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Abstract—To overcome noise sensitivity and increase the dis-
criminative quality of the Local Binary Pattern, a Completed
Local Ternary Count (CLTC) was developed by combining the
Local Ternary Pattern (LTP) with the Completed Local Binary
Count (CLBC) (LBP). Furthermore, by integrating the proposed
CLTC with the Redundant Discrete Wavelet Transform (RDWT)
to construct a Wavelet Completed Local Ternary Count, the
proposed CLTC’s discriminative property is improved (WCLTC).
As a result, more accurate local texture feature capture inside
the RDWT domain is possible. The proposed WCLTC is utilised
to perform texture and medical image classification tasks. The
WCLTC performance is evaluated using two benchmark texture
datasets, CUReT and Outex, as well as three medical picture
databases, 2D Hela, VIRUS Texture, and BR datasets. With
several of these datasets, the experimental findings demonstrate a
remarkable classification accuracy. In several cases, the WCLTC
performance outperformed the prior descriptions. With the 2D
Hela, CUReT, and Virus datasets, the WCLTC achieves the
highest classification accuracy of 96.91%, 97.04 percent, and
72.89%, respectively.

I. INTRODUCTION

Recently, texture features have become more popular and

important in several applications such as image classifica-

tion [1], [2], face recognition [3], [4], human detector [5].

These texture features have a variety of properties that allow

them to be used in a variety of situations.

Model-based methods, statistical algorithm methods, and

structural methods have all been used to classify texture

features [6]. The texture is generally displayed as a like-

lihood model of a set of major functions in model-based

approaches. Kashyap [7] proposed the Circular Simultaneous

Autoregressive (CSAR) model for texture invariant features.

Statistical algorithm methods fall into the second category. The

texture is usually categorised in this category by statistics of

selected aspects like micro-structure and invariant histogram.

Duvernoy [8] introduced Fourier descriptors for obtaining the

rotation invariant texture feature on the spectrum field. The

structural approaches, such as topological texture descriptors,

are the third category. In 2002, Ojala proposed the Local

Binary Pattern (LBP), which is now widely used as a texture

feature for texture classification [9]. Several image processing

tasks employ the LBP descriptor, including scene and object

recognition [1], human detections, object tracking [10], and

face recognition. The user limit patterns (grid of cells) that

are explained in full in section II are used to generate the

local binary pattern histogram. Since 2002, many texture

descriptors are proposed such as the Local Ternary Pattern

(LTP) [11], Completed LBP (CLBP) [12], Completed Local

Binary Count (CLBC) [13], and Completed Local Ternary

Pattern (CLTP) [14]. Although the LBP demonstrated good

reaction and performance in several areas, it had some flaws.

Many texture characteristics are offered that are based on LBP

and inherit its flaws. As illustrated in Figure 1 and Figure 2,

the LBP is sensitive to noise, and diverse patterns of LBP can

be grouped into the same class, reducing its discriminating

property [12], [11]. These flaws were passed down to the

CLBP and CLBC. CLTP is designed to address these flaws;

nevertheless, CLTP’s bin length is significantly longer than

that of prior texture descriptors. This may have an impact on

its performance with certain datasets.
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Fig. 1. Example of the LBP operator’s noise sensitivity.

The Completed Local Binary Count (CLBC) texture de-

scriptor is given a new enhancement in this paper. To solve

the sensitivity to noise drawback, the LTP is combined with

CLBC to develop a new texture descriptor. In addition, the

new texture is extracted in the wavelet domain rather than the

spatial domain to improve the suggested descriptor’s discrimi-

native property. Wavelet Completed Local Ternary Count is the

name of the new texture descriptor (WCLTC). The proposed
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Fig. 2. Example of classifying falsely problem.

Fig. 3. The basic of Local Binary Pattern

WCLTC’s performance is assessed using a variety of texture

and medical image datasets.

The rest of this paper is organised as follows. The Re-

lated Works are briefly reviewed in Section II. The proposed

WCLTC is presented in Section III. The experimental data

and discussion are offered in Section IV, while the paper

conclusion is presented in Section V.

II. RELATED WORKS

Different types of texture descriptors, such as LBP, LTP, and

CLBC, are briefly discussed in this section. Despite the fact

that the majority of these descriptors have a high classification

accuracy, the researchers are currently exploring for additional

distinct descriptors that may be employed for various computer

vision tasks. In addition, the Redundant Discrete Wavelet

Transform (RDWT) is briefly explained.

A. Local Binary Pattern (LBP)

The LBP is proposed by Ojala [15] for image texture

classification. The LBP descriptor has been applied to various

of applications, including dynamic texture recognition, face

recognition, and shape localization. The basic of the LBP can

be shown in Figure 3.

Thresholding and encoding are the two processes of the

LBP. In the threshold stage, the value of the centre pixel

in each pattern is compared to the value of its neighbour

pixel to transform the results to a binary value (0 or 1).

The goal of the thresholding phase is to acquire data on

local binary differences. The following phase is the encoding

process, in which the binary values obtained in the previous

step are encoded and converted to a decimal value in order to

characterise the pattern’s structure.

Fig. 4. The Local Ternary Pattern obtained with threshold =5

The LBP calculation can be mathematically described in

Equation 1

LBPP,R =

P−1∑
p=0

s(gp − gc)2
p, s(x) =

{
1 , x ≥ 0

0 , x < 0
(1)

Where radius R presents the grey value of the neighbour pixel

on a circle and gp(p = 0, . . . , P −1) denotes the total number

of the neighbours, gc stands for the grey of the centre of

pixels. Some of the neighbour’s values around the centre can

be estimated using bilinear interpolation.

B. Local Ternary Pattern (LTP)

The Local Ternary Pattern (LTP) is proposed to overcome

the LBP sensitivity to noise drawback by [11]. The LTP is

a variation of the LBP that uses three-valued codes (-1,0,1)

to express variations between the centre and its neighbours,

making it more noise-resistant. Figure 4 displays an example

of the LTP operator. The mathematical expression of the LTP

can be given as follows:

LTPP,R =

P−1∑
p=0

s(gp−gc)2
p, s(x) =

⎧⎪⎪⎨
⎪⎪⎩
1, if x ≥ t,

0, if − t < x < t,

−1, if x < −t,
(2)

where t is a user specified threshold as shown in Figure 4.

C. Completed Local Binary Count (CLBC)

Zhao et al. suggested a new Local Binary Count (LBC) de-

scriptor [13]. The number of value 1s in the binary neighbour

group is only counted rather than coded in LBC. The number

of 1s in the neighbour group in Figure 5 is 5, hence the local

binary count code of the centre pixel is also 5.

LBCP,R =

P−1∑
p=0

s(gp−gc), s(x) =

{
1, if x ≥ 0,

0, if x < 0,
(3)

The main difference between the LBC and the LBP is that

the LBC just counts the amount of 1s in the local neighbour

set, whereas the LBP uses the binary number to encode local

patterns.
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Fig. 5. LBC operator.

Zhao et al. [13] also extended the LBC to CLBC

which is Completed Local Binary Count. It is same to

CLBP have three operators which are Completed Local

Binary Count Centre(CLBC C), Completed Local Binary

Count Magnitude (CLBC M) and Completed Local Binary

Count Sign (CLBC S). The CLBC S is same as the original

LBC as present in Equation 3.

The CLBC S, CLBC M and CLBC C operators were also

combined into joint or hybrid distributions and they were used

for rotation invariant texture classification. The CLBC M and

CLBC C can be described mathematically as follows:

CLBC MP,R =

P−1∑
p=0

s(mp, c),

s(mp, c) =

{
1, if |gp − gc| ≥ c,

0, if |gp − gc| < c,
(4)

CLBC CP,R = s(gc, cI) (5)

Where gc and gp are already defined in Equation 1, c is the

average of mp inside each pattern, and cI is the image’s

average grey level. CLBC M counts the number of neighbours

with a significantly higher density than the centre pixel. As

a result, it’s used to get more information about the local

intensity disparities.

D. Redundant Discrete Wavelet Transform (RDWT)

The Redundant Discrete Wavelet Transform (RDWT) is an

estimate to the continued wavelet transform which takes out

the downsampling operation from the discrete wavelet trans-

form to create an over complete portrayal. Discrete wavelet

transform has the move variation trademark which emerges

from utilizing of down-examining operation, while RDWT

is moving invariant where the spatial testing rate is settled

crosswise over the scale.

As a result, each sub-group in the redundant discrete wavelet

transform has the exact same size as the input information [16].

To address several previous wavelet transforms, Fowler et
al. [17] presented the Redundant Discrete Wavelet Transform

(RDWT). Unlike the discrete wavelet transform (DWT), which

decomposes the image into four sub-bands with the same size

as the original image, RDWT is shift invariant and decomposes

the image into four sub-bands with the same size as the

original image. Figure 6 depicts an example of the RDWT. As

a result, in each sub-band, the relevant textures in the image

will be at the same spatial place. This results in a more precise

capture of local texture and measurement of local texture.

Fig. 6. a) an image b) RDWT c) pixel value of LL sub-band

III. PROPOSED WAVELET COMPLETED LOCAL TERNARY

COUNT (WCLTC)

The proposed CLTC was extracted using the RDWT instead

of the spatial domain (intensity pixel values) due to the

RDWT’s features. The CLTC is obtained by combining the

LTP and CLBC descriptors. In this part, the WCLTC has

explored in detail.

In WCLTC S, local difference of the image is

decomposed into two sign complementary components

Supper
p , Slower

p . These components are used to build the

WCLTC Supper
P,R , WCLTC Slower

P,R respectively, as follows:

mupper
p = |gp − (gc + t)|, mlower

p = |gp − (gc − t)| (6)

supperp = s(gp − (gc + t)), slower
p = s(gp − (gc − t)) (7)

WCLTC Supper
P,R =

P−1∑
p=0

s(gp − (gc + t)),

supperp =

{
1, gq ≥ gc + t

0, otherwise
(8)

WCLTC Slower
P,R =

P−1∑
p=0

s(gp − (gc − t)),

slower
p =

{
1, gq ≥ gc − t

0, otherwise
(9)

Then WCLTC SP,R is the concatenation of the

WCLTC Supper
P,R and WCLTC Slower

P,R , as follows:

WCLTC SP,R = [WCLTC Slower
P,R WCLTC Supper

P,R ]
(10)

where t denotes the user threshold while gp, gc defined in

Equation 1.

In WCLTC M , the local difference of the image is

decomposed into two magnitude complementary components



m pupper,m plower. These components are used to build the

WCLTC Mupper
P,R and WCLTC M lower

P,R , respectively as

described in the following equations.

WCLTC Mupper
P,R =

P−1∑
p=0

t(mupper
p , c),

t(mupper
p , c) =

{
1, |gp − (gc + t)| >= c

0, |gp − (gc + t)| < c
(11)

WCLTC M lower
P,R =

P−1∑
p=0

t(mlower
p , c),

t(mlower
p , c) =

{
1 , |gp − (gc − t)| >= c

0 , |gp − (gc − t)| < c
(12)

WCLTC MP,R = [WCLTC M lower
P,R WCLTC Mupper

P,R ]
(13)

Moreover, the WCLTC Cupper
P,R and WCLTC Clower

P,R

can be described mathematically as follows:

WCLTC Cupper
P,R = t(upperc , cI) (14)

WCLTC Clower
P,R = t(lower

c , cI) (15)

where cI is mean value gray level of the whole image.

To generate the final histogram like the CLBC, the sug-

gested WCLTC operators WCLTC S, WCLTC M , and

WCLTC C are integrated into hybrid or joint distributions.

The operators of the same type of pattern, i.e., the upper

and lower pattern, are merged first into hybrid or joint

distributions such as WCLTC M/C, WCLTC S M/C,

WCLTC S/M , WCLTC S/M/C. The findings are then

combined to create the final operator histogram. Figure 7

summarises the WCLTC extraction procedure.

IV. EXPERIMENTS AND DISCUSSIONS

The proposed WCLTC is evaluated by a series of exper-

iments on various texture and medical image datasets. The

Outex database [18] and the Columbia-Utrecht Reflection

and Texture (CUReT) databasecite [19] are two big and

extensive texture databases used in these experiments. Fur-

thermore, the performance of the proposed WCLTC descriptor

is evaluated using three different medical image datasets:

2D Hela [20], VIRUS Texture [21], and BREAST CANCER

(BR) dataset [22]. The proposed WCLTC is compared against

CLBC [13], CLBP [12], and CLTP [14] in the experiments.

A. Dissimilarity Measuring Framework

Histogram intersection, log-likelihood ratio, and chi-square

statistics are some of the methods for evaluating the dissim-

ilarity between two histograms [6], [13]. The chi2 statistics

were utilised as a metric for dissimilarity in these experiments,

with the nearest neighbourhood as the classifier. The χ2

Fig. 7. The proposed WCLTC

distance between two histograms H = hi and K = ki where

(i = 1, 2, 3, ...B) can be mathematically described as follows:

Dissimilarityχ2(H,K) =

B∑
i=1

(hi − ki)
2

hi + ki
(16)

B. Experimental Results on CUReT Database

Fig. 8. Some images from CUReT dataset.

A total of 61 texture classes are included in the CUReT

dataset [19]. Each class has 205 images that have been exposed

to a variety of lighting and perspective situations. In each

session, the images are captured from various angles. There

are 118 image shots in each class with viewing angles smaller

than 60◦ out of 250 total. Figure 8 shows some examples of

CUReT images. After converting to grayscale and trimming

to 200× 200, only 92 images are chosen from these types of

images. N images from 92 are used as training data in each



class, while the remaining images (92-N) are used as testing

data. The average percentage of a hundred random splits is

used to get the final classification accuracy. Table I shows the

CUReT average classification for N = (6, 12, 23, 46).
The WCLTC performance is compared to the CLBC

and the CLTP with different pattern sizes in Table I.

With WCLTC S/M/C3,24, the proposed WCLTC

achieved the maximum classification accuracy of

97.04%, while CLBP S/M/C3,24 achieved 95.72% and

CLTP S/M/C3,24 reached 96.11%. Despite the fact that

the CLTP S, CLTP M , and CLTP M/C outperformed

the equivalent CLBC and WCLTC at all radiuses and in all

N , the WCLTC outperformed the CLBC and CLTP.

C. Experimental Results on Outex Database

 

Fig. 9. Some images from Outex database.

There are 16 test suites in the Outex datasets, ranging from

Outex TC 00010 (TC10) to Outex TC 00016 (TC16) [18].

These images were captured under various lighting, rotation,

and scaling settings. The test suites Outex TC 00010 (TC10)

and Outex TC 00012 (TC12) are well-known in the Ou-

tex databases. These two suites share the same 24 texture

classes, which were gathered using three different illuminates

(”horizon,” ”inca,” and ”t184”) and nine different rotation

angles (0◦, 5◦, 10◦, 15◦, 30◦, 45◦, 60◦, 75◦, and 90◦). Each

class has 20 non-overlapping texture samples with a size of

128 × 128 for each illumination and rotation circumstance.

Figure 9 shows some examples of Outex images. 480 images

are used as training data for TC10. These are images with

”inca” illumination and a ”0◦” angle rotation. The images

under the remaining rotation angles and ”inca” illumination

condition, i.e., 3840 images, are used as testing data. The

training data for TC12 is the same as for TC10, but the

testing data is all images taken under ”t184” or ”horizon”

lighting circumstances, i.e. 4320 images for ”t184” and 4320
images for ”horizon.” Table II shows the experimental results

of TC10, TC12(t184), and TC12 (horizon). Figure 9 shows a

few examples of Outex images.

Table II lists the experimental results of CLBP, CLBC,

CLTP, and the proposed WCLTC. In TC10, the highest

recognition accuracy was obtained by CLTP S/M/C3,24,

which has reached up to 99.17% followed by the

WCLTC S/M3,24, which has reached up 99.03%. In

TC12, the proposed WCLTC S/M/C outperformed the

CLBP S/M/C, CLBC S/M/C, and CLTP S/M/C in

both TC12(t184) and TC12(h). The best classification accuracy

was obtained by WCLTC S/M/C3,24, which has reached

up to 96.36% and 95.64% for TC12(t184) and TC12(h),

respectively.

The experimental results of CLBP, CLBC, CLTP, and

the proposed WCLTC are listed in Table II. The high-

est recognition accuracy in TC10 was achieved by

CLTP S/M/C3,24, which achieved 99.17%, followed

by WCLTC S/M3,24, which achieved 99.03%. In both

TC12(t184) and TC12(h), the proposed WCLTC S/M/C
outperformed the CLBP S/M/C, CLBC S/M/C, and

CLTP S/M/C. The best classification accuracy was

achieved by WCLTC S/M/C3,24, which achieved 96.36%

for TC12(t184) and 95.64% for TC12(h), respectively.

D. Experimental Results on 2D HeLa Database

DNA, Actin, Endosomes, ER, Golgi GPP130, Golgia, Lyso-

somes, Microtubules, Nucleolus, and Mitochondria are among

the 10 classes in the 2D-HeLa database. Each class have a

different number of images. 2D HeLa image examples can be

found in Figure 10. In these experiments, 4/5 of images from

each class are randomly chosen as training data and the reset

1/4 of images are used as testing data. The average percentage

of 10 random splits is used to get the final classification

accuracy. In these tests, the chi2-SVM classifier is utilised.

In this experiment, the CLTP and WCLTC texture descriptors

are used to analyse the 2D HeLa image database using three

different texture patterns, as shown in Table III.

The WCLTC and CLTP texture operators are extracted

using three different neighbour sizes (P=8, 16, and 24) and

three different texture pattern radius (R = 1, 2, and 3). The

categorization rate of CLTP and WCLTC descriptors is shown

in table III. In several cases, the proposed WCLTC outscored

the CLTP operators. The best classification accuracy was

achieved by WCLTC S/M/C1,8, which achieved 96.91%,

whereas the greatest classification accuracy was achieved by

CLTP S/M2,16, which achieved 95.62%.

E. Experimental Results on Virus Texture Database

The Virus Texture dataset is divided into 15 classes, each

with 100 images. The CLTP and proposed WCLTC texture

descriptors are used to analyse the Virus Texture image dataset

in these experiments. 4/5 of images from each class are

randomly chosen as training data, while the remaining 1/4

of images are used as testing data, similar to 2D-Hela. The

average percentage of 10 random splits is used to get the final

classification accuracy. In these tests, the chi2-SVM classifier

is utilised. The WCLTC texture operators are extracted using

three different neighbour sizes (P=8, 16, and 24) and three dif-

ferent texture pattern radius (R = 1, 2, and 3). Figure 11 shows

some examples of Virus Texture images. Table IV displays the

findings of the Virus Texture dataset. In general, the results are

lower than expected, with WCLTC S/M/C3,24 achieving

the highest classification accuracy of 72.44%. The highest

classification accuracy was attained by CLTP S/M/C3,24,

which was up to 71.56%.



TABLE I
CLASSIFICATION RATES % ON CURET DATABASE

R=1, P=8 R=2, P=16 R=3, P=24

6 12 23 46 6 12 23 46 6 12 23 46

CLBC S 56.88 66.21 72.89 78.82 63.49 72.68 79.49 85.35 60.82 70.57 74.21 80.14

CLTP S 64.38 72.66 81.73 88.24 68.39 79.09 86.61 91.55 72.57 81.55 87.72 91.75
WCLTC S 62.77 71.73 78.39 84.50 68.96 78.04 84.21 89.76 69.75 78.26 84.54 89.57

CLBC M 50.12 58.62 57.82 66.61 58.57 68.28 76.11 83.03 51.23 60.53 68.36 77.41

CLTP M 61.37 71.17 80.53 86.67 63.33 74.47 82.14 88.83 67.14 76.93 85.16 90.52
WCLTC M 53.79 62.12 69.51 76.83 57.82 67.34 74.87 82.34 57.68 67.39 75.68 83.26

CLBC M/C 56.53 67.15 75.58 82.97 64.81 75.56 82.98 89.75 68.71 78.54 86.04 91.65

CLTP M/C 62.07 72.94 82.26 88.98 66.77 77.12 85.51 91.67 70.1 80.12 89.02 93.58
WCLTC M/C 60.39 70.75 79.4 87.00 64.18 74.47 82.54 89.69 67.29 76.86 85.19 91.30

CLBC S M/C 66.63 76.54 85.02 90.55 70.27 80.47 87.57 92.78 73.29 82.28 89.28 94.07

CLTP S M/C 67.54 78.89 85.46 91.27 71.55 82.16 87.82 94.04 74.39 85.14 91.03 94.69
WCLTC S M/C 68.54 78.53 86.53 92.44 71.53 82.10 89.31 94.22 72.4 82.68 89.71 94.67

CLBC S/M 69.89 79.88 86.62 93.1 74.63 83.44 89.67 93.85 74.95 84.3 90.83 94.53

CLTP S/M 71.3 82.37 89.2 93.50 74.14 84.42 90.78 95.06 76.49 85.11 92.02 95.63
WCLTC S/M 71.69 81.98 88.72 93.50 76.4 85.40 91.49 95.45 74.82 84.71 91.30 95.40

CLBC S/M/C 72.85 82.95 90.12 94.78 76.07 85.73 92.15 95.67 76.8 86.54 92.00 95.72

CLTP S/M/C 75.18 84.06 90.45 94.78 77.72 85.54 92.44 95.95 77.97 87.5 92.72 96.11

WCLTC S/M/C 75.95 85.45 91.69 95.9 78.47 88.03 94.04 96.97 78.91 88.08 93.51 97.04

TABLE II
CLASSIFICATION RATES % ON OUTEX DATABASE

R=1, P=8 R=2, P=16 R=3,P=24

TC10
TC12

TC10
TC12 TC10 TC12

T184 h T184 h T184 h

CLBP S 84.41 65.46 63.68 89.40 82.26 75.20 95.07 85.04 80.78

CLBC S 82.94 65.02 63.17 88.67 82.57 77.41 91.35 83.82 82.75

CLTP S 94.14 75.88 73.96 96.95 90.16 86.94 98.20 93.59 89.42

WCLTC S 89.97 80.30 78.24 95.65 92.61 92.61 98.04 93.28 91.45

CLBP M 81.74 59.30 62.77 93.67 73.79 72.40 95.52 81.18 78.65

CLBC M 78.96 53.63 58.01 92.45 70.35 72.64 91.85 75.59 74.58

CLTP M 94.04 75.86 74.05 97.32 83.40 84.40 98.00 85.39 84.65
WCLTC M 91.01 71.36 74.21 95.72 77.40 77.15 95.70 78.65 82.03

CLBP M/C 90.36 72.38 76.66 97.44 86.94 90.97 98.02 90.74 90.69

CLTP M/C 95.94 84.70 86.02 97.94 90.14 92.38 98.52 91.23 89.98
WCLTC M/C 94.73 81.36 84.65 97.34 86.22 86.22 97.13 87.19 89.74

CLBP S M/C 94.53 81.87 82.52 98.02 90.99 91.08 98.33 94.05 92.40

CLTP S M/C 96.43 84.00 86.85 98.44 92.41 92.80 98.98 95.00 92.94
WCLTC S M/C 97.13 87.80 88.79 98.02 91.39 91.36 98.20 92.40 92.10

CLBP S/M 94.66 82.75 83.14 97.89 90.55 91.11 99.32 93.58 93.35

CLBC S/M 95.23 82.13 83.59 98.10 89.95 90.42 98.70 91.41 90.25

CLTP S/M 96.41 82.85 84.81 97.84 92.06 92.69 99.04 94.14 92.59
WCLTC S/ M 96.90 85.85 86.66 98.56 92.17 92.71 99.03 93.65 92.10

CLBP S/M/C 95.56 90.30 92.29 98.72 93.54 93.91 98.93 95.32 94.53

CLBC S/M/C 97.16 89.79 92.92 98.54 93.26 94.07 98.78 94.00 93.24

CLTP S/M/C 96.98 87.06 90.30 98.93 94.03 94.79 99.17 95.67 94.28

WCLTC S/M/C 98.12 90.81 93.66 98.95 95.20 95.20 98.90 96.36 95.64



TABLE III
CLASSIFICATION RATES % ON 2D HELA DATABASE

P=8,R=1 P=16,R=2 P=24,R=3

CLTP S 84.57 91.98 93.21
WCLTC S 88.89 90.74 93.20

CLTP M 79.63 91.98 90.12

WCLTC M 80.24 87.03 93.82

CLTP M/C 89.51 90.12 90.12

WCLTC M/C 91.97 93.20 93.20

CLTP S M/C 93.21 91.36 92.59

WCLTC S M/C 93.82 95.67 94.44

CLTP S/M 94.44 95.62 91.98

WCLTC S/M 96.29 95.67 95.67

CLTP S/M/C 88.89 92.59 90.74

WCLTC S/M/C 96.91 95.67 95.06

Fig. 10. Some images of 2D HeLa dataset.

Fig. 11. Some images of Virus dataset Texture

TABLE IV
CLASSIFICATION RATES % VIRUS-TEXTURE DATABASE

P=8,R=1 P=16,R=2 P=24,R=3

CLTP S 46.44 33.11 28.44

WCLTC S 49.11 33.78 36.89

CLTP M 52.67 52.11 26.88

WCLTC M 52 51.78 59.78

CLTP M/C 60.89 45.78 42.67

WCLTC M/C 62.44 71.33 71.78

CLTP S M/C 66.44 51.56 48.44

WCLTC S M/C 65.11 69.78 72.89

CLTP S/M 60.44 45.33 43.78

WCLTC S/M 60 59.78 61.11

CLTP S/M/C 71.56 50.22 45.11

WCLTC S/M/C 70.67 70.44 72.44

Fig. 12. Some images of BRdataset

F. Experimental Results on BR database

There are three classes in the BREAST CANCER (BR)

database: benign cancer, control, and malignant cancer, with a

total of 1394 images in those classes [22]. Figure 12 displays

some examples of BR images. The proposed WCLTC and

CLTP texture descriptors are used to analyse the BR image

dataset in these experiments.

In these experiments, 4/5 of the images from each class

are chosen at random as training data, while the remaining

1/4 are used for testing. The average percentage of 10 ran-

dom splits is used to get the final classification accuracy. In

these experiments, the chi2-SVM classifier is utilised. The

WCLTC texture operators are extracted using three different

neighbour sizes (P=8, 16, and 24) and three different texture

pattern radius (R = 1, 2, and 3). The WCLTC performance

for the BR dataset is shown in table V, where the CLTP

outperformed the WCLTC in terms of classification accuracy

utilising various texture patterns. The highest classification

accuracy rate achieved by CLTP S/M1,8 was 91.21%, while

the best classification accuracy rate achieved by WCLTC was

89.69%, which was achieved by WCLTC S/M2,16.

The experiment findings reveal that the proposed WCLTC

is able to achieve high classification rates with a variety of

image datasets, including CUReT, Outex, 2D-HeLa, and Virus

Texture. Depending on the texture pattern radius, different



TABLE V
CLASSIFICATION RATES % ON BR DATABASE

P=8,R=1 P=16,R=2 P=24,R=3

CLTP S 83.53 83.36 84.71

WCLTC S 86.9 87.5 88.17

CLTP M 90.37 87.33 88.26
WCLTC M 85.38 78.33 88

CLTP M/C 90.11 89.86 88.85

WCLTC M/C 86.31 88.68 89.1

CLTP S M/C 89.44 89.78 89.52

WCLTC S M/C 88.26 88.93 89.69

CLTP S/M 91.21 89.1 89.02

WCLTC S/M 86.9 88.68 89.35

CLTP S/M/C 90.03 90.7 89.94
WCLTC S/M/C 88.68 88.76 89.02

results were obtained. This is due to the information’s location

within each dataset class’s images. In some datasets, wavelet

information performed much better than the spatial domain in

terms of classification accuracy.

V. CONCLUSION

The WCLTC texture descriptor was presented as a new

discriminative texture descriptor that combines the LTP and

CLBC descriptors. The limitations of both LTP and CLBC

acquired from the original LBP are overcome by this inte-

gration. The proposed descriptor was called Completed Local

Ternary Count (CLTC). Furthermore, the proposed CLTC was

enhanced to improve its discriminative property by extracting

it using wavelet coefficients, which is RDWT. Two types

of texture databases, CUReT and Outex, as well as three

medical datasets, 2D HeLa, Virus Texture, and BR, were

used to evaluate the performance of the proposed WCLTC.

In both texture and medical image experiments, the WCLTC

demonstrated good classification accuracy. Some prior texture

descriptors, such as CLTP, CLBC, and CLBP, performed

worse than the WCLTC. With the 2D Hela, CUReT, and

Virus datasets, the WCLTC achieved the highest classification

accuracy of 96.91%, 97.04%, and 72.89%, respectively.
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