchronous training,
the parameter servers compute the latest up-to-date version of the model and
return the updated models to devices. However, in asynchronous training, pa-
rameter servers send gradients to their devices that locally compute the new
model. The loop repeats until the training process ends for both types of the
training architectures. Figure 2.4 shows the difference between asynchronous
and synchronous training approaches.

Despite of the fact that parallel training speeds up the training process to a
great extent, however, it intuitively adds overhead due to slow network or a
straggler (slow device). Since in each iteration the updated model needs to be
broadcast to all other devices, the number of iterations can be decreased by
increasing the mini-batch size without negatively affecting the accuracy of the
model.

In comparison between synchronous and asynchronous SGD, [14] emphasizes
on using synchronous SGD with some backup workers to avoid asynchronous
noise. In asynchronous SGD, workers update the parameters asynchronously.
This leads to slow convergence. In another way, fluctuation in loss curve occurs
in asynchronous SGD. This is called asynchronous noise. Asynchronous SGD
maximizes the rate of updates with some additional cost due to asynchrony.
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Figure 2.4: Asynchronous and synchronous training with stochastic gradient descent
(SGD).[19]

[14], on the other hand, showed that synchronous approach wastes time due to
waiting for straggling workers.

The next sub-section describes the architecture of Parameter Server Strategy and
some of its properties.

Architecture

According to the architecture described in [47], there can be more than one parameter
server grouped into a server group. Each server maintains a partition of the globally
shared parameters. Servers can communicate with each other to replicate parameters
in order to provide reliability.

Each worker or device usually stores a part of the training data to compute local
gradients. Workers communicate only with the parameter servers, obviously not
among themselves. They retrieve and update the shared parameters. They can form
worker groups. They are allowed to perform any given tasks. A scheduler node
handles each worker group by assigning tasks and monitoring their progress. Tasks
are done by the workers asynchronously and run in parallel.

In essence, the algorithm starts by broadcasting the model to the workers. During
each iteration, each worker computes its own gradients by reading its own split from
the mini-batch and then sends those gradients to one or more parameter servers. The
parameter servers then aggregate all the gradients from the workers. The new model
is then broadcast to all workers for next iterations. In this work, asynchronous SGD
is used. The overall architecture and data flow is shown in Figure 2.4 (left image).

Communication Between Worker and Server

According to [46], the shared parameters among workers and servers are represented
as (key, value) pair vectors. We implement the Parameter Server based Distributed
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Training approach using Distributed Remote Procedure Call (RPC) framework pro-
vided by PyTorch[15]. For our case in a loss minimization function, the pair is a
Context ID (cid) and it’s associated weight/gradients. PyTorch provides Distributed
Backward pass to calculate the accumulated gradients under RPC framework. These
terms are explained after the Algorithm 1 in Chapter 3.

push and pull operations are used to communicate between the workers and
servers. According to Algorithm 1, each worker pushes its locally calculated gradient
to the servers and pulls the latest weights back. The Parameter Server optimizes
network bandwidth and computation by providing range based push and pull opera-
tion. In fact, we create global shared parameter reference (RRef according to RPC
framework) to ease the remote communications.

Asynchronous Task

Each task is issued and handled by Distributed Remote Procedure Call (RPC) frame-
work and executed asynchronously. That means the caller once issue a task, can do
further computation. The caller considers a task as finished only when it receives an
acknowledgement from callee.

Scalability

The Parameter Server allows us to add new nodes into existing cluster without restart-
ing the running setup.

Fault Tolerance

The Parameter Server internally uses Vector Clock in order to recover from and
repair the failures within 1 second. To provide fast recovery, each (key, value) pair is
incorporated with a vector clock defined by the [47]. Vector clock records the time of
each individual node on a particular (key, value) pair. It is advantageous for keeping
track of gradient accumulation status.

Moreover, model replication and saving the state dictionary of the model help us
to handle fault tolerance effectively.

2.2 Online Incremental Learning

As opposed to standard batch learning, our focus is the continuous learning of object
detection models. There can be two different scenarios for continuous learning [37]:

1. Continuous learning for old classes: This case requires traditional online
learning configuration, since more training data are acquired for known classes.

2. Continuous learning for old and new classes: It might be a case that we
get data for new class in addition to the previous case.
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In [40] the authors developed an incremental object detector by expanding original
training sample domain incrementally. This incremental object detector is based
on probabilistic multi-center embedding system. As authors claimed, it can served
as a lifelong learning for object detector. Because it handles continuous stream of
unlabelled video data. However, it suffers from model drift. Model drift refers to the
degradation of model performance due to changes in data and relationships between
input and output variables. To prevent model drifting, authors suggested infrequent
human intervention requested by model. This human intervention belongs to another
domain of research called Active Learning [72][7]. Active Learning selects unlabelled
data, so that when labelled, it improves the model most. It makes the process of
labelling new data more efficient. Sometimes, active learning also considers to select
the most uncertain data for labelling.

[43] develops an incremental object detection system called RILOD. It capables
of detecting new object classes without forgetting the old classes. To avoid Catas-
trophic Forgetting, authors applied Knowledge Distillation [30] to imitate the old
classes’ behaviour particularly on object classification, bounding box regression and
feature extraction from old classes. Additionally, they designed a real-time dataset
construction and annotation technique for new classes.

It is obvious that incremental learning suffers from Catastrophic Forgetting. Ex-
periment of [24] suggests to use Dropout while training a model. Dropout tackles
the forgetting by remembering the old tasks. Additionally, it can adapt to the new
task. This study also showed that the choice of activation function should always
be cross-validated. [39] proposed an alternate method to tackle the forgetting based
on total absolute signal passing through each connection in the neural network. The
problem can also be handled by slowing down the learning of the weights which are
important to remember the old class [38]. Alternatively, transfer learning also helps
to overcome the forgetting on old tasks [26].

In this work, we applied a combination of different techniques such as Knowl-
edge Distillation[30], Dropout[76], maintaining small exemplary dataset[68], transfer
learning and restricting large changes of weights to reduce forgetting.

2.3 Concept and Applicability of Transfer Learn-

ing

Transfer Learning is a popular method in the field of deep learning. It leverages
the use of a learnt model to solve similar problems. Therefore, it can avoid learning
from scratch. In an online article [58], the authors show how to implement a transfer
learning solution for image classification problems. A pre-trained model is used in
transfer learning. It is usually trained on a large benchmark dataset using published
architectures such as MobileNet [31], VGG [73], Inception [78] etc. An extensive
review has been presented by [8] on performance of pre-trained model on computer
vision related problems using ImageNet [17] dataset.

The entire Transfer Learning process can be divided into three steps, namely,

26



1. Choosing a pre-trained model: One can choose a pre-trained model from
a wide variety of pre-trained models e.g. ResNet5 [28], MobileNet [31], VGG
[73], InceptionV3 [78] etc.

2. Categorising problem according to dataset Size-Similarity Matrix: To
categorise a computer vision problem, the Size-Similarity Matrix shown in Fig-
ure 2.5 takes into account: (1) the size of dataset and (2) its similarity to the
dataset in which pre-trained model was trained. Dataset similarity means prior
knowledge about the dataset. For example, if we want to detect fruits in an im-
age, then Open Images [41] dataset would be a similar one. Because it has the
images of variety of fruits. As a common unwritten rule, a dataset is considered
to be small if it has less than 2500 images per class.

Figure 2.5: Size-Similarity matrix (left) and Map for Decision for Fine-tuning pre-
trained model(right) [8]

3. Fine-tuning the final model: There are 3 ways to fine-tune a model (shown
in Figure 2.6), namely, (1) Train entire model, (2) Train some layers and keep
remaining layers frozen and (3) Freeze all convolutional layers. The first strategy
requires large dataset and high computational power, to train a model from
scratch. To use the second strategy, we need to decide which layers should be
frozen. This is problem specific. Usually, more layers are kept frozen to avoid
overfitting if we have small dataset and large number of parameters [3]. On the
other hand, if we have large dataset and small number of parameters, then the
model performance can be enhanced by training more layers for the new task,
since there are no issues of overfitting.
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Figure 2.6: Strategies to Fine-tune a Pre-trained Model[8]

The Quadrant 1 of matrix in Figure 2.5 refers to the case of a large dataset which
is different from pre-trained model’s dataset. This case indicates to choose the
first strategy, train the entire model, which is shown in Figure 2.5 (right side).

Quadrant 2 represents the case with a large dataset, similar to the pre-trained
model’s dataset. For this case, the sensible approach should be to follow the
Strategy 2 of Figure 2.6. We can train the model as much as we want, due to
having large dataset. Since the dataset is similar, we can take the advantage
of using the previously learnt knowledge. It requires to train the top layers of
convolutional base and the classifier only.

Quadrant 3 is a challenging scenario where we have small dataset which is
different from the pre-trained model’s dataset. We neither can go deeper into
the model due to the risk of overfitting nor we can hold shallow of the model
which will not learn much functional. So, trial and error are the solution. It is
advised to go deeper into the network. To avoid overfitting, several techniques
such as Data Augmentation or Regularization can be applied.

The last segment, Quadrant 4 is the case of having small dataset similar to the
pre-trained model’s dataset. The probable best option is to follow Strategy 3
mentioned above. According to Strategy 3, we need to remove the last layer
(fully connected layer or global average pooling layer) and use the pre-trained
model as a fixed feature extractor. Then, we can use the extracted feature to
train the new classifier.

The next four sub-sections describe about the MobileNet[31], SqueezeNet[33],
RetinaNet[52] and SSD-300[56] architecture.
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2.3.1 MobileNet [31]

The MobileNet model is built on depthwise separable convolutions and pointwise con-
volution to reduce the model size (fewer parameters) and complexity (fewer Multi-
Adds). The depthwise convolution filter uses a single filter for each input channel,
and the pointwise convolution filter combines the output of depthwise convolution
linearly with 1 by 1 convolutions, depicted in Figure 2.7. In the Figure 2.7, we have
5 separate DK × DK spatial convolutions because of 5 channels. Then pointwise
convolution is applied which changes the output dimension. These two steps factor-
ization significantly reduce the model size and complexity. In contrast, a standard
convolution works in single step, which involves filtering and combining inputs into a
new set of outputs.

The computational cost for a standard convolution with Kernel size DK , Feature
map DF is given by,

DK ×DK ×M ×N ×DF ×DF

where M and N are the number of input and output channels respectively.

Figure 2.7: Depthwise Convolution with Pointwise Convolution [81]

The computational cost of depthwise convolution with M number of input channels
is given by,

DK ×DK ×M ×DF ×DF (2.1)

The depthwise convolution considers filtering the input channels only and does not
produce new features. To create these new features, pointwise convolution is consid-
ered and it’s computational cost is as follows,

DF ×DF ×M ×N (2.2)
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By combining both the costs of Equation 2.1 and Equation 2.2, the depthwise sepa-
rable convolutional cost yields,

(DK ×DK ×M ×DF ×DF ) + (DF ×DF ×M ×N) (2.3)

Thus, the overall reduction in computation is,

(DK ×DK ×M ×DF ×DF ) + (DF ×DF ×M ×N)

DK ×DK ×M ×N ×DF ×DF

=
1

N
+

1

D2
K

(2.4)

As an example, if 3×3 kernel size is used, MobileNet architecture uses 8 to 9 times less
computation in comparison with standard convolution sacrificing only a small amount
of accuracy. Authors of [31] compared performance between full standard convo-
lution based MobileNet and depthwise separable MobileNet on ImageNet dataset.
They showed a full convolutional MobileNet yields 71.7% accuracy requiring 4866
million multiplication-additions and 29.3 million parameters, whereas depthwise con-
volutional MobileNet achieves 70.6% accuracy using only 569 million multiplication-
additions and 4.2 million parameters. This indicates a humongous reduction in com-
putation and number of parameters with only 1% loss of accuracy.

Overall, the MobileNet architecture has 28 layers including pointwise and depth-
wise convolutional layers and has been defined in the following Figure 2.8.

All layers have been passed through a Batch Normalization and ReLU except the
final FC layer, which has been feeded into a softmax layer for the purpose of classi-
fication. These normalization and nonlinear transformation for all layers (pointwise
and depthwise) are compared with a standard convolution layer in Figure 2.9.

2.3.2 SqueezeNet [33]

The goal of this paper is to identify a model to keep very few parameters while pre-
serving accuracy. The approach has been proposed in this paper to take an existing
CNN model and compress it in a lossy fashion. The main strategies that have been
employed are: (1) Replacing 3 by 3 filters with 1 by 1 filters (2) Decrease num-
ber of input channels to 3 by 3 filters (3) Downsample late in the network so that
convolutional layers have large activation maps.

The author’s intuition is that large activation layer leads to higher classification
accuracy. The first two strategies decrease the number of parameters in a CNN pre-
serving accuracy. Third strategy maximizes accuracy on a limited budget of parame-
ters. The author proposed Fire module CNN architecture that successfully employed
three strategies.

In the Fire module, a squeeze convolution layer feeds into an expand layer that
mix two different size of convolution filters: 1 by 1 and 3 by 3. In the Fire module,
the combination of squeeze layer with all 1 by 1 filter, expands layer with 1 by 1 filters
and expand layer with 3 by 3 filters. The SqueezeNet begins with one convolution
layer and 8 Fire modules and ended with one convolution layer. RELU activations is
applied from squeeze and expand layers and Dropout is applied after fire9 module.

To evaluate SqueezeNet[33], the AlexNet model is being used. The goal was to
compress AlexNet model that was trained to images using the ImageNet dataset.
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Figure 2.8: MobileNet Architecture (Reference: [31])

SqueezeNet[33] is 50 times smaller than AlexNet with equivalent accuracy. The ar-
chitectural exploration is divided into two main topics: microarchitectural exploration
(per-module layer dimensions and configurations) and microarchitectural exploration
(high-level end-to-end organization of modules and other layers).

2.3.3 RetinaNet [52]

Object detector are based on two stage proposal-driven mechanism. The first stage
generates sparse set of candidate object location and second stage classifies each
candidate location as one of the foreground classes or as background using CNN
work. However, it is a matter of question if ones-stage detection can give similar
accuracy. One-stage detectors are applied over regular dense sampling of possible
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Figure 2.9: Regular Convolution (Left), Depthwise Convolution (Right) with Batch
Normalization and ReLU nonlinearity (Reference: [31])

object location which is potentially simpler and faster but accuracy is not near to two
stage detectors. This paper investigated the reason of this case. The authors have
discovered the extreme foreground-background class imbalance encountered during
training of dense detectors is the central cause. To address this problem, the author
has proposed to address class imbalance by reshaping the standard cross entropy loss
such that it down-weights the loss assigned to well-classified examples.The author
has proposed a new loss function that acts more effective alternative to the previous
approaches for dealing class imbalance. The novel Focal loss focuses on training a
sparse set of hard examples and prevents a vast number of easy negatives. The Focal
Loss gives significant high-accuracy than previous one-stage detectors.

2.3.4 Single-Shot Detection (SSD) [56]

SSD-300 is a forward real-time object detection framework that achieves high-accuracy
using relatively low resolution input images and increases detection speed. These have
been possible since authors of [56] utilize a small convolutional filter capable of pre-
dicting object categories and offsets of bounding boxes (fixed set of default boxes).
The small convolutional filter uses separate filters for different aspect ratio detections.
Then it applies these filters to multiple feature maps for detecting at multiple scales.
SSD has three following features:

• Multiple-Scale Feature Maps: SSD model has additional convolutional fea-
ture layers at the end of MobileNet base network. These auxiliary layers have
been reduced in size subsequently and help in detection at multiple scales.

• Convolutional Predictors: Each feature layer is capable of producing a fixed
set of detection predictions with the help of convolutional filters shown in SSD
architecture in Figure 3.2. For example, if we have x × y feature layer with z
channels, then we have standard 3×3×z small kernel, each of which is applied
at each x×y locations and generates a score for object category or offset values
for default bounding boxes.
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• Aspect Ratios and Default Bounding Boxes: Likewise the anchor boxes
used in Faster R-CNN [69], SSD uses default bounding boxes with each feature
map cell. For each location in a given feature map and for k boxes, there are
(c + 4)k filters, where c stands for class scores (class scores are calculated for
each class if default boxes contain any object belong to that class) and 4 is for
offset values for original default box shape. If there are x×y feature maps, SSD
produces (c+ 4)kxy outputs, although feature maps are of different resolutions.
Default boxes have been explained in Figure 2.10. We explain the aspect ratio
for bounding boxes of SSD network later on this section.

Figure 2.10: Reference: [56]

Let us now discuss the training objective (loss function) and other related theo-
retical aspects of SSD such as Data Augmentation, choosing set of default boxes and
different scales, hard negative mining etc. These are crucial while training. During
training, matching strategy begins with matching default boxes to any ground truth
boxes having Intersection over Union (IoU) higher than a threshold, ideally 0.5. IoU
is defined as follows:

IoU =
Area of Overlap

Area of Union
(2.5)

SSD is able to handle multiple object categories for detection. Since, SSD loss
function is a weighted sum of two loss functions, namely, Confidence Loss and Local-
ization Loss, the overall loss function is defined as follows:

L(x, c, l, g) =
1

N
α(Lloc(x, l, g)) +

1

N
(Lconf (x, c)) (2.6)

N indicates the number of matched default boxes and the loss is 0 if there is no
matched boxes found. The Confidence Loss is calculated using Softmax Loss. For
multiple class confidence, c, we can define the Confidence Loss,

Lconf (x, c) = −
N∑

i∈Pos

xpijlog(ĉpi )−
∑
i∈Neg

log(ĉ0i ) (2.7)
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where the Confidence Score c for i-th boxes of p categories is calculated by

ĉpi =
exp(cpi )∑
p exp(c

p
i )

(2.8)

The Localization Loss is calculated using Smooth L1 Loss [23] on the center
(cx, cy) of default bounding box, d and the logarithm of heights, h and widths, w,
which is as same as in Fast R-CNN. The Smooth-L1 Loss function is less sensitive
to outliers comparing with other error loss functions and it is defined between the
predicted box (l) and the ground truth box (g). The α indicates a weight multiplier
in Localization Loss which is 1 using cross validation.

Lloc(x, l, g) =
N∑

i∈Pos

∑
m∈{cx,cy,w,h}

xkijsmoothL1(l
m
i − ĝmj ) (2.9)

ĝcxj = (gcxj − dcxi )/dwi ĝcyj = (gcyj − d
cy
i )/dhi (2.10)

ĝwj = log

(
gwj
dwi

)
ĝhj = log

(
ghj
dhi

)
(2.11)

For different object scale, the tiling of default bounding boxes is designed in SSD
in such a way that each feature map learns that particular scales responsively. In
Figure 2.10, there are two feature maps having size of 8× 8 and 4× 4, each of which
capable of learning two different object scales indicated by blue and red default boxes.
If there are m feature maps, the scale of default boxes is calculated in SSD framework
by:

scalek = scalemin +
scalemax − scalemin

m− 1
(k − 1), k ∈ [1,m] (2.12)

scalemax means the scale for highest layer and is set to 0.9, whereas scalemin means
the scale for lowest layer and is set to 0.2.

SSD defines 4 different aspect ratios for default boxes, along with aspect ratio of 1
and they are ar ∈ {2, 3, 12 ,

1
3
}. Thus, the width and height for each default boxes can

be computed by wa
k = scalek

√
ar and hak = scalek/

√
ar respectively. In these ways of

applying various scales and aspect ratios for default boxes, SSD generates robust set
of predictions for several shapes and sizes of input objects.

During training, since the model might produce large number of default boxes
and mostly belong to negative class, the class imbalance takes place. This has been
tackled by taking highest Confidence Loss negative examples and maintaining the
ratio of negative to positive class by maximum 3:1, which shows faster convergence
and a firm training.

For Data Augmentation, the designer of SSD model suggest either to use the whole
input image, or sampling a patch randomly, or sampling a patch with minimum IoU
is 0.1, 0.3, 0.5, 0.7 or 0.9.
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Chapter 3

Methodology

3.1 Overview

In this thesis, two areas of ML research have been combined to implement distributed
online learning-based object detection model using embedded devices. These are:

1. Distributed Machine Learning Training

2. Online Incremental Learning

Distributed Machine Learning is a widely adopted approach since scaling-up and
parallelism could enhance speed of model’s training and inference to a great extent.
Particularly, it is important for our use-case such as beach litter collection, since train-
ing data are distributed over different embedded devices. Training Machine Learning
models is a highly data-intensive task. Scaling up is an effective technique to reduce
the impact of large volume of input and output on the workload performance by intro-
ducing parallelism over cluster of multiple machines. Additionally, resilience against
failures of single machine leverages the use of distributed system [20] [74]. The second
step, Online Incremental Learning Scheme [35] has been applied, enabling continuous
exploration of new training data. This approach helps in an overall increased perfor-
mance for object detection model. Both of the steps are discussed in detail later in
this chapter.

According to the methodological workflow shown in Figure 3.1, Parameter Server
Strategy [47] has been opted as distributed system topology. In this strategy, each
worker (embedded device) calculates its own gradients using own splitted data and
sends those gradients to one or more parameter servers. The parameter servers ag-
gregate all the gradients from the workers and then broadcast the updated model to
all workers. An algorithm in section 3.3 has been developed to discuss further details
on implementation of Parameter Server Strategy.

The Distributed Training starts with an initial offline object detection model using
Transfer Learning. This procedure has been depicted in Figure 3.1 (top figure). For
the offline training, we use models pre-trained on ImageNet dataset. The rationale
for using this technique is due to small dataset per class and computational power
constraints of embedded devices. The Transfer Learning step in our methodology,
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Figure 3.1: Distributed ML Workflow with Offline Training (top figure) and Incre-
mental Learning (bottom figure).

has been elaborated on in section 2.3. Rest of the steps such as Data Pre-processing,
training, loss calculation and optimization are typical machine learning workflow.
These steps have been elaborated in Algorithm 1.

To increase the performance of the offline model, Incremental Learning(IL) ap-
proach is followed. In IL, the new training data (from both old and new classes) are
used for re-training and fine-tuning the model. This Incremental Learning workflow is
depicted in Figure 3.1 (bottom figure). Unlike typical distributed training approach,
as a part of IL approach, we additionally calculate Distillation Loss from old model.
All these steps have further been discussed in section 3.4

In this thesis, two datasets have been used, namely Fruits and Filter, as an appli-
cation to fruit picking robot and garbage collector respectively. The Fruits dataset
is a medium size dataset, consisting of 8 classes, 6360 images and 27188 bounding
boxes. It is taken from commonly used public benchmark OpenImage [41] dataset.
The Filter dataset is created by ourselves having only one class and 287 images with
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292 annotations. Further details to the datasets are given in Section 3.7.
During all the stages of our methodology, we carefully consider reducing the com-

putational cost and memory requirement since embedded devices are resource con-
strained. This has been proved by our experiment shown in chapter 4. The method-
ological pipeline described above and the experiment exhibited in chapter 4, helped
us to accomplish our first three research goals mentioned in section 5.1.

Other important issues associated with the methodology such as Small Object
Detection Problem and Class Imbalance Problem have been discussed briefly in sub-
section 3.5.1 and subsection 3.5.2 respectively.

3.2 Pre-trained Object Detection Model using Trans-

fer Learning

We aim to build a parameter server based distributed system, where workers train
an object detection model capable of real-time detection on embedded devices. We
choose 3 state-of-the-art single stage detectors, namely MobileNet-SSD[31], SqueezeNet-
SSD[33] and RetinaNet[52]. Among them, the former 2 models are popular choices
that have been designed particularly for mobile and embedded devices. These archi-
tectures combine the SSD-300 [56] Single-Shot MultiBox Detector with a MobileNet
and SqueezeNet as backbone. The following Figure 3.2 shows the combined archi-
tecture of MobileNet and SSD[21]. As mentioned in chapter 1, all 3 models have
been trained for incremental learning for new data of known classes. However, for
adding new class called Mango in Fruits dataset, only RetinaNet[52] model has
been trained incrementally. The reason behind training RetinaNet only is to test
exclusively whether the model is capable of learning new class without forgetting
old class by using our distributed incremental learning approach. Further explo-
ration on class incremental training is kept as future work. The pretrained RetinaNet
model has ResNet-50 as backbone and trained on ImageNet dataset[17]. It is acquired
from https://github.com/fizyr/keras-retinanet and retrained it with Fruits and Filter
datasets using Transfer Learning approach.

It is important to mention here that, among the 4 quadrants shown in Figure 2.5,
our case belongs to the Quadrant 3, since Fruits and Filter datasets are quite differ-
ent from the ImageNet[17] dataset (which is used for pre-training) and are small or
medium in size. Therefore, for MobileNet-SSD[31] model as an example, we train only
the SSD, classification and regression layers and keep MobileNet base layers frozen.

3.3 Algorithm: Distributed Training

After discussing the workflow of Parameter Server Strategy shown in Figure 3.1, let
us define an algorithm for the Distributed Training.

The Algorithm 1 has been implemented using Distributed Remote Procedure Call
(RPC) Framework of PyTorch. The framework easily runs the remote functions (re-
mote communication). These are crucial for distributed training. Its high level API
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Figure 3.2: MobileNet-SSD Architecture [21]. Extra feature layers are parts of SSD.

creates and handles remote object reference. These object references make it easy to
run distributed backward pass to calculate gradients. The distributed Autograd and
Optimizer APIs run the distributed backward pass and update the weights accord-
ingly. These two APIs even work with the model parallelism where the models are
split across several machines. Overall, the framework provides the following 4 main
groups of APIs:

1. Remote Procedure Call (RPC) provides function execution on the remote
workers. It has 3 sub APIs:

(a) rpc sync(): Synchronous RPC, where further execution of codes are not
allowed without the return value or reference.

(b) rpc async(): Asynchronous RPC, where functions can asynchronously wait
for the future once the return value is required.

(c) remote(): This API is asynchronous and capable of returning reference to
the remote return value.

2. Remote Reference (RRef) holds a distributed shared reference to either
local or remote object (or can be Tensor value) on a remote worker. This RRef
can be shared with other workers. It maintains the reference counting in a
transparent way.

3. Distributed Autograd generates local graph on all workers while forward
passing. This graph is used in order to automatically calculate the gradients
during the backward pass. Autograd automatically reaches to each worker
during the backward pass. With Distributed Autograd functionality, user code
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Algorithm 1 Distributed Parameter Server Strategy using Distributed RPC

Input: rank, world size, master port, master address
Output: updated state dictionary of model
1: Task Scheduler:
2: function Main() . to be spawn by server
3: define model . model definition is done in section 3.2
4: define forward pass
5: Split model to all workers
6: Split data to all workers
7: for t← 0 to T do
8: assign process p to each worker t
9: issue WORKER(t) to all workers

10: Parameter Server:
11: function ParameterServer()
12: initialize server through RPC
13: set forward() function for worker
14: aggregate gradients through GET DISTRIBUTED GRADIENTS()
15: shutdown rpc

16: function get global param ref()
17: for param in model.parameters() do
18: param rrefs← [rpc.RRef(param)]

19: return param rrefs

20: function get distributed gradients(cid)
21: grads← distributed autograd.get gradients(cid)
22: return grads

23: Worker w = 1,....,m:
24: function worker(t)
25: initialize worker through RPC
26: load a part of training data
27: load a part of model
28: param rrefs← GET GLOBAL PARAM REF () . download the latest

state dictionary of the model
29: dist opt← DistributedOptimizer(SGD, param rrefs, lr)
30: for i, data, target iterate through training data do
31: with Distributed Autograd Context as cid:
32: model output← net(data)
33: loss← LossFunc(model output, target)
34: distributed autograd.backward(cid, [loss])
35: PARAMETERSERVER.GET DISTRIBUTED GRADIENTS(cid)
36: dis opt.step(cid)

37: shutdown rpc
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does not have to think about how to propagate gradients across RPC boundaries
or in what sequence the local autograd engines should be started. This can get
very problematic when the forward pass contains nested and inter-dependent
RPC operations.

4. Distributed Optimizer provides optimizers such as SGD(), Adam() etc. An
optimizer is required for each worker. Because the parameter RRefs and gra-
dients are dispersed across different workers during the forward and backward
passes. The Distributed Optimizer combines all of the local optimizers from
different workers into a single entity.

After discussing the 4 basic APIs of Distributed RPC framework, the next 2
subsections discuss the implementation of Parameter Server Class and Worker Class
as well as their methods mentioned in Algorithm 1.

In Algorithm 1, there are four input parameters. The parameter world size stands
for total number of workers participating in training, including parameter server(s).
The rank parameter indicates a unique rank for each individual worker. A rank
is a unique integer starts from 0 and ends at world size-1. It is used to identify
a worker in an RPC boundary. For our case, the world size is 4, where we use 3
workers and 1 parameter server. Hence, rank-0 belongs to single parameter server to
run. Rank-1, rank-2 and rank-3 are used to identify worker-1, worker-2 and worker-3
respectively. Other parameters such as master address and master port are used to
recognize where the rank-0 (parameter server) process is running and each worker
uses these two parameters (master address and port) to run itself by connecting to
the parameter server.

For model parallel approach stated in line 5 of the Algorithm 1, Appendix A shows
how we split the MobileNet-SSD layers into 3 different GPUs. It is challenging to
decide how many layers of a model should be placed in each GPU.

3.3.1 Parameter Server Class

Line 14 of Algorithm 1 describes one of the most important tasks of ParameterServer
class, that is the accumulation of distributed or scattered gradients. Parameter Server
calculates average of accumulated gradients from all the workers. The difference
between Federated Learning (a privacy preserving distributed training approach) and
our approach is that the gradients are not encrypted in our case while exchanging with
workers. The function GET DISTRIBUTED GRADIENTS in line 20 accomplished
the gradient accumulation task. This function used the Distributed Autograd of
Pytorch API. Distributed Autograd creates context id (an integer autograd context
id for which the gradients should be retrieved) for each gradient as well as a graph
while forward passing. Therefore, these context id and generated graph can be used
for backward pass efficiently. In addition to that, Parameter Server holds the remote
object reference of all the parameters of the model. It keeps track of each worker’s
number of training data, epoch, training time etc.

Another function called GET GLOBAL PARAM REF in line 16 of Algorithm 1
is used to iterate through model parameters and wrap them as local RRef. Work-
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ers use RPC to call this function, which returns a list of the parameters that need
to be optimized. This must be provided as input to the distributed optimizer. Be-
cause distributed optimizer needs a list of RRefs for each parameter that has to be
optimized.

3.3.2 Worker Class

Each worker runs the same training loop through its entire training data for 250
epochs as depicted in Lines 30 to 36. Apart from implementing MobileNet-SSD,
2 other state-of-the art one-stage object detection models, such as SqueezeNet-SSD
and RetinaNet are trained to compare the calculated loss, accuracy and training time
while training in a distributed fashion. Multibox loss (classification loss + localization
loss) function is used for all models except RetinaNet[52]. Focal loss is incorporated
with Multibox loss for RetinaNet model.

3.4 Incorporating Online Incremental Learning Ap-

proach

Incorporating online incremental learning with distributed training is the next crucial
step to achieve better accuracy for object detection models. In this approach, workers
no longer require to store the training data. Data are discarded after the whole train-
ing session ends. In addition to that, this approach has an advantage of continuous
learning in comparison to static model. According to [37], online learning belongs to
2 scenarios given below. In this study, both scenarios have been implemented sepa-
rately. When scenario 2 comes (adding new class), we do not incrementally train the
model with new data for known class. Similarly, when scenario 1 arrives, we do not
add new class header in order to train with new class. We will explore handling both
scenarios together in our future work.

1. Continuous learning of known classes with new data: refers to Incremental
Learning (IL). In IL, weight updates/changes while training for new data is
carefully handled by restricting large changes in gradients (known as Weight
Constraint). A Weight Constraint is a network update that verifies the weights’
size. The weights are rescaled if the size is greater than a predetermined limit
or falls within a range. This is achieved by using Dropout[76] and Max-norm
regularization. Another way to constraint the weight change is to penalize
the large weights. However, penalizing large weights do not force weights to
be small. Hence, as suggested by [76] and [29], we set max norm = 3 while
training. We applied online learning in this work by adding more training data
splitting into different sessions as done in [7].

Parameter Server stores the trained model checkpoint. Therefore, online train-
ing can resume from last checkpoint by loading the model. In addition to that,
Knowledge Distillation loss function is used to prevent Catastrophic Forgetting.
This step is described for the 2nd scenario.
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2. Incremental Learning with new classes : We also consider this case in this study
by adding one new class called Mango in Fruits dataset only. For adding n new
classes, along with keeping a copy of old model N’, a new model N is created
by extending the old model’s classification headers. The classification headers
should have n more neurons to be able to classify n more classes. For example,
for SSD[56], out channels=6 * num classes, since there are 6 aspect ratios for one
feature map. Weights of the newly added neurons are set randomly. However,
weights of new model are set from the corresponding weights of the old model.

For incremental learning approach, training goes on only with the new data for
old or new classes or both. To handle the Catastrophic Forgetting problem,
we conform to the idea of Learning without Forgetting (LwF)[51], which uses
Knowledge Distillation [30] technique. Knowledge Distillation prevents Catas-
trophic Forgetting by extracting knowledge from a complex pre-trained neural
network called Teacher (in our case, the old model), to train a relatively more
compact student model (new model). Typically, this extraction is carried out
by making the student model mimic the teacher’s responses against the training
data. Mathematically, this technique optimizes both the cross-entropy loss on
new classes and distillation loss on old classes. This discourages the changes for
the output of old classes. In other words, combination of both loss functions
make sure that for the same input image, the output for the old classes using
the new model is same to the output of the old model.

In addition to conserve the old model’s classification ability, it is important for
new model to learn the bounding box label from the old model. Thus the idea of
knowledge distillation for object detection is to stimulate both the outputs from
classification header and bounding box header of old model to approximate for
new model.

To summarize the above analysis, the loss function for incremental object de-
tection model, suppresses two changes in order to reduce the Catastrophic For-
getting and they are:

(a) Suppress changes in classification output of the old model

(b) Suppress changes in bounding box output of the identified objects

Hence, the goal is to incrementally train an object detection model N, capable of
detecting both m+ n classes. Here, assume that an old object detection model
N’ is trained on m classes and n new classes is to be added with a training
dataset Dnew. Figure 3.3 shows how the incremental learning method works for
new class.

The loss function defined in equation 2.6 considers the classification loss (con-
fidence loss) and regression loss (bounding box loss or localization loss) for an
object detection model. The new loss function for incremental object detection
adds two new loss terms, distilled classification loss and distilled regression loss
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Figure 3.3: Incremental Learning for n new class [43]

from old model’s output, and is defined as follows:

Lossnew = Lossclass(Yn, Ŷn)1+Lossbbox(Bn, B̂n)+Lossdist class(Y0, Ŷ0)+Lossdist bbox(B0, B̂0)
(3.1)

where, Yn = ground truth classification label,

Ŷn = classification output of new model with n new class,

Bn = ground truth bounding box,

B̂n = predicted bounding box output of new model,

Y0 = given the new data, output of old model

Ŷ0 = output of new model for old class,

B0 = predicted bounding box of old model for old class, but with new
data,

B̂0 = predicted bounding box of new model for old class

Therefore, the two newly added loss functions are defined as follows:

Lossdist class(Y0, Ŷ0) =
1

m

m∑
i=1

(Y i
0 − Ŷ i

0 )2 (3.2)

and
Lossdist bbox(B0, B̂0) =

∑
j∈{x,y,w,h}

smoothL1(B
j
0 − B̂

j
0) (3.3)

1For RetinaNet[52] model, this Loss function is replaced with Focal loss function
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Exemplary Dataset Construction: It is worth to note that no training
data from old classes are stored and only new data from old or new classes are
used while training. This online incremental learning approach saves a lot of
space as well as reduce training time to a great extent. Along with applying
Knowledge Distillation, a small exemplary database is maintained to make the
model more robust. The exemplary dataset contains few data obtained from
old classes through augmentation. This small dataset supplies at least some
information about old classes during the training phase and eventually helps
the object detection model to gain better accuracy in general. As claimed by
[43], a few exemplar data from each class exhibits similar accuracy rather than
using all data of old classes. [68] picks images based on the average feature
vector of exemplar in such a way that the average feature vector will be nearest
to the class average value. This approach adds overhead to the overall training
time. Unlike [68], data are chosen randomly for each class for our case. Our
experiments exhibit that the randomly chosen exemplary data from each class
help to obtain better accuracy. As number of new classes grows incrementally,
size of exemplary dataset can be increased. In that case, boundary can be set
for exemplary dataset size.

3.5 Handling Miscellaneous Issues

3.5.1 Small Object Detection Problem

Small object detection problem comes from the fact that Filter dataset contains
small objects. The definition of small objects are not clearly defined in literature.
The reasons is, researchers interpret small objects based on different datasets, rather
than considering only the size of bounding boxes of objects. [55] defines objects as
small if they fill less than 20% of entire image in traffic signs dataset. [9] considers
objects as small, if their overlapping area between bounding box and the image is in
between 0.08% to 0.58% from 16 by 16 to 42 by 42 pixel image.

The small object detection problem is still not completely solved. Hence, we
conform the following strategies in order to tackle the small object detection problem:

• Increasing image capture resolution

• Increasing model’s input image resolution

• Tiling input images

• Using Focal Loss function

3.5.2 Class Imbalance Problem

[64] extensively discusses the class imbalance problem in object detection and provides
critical views on the solutions. Most commonly known imbalance problem in object
detection is foreground-to-background imbalance. It occurs when there is an extreme
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inequalities between the number of positive and negative examples. Generally, there
are few positive examples where model can extract a lot of negative examples. If this
problem is not taken care of, it adversely affects the accuracy of the object detection
model as well leads to slow convergence. In case of SSD[56], this problem has been
handled by taking highest Confidence Loss negative examples and maintaining the
ratio of negative to positive class by maximum 3:1. RetinaNet [52] model uses Focal
Loss function in order to deal with class imbalance. It penalizes the contribution of
easy examples and gives more emphasize on hard examples using a scaling factor.

3.6 Real-time Inference with TensorRT Engine[63]

From the view point of practical implication, it is important to build a trained object
detection model capable of real-time detection. To do that following steps have been
taken. Figure 3.4 also illustrates the workflow for real-time inference.

1. Storing and Loading Model Checkpoint: After each epoch of training, if
the model validation loss is lower than the previous epoch, the model’s check-
point is stored. In this way, model validation is done by storing the best model
checkpoint. Later on after the training, the best model is loaded and then is
converted to intermediate ONNX (Open Neural Network Exchange) format.

2. Conversion of Trained Model to ONNX: PyTorch provides an easy API
to export a saved model to ONNX format.

3. ONNX to TensorRT[63] Conversion: TensorRT[63] is a Software Devel-
opment Kit (SDK) that enables high-performance machine learning inference.
It can only import a trained model via the ONNX interchange format. It pro-
vides efficient and quick inference of an already trained ML model on NVIDIA
hardware. detectnet.py [21] script has been used to load the ONNX model and
convert it for real-time inference.

Figure 3.4: Steps for Real-time Inference

45



3.7 Dataset, Experimental Setup and Data Pre-

processing

3.7.1 Dataset

Fruits dataset and it’s labels are collected from https://opensource.google/projects/
open-images-dataset using a script. For Filter dataset, data have been collected by
ourselves and labelling has been done using a tool from https://github.com/dusty-nv/
jetson-inference/blob/dev/docs/pytorch-collect-detection.md. All data and labels of
both datasets are in Pascal VOC format. For online incremental training, initially,
we collected the labels from inference step. Frames having object and Intersection
Over Union (IoU) > 0.85, are chosen for further incremental training. However, our
experiment found that the accuracy of the model is not as good as for real time
inference requirement. Therefore, we collected the label of Fruits dataset from online
and manually annotated the images of Filter dataset. We decided to keep this data
label automation and further investigation on it as future works.

Table 3.1 describes the data distribution of each class and their annotation for
both Fruits and Filter datasets:

Dataset Class Image Count Annotation Count

Fruits

Apple 1084 3622
Banana 747 1574
Grape 846 2560
Orange 1156 6186

Pear 250 757
Pineapple 328 534

Strawberry 1480 7553
Watermelon 469 753

Mango 185 248
Cigarette Filter Cig Filter 287 292

Table 3.1: Fruits and Filter Dataset Description (Mango class is used for incremental
learning approach)

For each worker, parameter server creates train, validation and test dataset and
their annotation with 80:5:15 ratio respectively. By default, TensorPipe backend pro-
tocol (which is TCP-based transport) was used for gradient transfer between workers
and server. It is integrated with Distributed RPC framework (such as by calling
init rpc()) of PyTorch. It has an added advantage of being asynchronous unlike Gloo
(Gloo is a distributed backend package provided by PyTorch for distributed CPU
training). It is capable of handling large amount of transfer concurrently without
interrupting each other. It also can manage different workers with different speeds,
which is obvious in reality.
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3.7.2 Experimental Setup

We conduct experiments to compare training time per epoch and mean average pre-
cision (mAP) for distributed and non-distributed setup. We compare results both for
online and batch learning, as well as adding new classes for incremental learning. All
the experiments have been carried out using both the Data Parallelism and Model
Parallelism.

To measure the accuracy of an object detection model, a metric is used called mean
average precision (mAP). mAP is the average of AP. Alternatively, AP is averaged
over all classes. According to MS COCO [53], there is no distinction between AP and
mAP. In order to understand mAP, it is important to understand how to calculate
Intersection Over Union (IoU). IoU is a measurement based on Jaccard Index that
considers the overlapping area between model’s predicted bounding box and ground
truth bounding box. Based on the IoU value, it is determined whether a detection is
True or False. A predefined IoU threshold is used (for our case, IoU threshold = 0.5),
where IoU >= 0.5 indicates a valid detection, otherwise not. The formula for IoU is:

Figure 3.5: Intersection Over Union (IoU)

IoU is calculated for each image. Then detection is considered having IoU >= 0.5
and AP is calculated for each class across all images. Finally, mAP is calculated
by using mean of the APs over all classes. We use the repo https://github.com/
rafaelpadilla/Object-Detection-Metrics to calculate the accuracy of all models.

Measuring training time is straight forward, which is the time (in minute unit)
difference between begin and end of an epoch.

Our cluster(3-GPU system) consists of 3 Jetson Nano devices each of which has
472 GFLOPS of compute performance with a quad-core 64-bit ARM CPU, a 128-core
integrated NVIDIA GPU, 4GB LPDDR4 memory, low-power with 5W/10W power
modes, 5V DC input and run on Linux4Tegra, based on Ubuntu 18.04. These 3
Jetson Nano devices were connected to a small wireless area network with a TP-Link
AC1750 WIFI router at an average speed of 450 mbps for 2.4 GHz band. An Edimax
2-in-1 WiFi and Bluetooth 4.0 Adapter was also used for each Jetson Nano. We
use one Parameter Server having configuration of Intel Core i5 10th Gen, 3.2 GHz
processor, 8GB DDR4-3200 RAM and run on Ubuntu 18.04.

For model selection, three state-of-the-art one-stage object detection models were
used to measure the performance of the distributed incremental learning approach.
Following Table 3.2 provides a summary of our experiments:

Additionally, 1-GPU based laptop was used to train a baseline model Vanilla-
SSD(VGG16-SSD[73]) in order to compare the performance of 1, 2, 3-GPU based
distributed systems for both the datasets. The configuration of the laptop is Intel Core
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Model MobileNet-SSD SqueezeNet-SSD RetinaNet
Loss Func Multibox Focal Loss
Optimizer SGD

Epoch 250 (160 for Filter Dataset)
lr 0.001

Dropout 0.20
Batch size 4 (3 for online training)
Evaluation
Metric

Training Loss, Validation Loss, Classification Loss,
Regression Loss, Accuracy and Training Time

Table 3.2: Summary of Model Training Parameter and Experiment

i7 11th Gen, 16GB DDR4 RAM and NVIDIA GeForce RTX 3050Ti. No strategies
such as Data Parallelism, Model Parallelism, using Examplary Dataset etc. had been
applied to train the Vanilla-SSD.

3.7.3 Data Pre-processing

Different data pre-processing steps including rescaling of the input images and trans-
formation functions, are carried out before training starts. They are:

• ConvertFromInts(): to convert the integer image pixel values to float.

• PhotometricDistort(): perform distortion of images by orderly applying
some functions such as changing contrast, brightness, saturation, hue, convert-
ing colour from RGB to HSV and vice-versa.

• Expand(): expands the images’ height and width maintaining the aspect ratio.

• RandomSampleCrop(): randomly crops the expanded images with at least
one ground truth bounding boxes.

• RandomMirror(): transforms an image to its left-right flip.

• Resize(): resizes an input image from lower dimension to higher and vice-versa.

• SubtractMeans(): to normalize image pixel values.
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Chapter 4

Results and Discussion

4.1 Distributed vs Non-Distributed Training

Using both the data parallel and model parallel approaches for Fruits and Filter
datasets, training loss, validation loss, training time and accuracy have been com-
pared between distributed training (2-GPU and 3-GPU system) and non-distributed
training (1-GPU system) for all 3 object detection models. Additionally, loss and
accuracy of 3 object detection models have been compared with that of Vanilla-SSD
model.

4.1.1 Loss Comparison/Convergence

It is common practice to record training loss and validation loss over time in order to
measure how the model is learning. The training loss tells how well the model learns
the training data, whereas validation loss says how well the model can fit the new
data. For object detection problem, training loss is the summation of classification
loss and regression loss for bounding box.

Figure 4.1, Figure 4.2 and Figure 4.3 show the training and validation loss curves
while training for 250 epochs using the Fruits dataset. 3 different object detection
models, MobileNet-SSD[31], SqueezeNet-SSD[33] and RetinaNet[52] were trained on
1-GPU, 2-GPU and 3-GPU system and VGG16-SSD was trained on 1-GPU system.
All the training loss curves decrease over time to a point of stability. Also, all the
validation loss curves decrease to a point of stability and have a small gap with the
training loss. Point of stability and small gap between training and validation loss
indicate a good fit of the data. Comparing the loss curve of Vanilla-SSD with the
loss curve of MobileNet-SSD, SqueezeNet-SSD and RetinaNet, we can say that the 3
models are trained enough to produce good accuracy for real time inference.

From the dataset representative perspective, both the training and validation
datasets represented all the 3 models (All through the thesis, by 3 models we mean
MobileNet-SSD, SqueezeNet-SSD and RetinaNet). Alternatively, it can be said that
all 3 models successfully learnt the training datasets and have been well validated
against validation datasets. Firstly because, there are no large noticeable gaps be-
tween both loss curves. Secondly, none the curves have large fluctuation or noise.
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However, Figure 4.2b and Figure 4.3b exhibit some noises in validation curve com-
paring with the training curve.

(a) Loss curve using Vanilla-SSD (b) Loss curve on 1-GPU system

(c) Loss curve on 2-GPU system (d) Loss curve on 3-GPU system

Figure 4.1: Training and Validation Loss Comparison for MobileNet-SSD[31] using
Different GPU System and Vanilla-SSD (VGG16-SSD); Dataset: Fruits; Epochs: 250

It is worth to note that for all 3 models, comparing with distributed(2-GPU and 3-
GPU system) and non-distributed training(1-GPU system), the former systems begin
with larger loss values, which eventually converge to lower loss values than the latter
one. An intuition can be, distributed systems initially take some training rounds
to be stable in learning, due to asynchronous communication overheads between the
GPU and server.

In comparison between 3 models’ loss functions, both loss curves of MobileNet-
SSD[31] model reside nearby over the training period. Other 2 models’ loss curves
are not as close as MobileNet-SSD[31].

4.1.2 Training Time Comparison

Training time has been recorded for each epoch in minute unit. Figure 4.4 exhibits
the training time required for 250 epochs on various parallelization schemes using
the Fruits dataset. The experiments were run for all 3 models (we did not compare
training time result with Vanilla-SSD, as the configuration of the machine used to

50



(a) Loss curve using Vanilla-SSD (b) Loss curve on 1-GPU system

(c) Loss curve on 2-GPU system (d) Loss curve on 3-GPU system

Figure 4.2: Training and Validation Loss Comparison for SqueezeNet-SSD[33] using
Different GPU System and Vanilla-SSD (VGG16-SSD); Dataset: Fruits; Epochs: 250

train the model is much higher than Jetson Nano, resulting much lower training time
than 3-GPU system). The same experiments were conducted using the Filter dataset
for 160 epochs and showed in Figure 4.5.

• Fruits Dataset: Using Fruits dataset, the average training time per epoch for
MobileNet-SSD on single-GPU, 2-GPU and 3-GPU systems was 15.753 min-
utes, 8.177 minutes and 5.170 minutes respectively. From these results it is
evident that, on average, the training time has been reduced by 48.09% using
2-GPU system and 67.18% using 3-GPU system comparing with single GPU.
Alternately, it can be said that training speed has been increased almost dou-
ble using 2-GPUs and more than 3-times using 3-GPUs systems comparing
with 1-GPU. In comparison between 2 and 3-GPU system, the average training
time per epoch from 2 to 3-GPU system has decreased by around 36%, which
is because of adding GPUs incur some communications overhead. In case of
SqueezeNet-SSD[33], Figure 4.4b says, the average training time using 2-GPU
and 3-GPU system has been reduced by 45.26% and 67.25% respectively in
comparison with single GPU system. Similarly, there was reduction in training
time using distributed training system for RetinaNet model in contrast with
non-distributed system. Experiment and Figure 4.4c show that in instance of
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(a) Loss curve using Vanilla-SSD (b) Loss curve on 1-GPU system

(c) Loss curve on 2-GPU system (d) Loss curve on 3-GPU system

Figure 4.3: Training and Validation Loss Comparison for RetinaNet[52] using Differ-
ent GPU System and Vanilla-SSD (VGG16-SSD); Dataset: Fruits; Epochs: 250

RetinaNet model, the average training time per epoch using 1, 2 and 3-GPU
system were 16.13 minutes, 9.31 minutes and 6.68 minutes respectively. Hence
the average training time has shrinked by 42.25% and 58.57% using 2-GPU
and 3-GPU system respectively comparing with 1-GPU system. Among the
3 object detection models, MobileNet-SSD and SqueezeNet-SSD require less
training time (around 5 mins and 4.3 mins respectively) than the RetinaNet
model (around 6.7 mins) for distributed training using 3-GPUs.

• Filter Dataset: The results of training time (reduction rate) using different
distributed systems shown in Figure 4.5a, Figure 4.5b and Figure 4.5c are quite
similar to those results of the Fruits dataset. The average training time per
epoch using 1, 2 and 3-GPU systems were 0.603, 0.279 and 0.146 minutes re-
spectively for the MobileNet-SSD model. Comparing with single GPU, the mean
training time for 2-GPU system has been decreased by 53.73%, whereas for a
3-GPU system, it was decreased by 75.78%. For SqueezeNet-SSD[33] model,
it was reduced by 51.44% using 2-GPU and 73.55% using 3-GPU, contrast-
ing with the performance of non-distributed system. Comparing with 1-GPU
system shown in Figure 4.5c, while training RetinaNet[52] model, the mean
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(a) Training Time for
MobileNet-SSD

(b) Training Time for
SqueezeNet-SSD

(c) Training Time for Reti-
naNet

Figure 4.4: Training Time Comparison for MobileNet-SSD, SqueezeNet-SSD and
RetinaNet using 1, 2, 3-GPU System; Dataset: Fruits; Epochs: 250

(a) Training Time for
MobileNet-SSD

(b) Training Time for
SqueezeNet-SSD

(c) Training Time for Reti-
naNet

Figure 4.5: Training Time Comparison for MobileNet-SSD, SqueezeNet-SSD and
RetinaNet using 1, 2, 3-GPU System; Dataset: Filter; Epochs: 160

training time were reduced by 48.29% using 2-GPU and 72.98% using 3-GPU.
Overall, MobileNet-SSD[31] outperforms other 2 models in terms of reducing
average training time per epoch for the Filter dataset.

From Figure 4.4 and Figure 4.5, it is observable that all the training time curves
for 3 models using different parallelisms have downward direction over the course
of time. This means that the training time per epoch reduces slowly over the
250 epochs time and 160 epochs time for Fruits and Filter dataset respectively.

The following table summarizes the average training time required and percentage
of reduction comparing with single GPU for 3 models.
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Data-
set

Models
1-GPU 2-GPU 3-GPU
Avg.
Time

Avg.
Time

% reduction
vs 1-GPU

Avg.
Time

% reduction
vs 1-GPU

Fruits

MobileNet
-SSD

15.753 8.177 48.09 5.170 67.18

SqueezeNet
-SSD

13.349 7.307 45.26 4.371 67.25

RetinaNet 16.126 9.312 42.25 6.681 58.57

Filter

MobileNet
-SSD

0.603 0.279 53.73 0.146 75.78

SqueezeNet
-SSD

0.484 0.235 51.44 0.128 73.55

RetinaNet 0.733 0.379 48.29 0.198 72.98

Table 4.1: Summary of Training Time for Fruits (250 epochs) and Filter (160 epochs)
dataset

4.1.3 Accuracy Comparison

As it can be seen from the comparison of Training Time discussed in subsection 4.1.2,
distributed training approach reduces training time to a great extent. However, from
Table 4.2, Figure 4.6 and Figure 4.7, it can be seen that increasing number of GPUs
does not exhibit remarkable contribute in increasing accuracy of the models for both
the Fruits and Filter datasets. mAP of MobileNet-SSD and Squeezenet-SSD using
3-GPUs are slightly greater than the mAP using 1-GPU. Same observation can be
found for RetinaNet using Filter dataset. Our intuition is that distributed training
gives network chances to find more global optimum solution than non-distributed
training. Comparing with Vanilla-SSD in Table 4.2, MobileNet-SSD achieves more
accuracy for both the datasets. RetinaNet achieves similar accuracy to Vanilla-SSD
in case of both datasets. Accuracy of SqueezeNet-SSD is lower than that of Vanilla-
SSD. One intuition could be too much squeezing or reducing the depth of the feature
map results into loosing accuracy as compared with other 3 models.

Data-
set

Models
1-GPU 2-GPU 3-GPU
mAP mAP mAP

Fruits

MobileNet-SSD 70.02 69.38 70.51
SqueezeNet-SSD 64.41 63.79 65.57
RetinaNet 68.19 67.26 67.53
Vanilla-SSD 68.78

Filter

MobileNet-SSD 74.37 74.52 73.24
SqueezeNet-SSD 67.53 66.46 66.07
RetinaNet 68.04 68.92 69.95
Vanilla-SSD 70.03

Table 4.2: Summary of mAP for Fruits(250 epochs) and Filter(160 epochs) dataset
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(a) Accuracy for MobileNet -
SSD

(b) Accuracy for SqueezeNet
-SSD

(c) Accuracy for RetinaNet

Figure 4.6: Accuracy Comparison for MobileNet-SSD, SqueezeNet-SSD and Reti-
naNet using 1, 2, 3-GPU System; Dataset: Fruits; Epochs: 250

Figure 4.7: Accuracy Comparison using 1, 2, 3-GPU System; Dataset: Filter; Epochs:
160

The next Section 4.2 describes how the distributed system achieves better accuracy
through Online Learning as oppose to Static Learning.
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4.2 Batchwise Static Learning vs Online Learning

In this section, 1-GPU, 2-GPU and 3-GPU systems have been used for all the online
incremental training experiments. The whole datasets Fruits and Filter have been
divided into 4 sessions in order to incrementally train all the 3 object detection models.
This can be summarized as follows:

Session

Training
Image per
Session
(Fruits)

Epoch
No. of
Exemplary
Data

Training
Image per
Session
(Filter)

Epoch
No. of
Exemplary
Data

S-1 1286 100
5% of 1286
= 65

61 70
5% of 61
= 3

S-2 1286 50
5% of 1286
= 65 + (65
from S-1) = 130

61 30
5% of 61
= 3 + (3
from S-1) = 6

S-3 1286 50
5% of 1286
= 65 + (130
from S-2) = 195

61 30
5% of 61
= 3 + (6
from S-2) = 9

S-4 1287 50
5% of 1287
= 65 + (195
from S-3) = 260

62 30
5% of 62
= 3 + (9
from S-3) = 12

Cumulative
(Total)

5145 250 260 245 160 12

Table 4.3: Summary of splitted datasets into different sessions for Online Learning
using 3-GPU system

From Table 4.3, total 5145 training images of Fruits dataset has been split into 4
sessions (same class distribution as used for distributed training), each session con-
sists of 25% of training data. Remaining 6360 - 5145 = 1215 images are kept for
validation and test set, in which same ratios like training set, are applied to split
the validation and test sets. Identical approach is followed for Filter dataset. First
session is trained for 100 epochs where rest of the sessions are trained for 50 epochs
using Fruits dataset. 5% of training images are kept as exemplary data, obtained
through data augmentation from the training set.

4.2.1 Accuracy Comparison

In Figure 4.8 and Figure 4.9, all 3 models show a progressive increase in accuracy
after each session of training. Training data for each consecutive session is increasing
through Exemplary dataset, which instinctively leverages to achieve better accuracy.
Comparing with batch wise training, MobileNet-SSD and RetinaNet yield accuracy
increase of 13.05% and 2.40% respectively for Fruits dataset. However, SqueezeNet-
SSD achieve almost similar accuracy contrasting to batch training. Using Filter
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dataset, accuracy has been increased by 6.51%, 7.67% and 16.09% respectively for all
3 models. Note that accuracy for Online and Batchwise Training (for both datasets)
is shown using 3-GPUs only. Also, it should be noted that, for online and batch
wise training, all the 3 models are trained for total 250 epochs (including 4 sessions
for online training) using Fruits dataset and 160 epochs (including 4 sessions for
online training) using Filter dataset. The next subsection discusses the training time
required for online training.

Figure 4.8: Accuracy Comparison between Online Training and Batchwise Training
using 3-GPU System; Dataset: Fruits; Epochs: 250

4.2.2 Training Time Comparison

Figure 4.10 and Figure 4.11 show the training time per epoch in minutes required for
4 individual sessions, their cumulative training time and batch wise training for Fruits
and Filter datasets using 1, 2, and 3-GPUs. Both the Figure 4.10 and Figure 4.11
have a common trend of increasing training time for each incremental training session.
This is intuitive, since each incremental session has an additional number of exemplary
images as well as Distillation loss function to compute.

In essence, it can be said that it is possible to achieve more accuracy using online
training comparing with batch wise training. From our experiments, it can be inferred
that up to 13% more accuracy can be achieved for a medium size dataset like Fruits
and up to 16% more accuracy for a small dataset such as Filter. Online training
incurs some additional training time comparing with batch training. Though, it is
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Figure 4.9: Accuracy Comparison between Online Training and Batchwise Training
using 3-GPU System; Dataset: Filter; Epochs: 160

(a) Training Time for
MobileNet-SSD

(b) Training Time for
SqueezeNet-SSD

(c) Training Time for Reti-
naNet

Figure 4.10: Online vs Batch Training Time Comparison for MobileNet-SSD,
SqueezeNet-SSD and RetinaNet using 1, 2, 3-GPU System; Dataset: Fruits; Epochs:
250

possible to reduce training time for online learning by adding more GPU with some
communication overheads.
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(a) Training Time for
MobileNet-SSD

(b) Training Time for
SqueezeNet-SSD

(c) Training Time for Reti-
naNet

Figure 4.11: Online vs Batch Training Time Comparison for MobileNet-SSD,
SqueezeNet-SSD and RetinaNet using 1, 2, 3-GPU System; Dataset: Filter; Epochs:
160

4.2.3 Accuracy Comparison for Incremental Learning (Adding
a new class)

In this section, a new class called Mango (having 185 images) has been incrementally
trained along with the 8 classes previously trained on 3-GPU system using Fruits
dataset for 250 epochs. We used Distillation loss function in order to incrementally
train the new class. For simplicity, unlike training all 3 models, only RetinaNet[52]
model has been trained and tested for this newly added Mango class. All through
this thesis, a pretrained RetinaNet model (ResNet-50 as backbone and trained on
ImageNet dataset[41]) is used and retrained with Fruits and Filter datasets using
Transfer Learning approach.

Class
8-Class(Using
Original Loss)

8+1-Class (Using
Original Loss)

Catastrophic
Forgetting
(Original Loss)

Using Knowledge
Distillation Loss

Apple 73.22 74.77 19.69 72.63
Banana 64.40 64.23 8.72 65.71
Grape 72.32 74.53 13.31 73.21
Orange 74.51 75.87 16.94 73.74
Pear 60.28 68.16 9.72 67.26
Pineapple 60.62 66.59 11.26 65.18
Strawberry 72.27 73.25 17.45 73.44
Watermelon 62.64 67.48 17.11 67.21
Mango – 66.83 62.47 70.05
mAP 67.5322 70.1888 19.6317 69.8710

Table 4.4: mAP Comparison for Adding New Class for RetinaNet[52] model using
3-GPUs systems; Epoch: 250; Dataset: Fruits;
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From the Table 4.4, previously trained 8-Class accuracy is shown using the original
loss function as defined in Equation 2.6. Secondly, all 8+1-Classes have been trained
using the data from both the old and new classes with fine-tuning the old model. This
time still original loss function is used and achieved around 70.19 mAP. Thirdly, to
measure Catastrophic Forgetting, we trained the model with only the new class using
original loss function and tested using test dataset of all classes, resulting mAP equals
to 19.63 (old classes are not trained for this case). Finally, the model is incrementally
trained using Knowledge Distillation Loss function defined in Equation 3.1 and as
depicted in Figure 3.3. This achieved an accuracy of 69.87 mAP which is slightly
greater than using original loss function. Therefore, the Distributed Incremental
Training approach successfully learnt the new Mango class without forgetting other
classes.

4.3 Discussion

In [6] authors proposed a resource management framework called Deep-Edge. It
leverages parameter server based distributed training at the edge to update DL model.
This reduced the epoch time by 1.54 times, where our results exhibited much better
reduction in training time. Although, our testbed is quite different from Deep-Edge.

Google Research[32] studied several strategies to tradeoff accuracy for speed and
memory utilization of object detection models. Lateral comparisons between models
have proven challenging due to differences in base feature extractors such as VGG16,
ResNet and hardware and software platforms. According to [32], MobileNet-SSD
achieved higher accuracy among the fastest models. Our experiment also claimed the
same. MobileNet-SSD outperformed the other 2 models in terms of accuracy and
reducing training time.

It is noticeable that the accuracy of SqueezeNet-SSD using 3-GPUs, is lower than
the baseline as well as MobileNet-SSD and RetinaNet. However in case of speeding-up
training, SqueezeNet-SSD achieved better (almost similar for MobileNet-SSD) speed
than baseline and RetinaNet. Therefore, the results of SqueezeNet-SSD in our study
are in line with the results explained by the authors of SqueezeNet main paper[33] as
well as by [49].

Authors of [67] developed an automated annotation system mounted on a vehicle
to collect data of wastes (having Cigarette Filter data) from the streets. Then authors
applied deep learning to classify and localize different types of wastes. However,
their model is not capable of detecting objects in real time. Their model’s accuracy
is 63.2% where our experiment showed an accuracy of up to 74.81%, though with
different datasets from ours. Moreover, our distributed incremental learning approach
is capable of learning new classes without forgetting old class and without training
from scratch.

Finally, by combining the distributed training and online learning, both the speed
of training and accuracy are improved compare to baseline(VGG16-SSD) model trained
on single GPU, without applying any tricks which have been applied to other 3 models.
[11] achieved 59.4% mAP with Knowledge Distillation(KD) for VGG16 using PAS-
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CAL VOC dataset, which was 54.7% without using KD. Our experiment achieved
69.87% mAP using RetinaNet model with KD, which was 67.53% without KD. Few
important aspects of research related to our work, are not explored in this thesis. We
mention these limitations in next section and will explore in our future work.
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Chapter 5

Conclusions

In this thesis, we implemented a scalable parameter server based distributed training
approach particularly designed for object detection including real-time inference for
embedded devices. In addition to that, this approach incrementally trains the model
for unseen data of existing classes as well as for new class.

In the experiments, we showed that using additional GPUs reduces the training
time by around 67% using 3 GPUs compared with single GPU with some overhead due
to the increased communication time between the workers and server for distributed
training. With the utilization of online incremental training, our experiments ex-
hibited an increase of accuracy up to 16% comparing with batch training using the
distributed system. Therefore, incremental training performs better than batch train-
ing. After each incremental session of training, we no longer require to store the
training data as well as to train from scratch(which is the case for batch training).
Moreover, using our incremental learning approach, new class can be trained incre-
mentally without retraining the old classes from scratch. Thus, incremental training
saves enormous computation than batch training. We used 3 state-of-the-art one-
stage object detectors in order to test the efficacy of our distributed system. From
model performance point of views, MobileNet-SSD outperforms the other 2 models,
SqueezeNet-SSD and RetinaNet, in terms of both reducing per epoch training time
and increasing accuracy.

We rigorously studied the Catastrophic Forgetting and small object detection
problems which are associated with our works. Hence, Knowledge Distillation and
preparation of a small exemplary dataset helped to overcome the Catastrophic Forget-
ting substantially. We built a small dataset named Cigarette Filter as an application
to beach garbage collector. This custom dataset contains small objects, which are
difficult to detect. From our empirical study and experiment, it is proved that some
strategies such as increasing image resolution, tiling images and most importantly
using Focal Loss function (only for RetinaNet model) aided to detect small objects.
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5.1 Summary of Contributions

To conclude this study, we can claim that we achieved the goals mentioned in the
aims and objectives section of Chapter 1. Therefore, the key contributions are:

1. Incorporating online incremental learning approach with Parameter Server based
scalable distributed training approach. By combining both the distributed
training and incremental learning, our experiment showed a significant reduc-
tion in training time as well as an increased in accuracy compared to batch
learning. This is the core contribution of this thesis.

2. Extensive analysis of 3 state-of-the-art one-stage object detection models’ per-
formance using distributed incremental learning approach.

3. Simultaneous execution of Knowledge Distillation [30] concept and a small ex-
emplary dataset [68] make our distributed incremental learning approach more
robust in dealing with Catastrophic Forgetting problem.

4. Preparing and annotating our own collected Cigarette Filter dataset consisting
of 287 images, as a part of beach clean-up using robots. This dataset has one
class and contains small objects.

5. Along with Focal loss function [52], other strategies mentioned in subsection 3.5.1
substantially solved the challenge of detecting small objects.

5.2 Limitations

Our work has some limitations, and these are:

• For the sake of simplicity, only one Parameter Server and 3-GPUs are used for
this experiment. More Parameter servers and workers could have been used in
order to further demonstrate the scalibility of the proposed distributed incre-
mental training system.

• In this study, small or medium sized datasets are used. In practical, large
dataset may need to be tested for our distributed incremental training approach.

• Our study does not consider some network issues such as improving Quality-of-
Service (latency, bandwidth etc.).

• In this thesis, only homogeneous data and embedded devices are used. From
practical point of view, data can be heterogeneous and different embedded de-
vices can be used as workers. Moreover, our study completely ignores the en-
cryption of the parameters, where any intruder can temper the parameters.
These open a new broad area of research called Federated Learning, which is
discussed as our future work.
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5.3 Future Work

This thesis work unfolds a potential direction of work called Federated Learning, as
mentioned in the limitation section. We already started working on this area. Below
is a glimpse of our future work related to this area.

Federated Learning (FL) refers to a special scenario where edge devices collab-
oratively train a shared prediction model without transferring their local data to a
centralized server, rather model is moved on each edge devices, gets encrypted and
then again dispatched to the cloud. A global model in cloud server is formed by inte-
grating all the encrypted models sent from the devices. In this way, the server does
not know about the data from devices, thus preserve the privacy of the owner of the
data. Finally, edge devices can download the updated model from cloud server which
is already under encryption. Moreover, clients (edge devices) do not know about each
other’s data.

Our focus is on the following three important aspects of FL:

• Optimal client selection so as to reduce the number of training rounds to
achieve a given accuracy.

• Improving communication efficiency through weight compression, model
pruning or applying quantization.

• Encryption of parameters through privacy preserving techniques.
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Appendix A

An Appendix

A.1 Code Snippet

The following code snippet imports the necessary libraries in order to create and
spawn the processes. These lines of code correspond to implementation of Lines 6 to
9 of Algorithm 1.

1 import argparse

2 import os

3 import time

4 from threading import Lock

5

6 import torch

7 import torch.distributed.autograd as dist_autograd

8 import torch.distributed.rpc as rpc

9 import torch.multiprocessing as mp

10 import torch.nn as nn

11 import torch.nn.functional as F

12 from torch import optim

13 from torch.distributed.optim import DistributedOptimizer

14 from torchvision import datasets , transforms

15

16 processes = []

17 world_size = args.world_size

18 if args.rank == 0:

19 p = mp.Process(target=run_parameter_server , args=(0, world_size)

)

20 p.start ()

21 processes.append(p)

22 else:

23 # Get data to train on

24 train_loader = torch.utils.data.DataLoader(

dataset= train_dataset , train=True ,

transform=train_transform , target_transform=

target_transform ,

25 batch_size =4, shuffle=True ,

26 )

27

28 test_loader = torch.utils.data.DataLoader(
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29 dataset=test_dataset ,

30 train=False ,

31 transform= test_transform , target_transform=

target_transform

32 batch_size =4,

33 shuffle=True ,

34 )

35 # start training worker on this node

36 p = mp.Process(

37 target=run_worker ,

38 args=(

39 args.rank ,

40 world_size , args.num_gpus ,

41 train_loader ,

42 test_loader))

43 p.start()

44 processes.append(p)

45

46 for p in processes:

47 p.join()

Listing A.1: Creating process for each node

In Listing A.1, for example, one parameter server running with world size = 4, the
shell command would be python rpc parameter server.py –world size=4 –rank=0. Af-
terwards, the workers can be launched by the command python rpc parameter server.py
–world size=4 –rank=1 and so on for each worker.

1 # Ref: https :// github.com/marvis/pytorch -mobilenet

2

3 #Putting 26 layers of MobileNetV1 into 1st GPU

4 class MobileNetV1_SSD(nn.Module):

5 def __init__(self , num_classes =1024):

6 super(MobileNetV1_SSD , self).__init__ ()

7 device_ids = ["cuda:0", "cuda:1", "cuda:2"]

8

9 def conv_bn(inp , oup , stride):

10 return nn.Sequential(

11 nn.Conv2d(inp , oup , 3, stride , 1, bias=False),

12 nn.BatchNorm2d(oup),

13 nn.ReLU(inplace=True)

14 )

15

16 def conv_dw(inp , oup , stride):

17 return nn.Sequential(

18 nn.Conv2d(inp , inp , 3, stride , 1, groups=inp , bias=

False),

19 nn.BatchNorm2d(inp),

20 nn.ReLU(inplace=True),

21

22 nn.Conv2d(inp , oup , 1, 1, 0, bias=False),

23 nn.BatchNorm2d(oup),

24 nn.ReLU(inplace=True),

25 )

26 device = torch.device(device_ids [0])
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27 self.model = nn.Sequential(

28 conv_bn(3, 32, 2),

29 conv_dw (32, 64, 1),

30 conv_dw (64, 128, 2),

31 conv_dw (128, 128, 1),

32 conv_dw (128, 256, 2),

33 conv_dw (256, 256, 1),

34 conv_dw (256, 512, 2),

35 conv_dw (512, 512, 1),

36 conv_dw (512, 512, 1),

37 conv_dw (512, 512, 1),

38 conv_dw (512, 512, 1),

39 conv_dw (512, 512, 1),

40 conv_dw (512, 1024, 2),

41 conv_dw (1024, 1024, 1),

42 ).to(device)

43 self.fc = nn.Linear (1024, num_classes).to(device)

44

45

46 #Putting 8 layers of SSD into 2nd GPU

47 device = torch.device(device_ids [1])

48 SSD_layers = ModuleList ([

49 Sequential(

50 Conv2d(in_channels =1024, out_channels =256, kernel_size =1),

51 ReLU(),

52 Conv2d(in_channels =256, out_channels =512, kernel_size =3,

stride=2, padding =1),

53 ReLU()

54 ),

55 Sequential(

56 Conv2d(in_channels =512, out_channels =128, kernel_size =1),

57 ReLU(),

58 Conv2d(in_channels =128, out_channels =256, kernel_size =3,

stride=2, padding =1),

59 ReLU()

60 ),

61 Sequential(

62 Conv2d(in_channels =256, out_channels =128, kernel_size =1),

63 ReLU(),

64 Conv2d(in_channels =128, out_channels =256, kernel_size =3,

stride=2, padding =1),

65 ReLU()

66 ),

67 Sequential(

68 Conv2d(in_channels =256, out_channels =128, kernel_size =1),

69 ReLU(),

70 Conv2d(in_channels =128, out_channels =256, kernel_size =3,

stride=2, padding =1),

71 ReLU()

72 )

73 ])

74 self.model = nn.Sequential(SSD_layers).to(device)

75

76 #Putting rest layers of SSD into 3rd GPU

69



77 device = torch.device(device_ids [2])

78

79 regression_headers = ModuleList ([

80 Conv2d(in_channels =512, out_channels =6 * 4, kernel_size =3,

padding =1),

81 Conv2d(in_channels =1024, out_channels =6 * 4, kernel_size =3,

padding =1),

82 Conv2d(in_channels =512, out_channels =6 * 4, kernel_size =3,

padding =1),

83 Conv2d(in_channels =256, out_channels =6 * 4, kernel_size =3,

padding =1),

84 Conv2d(in_channels =256, out_channels =6 * 4, kernel_size =3,

padding =1),

85 Conv2d(in_channels =256, out_channels =6 * 4, kernel_size =3,

padding =1),

86 ])

87

88 classification_headers = ModuleList ([

89 Conv2d(in_channels =512, out_channels =6 * num_classes ,

kernel_size =3, padding =1),

90 Conv2d(in_channels =1024, out_channels =6 * num_classes ,

kernel_size =3, padding =1),

91 Conv2d(in_channels =512, out_channels =6 * num_classes ,

kernel_size =3, padding =1),

92 Conv2d(in_channels =256, out_channels =6 * num_classes ,

kernel_size =3, padding =1),

93 Conv2d(in_channels =256, out_channels =6 * num_classes ,

kernel_size =3, padding =1),

94 Conv2d(in_channels =256, out_channels =6 * num_classes ,

kernel_size =3, padding =1),

95 ])

96 self.model = nn.Sequential(regression_headers).to(device)

97 self.model = nn.Sequential(classification_headers).to(device)

Listing A.2: Splitting MobileNet-SSD model into different GPUs

In Listing A.2, in case of MobileNet-SSD, it is reasonable to place first 26 layers from
MobileNet into first GPU, then 8 layers of SSD on second GPU and the remaining
layers (both classification headers and regression headers) on the third GPU. The
rationale of this splitting is that MobileNet layers are used for forward pass only. On
the other hand, SSD layers are both used for forward and backward passes.
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