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Abstract— Routing Protocol (RPL) is treated as a standard protocol for Low power and Lossy Networks (LLNs). It was introduced by 

the Internet Engineering Task Force (IETF) Routing over Low Power and Lossy network (ROLL) working group to deal with routing 

challenges that occur in LLNs. It is noted that RPL permits optimization at several levels in the networks. RPL uses an objective function 

that helps in evaluating network performance. The objective function can be created using single or composite metrics. Literature reveals 

that single metrics-based objective function showed poor performance whilst composite metrics have demonstrated excellent performance, 

but still there is plenty of scope for further improvement. This paper shows an extension of the composite metrics. The real problem of RPL 

concerning IoV is that the heterogeneous network undergoes extreme packet loss and congestion which disables the full utilization of network 

capacity. Thus, this paper presents an enhanced fuzzy-based objective function and analyzes its impact on the Internet of Vehicles (IoV) 

network. The objective function aims at reducing the Control Traffic Overhead (CTO) in the network and providing a high Packet Delivery 

Ratio (PDR).  The contribution of this paper is as follows: First, network scalability is analyzed for (a) random and grid configurations; (b) 

random and Self-similar Least Action Walk (SLAW) mobility models. Second, the performance of the proposed E-MOF is validated with the 

standard objective functions for both networks. Third, extensive computer simulations are performed for performance analysis. Simulation 

result reveals that the proposed E-MOF outperform OF-EC concerning the PDR, CTO and comparable latency at the expense of high energy 

consumption for both configurations and mobility models. Finally, it is remarked that E-MOF extends the applicability of the RPL for IoV 

networks. Further, it commits a better PDR Quality of Service (QoS) and high network reliability. The results and discussion reported in this 

paper are outstanding, therefore, they will motivate other researchers to develop a novel approach in the future.  
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I. INTRODUCTION  

The idea of associating a smart object to the web remains 

the essential objective of the Internet of Things (IoT) [1]. IoT 

is answerable for the correspondence among various objects 

that use sensors/motes. These motes are usually battery 

driven and more obligated to visit energy exhaustion [2]. The 

boisterous channels and asset limitations lead to low power 

and lossy network in IoT deployment. Along these lines, to 

resolve this issue RPL convention was presented in 2012 by 

the IETF ROLL working group [3]. RPL is genuinely 

adaptable to permit topology changes [4][5] and helps in 

simulating real scenarios. RPL utilizes an objective function 

to decide the best parent and in this manner, an ideal way for 

the construction of Destination Oriented Directed Acyclic 

Graph (DODAG). The objective function depends on either a 

single metric or composite/additive metric. Though, because 

of impediments of single metric when contrasted with 

composite metric [6][7], optimizing the additive metric is the 

cutting-edge interest area for the researchers [8][9][10]. 

The brought impact of IoT on vehicular networks [11][12] 

and transportation [13] provoked the improvement of through 

and through another field called the Internet of Vehicles (IoV) 

[14][15]. The real concern of RPL for IoV networks is to 

establish an arrangement that ensures maximum utilization of 

the network with a high Packet Delivery Ratio (PDR) and low 

or negligible congestion. A few researchers [16][17][18] have 

targeted these concerns but they remain an open issue to date. 

This motivated us to propose an objective function which can 

mark these problems for IoV networks essentially. The 

proposed objective function is based on fuzzy logic with 

additionality of mobile nodes. Besides, the drive of these 

mobile nodes is grounded on mobility models. Thus, the 

thought behind this paper is to progress and upgrade the 

utilization of RPL protocol from IoT network to IoV network 

with the aim to intensify Packet Delivery Ratio (PDR) and 

condense the network congestion in order to provide better 

network utilization.  

Nevertheless, one can find many ongoing pieces of 

research related to RPL which have proposed enhancements 

by optimizing objective function [19][20], introducing 

mobility [21][22][23][24], performance evaluation using real 

experimentation [25][26][27], etc. but primarily for IoT 

network [28]. RPL for the IoV network hasn’t been much 

accentuated. This gap is covered in our paper as we provide 

an Enhanced fuzzy-based Mobile Objective Function: E-

MOF and analyze its performance for IoV networks using 

mobility models. This upgrade will work on the longevity and 

functionality of the RPL protocol. The acknowledgement of 

this idea in the real IoV network can be perceived in the 

applications like Traffic Monitoring System (TMS), Smart 

Parking, Electronic Toll Collection (ETC), Advanced 



Metering Infrastructure (AMI), and so forth. Subsequently, 

this paper proposes the utilization of distinctive objective 

functions for IoV networks, which were proposed for IoT 

networks only.  

The principal contributions of this paper are highlighted 

as:  

• First, we present a mobile fuzzy-based routing metric 

(E-MOF) which takes energy consumption by nodes, 

hops count per node and estimated transmissions per 

link into account to provide better network Quality of 

Service (QoS).  

• Second, network scalability is analyzed for E-MOF 

and OF-EC for IoT and IoV networks. The outcomes 

legitimize the utilization of E-MOF for both 

networks.  

• Third, the two objective functions are analyzed for 

two configurations (random and grid) and two 

mobility models (random and SLAW). It is noticed 

that E-MOF showed a high Packet Delivery Ratio 

(PDR), low Control Traffic Overhead (CTO) and 

comparable latency to OF-EC.  

The discoveries show that E-MOF is better than OF-EC and 

recommends the utilization of the proposed E-MOF with grid 

configuration for the static environment and SLAW mobility 

model for the dynamic environment. The results of this study 

will benefit the breeding researchers in this domain to 

propose an even better solution to the real problem of 

heterogenous IoV networks discussed in this article. 

 The rest of the paper is organized as: Section II presents 

an RPL outline and related works within the extent of this 

paper. Section III examines the proposed model by defining 

the problem statement and proposed solution. Section IV 

gives the simulation details and outcomes of this analysis. 

Ultimately, Section V apportions the conclusion of this study. 

An appendix is also included last to refer to abbreviations 

used in this paper. 

II. LITERATURE STUDY 

      RPL acquired prominence among researchers in the 

wake of being presented as an answer for LLN issues [29]. 

RPL uses an objective function for the construction of 

DODAG. DODAG exchanges control messages for the 

establishment of the network. There are four control 

messages DODAG Information Solicitation (DIS), DODAG 

Information Object (DIO), Destination Advertisement 

Object (DAO) and Destination Advertisement Object 

Acknowledgement (DAO-Ack). The control messages are 

exchanged as shown in Fig.1. This attracted researchers 

[30][31][32] to work on the optimization of the RPL 

objective function to select the best parent and optimal path 

for the construction of DODAG.    

 Authors in [33] optimized the network using a 

single node metric (remaining energy) instead of a single link 

metric, but the results improved at the cost of link quality. 

Consequently, the use of a single metric was not sufficient to 

optimize the network. Also, the dynamic environment using 

RPL was not taken into consideration for IoT networks. In 

[34], the authors considered mobile base stations. The metric 

was based on fuzzy logic using distance from the sink, 

energy sensor and cluster-centric priority as parameters. 

They aimed to reduce energy consumption. However, 

improvement in the network lifetime with the mobile base 

station doesn’t replicate the real dynamic scenarios of the 

IoV network. 

 

Fig. 1. DODAG Control Message Structure 

    Paper [35] also proposed a new objective function based 

on fuzzy logic that combined Expected Transmission Count 

(ETX), Hop Count (HC), end-to-end delay and network 

lifetime metrics. But, the proposal was only compared to the 

standard RPL objective functions and only for a static IoT 

environment. In [36], the authors proposed a new fuzzy-

based objective function considering composite metrics. 

Their results were effective when compared to standard 

objective functions and other proposed objective functions in 

the literature. But, the results were tested only for static 

nodes for IoT networks, which is extended to mobile nodes 

for the IoV network in this article.  

       Since then, many articles have been published with 

optimized objective functions for the static network but very 

few have worked on the mobile nature of the RPL. Likewise, 

the authors in [37] proposed an objective function 

considering ETX, content and energy using a trickle timer to 

optimize the RPL network for IoT applications. Their results 

were effective but only for static nodes. Likewise, in the 

paper [38] authors presented a fuzzy supervised learning 

approach for optimal path selection for IoT networks. They 

considered Received Signal Strength Indicator (RSSI), 

remaining energy and queue utilization as composite 

metrics. Still, the mobility of nodes was missing. A 

significant level of studies was discovered featuring the 

difficulties and limitations of RPL [46][47] while some 

proposed that the objective functions are dependent on 

composite measurements for static RPL for IoT networks.  

Although some studies have covered IoT, mobile IoT (the 

works that didn’t consider RPL for vehicular networks but 

the nature of the network is dynamic), IoV and all are listed 

in Table 1. Our superiority of work over theirs is also 

discussed in the table. But, scenarios that make use of mobile 

nodes for IoV networks are still to be covered. Hence, this 

 New DODAG Old DODAG 

DIO 

DAO 

DIS 

DAO-Ack 



paper focuses on extending the use of the RPL protocol for 

the IoV network. 

Table 1. Differentiation of related studies with the proposed methodology  

S. 

No. 

Related 

Study 

Considered 

Metrics 

Methodology Network Evaluated 

Metrics 

Cons Our 

uniqueness 

Year 

1 [33] Remaining 

energy 

Energy 

aware 

routing 

IoT Link quality No mobility Composite 

metrics 

considered, 

Mobility 

incorporated  

2013 

2 [34] Distance, 

motes 

energy 

Fuzzy based IoT Energy 

Consumption, 

network 

lifetime 

No 

justification 

for real 

scenarios 

Application 

to real 

scenarios 

with better 

PDR 

2013 

3 [35] ETX, HC, 

end-to-end 

delay 

Fuzzy based IoT Network 

lifetime 

Only 

compared to 

standard 

objective 

functions 

Compared to 

standard and 

already 

proposed 

objective 

functions 

also. 

2015 

4 [36] ETX, HC, 

energy 

Fuzzy based IoT PDR, 

overhead 

No mobility Mobility 

considered 

2017 

5 mRPL+ 

[24] 

Packet 

loss, delay, 

mobility 

Combination 

of two hand-

off models 

Mobile IoT  PDR, 

disconnection 

period 

No 

comparison 

with existing 

studies and 

no 

consideration 

of mobility 

models 

Comparison 

with existing 

works and 

mobility 

models 

considered 

2017 

6 [37] ETX, 

content, 

energy 

Trickle timer IoT PDR, delay, 

overhead 

No mobility Mobility 

considered 

2020 

7 [22]  mRPL [41] Firefly 

optimization 

Mobile IoT PDR, EC, Hop 

count, end-to-

end delay 

Consider 

only random 

mobility 

Considered 

two mobility 

models to 

study its 

impact on the 

network 

2020 

8 MARPL 

[23] 

RSSI,  

mobility 

Cross-layer 

approach 

Mobile IoT PDR, EC, low 

overhead 

No 

comparison 

of mobility 

models 

Considered 

Mobility 

models  

2020 

9 FSS [38] RSSI, 

remaining 

energy, 

queue 

utilization 

Fuzzy based IoT Quality node 

prediction 

No mobility Mobility 

considered 

2021 

10 ARMOR 

[21] 

Time to 

reside, 

mobility 

Mobility 

aware 

routing 

metric 

IoV Reliability, 

connection 

period of 

motes 

Power 

consumption 

was kept 

constant and 

random 

mobility is 

only 

considered 

Power 

consumption 

is also 

targeted and 

mobility is 

observed for 

two mobility 

models 

2021 

11 [51] ETX, EC, 

mobility 

Multiple 

sinks, 

multiple 

IoT and IoV PDR, ETX Mobility is 

incorporated 

using 

Its findings 

are used to 

justify the 

2021 



topologies, 

hybrid model 

mobility 

models 

use of the 

two 

considered 

mobility 

models in 

this study 

12 RPL-OC 

[26] 

Distributed 

energy, 

end-to-end 

paths, 

mobility 

Operator 

calculus 

approach 

IoT End-to-end 

delay, energy 

consumption 

No mobility 

models are 

considered 

with low 

PDR 

Mobility 

models are 

considered 

with high 

PDR 

2022 

13 EMBOF-

RPL [39] 

RSSI, 

mobility 

Echelon 

approach 

Mobile IoT Detection 

accuracy, 

isolation 

latency, PDR, 

EC 

Rank attack 

detection for 

security of 

IoT network 

Composite 

metric to 

optimize 

network 

performance 

for IoT and 

IoV 

networks 

both. 

2022 

14 V-RPL 

[40] 

Speed, 

ETX, 

delay, 

mobility 

Multi-criteria 

decision 

making 

Mobile IoT PDR, end-to-

end delay, 

energy 

consumption 

Better than 

mostly 

proposed 

solutions 

(mRPL [41], 

EMA-RPL 

[42], Co-

RPL [43], E-

Trickle [44]) 

for mobility 

but didn’t 

consider any 

specific 

mobility 

model to 

justify the 

motion of 

motes 

Better than 

the existing 

works and 

mobility 

models are 

also taken 

into 

consideration 

2022 

15 MSAT-

RPL [45] 

Speed, 

time, 

location,  

Trickle 

algorithm 

IoV PDR, energy 

consumption, 

end-to-end 

delay, 

overhead 

Standard 

objective 

function is 

only used to 

study the 

impact of 

proposed 

changes in 

trickle 

algorithm 

Results are 

compared 

with the 

existing 

work and 

standard 

objective 

functions 

also 

2022 

III. PROBLEM STATEMENT AND PROPOSED MODEL 

A. Problem Statement  

The advancement in optimizing the objective function of 

RPL for IoT networks is manifold. The current need to 

establish decent communication for the IoV network is a 

rising concern. As of now, RPL is only used for IoT network 

communication and very few studies have targeted mobile 

IoT networks and countable studies on IoV network 

communication. The snag is to establish communication for 

a heterogeneous IoV network that ensures full network 

capacity utilization with low congestion and high PDR.  

     Scenario: The instance where Road Side Units (RSUs) 

are fixed i.e. static and the vehicles with On Board Units 

(OBUs) are moving i.e. dynamic/mobile. This type of 

Vehicle-to-Infrastructure (V2I) [48] communication can be 

easily managed through RPL protocol, without the need to 

develop a new protocol altogether.  



     The Smart City concept can provide a better 

understanding of the above scenario as shown in Fig. 2. This 

figure shows the random movement of vehicles from all four 

directions and pedestrian movement which also confers 

mobile nodes with OBUs. These are considered in this study 

using the random mobility model and SLAW mobility model 

respectively. The traffic control centre, traffic lights, 

roadside cameras, automated parking system, etc. represents 

static nodes with RSUs. Further, these communicate with 

each other using a network protocol and vehicular cloud, 

thus forming a vehicular network. Since this dimension of 

RPL protocol has not been tested and explored yet, thus this 

paper presents the extension of RPL protocol using a mobile 

fuzzy-based objective function considering composite 

metrics for the IoV network. 

 

Fig. 2. Smart City Scenario 

B. Proposed Model  

The proposed model makes use of mobile nodes to establish 

an IoV network instance. The E-MOF is computed using 

ETX, Energy Consumption (EC) and HC as combined 

metrics. The fuzzy process takes two input variables and 

converts them into a single output variable. This is mainly a 

four-step process as shown in Fig. 3.  

 The linguistic variables are chosen for the fuzzification 

process. Here, EC and ETX are chosen as linguistic variables. 

The EC input and ETX input are (low, average, high) and 

(small, average, long) respectively. The trapezoidal 

membership function distribution is used to estimate fuzzy 

values for both inputs [49]. Further, the link quality of the 

path is estimated using the Mamdani model [50]. The quality 

value is then, reflected by the linguistic variables: very bad, 

bad, average, good and very good. These values are further 

de-fuzzified to return a unique output value.  

 

Fig. 3. Fuzzy logic process 

The fuzzy rule base for EC and ETX is obtained as: 

Rule Base 1. Fuzzy Rules for estimating EC and ETX 

1. Very good = (low EC && small ETX) 

2. Good = (high EC && average ETX) || (average EC && small ETX) 

3. Average = (low EC && long ETX) || (average EC && average ETX) || 
(high EC && small ETX) 

4. Bad = (average EC && long ETX) || (high EC && average ETX) 

5. Very bad = (high EC && long ETX) 

 The path quality can be estimated using EC and ETX 

membership functions.  

𝑎𝑣𝑒𝑟𝑎𝑔𝑒(𝑝𝑎𝑡ℎ_𝑞𝑢𝑎𝑙𝑖𝑡𝑦)
= max⁡ (min⁡(ℎ𝑖𝑔ℎ(𝐸𝐶), 𝑠𝑚𝑎𝑙𝑙(𝐸𝑇𝑋)),
min⁡(𝑎𝑣𝑒𝑟𝑎𝑔𝑒(𝐸𝐶), 𝑎𝑣𝑒𝑟𝑎𝑔𝑒(𝐸𝑇𝑋)),
min⁡(𝑙𝑜𝑤(𝐸𝐶), 𝑙𝑜𝑛𝑔(𝐸𝑇𝑋))⁡⁡ 

  

 The lower the value of EC and ETX, the better the path 

route. These values are then used for defuzzification to 

provide a unique output value. The mathematical formula to 

obtain domain value R for defuzzification is given as: 

𝑅 = ⁡
∑ 𝑊𝑖⁡ × ⁡𝜇𝐴⁡(𝑊𝑖)𝑁
𝑖=1

∑ 𝜇𝐴⁡(𝑊𝑖)𝑁
𝑖=1

 

Where N is the number of rules initiated from the inference 

engine, Wi is the domain value concerning rule i and A (Wi) 

is the predicate truth of that domain value.  

 Further, this fuzzy-based objective function is used to 

determine the best parent for the selection of the optimal path 

to build DODAG. The selection of the best parent is based on 

the calculation of rank which is obtained from the above 

fuzzy logic metric.  

 An instance of how the rank is allocated to the nodes in a 

DODAG construction for a random topology in an IoT 

network is depicted in Fig. 4. However, the nodes are mobile 

in the IoV network, because of which this rank assignment 

also changes with the change in DODAG construction. The 

rule base helps to retrieve the values for ETX and EC metrics 

which is further applied to calculate the best parent as shown 

in Fig. 5. The best parent is selected using Algorithm 1.  

(1) 

(2) 



 

Fig. 4. Instance of rank allocation to nodes in random IoT network` 

 

Fig. 5. Rank calculation by determining the best parent using E-MOF 

Algorithm 1. Parent Selection Algorithm using composite metrics 

Require: Input variables ETX, EC, HC, parent, batterycharge 
Ensure: Nodes are updated with the routing metrics and new OCP is defined  

1.   if FUZZY { 

2.          if parent = NULL                    /* ETX calculation*/ 

3.                return (maximum ETX) 

4.          else if (parent =   (recent ETX + neighbors’ ETX)) 

5.                return (parent)  
6.           end if                 

7.           if parent = NULL                  /*EC calculation*/ 

8.                 return (batterycharge) 
9.           else if (EC = recent EC) { 

10.               parent =  (batterycharge + recent EC) 

11.               return (parent) } 
12.         end if                

13.         if parent = NULL                 /*HC calculation*/ 
14.               return (maximum HC) 

15.         else { 

16.               HC = parent + 1 
17.               return (HC) } 

18.         end if 

19.               return (quality (ETX, EC, HC)) } 

20.   end FUZZY 

Thereafter the selection of the best parent based on OF-

EC, the enhancement to this logic is introduced by 

introducing mobility in nodes referred to as E-MOF. The 

mobility in nodes is initiated by the positions.dat file which 

has four inputs: node, x position, y position and time. Now, 

the IoV scenario is reinstated with mobile nodes. The 

mobility of nodes is again established on two grounds: 

Random and SLAW. Random positions for nodes can be 

entered manually as well. But, positions for the SLAW 

mobility model can be generated using the BonnMotion tool. 

Although, the tool generates a .wml file which further needs 

to be converted to a .dat file by a wml-to-dat converter for 

actual use and implementation. The command to execute 

mobile positions of nodes using the SLAW model is:  

./𝑏𝑚 − 𝑓⁡𝑇𝑒𝑠𝑡1⁡⁡𝑆𝐿𝐴𝑊 − 𝑑3600⁡ − 𝑝20 − 𝑥100 − 𝑦100 − 𝑛10⁡
− 𝑤6⁡⁡ − 𝑟10 

where f is the filename, d is the duration, p is the minimum 

pause time, x,y are boundaries, n is the number of nodes, w 

is the number of waypoints to generate and r is the clustering 

range.  

 There exist many mobility models but the reasons behind 

considering the SLAW and random mobility models among 

others are compound:  

• It performs the best among others and random performs 

the worst [51], therefore, the best and worst cases of the 

mobility model are considered to justify the efficacy of 

this study.  

• No other mobility model considers traces of human walk 

other than SLAW, which replicates the IoV in the smart 

city paradigm streets ahead.  

Besides, this proposed enhancement is tested with the static 

network for two configurations: random and grid, as used in 

IoT network for both objective functions: existing OF-EC and 

proposed E-MOF. The work is further paralleled for random 

and SLAW mobile configurations as in the IoV network for 

both objective functions. Additional analysis has also been 

presented to apprehend the transformation of RPL used for 

IoT networks to RPL used for IoV networks in terms of 

network performance. 

 The considered and evaluated metrics to conduct this 

study are presented in Table 2 and Table 3 respectively.  

Table 2. Considered Metrics 

Metrics Definition Formula 

Energy 

Consumption 

(EC) 

It is the amount of 

total Energy 
Consumed by the 

nodes during the 

process. 

 

𝐸𝐶 = ((𝑇 ∗ 19.5𝑚𝐴⁡ + 𝐿 ∗
21.5𝑚𝐴⁡ + 𝐶𝑃𝑈 ∗ 1.8𝑚𝐴⁡ +
⁡𝐿𝑃𝑀 ∗ 0.0545𝑚𝐴) ∗ 3𝑉)/

32768  

 

Expected 

Transmission 

Count (ETX) 

It is defined as the 

total number of 

transmissions 
required to transmit 

𝐸𝑇𝑋 =
1

(𝐷𝑓∗𝐷𝑟)
  

 
(5) 

(4) 



and acknowledge a 
packet over a 

wireless link. 

Hop Count 

(HC) 

It is total number of 

hops made by each 
node for each 

source-destination 

pair. 

-- 

Table 3. Evaluated Metrics 

Metrics Definition Formula 

Packet 

Delivery 

Ratio (PDR) 

It is defined as the 

ratio of total 
number of 

successfully 

delivered packets 

to the total 

number of 

packets sent. 

𝑃𝐷𝑅 =
𝑇𝑜𝑡𝑎𝑙⁡𝑛𝑢𝑚𝑏𝑒𝑟⁡𝑜𝑓⁡𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑⁡𝑝𝑎𝑐𝑘𝑒𝑡𝑠

𝑇𝑜𝑡𝑎𝑙⁡𝑛𝑢𝑚𝑏𝑒𝑟⁡𝑜𝑓⁡𝑠𝑒𝑛𝑡⁡𝑝𝑎𝑐𝑘𝑒𝑡𝑠
∗

100  

 

Control 

Traffic 

Overhead 

(CTO) 

It is the total 

number of control 

messages 
exchanged during 

the simulation 

 

𝐶𝑇𝑂 = ∑ 𝐷𝐼𝑂(𝑥)𝑚
𝑥=1 +

∑ 𝐷𝐼𝑂(𝑥)𝑛
𝑥=1 + ∑ 𝐷𝐴𝑂(𝑥)𝑜

𝑥=1   

 

Total 

Latency 

(TL) 

It is the total 

delay observed in 
exchange of 

messages during 

the network 
lifetime. 

 

𝑇𝐿 =
∑ (𝑅𝑒𝑐𝑖𝑒𝑣𝑒𝑑⁡𝑇𝑖𝑚𝑒(𝑥) −𝑚
𝑥=1

𝑆𝑒𝑛𝑡⁡𝑇𝑖𝑚𝑒(𝑥)  

 

Energy 

consumption 

(EC) 

A network/setup 
is said to be 

energy efficient 

when the overall 
consumption of 

energy by the 

nodes is lesser 
than the 

threshold/standard 

results. 

𝐸𝐶 = ((𝑇 ∗ 19.5𝑚𝐴⁡ + 𝐿 ∗
21.5𝑚𝐴⁡ + 𝐶𝑃𝑈 ∗ 1.8𝑚𝐴⁡ +
⁡𝐿𝑃𝑀 ∗ 0.0545𝑚𝐴) ∗ 3𝑉)/

32768  

IV. SIMULATION DETAILS AND RESULTS 

A. Network Setup: 

The proposed IoV network model utilizing E-MOF objective 

function is implemented using the Cooja simulator running on 

Contiki Operating System (version 2.7). Wireshark is used to 

analyze the network traffic and the BonnMotion tool [52] is used 

to generate SLAW mobility model positions for mobile nodes. 

These are open-source emulators and tools designed for 

recreating and testing various network scenarios. The values for 

all parameters are summarized in Table 4. An instance of an 

experimental test for random and SLAW configurations is shown 

in Fig. 6.  

Table 4. Simulation Details 

Parameters Values 

Network Simulator Cooja/ Contiki OS 2.7 

Network Analyzer Wireshark 

Mobility Generator BonnMotion tool 

Number Of Motes 10, 20, 30, 40, 50 

Emulated Nodes Sky mote 

Propagation Model 
UDGM (Unit Disk Graph 

Model) with distance loss 

Static Environment (IoT) Random and Grid 

Mobile Environment (IoV) Random and SLAW 

Transmission (TX) 100% 

Reception (RX) 50% 

Interference (INT) Range 90 m 

TX Range 45 m 

Radio Traffic 6LoWPAN with pcap 

Mote Startup Delay 65 s 

Simulation Time 24 h 

   

   a)                                                                b) 

Fig. 6. Experimental test-bed for a) random static model for 50 nodes using 
OF-EC and b) SLAW mobility model for 20 nodes using E-MOF 

B. Results and Discussions:  

To evaluate the performance of the proposed model, two 

different distributions (random and grid) are considered for the 

static environment, two distinctive mobility allocations (random 

and SLAW) are chosen for the dynamic environment and a 

mobile fuzzy-based objective function is considered. All the 

simulation figures illustrate RPL performances by considering 

the PDR, CTO, TL and EC metrics for 10 to 50 nodes. The 

network can also be scaled to a higher network size but due to 

computational limitations, it is out of the scope of this paper.  

OF0 and MRHOF are the two standard objective functions used 

in RPL. It has been established in the literature [53] that MRHOF 

beats OF0. However, OF-EC [49] beats MRHOF, OF-FUZZY 

[50] and OF-ENTOT [54], all of these in terms of network 

performance. Thus, OF-EC proves to be superior among these 

objective functions [49]. Therefore, we choose OF-EC to 

compare our proposed objective function. Hence, a comparison 

has been made between the OF-EC and E-MOF for four 

evaluation metrics and two network configurations. The results 

are analyzed as follows: 

(6) 

(7)  

(8) 

(3) 



1. Scalable Static (IoT) network 

1) Packet Delivery Ratio (PDR): 

Fig. 7. compares PDR for OF-EC and E-MOF for random 

and grid configurations to extrapolate the network reliability. 

It is known that the higher the PDR, the lesser the lost 

packets, superior is the network reliability. It can be observed 

that OF-EC gives the lower PDR when compared with E-

MOF in both configurations as the network size increases. It 

is so because OF-EC uses metrics of ETX and HC, 

irrespective of other metrics influencing the network. 

Additionally, E-MOF performs better than OF-EC in random 

and grid configurations both. This can be justified by the use 

of combined/ composite metrics in E-MOF that considers 

link quality with a hop count and consumed energy also. 

However, the OF-EC achieves better results for grid 

configuration than random configuration by 8-9%. But, E-

MOF for grid configuration performs marginally well by 0-

1% than random configuration. The payoff of using E-MOF 

is that it is not much affected by the increase in network size, 

which signifies high reliability and better network 

performance for both low-density and high-density 

networks. It can therefore be concluded that E-MOF is 

superior to OF-EC for both configurations in IoT networks.  

 

Fig. 7. Packet Delivery Ratio for two objective functions and two 
configurations 

2) Control Traffic Overhead (CTO): 

Internet Control Message Protocol version 6 (ICMPv6) 

handles the transmission of control messages. Fig. 8. shows 

the CTO for both objective functions and configurations. The 

ideal network will ensure lesser CTO and high network 

consistency. Though, the results illustrate that CTO increases 

with the increase in network size. Besides, OF-EC shows a 

significant rise in overhead with the increase in the number 

of nodes. It can be noted that OF-EC displays a higher 

overhead than E-MOF in both configurations. Also, OF-EC 

gives a higher overhead for random configuration than grid 

configuration by 762-5657 messages. While the E-MOF 

demonstrates lesser overhead for grid configuration than 

random by 700-2389 messages. The difference in overhead 

for E-MOF is relatively less than OF-EC overhead, which as 

a whole makes E-MOF excellent and suitable for IoT 

networks.    

 

Fig. 8. Control Traffic Overhead for two objective functions and two 
configurations 

3) Total Latency (TL): 

Fig. 9. indicates a disparity of latency in terms of network 

scalability. Both configurations (random and grid) and both 

OFs (OF-EC and E-MOF) provide higher latency with the 

increase in several nodes. In the random configuration, the 

total latency of E-MOF is approximatively 1.127-3.388 secs 

higher than the total latency of the OF-EC objective function. 

In grid configuration, the total latency objective function EC 

is 1.066-1.659 secs higher than E-MOF. The high value of 

latency implies a crummy link quality. In the case of total 

latency of OF-EC and E-MOF, random configuration 

performs better than grid configuration by 4.120-7.389 secs 

and 1.928-2.342 secs respectively. However, the difference 

in values of E-MOF for both configurations is less than OF-

EC values. Less volatility in values of latency shows 

improved link stability. Thus, E-MOF achieves superior 

performance than OF-EC and provides better link quality. 

 

Fig. 9. Total Latency for two objective functions and two configurations 

4) Energy Consumption (EC): 

Fig. 10. displays energy consumed by nodes during network 

lifetime for two objective functions and two configurations. 

Ideally, a network should sustain its performance and 

reliability with low energy consumption by the nodes. This 

will ensure less energy depletion of nodes and longer battery 

life in the network. Nevertheless, it can be spotted from the 

results that more energy is consumed by nodes as the network 

size is increased. For random and grid configurations, OF-

EC consumes less energy than E-MOF. Also, the difference 

between the consumed energy for OF-EC for random 



configuration is 0.073-0.682 mW. While the difference in 

consumed energy for grid configuration using E-MOF is 

0.832-1.173 mW. It is worth noting that the difference in 

values of consumed energy for OF-EC is intensifying with 

the increase in network size than the difference in values of 

consumed energy for E-MOF. Additionally, E-MOF gives 

better PDR and network reliability at the cost of consumed 

energy by nodes.  

 

Fig. 10. Energy Consumption for two objective functions and two 
configurations 

2. Scalable Dynamic (IoV) network 

1) Packet Delivery Ratio (PDR): 

It is well established now that the higher the PDR, the better 

the network trustworthiness and execution. Fig. 11. displays 

PDR with increasing network size for two OBJECTIVE 

FUNCTIONs (OF-EC and E-MOF) and two models (random 

and SLAW). It can be depicted that OF-EC is much lossy 

than E-MOF for both mobility models. E-MOF gives a 

higher PDR than OF-EC by 1-5% for the random mobility 

model. Whereas, E-MOF outperforms OF-EC for the SLAW 

mobility model by 3-8%. The difference between both 

objective functions for random and SLAW models are 5-7% 

and 7-13% respectively. However, the decrease in PDR with 

an increase in network size for OF-EC is significantly high. 

While E-MOF remains less disturbed with the increase in 

network density. Therefore, it can be inferred that an IoV 

network or V2I communication can use RPL with E-MOF 

objective function and follow the SLAW mobility model. 

Also, when the IoT network is equated to the IoV network, a 

minor difference of 3% PDR is observed which can be 

clearly explained by the mobility of nodes in the IoV 

network, since mobility induces frequent DODAG changes. 

This also justifies the use of the RPL protocol for the IoV 

network.  

 

Fig. 11. Packet Delivery Ratio for two objective functions and two 
mobility models 

2) Control Traffic Overhead (CTO): 

Higher the CTO, the poorer the network robustness. Fig. 12. 

depicts CTO for two objective functions and two mobility 

models. The trend shows an exponential rise in CTO with the 

increase in the number of nodes. The bar graph clearly 

illustrates that E-MOF outdoes OF-EC for the SLAW model. 

Nevertheless, for the random model, E-MOF does better than 

OF-EC for 10 and 20 nodes but for a higher number of nodes, 

its performance degrades. However, the highest CTO is 

realized for OF-EC for the SLAW model. Also, it is 

noticeable that E-MOF shows a gradual rise in CTO values 

with an increase in network size as compared to OF-EC for 

both mobility models. The difference in the rise of CTO 

values using OF-EC for random is 64020 whereas, the 

difference in the rise of CTO values using E-MOF for the 

SLAW model is 60682, which is comparatively less than that 

of the random model and OF-EC objective function. Thus, it 

can be claimed that the proposed enhancement E-MOF using 

the SLAW model is better than OF-EC for IoV network 

implementation. When IoT network statistics are matched to 

IoV statistics, the IoV network generates a greater number of 

control messages than the IoT network, resulting in a higher 

CTO. This is explained by the high mobility of nodes which 

causes an increase in control routing operation. Although, it 

does not hamper the working of the RPL protocol for the IoV 

network and the protocol can be further advanced to increase 

network robustness.    

 

Fig. 12. Control Traffic Overhead for two objective functions and two 

mobility models 

3) Total Latency (TL): 

Fig. 13. denotes the difference in total latency concerning 

network scalability. It is distinct from the graph that OF-EC 

gives the worst performance and lousier network for both 

mobility models (random and SLAW). In the random model, 

the total latency of OF-EC is approximatively 3.103-9.199 

secs higher than the total latency of the E-MOF objective 

function. In the SLAW model, the total latency of OF-EC is 

0.87-4.848 secs higher than E-MOF. Consequently, E-MOF 

beats OF-EC for both models. Also, it is interesting to 

observe that the range difference in the TL values for the 

SLAW model is less than random model values, which 

marks the SLAW model mas ore competent for the IoV 

network. As the CTO increases for IoV network due to 

mobility of nodes, so does the TL, which is why RPL for IoT 



network indicates less latency than RPL for IoV network. 

Although, the RPL protocol can be successfully used for V2I 

communication using the SLAW model and E-MOF with a 

slight reduction in total latency.  

 

Fig. 13. Total Latency for two objective functions and two mobility 
models  

4) Energy Consumption (EC): 

The total energy consumption by nodes during the network 

lifetime for two OFs and two mobility models is depicted in 

Fig. 14. It is observed that E-MOF achieves high PDR at the 

cost of more EC. Preferably, a network ought to support its 

performance and dependability with low energy utilization 

by the nodes. This ensures less energy exhaustion of nodes 

and longer battery life. Though, it is not practically 

pragmatic. It is seen that EC increases with the increase in 

network size and high PDR. The graph shows that OF-EC 

consumes less energy than E-MOF in both models by 0.688-

0.907mW and 0.441-2.389mW respectively. It can also be 

spotted that OF-EC performs better for the SLAW model 

than the random model by 0.239-0.291mW. Thus, it can be 

deduced that the SLAW model can be used to establish an 

IoV network using OF-EC. Nonetheless, RPL can be 

implemented for the IoV network with improvising E-MOF 

as it offers better PDR  than OF-EC, which makes the 

network more reliable and efficient. Additionally, the IoT 

network is compared to the IoV network, and a difference of 

0.419-0.907mW is calculated, which can be explained by 

frequent parent changes and high latency. Improvement in 

latency will improve EC of nodes and will mark E-MOF 

much better to use for IoV network using SLAW model and 

high PDR.  

 

Fig. 14. Energy Consumption for two objective functions and two 
mobility models 

V. CONCLUSION 

This article gives an understanding of the RPL protocol which 

is fundamentally utilized for IoT networks only, as of now. 

The highlight is to feature the use of RPL protocol for the  IoV 

network utilizing the proposed E-MOF objective function. 

The beginning of the article talks about the related studies. 

The problem proclamation is expressed where the need to 

utilize RPL for IoV network is underlined and since all RPL 

OBJECTIVE FUNCTION enhancements are just offered for 

IoT network, this paper proposes the utilization of RPL for 

IoV network by enhancing the recently recommended OF 

(OF-EC) referred to as E-MOF. Further, the working of E-

MOF is clarified with simulation setup and details. The 

assessed performance metrics show E-MOF to be more 

competent than OF-EC. The effect of an increase in the 

number of nodes on the network performance is 

correspondingly studied.  E-MOF offers better PDR, less 

CTO and comparable latency at the expense of high EC than 

OF-EC for both static and dynamic environments. The 

performance of E-MOF and  OF-EC is examined for IoT 

scalable networks in two configurations: random and grid. 

Likewise, the two OBJECTIVE FUNCTIONs are tried for 

two distinct mobility models: random and SLAW for scalable 

IoV networks.  

 Results propose the use of grid configuration with E-MOF 

for static framework, while the SLAW mobility model with 

E-MOF is best for a dynamic network. This investigation 

additionally legitimizes the use of RPL for IoT as well as the 

IoV network. Although, the IoV network has to bear the 

expense of mobility in terms of network performance 

assessment when paralleled to the IoT network. But, this 

expense can be handily taken care of with RPL objective 

function enhancements for the IoV network and precludes the 

prerequisite to proposing a new protocol for IoV network 

communication altogether. Further, developing and 

improvising E-MOF for lesser energy consumption and lower 

latency for even superior network execution, robustness and 

reliability will be a part of future work. Determination of 

other metrics to test the network performance like nodes 

convergence, network lifetime, residual energy and so forth 

can likewise amount to further boosting E-MOF in future. 
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APPENDIX 

List of Abbreviations Description 

AMI Advanced Metering Infrastructure 

CTO Control Traffic Overhead 

DIO DODAG Information Object 

DAO Destination Advertisement Object  

DIS  DODAG Information Solicitation 

DAO-Ack DAO-Acknowledgment 

DODAG Destination Oriented Directed 
Acyclic Graph  

ETX Expected Transmission Count 

ETC Electronic Toll Collection 

HC Hop Count 

EC Energy   Consumption 

ICMPv6 Internet Control Message Protocol 
version 6 

IPv6 Internet Protocol version 6 

IETF Internet Engineering Task Force 

IoT Internet of Things 

IoV Internet of Vehicles 

6LoWPAN IPv6 Low power Wireless 

Personal Area Networks 

LLNs Low Power and Lossy Networks 

PDR Packet Delivery Ratio 

QoS Quality of Service 

ROLL Routing Over Low power and 

Lossy networks 

RPL Routing Protocol for Low Power 
and  Lossy  Networks  

RSSI Received Signal Strength Indicator 

RSU Road Side Unit 

RX Reception  

SLAW Self-similar Least Action Walk 

TL Total Latency 

TMS Traffic Monitoring System 

TX Transmission 

 


