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EDITORIAL

Global Reference Grids for Big Earth Data
Robert G. Gibba, Matthew B.J. Purssb, Zoheir Sabeurc, Peter Strobld and Tengteng Que

aManaaki Whenua – Landcare Research, Palmerston North, New Zealand; bPangaea Innovations Pty. Ltd, 
Canberra, Australia; cDepartment of Computing and Informatics, Talbot Campus, University of 
Bournemouth, Bournemouth, UK; dEuropean Commission, Joint Research Centre (JRC), Ispra, Italy; eCollege 
of Engineering, Peking University, Beijing, China

The emerging field of Discrete Global Grid Systems (DGGS) provides a way to organise, 
store and analyse spatio-temporal data at multiple resolutions and scales (from near 
global scales down to microns). DGGS partition the entire planet into a discrete hierarchy 
of global tessellations of progressively finer resolution zones (or cells). Data integration, 
decomposition and aggregation are optimised by assigning a unique spatio-temporal 
identifier to each zone. These identifiers are encodings of both the zone’s location and its 
resolution. As a result, complex multi-dimensional, multi-resolution spatio-temporal 
operations are simplified into sets of 1D array and filter operations. DGGS are therefore 
particularly suited for efficient multi-source data processing, storage, discovery, transmis-
sion, visualisation, computation, analysis, and modelling.

DGGS are supported by both the Open Geospatial Consortium (OGC) and the International 
Organization for Standardization (ISO) TC211 standards (OGC Abstract Specification – Topic 
211, ISO 19170-12). These published specifications support 2D equal-area DGGS of the Earth’s 
surface. Current work led through both OGC and ISO/TC-211 is drafting standards to specify 
3D (3D & equi-volume)3, 4D (spatio-temporal)4 and axis-aligned5 DGGS, as well as OGC API 
DGGS6,7 interface encodings for DGGS infrastructures. The continued effort to develop 
international standards for DGGS will support the implementation of standardised interoper-
able Global Reference Grid Infrastructures that can support efficient and scalable integration 
of Big Earth Data across multiple organisations around the world.

Introducing DGGS, we mentioned both global grids and spatio-temporal identifiers. So, 
which is more important for a DGGS – the choice of global grid geometry or the structure 
of the spatio-temporal identifier? When people first encounter DGGS, they often initially 
focus on the “grid” structure – after all, grid is writ large in the DGGS name, and this has 
a superficial familiarity with grids used in traditional raster systems. However, as people’s 
understanding of DGGS matures, they come to understand that the simplicity of the 
spatio-temporal identifiers is what gives DGGS their power and that the discrete hierarchy 
of global grids merely provides structure for the spatio-temporal identifiers. This is now 
reflected by the choice of words describing DGGS Reference Systems in the recently 
published OGC & ISO Specifications – “Spatial Referencing using Identifiers with struc-
tured geometry”. So, the emphasis on global grids in both the acronym Discrete Global 
Grid Systems and the title of this special issue “Global Reference Grids for Big Earth Data” 
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may be misplaced or possibly even misleading. How do the papers in this Big Earth Data 
Special Issue help us appreciate the difference?

Alexander Kmoch et al. from the Department of Geography, Institute of Ecology and Earth 
Sciences at the University of Tartu compare the broad functionality and usability of five of the 
more prominent open-source DGGS libraries, and explore the global variation in geometric 
distortion and zone area for the DGGS(s) supported by each library. Results are presented as 
maps, histograms and tables. While a small portion of the variation is due to coding choices, 
the dominant source of variation is an inherent characteristic of the geometry of each DGGS 
and therefore the results provide a very useful introduction and guide to the compromises 
inherent in the geometry selection for a DGGS. The paper also makes the distinction between 
those libraries that focus on providing grids that satisfy particular criteria, and those libraries 
that also generate identifiers that support efficient processing by providing spatial functions 
that are driven by the DGGS zone’s identifier.

The next two papers provide examples of machine learning that use DGGS to manage 
many highly heterogeneous data sources. Bing Han et al. extend the 2D surface DGGS 
examined by Kmoch et al. to 3D DGGS using the GeoSOT-3D DGGS from the College of 
Engineering, Peking University. They model site selection of emergency airports in the 
Yangtze river delta. This is an area with high population density that is prone to flooding. 
So, emergency airports need to be dynamically chosen in response to rapidly evolving 
situations, and sub-optimal choices have potentially severe consequences. Andrew Rawson 
et al. from the University of Southampton use their dggridpy library to deploy Big Data 
technology across North America to assess the likelihood of maritime risk associated with 
200,000 shipping incidents during the last few decades in the context of harsh environmental 
conditions and vessel movements using Automatic Identification System (AIS) data. While 
both these papers focus primarily on their application, they also describe how using DGGS 
helps with their analyses. Bing Han et al. describes how the use of GeoSOT-3D’s 3D spatial 
identifier allows them to use a traditional database structure with a single column containing 
the 3D identifier for their analysis. Andrew Rawson et al. initially focus on DGGS as grids and 
describe how the advantages to their analysis of both equal-area and uniform nearest- 
neighbor properties supported their choice of a DGGS using Icosahedral Snyder Equal Area 
projection with grids of hexagonal zones. For the analyses, once again table-based data 
structures are used indexed by zone identifiers to feed data through the machine learning 
pipeline.

The remaining papers address three different forms of challenges associated with 
DGGS – extreme scaling, pathways to adoption and future research. Xinyu Tang et al. 
from College of Land Science and Technology, China Agricultural University, Beijing, and 
colleagues address the wider challenge of Big Data remote sensing analytics at peta- and 
exa-scale. While they do not consider DGGS specifically, the issues they discuss and the 
solutions they examine do refer to techniques such as space filling curves that are widely 
used for spatial identifier logic in DGGS. This paper underscores that moving to peta- and 
exa-scale requires special consideration, whatever technology is used – whether traditional 
raster or DGGS. Even vector systems at giga-scale struggle, let alone at peta- to exa-scale, so 
it would be very interesting to see research explicitly exploring the issues Xinyu Tang et al. 
discuss in the context of DGGS identifiers and diverse vector and raster source data.

Jeffery Thompson et al. from Minnesota Supercomputing Institute, University of 
Minnesota, and from the National Snow and Ice Data Center, University of Colorado tackle 

252 R. GIBB ET AL.



the challenge of adoption by adding DGGS capability to an existing package – Equal-Area 
Scalable Earth Grid (EASE-Grid 2.0) – that is already widely used by the Earth Observation (EO) 
community. Their proposal underlines how key DGGS characteristics such as a pre-defined 
hierarchy of nested grids and structured cell indices substantially benefit global scale EO data 
storage and interoperability. At the same time, it demonstrates the dilemma in which other 
assets like seamless global coverage or a consistent subdivision pattern across the grid 
hierarchy are being sacrificed to data legacy and user comfort in pursuit of easier acceptance. 
This raises the question whether this initial version of EASE-DGGS is a sufficient endpoint in 
DGGS adoption or whether it is a valuable first step towards the use of DGGS by the Earth 
Science community. The challenge will be to ensure that this is just a first step towards a wider 
adoption of DGGS, so that in time the community can realise the full DGGS vision described by 
Goodchild (Goodchild, 2019) and address the shortcomings of the early vector and raster 
decisions whose legacy continues to hold back the global community (Goodchild, 2018).

Majid Hojati et al. from the Department of Geography and Environmental Studies, 
Wilfrid Laurier University, Waterloo and University of Saskatchewan pick up on recent 
developments in OGC’s DGGS standards, and explore the implications compared with 
traditional raster and vector-based GIS. The authors take readers on deep dives into 
particular issues discussing both the superficial pros and cons and also exposing deeper 
practicalities that will need to be addressed through future research, richer implementa-
tions and evolving best practices.

So what do these papers tell us about the relative importance of grids and identifiers? 
Alexander Kmoch et al. demonstrate the trade-offs between different grids that we need 
to be aware of when we select a DGGS for our application. Jeffery Thompson et al. show 
that a DGGS-compliant spatial index can be developed for the Earth Observation com-
munity’s EASE-Grid v2 system of grids, thereby enabling DGGS capabilities for that 
community, and Xinyu Tang et al. and Andrew Rawson et al. show the power of lever-
aging DGGS spatial identifiers for complex analysis of mixed raster and vector data 
sources. So, the choice of grids is an important consideration in DGGS selection, but it is 
the indexes that drive analyses.

The challenge of leveraging and benefiting from the wisdom and insights we can gain 
from Big Earth Data is significant and increasingly being recognised by those who are 
beginning to drown in a sea of data that is rising at an exponential rate. Our ability to 
increase our compute capacity to keep up with this growth in data is now limited by the 
laws of physics, and we have over-reached Moore’s Law, as evidenced most obviously by 
the switch from single processor to parallel processing in the early 2000s (Hilbert, 2016; 
Karl, 2018; Rydning, Reinsel, & Gantz, 2018).

The papers in this issue clearly demonstrate that there is no single DGGS which is ideal 
for every use case nor are the advantages of using DGGS technologies realisable at no 
cost; however, it is also apparent that established techniques for global geospatial data 
storage and analysis have reached their limits and are now acting as an impediment 
rather than a facilitator for realising the combined power of a “Digital Earth”. To solve this 
problem, we need to rethink the way we are storing, managing, sharing and working with 
our data, and DGGS offers a very promising opportunity.

The perceived lack of established and available DGGS solutions, which has been 
a barrier to implementation, is rapidly becoming an issue of the past. The papers in this 
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Special Issue provide a solid argument for the application and adoption of DGGS to the 
Big Earth Data paradigm and some of the challenges that we as a community must resolve 
to truly realise the concept of the “Digital Earth”.

We would like to thank all contributing authors, including those whose papers were not 
selected in this Special Issue. We would also like to express our hearty gratitude to those 
anonymous reviewers. Last but not least, special thanks go to the Executive Editor-in-Chief 
Dr Changlin Wang and the Assistant Editor Dr Linlin Guan for their great assistance.
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