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Abstract 12 

Introductions of non-native freshwater fish continue to increase globally, although only a small 13 

proportion of these introductions will result in an invasion. These invasive populations can 14 

cause ecological impacts in the receiving ecosystem through processes including increased 15 

competition and predation pressure, genetic introgression and the transmission of non-native 16 

pathogens. Definitions of ecological impact emphasise that shifts in the strength of these 17 

processes are insufficient for characterising impact alone and, instead, must be associated with 18 

a quantifiable decline of biological and/or genetic diversity and lead to a measurable loss of 19 

diversity or change in ecosystem functioning. Assessments of ecological impact should thus 20 

consider the multiple processes and effects that potentially occur from invasive fish populations 21 

where, for example, impacts of invasive common carp Cyprinus carpio populations are through 22 

a combination of bottom-up and top-down processes that, in entirety, cause shifts in lake stable 23 

states and decreased species richness and/or abundances in the biotic communities. Such far-24 

reaching ecological impacts also align to contemporary definitions of ecosystem collapse, 25 

given they involve substantial and persistent declines in biodiversity and ecosystem functions 26 

that cannot be recovered unaided. Thus, while not all introduced freshwater fishes will become 27 

invasive, those species that do develop invasive populations can cause substantial ecological 28 

impacts, where some of the impacts on biodiversity and ecosystem functioning might be 29 

sufficiently harmful to be considered as contributing to ecosystem collapse. 30 

 31 
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1. Introduction 34 

 35 

In recent decades, human activities have resulted in substantial declines in biodiversity, 36 

especially in freshwater fishes (Tickner et al., 2020). The causal factors in freshwater fish 37 

diversity decline include flow alteration, pollution, habitat degradation, overexploitation and 38 

invasive species (Dudgeon et al., 2006; Tickner et al., 2020). Non-native fishes continue to be 39 

introduced around the world (Perrin et al., 2021) and freshwaters are recognised as highly 40 

susceptible to the invasion of introduced species (Moorhouse & MacDonald 2015). However, 41 

only a relatively small proportion of these introduced fishes will develop invasive populations 42 

(e.g., the ‘tens’ rule; Williamson & Fitter, 1996), with ecosystems that are already disturbed 43 

being particularly vulnerable to invasion (Johnson et al., 2008). As these invasive populations 44 

have the potential to cause substantial ecological impacts in the receiving ecosystem 45 

(Cucherousset & Olden, 2011), it is important to understand the processes that determine the 46 

strength of these impacts (Gallardo et al., 2016).  47 

Multiple factors determine whether an introduced freshwater fish will establish a sustainable 48 

population that then disperses and causes ecological impact (i.e. becomes invasive). 49 

Establishment probability varies according to the traits of the introduced species (e.g. life-50 

history traits, thermal preferences), and the characteristics of the introduction event(s) (e.g. 51 

number of individuals introduced) and the receiving environment (e.g. abiotic/ biotic 52 

characteristics) (Ruesink, 2005; Garcia-Berthou, 2007). Should an invasive population develop 53 

then these intrinsic and extrinsic factors can also affect the population abundance of the 54 

invader, where abundance is then another important influence on the strength of ecological 55 

impact (Yokomizo et al., 2009; Jackson et al., 2015). 56 

Invasive freshwater fishes can impact native communities and habitats through a variety of 57 

processes, including increased predation pressure and competitive interactions, genetic 58 
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introgression with taxonomically similar species, and disease transmission (Gozlan et al., 59 

2010a; Cucherousset & Olden, 2011). The foraging behaviours of invasive fish can also alter 60 

the structure of their physical environment, such as macrophyte extirpation (Weber & Brown, 61 

2009). While an invasive fish population might only cause impacts from one of these processes, 62 

some invaders will cause a range of impacts caused by multiple processes (Vilizzi et al., 2015). 63 

Thus, it is important to not just understand how these processes act in isolation but also how 64 

they can act additively and/ or synergistically in an invading freshwater fish population (Britton 65 

et al., 2015; Jackson et al., 2015). When assessing impact severity, however, it is also important 66 

to define what constitutes the ecological impact of invasive fish so that appropriate assessments 67 

are made. Where impacts are particularly severe and unable to be resolved without 68 

management interventions then there is potential that they have contributed to ecosystem 69 

collapse (Newton et al., 2021). 70 

The aim of this review is to thus provide a contemporary perspective on the ecological 71 

impacts of invasive freshwater fish by synthesising the factors influencing their initial 72 

establishment and invasion, before discussing the processes by which ecological impacts can 73 

develop and the factors that determine impact strength. Examples of how populations of 74 

invasive fish can cause multiple ecological impacts in invaded freshwaters are then provided 75 

to highlight how definitions of both ecological impact and ecosystem collapse are important 76 

for informing impact assessment and risk management.  77 

 78 

2. Establishment and invasion probabilities 79 

The probability of an introduced species establishing a sustainable population that then 80 

disperses and impacts native species will vary according to the characteristics of the introduced 81 

species and the introduction itself, and the receiving environment (Fig. 1).  82 

 83 
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 84 

2.1 The introduced species  85 

For a species to develop an invasive population requires their survival of being introduced, and 86 

an ability to adapt to the new conditions and then establish a sustainable population (Kolar & 87 

Lodge, 2002). A species moved between biogeographic regions of similar climate 88 

characteristics and that is then introduced into an environment of comparable abiotic properties 89 

has a higher probability of establishing and invading than the converse scenario (Bomford et 90 

al., 2010; Howeth et al., 2016). Indeed, introduced species that can express their traits in the 91 

new range in a similar manner to their native range have been suggested as generally having 92 

higher invasion probabilities through complying with the adaptation hypothesis (Ricciardi & 93 

Mottiar, 2006). It should be noted, however, that there is a contrasting hypothesis to this: that 94 

for an introduced species to establish in a new range, it should modify it traits in order to gain 95 

advantage over a different set of competitors and/or predators (Ludsin et al., 2001).  96 

By focusing on the intrinsic characteristics of the invader, the adaptation hypothesis thus 97 

predicts that a non-native species pre-adapted to the conditions of the new ecosystem will have 98 

a relatively high establishment and invasion probability through its specialisations and 99 

competitive abilities that do not require modification in the new range (Catford et al., 2009). 100 

For example, non-indigenous European barbel Barbus barbus (L.) expressed the same traits 101 

(e.g. prolonged reproductive period) and behaviours (high individual variability in home 102 

ranges) in the River Severn basin, Western England, as populations in their indigenous range 103 

(Gutmann Roberts et al., 2018), which enabled their relatively rapid establishment and 104 

dispersal (Antognazza et al., 2016).  105 

Introduced fishes are also often released into new environments without their usual parasite 106 

fauna due to factors including only a sub-set of the population being moved that lacks the 107 

parasite richness of the donor population and with some of the parasites that are transported 108 
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having complex lifecycles for which the intermediate hosts are missing in the new range 109 

(Colautti et al., 2004; Heger & Jeschke, 2014). This ‘enemy release’ of an introduced species 110 

from its natural parasites (and/or natural predators) thus provides greater energy allocation for 111 

somatic growth and reproduction (Sheath et al., 2015). However, this might be counter-acted 112 

by ‘parasite acquisition’, where native parasites infect the introduced species (Sheath et al., 113 

2015). Plasticity in how behavioural, physiological and/ or life-history traits are expressed is 114 

also important following establishment, as individuals that are dispersing at invasion front are 115 

predicted to have a suite of traits more suited to population expansion (e.g. boldness, high 116 

activity and exploratory behaviours, high resource acquisition) than those in the core range 117 

(Brownscombe et al., 2012; Tarkan et al., 2021).  118 

 119 

2.2 Introduction characteristics  120 

Colonisation pressure refers to the number of species introduced or released into a single 121 

location, with a generally positive relationship between the number of introductions and the 122 

number of established species in that location (Catford et al., 2009). It can thus serve as a null 123 

model for predicting the number of invasive species in specific regions and for understanding 124 

temporal or spatial differences in non-native species richness (Catford et al., 2009). An 125 

important component of colonisation pressure is propagule pressure, which generally refers to 126 

the number of individuals of a species introduced into a specific location (propagule size) and 127 

their frequency of introduction (propagule number) (Britton & Gozlan, 2013). Propagule 128 

pressure is important for both determining establishment probability and positively influencing 129 

subsequent invader abundances (Lockwood et al., 2005; Simberloff, 2009; Britton & Gozlan, 130 

2013). Although the shape of the establishment curve (the probability of invasion as a function 131 

of the number of founders) is likely to vary according to factors including the carrying capacity 132 

of the receiving habitat (Drake & Lodge, 2006), empirical evidence suggests a non-linear 133 
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relationship, with thresholds of propagule size above which establishment and relatively 134 

abundant invasive populations are highly probable to develop (Britton & Gozlan, 2013). Where 135 

populations do establish from a small number of founders, low genetic diversity (at least 136 

compared with the native range) is likely to result (e.g. Hardouin et al., 2018), potentially 137 

leading to genetic bottlenecks and low adaptive capacity (Hanfling, 2007). 138 

 139 

2.3 Receiving environment 140 

The species richness and species-specific abundances of the receiving environment is an 141 

important determinant for establishment probability and invader impact, with the biotic 142 

resistance hypothesis predicting communities with higher richness will resist establishment, 143 

invasion and impact (Britton et al., 2012). Establishment and invasion of a non-native fish can 144 

thus be impeded by strong competitive pressure from trophically analogous native species, 145 

strong predation pressure from species at higher trophic positions, and/ or from native 146 

pathogens that host-switch to infect the introduced propagules - although predation tends to be 147 

the strongest resistor to invasion in freshwaters (Alofs & Jackson, 2014). Biotic resistance 148 

through predation was measured from both common carp Cyprinus carpio L. (hereafter ‘carp’) 149 

and perch Perca fluviatilis (L.) on topmouth gudgeon Pseudorasbora parva (Temminck & 150 

Schlegel 1846) establishment (Britton, 2011) and population abundance (Davies & Britton, 151 

2015a). Biotic resistance from carp was only overcome when angler trophic subsidies were 152 

available (Britton et al., 2015). Lake ecosystems with food webs of greater biodiversity have 153 

also been measured as providing higher resistance and resilience to alien largemouth bass 154 

Micropterus salmoides (Lacepède, 1802) (Calizza et al., 2021). For non-native fish introduced 155 

into England and Wales, infections by native parasites are common, although the extent to 156 

which these native parasites inhibit the ability of the non-native fishes to establish and invade 157 

is unclear (Sheath et al., 2015). 158 
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Biotic resistance to invasion and impact can, however, be relatively weak in freshwaters that 159 

have been disturbed through other anthropogenic activities, where the Disturbance hypothesis 160 

predicts that where anthropogenic activities have increased resource availability and modified 161 

the physical structure of the ecosystem then introduced species have an equal chance of 162 

succeeding in the new environment as native species (Catford et al., 2009). Riverine 163 

disturbances, such as impoundment, generally leads to shifts towards lentic species and 164 

functional guilds from specialist to generalist species (Noble et al., 2007), which often favour 165 

non-native over native species (Johnson et al., 2008). In Australia, impoundments tend to 166 

favour carp invasion over the persistence of native fishes such as Murray cod Maccullochella 167 

peelii (Mitchell 1838) (Britton et al., 2011a). The creation of multiple reservoirs by 168 

hydroelectric dams in Southern Brazil has provided opportunities to create sport fisheries based 169 

on non-native species such as peacock basses (Cichla spp.) (Espínola et al., 2010), where high 170 

predation rates from their invasive populations further decrease native fish species richness and 171 

abundance (Pelicice & Agostinho, 2009; Britton & Orsi, 2012; Tarkan et al., 2012). The 172 

likelihood of finding non-indigenous species in impounded rivers is up to 300 times higher 173 

than in natural lakes, with reservoirs frequently supporting multiple invaders (Johnson et al., 174 

2008). A further anthropogenic disturbance is the presence of other non-native species, where 175 

the Invasion meltdown hypothesis predicts that the presence of one or more established 176 

invasive species can cause an ‘invasion domino effect’ through making the habitat or 177 

community more amenable for other introduced species (Simberloff & Von Holle, 1999; 178 

Catford et al., 2009). For example, the transformation of Lake Naivasha, Kenya, from an 179 

oligotrophic, macrophyte dominated system to a eutrophic, algal dominated system by the 180 

invasion of Louisiana Red Swamp crayfish Procambarus clarkii (Girard, 1852) in the 1970s 181 

(Smart et al., 2002; Jackson et al., 2012) meant that when carp were accidentally introduced in 182 

1999, the lake conditions were already highly suitable for their establishment (Hickley et al., 183 
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2004a,b). The rapid establishment of an abundant carp population meant that within seven 184 

years of their introduction, they were main species being exploited in the artisanal fishery by 185 

2006 (Britton et al., 2007).  186 

 187 

3. Ecological processes  188 

Ecological impacts from invasive freshwater fishes can include decreased native species 189 

richness and abundance, altered habitat structure, and decreased genetic integrity of native 190 

fishes (Gozlan et al., 2010a). These impacts manifest from a range of processes that develop 191 

according to the interactions of the invader with the native communities, including their 192 

competitive, predation, reproductive and foraging interactions, as well as their host-parasite 193 

relationships (Fig. 1). 194 

 195 

3.1 Competition  196 

Where the invasive and native species share prey resources, and where these resources are 197 

limiting, then strong inter-specific competitive interactions can develop (Gozlan et al., 2010a). 198 

Where these competitive interactions are particularly intense and the invader is a strong 199 

competitor then the native fishes can be competitively excluded from their original niche (Bøhn 200 

et al., 2008; Tran et al., 2015). Competitive pressure from invasive fishes can also directly 201 

impact non-fish taxa, with the reciprocal nature of freshwater and riparian food-webs meaning 202 

that dietary overlaps can occur between invasive fishes and native spiders and birds (Epanchin 203 

et al., 2010; Jackson et al., 2016), potentially leading to strong cascading effects (e.g. Eby et 204 

al., 2006).  205 

Although competition can be considered an important process that contributes to the 206 

strength of ecological impact, studies based on the ecological application of stable isotope 207 

analysis tend to suggest that rather than sharing resources and potentially competing, even 208 
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functionally analogous native and non-native species often show strong patterns of trophic 209 

niche (as the isotopic niche) divergence (Jackson et al., 2015). Where the non-native and native 210 

species diverge in their trophic niches then this has been posited as facilitating their co-211 

existence, with the non-native fish integrating into the native food web through their 212 

consumption of largely unexploited prey resources (e.g. Tran et al., 2015; Britton et al., 2019). 213 

 214 

3.2 Predation  215 

Predation is a mechanism that frequently drives changes in native communities, especially in 216 

relation to the composition and functional diversity of the native communities (Sharpe et al., 217 

2017). Severe predation impacts from non-native freshwater fishes on native communities tend 218 

to be through piscivory with, for example, largemouth bass in Zimbabwe reducing the 219 

abundance of stream-dwelling Barbus fishes by 99 % (Gratwicke & Marshall, 2001). Predation 220 

by Nile perch Lates niloticus L. in Lake Victoria, East Africa, was a principal driver of severe 221 

reductions in the species richness of endemic fishes (Cucherousset & Olden, 2011).  222 

Predation by non-native fishes can also deplete invertebrate prey populations, with the 223 

relative strength of these impacts having been explored in the last decade through comparative 224 

functional response experiments (Dickey et al., 2020). These experiments explore the 225 

relationships of prey resource use and its availability between the invader and tropically 226 

analogous native species (Dick et al., 2014). Metrics, including prey attack rate and handling 227 

time (Dick et al., 2014, 2017a,b), enable impacts at the population level to be predicted through 228 

incorporation of invader population abundances (Dickey et al., 2020). Thus, a highly abundant 229 

species with a low maximum consumption rate could be predicted as causing high impacts on 230 

prey populations (Laverty et al., 2017). While these experiments provide a rapid impact 231 

assessment tool (e.g. Alexander et al., 2014; Penk et al., 2017), they can lack ecological 232 
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complexity, with both non-native and native fishes likely to switch to alternative prey resources 233 

when their extant prey become depleted in the wild (Dominguez-Almela et al., 2021).  234 

 235 

3.3 Genetic introgression  236 

The release of non-native species into a community where taxonomically similar species are 237 

present can result in genetic introgression (Harrison & Larson, 2014; Blackwell et al., 2020). 238 

This is strongly evident in the Carassius genus, where hybrid forms of naturalised crucian carp 239 

Carassius carassius (L.) and non-native goldfish Carassius auratus (L.) develop; as these 240 

hybrids are reproductively viable then they lead to further introgression with both pure strains 241 

and other hybrids (Hänfling et al., 2005). Introgression between crucian carp and gibel carp 242 

Carassius gibelio (Bloch, 1782) can also occur (Papoušek et al., 2008). The movement of 243 

genetically distinct native fish populations between discrete river basins for fishery 244 

enhancement purposes can also result in intra-specific genetic effects, where European barbel 245 

reared in hatcheries using broodstock from a specific river basin and released into other basins 246 

have resulted in a loss of basin-specific genetic integrity (Antognazza et al., 2016).  247 

 248 

3.4 Foraging behaviours affecting habitat structure 249 

The negative consequences of the foraging behaviours of invasive fish for habitat structure 250 

arise when the invader acts as an ecological engineer (Cucherousset & Olden, 2011). Non-251 

native fishes, such as carp and goldfish, are recognized as having the potential to alter their 252 

invaded habitats through transforming the structure of the aquatic vegetation, primarily though 253 

the loss of submerged macrophytes, mainly through these being uprooted during benthic 254 

foraging (Weber & Brown, 2009; Vilizzi et al., 2015; Section 5.1). Invasive salmonid fishes 255 

can also act as strong ecological engineers that transform their physical environment (Moore, 256 

2006), where the redd construction in spawning gravels by invasive Chinook salmon 257 
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Oncorhynchus tshawytscha (Walbaum 1792) in New Zealand, ultimately modified the 258 

geomorphology of the river by disrupting its pool-riffle sequences, where the disruptions 259 

developed from the cumulative effects of decreases in fine sediments, detritus, mosses, algae, 260 

and macrophytes (Field-Dodgson, 1987). 261 

 262 

3.5 Host-parasite relationships 263 

Although the enemy release hypothesis suggests non-native fishes often bring few of their 264 

native parasites from their natural range, those parasites that are co-introduced can then host-265 

switch to native species (Britton, 2013; Spikmans et al., 2020). For example, the Asian 266 

tapeworm Schyzocotyle acheilognathi has achieved a global distribution, mainly due to 267 

cyprinid fishes being moved around the world for aquaculture (Britton et al., 2011b). This 268 

tapeworm has been recorded in over 200 fish species (across 10 orders and 19 families) (Scholz 269 

et al., 2012; de León et al., 2018). Host impacts include damage to the intestinal tract, loss of 270 

condition and reduced growth rates, and impacts on foraging behaviours and mortality (Britton 271 

et al., 2011b; Pegg et al., 2015).  272 

Where native fishes have low immune-suppression responses to infection by a novel 273 

parasite (e.g. due to lacking co-evolution) then the consequences of infection can sometimes 274 

be severe. The nematode parasite Anguillicola crassus infected the European eel Anguilla 275 

anguilla (L.) following its introduction into Europe through movements of the Japanese eel 276 

Anguilla japonica (Temminck & Schlegel 1846). in the aquaculture industry. In European eel, 277 

infections are concentrated in the swim-bladder, where heavy and repeated infections can cause 278 

considerable pathology, potentially impacting the ability of adult eels to migrate back to their 279 

spawning grounds in the South Atlantic (Kirk, 2003; Currie et al., 2020). Non-native fishes 280 

can also act as parasites, such as invasive sea lamprey Petromyzon marinus (L.) in the North 281 
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American Great Lakes, where its direct parasitism of native fish species was implicated in 282 

declining catches and values of their associated fisheries (Guo et al., 2017). 283 

 284 

4. Factors affecting the strength of ecological impact of invasive freshwater fishes 285 

The ecological impacts from an invasive freshwater fish population are unlikely to be static 286 

over time and space, with multiple abiotic and biotic factors influencing the extent of their 287 

ecological impacts. Although factors such as propagule pressure, native species richness and 288 

the extent of anthropogenic influences how ecological impacts can develop (Section 2), invader 289 

abundance, time since introduction, their status (as native or non-native invaders) and context-290 

dependency can then influence the actual strength of their impact (Fig. 1).  291 

 292 

4.1 Invader population abundance 293 

Population abundance can strongly influence the ecological impacts of invasive fishes, with 294 

the relationship between abundance and impact often assumed to be positive and proportional 295 

(Yokomizo et al., 2009, Elgersma & Ehrenfeld, 2011). However, empirical evidence 296 

supporting this assumption is weak due to most abundance-impact studies only testing invader 297 

absence versus high invader density (e.g. Britton et al., 2010a). Yet the population abundances 298 

of an invasive fish can vary considerably across their range due to being affected by a wide 299 

range of abiotic and biotic characteristics (e.g. Kurtul et al., 2022). Testing of invader 300 

abundance versus ecological impact often indicates these relationships are non-linear 301 

(Elgersma & Ehrenfeld, 2011; Kornis et al., 2014), with Yokomizo et al. (2009) suggesting 302 

four relationships potentially exist: linear, S-shaped, low-threshold and high-threshold. In 303 

topmouth gudgeon, both linear and non-linear density-impact relationships were recorded, 304 

where the relationship with zooplankton body mass was low-threshold, but was high-threshold 305 

for zooplankton biomass and abundance (Jackson et al., 2015). Non-linear relationships 306 
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between invader abundance and impact have also been detected in carp (Vilizzi et al., 2015), 307 

where despite high consistency in the detection of ecological impacts from their invasive 308 

populations (Weber & Brown, 2009), the strength of these impacts have a strong relationship 309 

with carp biomass, with tipping points often evident (Vilizzi et al., 2015; Section 5). 310 

 311 

4.2 Time since introduction 312 

Temporal variation in ecological impact can occur through invader population abundances 313 

often varying with time since the introduction (Vilizzi et al., 2015). The relationship between 314 

time since introduction and ecological impact for New Zealand mud snail Potamopyrgus 315 

antipodarum in Europe revealed that over 41 years, changes in their spatial distribution and 316 

population abundances closely mapped on to their ecological impacts on native species 317 

(Haubrock et al., 2022). The ecological impacts of invasive fishes have similarly been 318 

demonstrated as not being static temporally. For example, the impacts of the globally invasive 319 

brown trout Salmo trutta (L.) over 170 years was highest immediately after their introduction 320 

and decreased thereafter, with impacts being non-significant after 100 years (Závorka et al., 321 

2018). As these impact declines were considered to be due to local adaptation and/ or extinction 322 

of native species then it was argued, however, that these results should not be considered as 323 

accepting that the long-term effects of invasive fishes will be weak (Závorka et al., 2018). In 324 

addition, some introductions can result in populations that remain at low abundance for 325 

prolonged periods and that have low ecological impacts, but with an environmental trigger then 326 

resulting in the sudden development of a highly abundant and disruptive population (Spear et 327 

al., 2021).  328 

 329 

4.3 Native versus non-native invaders 330 
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Ecological impacts can also develop where the introduction involves native species being 331 

released into a native population of wild conspecifics that results in modified patterns of 332 

intraspecific diversity, such as where hatchery reared fishes are used to enhance wild 333 

populations for angling (Antognazza et al., 2016; Cucherousset et al., 2016). Comparisons of 334 

invasion-induced impacts from intra- versus inter-specific diversity from salmonid fishes 335 

indicated that the global impacts of ‘native introductions’ exceeded those from non-native 336 

invaders, where the impacts were mainly detected at the individual level (Buoro et al., 2016). 337 

The reasons for this potentially relate to the Adaptation hypothesis (Section 2), where the 338 

‘native invaders’ have enhanced local abundances as they are pre-adapted to establishing and 339 

invading in their new environment, with their high ecological similarity with native 340 

conspecifics then resulting in their greater ecological impact (Buoro et al., 2016).  341 

 342 

4.4 Context dependencies 343 

Context dependent ecological impacts arise when the strength of the impact of an invasive fish 344 

species differs with changes in the biotic, abiotic, spatio-temporal and/ or observational 345 

circumstances (Catford et al., 2022). Context dependency can be mechanistic (the impact 346 

differs under different ecological and spatiotemporal conditions) or apparent (the impact 347 

appears to vary under different conditions but are instead driven by confounding factors, 348 

methodological issues and/ or statistical inference) (Catford et al., 2022). Mechanistic context 349 

dependency was apparent in experimental studies that paired bluegill Lepomis macrochirus 350 

(Rafinesque 1819) with carp and mosquitofish Gambusia affinis Baird & Girard 1853), with 351 

bluegill only having significant effects on prey abundances when the other fishes were absent, 352 

with non-significant effects in their presence (Nowlin & Drenner, 2000). While carp generally 353 

has highly deleterious impacts on aquatic macrophytes at global levels through their benthic 354 

foraging (Weber & Brown, 2009; Section 5), in the initial years following their introduction 355 
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into Lake Naivasha, Kenya, previously suppressed native macrophytes increased in coverage 356 

due to the predation by carp on an invasive crayfish population that had been the key driver of 357 

macrophyte depletion (Britton et al., 2007). Apparent context dependencies could occur in field 358 

based studies assessing life history traits of invasive fish over latitudinal gradients that fail to 359 

account for confounding issues of factors such as population abundances that can influence 360 

density-dependent processes (Davies & Britton, 2015b).  361 

 362 

5. Ecological impacts from populations of invasive freshwater fishes 363 

The ability of an introduced fish to establish and invade, the processes by which an invader can 364 

cause impact, and the factors influence impact strength are all important considerations in 365 

ecological impact. When an invasive fish population develops, however, multiple processes 366 

and impacts can manifest that must now be considered at population, community and 367 

ecosystem levels (Fig. 2). The consideration of these impacts at these higher levels of biological 368 

organisation is important for two main reasons. Firstly, the management of invasive fishes is 369 

usually focused at populations of specific species, where the aim is usually to reduce the 370 

strength of the population impacts by reducing (or eliminating) their abundance (Britton et al., 371 

2011; Rytwinski et al., 2019). The commensurate management responses are usually based on 372 

risk assessment processes (Britton et al., 2011; Vilizzi et al., 2019, 2021), where the 373 

compilation of population level case studies is of high value to managers and policy-makers 374 

(e.g. Copp et al., 2009; Cucherousset et al., 2018; Rohtla et al., 2021). Secondly, invasive 375 

populations of specific freshwater fishes often impact several components of the native 376 

ecosystem, with the impacts of juvenile stages often differing from those of adults (e.g. through 377 

differences in body sizes and ontogenetic dietary shifts) (Gozlan et al., 2010a,b). 378 

Correspondingly, species-specific case studies provide different perspectives on the ecological 379 
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impacts of invasive fishes by revealing how population level impacts can involve multiple 380 

processes and impact types. 381 

 382 

5.1 Common carp 383 

Analysis on the global application of the risk assessment tool Freshwater Fish Invasiveness 384 

Screening Kit (FISK) revealed carp was the most widely screened species, where it was 385 

assessed as having a high risk of invasiveness in all regions (Vilizzi et al., 2019). Carp is also 386 

one of only eight fishes list on the list of ‘100 of the World’s Worst Invasive Species’ (Lowe 387 

et al., 2000), being invasive in countries and regions as diverse as Australia (Koehn, 2004), 388 

North America (Weber et al., 2011), East Africa (Britton et al., 2007; Oyugi et al., 2011) and 389 

India (Singh et al., 2010). Carp ecological impacts in lakes develop from their simultaneous 390 

alteration of bottom-up and top-down processes that result in ‘middle-out’ effects (Weber & 391 

Brown, 2009). Carp benthic foraging activities results in the resuspension of sediments that 392 

increase turbidity, nutrient levels and phytoplankton production, and reduces benthic 393 

invertebrate abundance, diversity, and richness (also affected by direct predation) (Vilizzi et 394 

al., 2015; Vilizzi & Tarkan, 2015). This foraging also uproots aquatic macrophytes that also 395 

increases turbidity, nutrients and phytoplankton, which then negatively impacts macrophyte 396 

regeneration via shading and smothering (Vilizzi et al., 2015). These direct and indirect effects 397 

can act in concert to shift lake stable states from oligotrophic to eutrophic, which negatively 398 

impacts the abundance and richness of native fishes (mainly of piscivores and sight predators), 399 

and severely compromises amenity values (e.g., sport fishing) (Vilizzi et al., 2015).  400 

The meta-analysis of carp experimental studies by Vilizzi et al. (2015) revealed that in up 401 

to 87 % of assessed studies, carp increased turbidity, nitrogen, phosphorus and phytoplankton, 402 

with up to 90 % of studies detecting decreases in aquatic macrophytes, benthic invertebrates, 403 

amphibians, waterfowl and fish. The strongest evidence was for impacts on nutrients and 404 
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aquatic macrophytes, with impact also a function of carp biomass. Vilizzi et al. (2015) 405 

suggested the critical biomass value (± SE) for impact was 476 ± 38 kg ha-1, reducing to 198 ± 406 

40 kg ha-1 when only critical biomass values from experiments on ’free-ranging’ carp were 407 

assessed. However, carp impacts on lake ecosystems can be apparent at lower biomass, with 408 

Zambrano & Hinojosa (1999) suggesting that significantly increased turbidity can occur at 50 409 

to 75 kg ha-1. The relationship of carp biomass-impact is also non-linear, often involving 410 

sudden shifts from clear- to turbid-water state in shallow water bodies at carp densities between 411 

174 and 300 kg ha-1 (e.g. Williams et al., 2002; Parkos et al., 2003; Matsuzaki et al., 2009). 412 

Bajer et al. (2009) suggested a threshold biomass of 100 kg ha-1 can cause dramatic declines 413 

in vegetation cover and waterfowl abundance. 414 

 415 

5.2 Topmouth gudgeon  416 

The introduction of cyprinid topmouth gudgeon from its native range in Southeast Asia into 417 

Europe first occurred in the 1960s and the species has since spread to at least 32 countries, with 418 

its invasion success related to its traits of fast growth, early maturity and reproductive 419 

behaviours (Gozlan et al., 2010b). A small-bodied species (generally <100 mm), its ecological 420 

impacts relate to their trophic interactions with native fishes and transmission of a novel 421 

pathogen to native fishes.  422 

The small body size, functional similarity with native cyprinid fishes, and propensity for 423 

forming highly abundant populations have raised concern over the potential of topmouth 424 

gudgeon to out-compete native species (Tran et al., 2015). This was emphasised by 425 

experimental work by Laverty et al. (2017) where, despite native bitterling Rhodeus amarus 426 

(Bloch 1782) having higher consumption rates than invasive topmouth gudgeon, the invader 427 

was predicted as having higher deleterious effects on prey communities due to its considerably 428 

higher population abundances. Some studies based on stomach contents analyses have 429 
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suggested high dietary similarity between invasive topmouth gudgeon and native fishes (e.g. 430 

Declerck et al., 2002), with chironomid larvae a common prey item (Wolfram-Wais et al., 431 

1999). However, in the Dniprodzerzhynsk Reservoir, Ukraine, dietary overlap was low 432 

between topmouth gudgeon and co-occurring cyprinids that included roach Rutilus rutilus (L.) 433 

and rudd Scardinius erythrophthalmus (L.) (Didenko & Kruzhylina 2015). When assessed 434 

using stable isotope analysis (as bulk δ13C and δ15N), the trophic niches of topmouth gudgeon 435 

and functionally analogous native fishes overlapped when the invader was in very high 436 

abundance, leading to decreased growth rates in the native species (Britton et al., 2010a), but 437 

were highly divergent at lower population abundances (Jackson & Britton, 2014; Tran et al., 438 

2015).  439 

Invasive topmouth gudgeon can also co-introduce the pathogen Rosette Agent 440 

Sphaerothecum destruens into the native fish community, where the invader is the healthy, 441 

reservoir host but where naïve fishes are highly susceptible to infection that can result in high 442 

mortality rates (Gozlan et al., 2005; Andreou et al., 2011). Moreover, following transmission 443 

to native species, the pathogen can persist in the fish community even if the reservoir topmouth 444 

gudgeon host has been removed through eradication (Al-Shorbaji et al., 2016). Given that this 445 

disease transmission is largely independent of topmouth gudgeon density (at least in contrast 446 

to the consequences of trophic interactions) then the long-term consequences of this topmouth 447 

gudgeon impact are potentially more severe than those relating to trophic interactions, with 448 

Spikmans et al. (2020) associating the presence of both the fish and parasite with decreased 449 

native fish diversity and abundance in the Netherlands. 450 

 451 

5.3 European barbel  452 

When compared with carp and topmouth gudgeon, the invasive range of European barbel is 453 

spatially limited, being constrained to western England (where it has been introduced from 454 
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eastern England; Wheeler & Jordan, 1990) and some river basins in Southern Europe (Carosi 455 

et al., 2017). In Italy, their riverine introduction has resulted in invasive populations being in 456 

sympatry with a number of native Barbus species, including endemic Barbus plebejus 457 

(Bonaparte, 1839) and Barbus tyberinus (Bonaparte, 1839). In the Tiber River basin, invasive 458 

populations of European barbel are now widespread; in their presence, the endemic barbels 459 

have significantly reduced relative weight (Carosi et al., 2017). European barbel have also 460 

genetically introgressed with the endemic Barbus spp., with some endemic populations now 461 

comprising of only 4 % pure B. tyberinus and 23 % pure B. plebejus (Zaccara et al., 2021). 462 

Moreover, the hybrid forms have larger lengths for age than the pure endemic forms, with the 463 

population with the largest trophic niche (but of lower trophic position) being the endemic 464 

population with the highest number of introgressed European barbel alleles (de Santis et al., 465 

2021).  466 

European barbel were deliberately introduced into the River Severn, Western England, in 467 

1956 as an angling enhancement (Wheeler & Jordan 1990), with a population establishing 468 

rapidly that spread throughout the basin (Antognazza et al., 2016). With no native Barbus 469 

fishes present, there have been no genetic introgression issues. While their initial ecological 470 

consequences for native fish communities were not quantified, recent dietary studies indicated 471 

patterns of trophic niche divergence between barbel and three other cyprinid species formed in 472 

the initial weeks after larval emergence (Gutmann Roberts & Britton 2018). These results were 473 

supported by stable isotope analyses, which indicated that the trophic niche of barbel and chub 474 

Squalius cephalus (L.) only converged when the fish were relatively large (> 300 mm), with 475 

this convergence driven by some individuals of both species having diets comprising of large 476 

proportions of isotopically-distinct angling baits (Gutmann Roberts et al., 2017). While these 477 

fish were initially assumed to be a sink for these marine derived nutrients, subsequent work 478 

indicated that these had been trophically transferred to larger individual Northern pike Esox 479 
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lucius (Nolan et al., 2019). Thus, these non-indigenous European barbel have modified angling 480 

styles, resulting in substantial allochthonous nutrient inputs that are integrated into the riverine 481 

food web.  482 

 483 

6. Defining ecological impact and considering ecosystem collapse 484 

Increased competition and predation, and genetic introgression and pathogen transfer, can thus 485 

all result from the invasion of non-native freshwater fishes. However, Gozlan et al. (2010a) 486 

argued that these processes were not sufficient to characterize the ecological impact of an 487 

introduced fish. Instead, they argued there is a requirement for these processes to be associated 488 

with a quantifiable and significant decline of biological or genetic diversity threatening the 489 

long-term integrity of native species, and these changes must lead to a measurable loss of 490 

diversity or change in ecosystem functioning if the species is to be considered harmful (Gozlan 491 

et al., 2010a). Thus, an invasion that results in increased inter-specific competition would only 492 

be considered harmful if this results in, for example, a shift in diversity and/or functioning (e.g. 493 

through species displacement).  494 

The species-specific case studies of Section 5 demonstrated how freshwater fish invasions 495 

can lead to measurable changes in biological and genetic diversity, and ecosystem functioning. 496 

Through the transmission of S. destruens, introduced topmouth gudgeon can severely impact 497 

native fish diversity through population extirpations (Gozlan et al., 2005; Andreou et al., 2011). 498 

Invasive European barbel in Italy have resulted in some pure-strain endemic barbel populations 499 

now being close to extirpation (Zaccara et al., 2021). Invasive carp populations can affect both 500 

diversity (e.g. of macroinvertebrates and macrophytes) and ecosystem functioning (e.g. shifts 501 

from clear water, macrophyte dominated to highly turbid, algal dominated) (Weber & Brown, 502 

2009; Vilizzi et al., 2015). Importantly, with carp being an ecosystem engineering species, 503 

their impacts can manifest in freshwaters that are relatively undisturbed and thus do not have 504 
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to align to the Disturbance or Invasion meltdown hypothesis (although both anthropogenic 505 

disturbances and extant invaders can accelerate their invasion; Britton et al., 2010b). This 506 

ability of carp to create substantial ecological impacts in pristine environments is in contrast to 507 

many other invasive freshwater fishes that whilst being highly impacting, tend to be associated 508 

with systems that are already modified. For example, invasive peacock basses severely reduce 509 

native fish diversity in southern Brazil and thus have a strong ecological impact according to 510 

the definition of Gozlan et al. (2010a). However, their presence in these waters is primarily 511 

due to disturbance, with the introduction usually to create sport angling opportunities in 512 

reservoirs that were created for hydropower generation (Britton & Orsi 2012).  513 

In recent years, the concept of ecosystem collapse has increased in attention, where it was 514 

recently defined by Newton et al. (2021) as “a degraded ecosystem state that results from the 515 

abrupt decline and loss of biodiversity, ecosystem functions and/or services, where these losses 516 

are both substantial and persistent, such that they cannot fully recover unaided within decadal 517 

timescales”. There are examples of where invasive fishes have contributed to the collapse of 518 

freshwater ecosystems, such as at Lake Naivasha, Kenya, where recovery to its pre-invaded 519 

state would require substantial interventions (Newton et al., 2021). However, the altered 520 

ecosystem functioning of this lake also involves a number of invasive non-fish taxa (e.g. P. 521 

clarkii) and substantial anthropogenic disturbances from industrial scale horticulture (Hickley 522 

et al., 2004b; Hickley et al., 2015). Nevertheless, carp are a species whose invasion has the 523 

potential to lead to ecosystem collapse without any other factor being involved in the loss of 524 

biodiversity, ecosystem functions and/or services (Weber & Brown, 2009; Vilizzi et al., 2015). 525 

Indeed, that the relationship between carp biomass and impacts tends to be non-linear, with 526 

rapid changes occurring at certain tipping points, further supports this evidence of carp-driven 527 

ecosystem collapse through their middle out effects resulting in abrupt changes in ecosystem 528 

functioning (Weber & Brown, 2009).  529 



 23 

 530 

7. Conclusions 531 

The impacts of invasive freshwater fishes remain of high conservation concern due to their 532 

negative consequences for freshwater biodiversity (Tickner et al., 2020). Nevertheless, it is 533 

apparent that the severity of ecological harm that results from these invasive fishes varies 534 

considerably, with differences apparent between species (e.g. due to differences in traits) and 535 

within species (e.g. due to context dependencies). The definition of ecological impact by 536 

Gozlan et al. (2010a) emphasises that impact assessment must consider measurable losses of 537 

diversity or changes in ecosystem functioning if harm is to be quantified, providing a 538 

framework appropriate for impact assessment. However, the definition of ecosystem collapse 539 

of Newton et al. (2021) is also potentially helpful as it focuses on the extent of ecosystem 540 

degradation more generally, rather than just on the invading population, enabling assessment 541 

of the extent of the role invasion played in degradation (e.g. whether the invasive fish are 542 

drivers or symptoms of ecosystem degradation).  543 

The ecosystem collapse definition of Newton et al. (2021) also provides context around 544 

ecosystem recovery (“…cannot fully recover unaided within decadal timescales”), suggesting 545 

that where ecological harm is particularly severe then management interventions should be 546 

used to reduce these. Indeed, the management of non-native fish in freshwater ecosystems is 547 

common, where removals are used to reduce impacts and improve fishery performance (Britton 548 

et al., 2011c; Rytwinski et al., 2019), with eradication using chemical treatments often being 549 

highly effective (Britton & Brazier, 2006). The eradication of carp from a South African 550 

reservoir by rotenone application resulted in relatively rapid improvements in water clarity, 551 

with the phytoplankton community shifting from one typical of eutrophic waters to one more 552 

typical of a lower nutrient state (Dalu et al., 2020). Notwithstanding, managing non-native 553 

freshwater fish in large open systems can be highly challenging due to methods such as 554 
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chemical treatments being non-species specific and difficult to apply over large spatial areas 555 

(Britton et al., 2011a,c). Correspondingly, risk-based approaches to managing invasive 556 

freshwater fishes remain important, where understanding the drivers and consequences of their 557 

ecological impacts should be a fundamental component of the risk assessment process.  558 

  559 

 560 

 561 
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Figure captions 

 

Figure 1. Summary of how the interactions of the invasive fish population and the abiotic and 

biotic components of the receiving environment influence the invader’s ecological impact. 

 

Figure 2. The ecological impacts of invasive fish that can develop from individual to ecosystem 

levels. 


