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A B S T R A C T

Encouraging the use of public transport is essential to combat congestion and pollution in an urban
environment. To achieve this, the reliability of arrival time prediction should be improved as this is one
area of improvement frequently requested by passengers. The development of accurate predictive algorithms
requires good quality data, which is often not available. Here we demonstrate a method to synthesise data
using a reference curve approach derived from very limited real world data without reliable ground truth.
This approach allows the controlled introduction of artefacts and noise to simulate their impact on prediction
accuracy. To illustrate these impacts, a recurrent neural network next-step prediction is used to compare
different scenarios in two different UK cities. The results show that a realistic data synthesis is possible,
allowing for controlled testing of predictive algorithms. It also highlights the importance of reliable data
transmission to gain such data from real world sources. Our main contribution is the demonstration of a
synthetic data generator for public transport data, which can be used to compensate for low data quality. We
further show that this data generator can be used to develop and enhance predictive algorithms in the context
of urban bus networks if high-quality data is limited, by mixing synthetic and real data.
1. Introduction

Cities around the world are trying to shift personal traffic to public
transport to reduce congestion and environmental impact. A crucial
part of such a strategy is to make public transport as convenient as
possible. Bus passengers often rely on Real-Time Passenger Information
(RTPI) systems at bus stops, online and in mobile apps. These RTPI
systems can be unreliable [1] which is inconvenient for passengers.
In general, passengers assign different priorities to certain aspects of
public transport. Reliability and safety are considered the two most
important [2].

The importance of making especially buses as attractive as possible
in comparison to private vehicles is highlighted in the historical statis-
tical records. In the UK, 4.8 billion bus trips were made in 2018/19,
accounting for 58% of all public transport journeys [3]. These journeys
amounted to 27.4 billion km travelled and saved approximately 96
million tonnes of CO2 [4]. However, since 1985, bus travel has been
steadily decreasing by a total of 0.7 billion journeys. As other public
transport modes such as trains in most areas cannot be a replacement
for local bus services, this suggests that a larger share of passengers opt
for private vehicles. This is mirrored in the continuous upward trend
of car traffic on British roads [3]. To encourage potential passengers
to use public transport, it is crucial to make it as attractive as possible
to reverse the above trends, ultimately having a positive impact on the
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environment as well as congestion levels in urban settings. However,
the mentioned data are pre-pandemic, thus the long-term impact of the
pandemic on public transport cannot currently be anticipated.

Other studies also highlighted the importance of accurate Estimated
Time of Arrival (ETA) predictions to improve customer experience [5].
Many public transport providers have developed mobile apps, which
give ‘live’ positions of vehicles. Passengers can use such technology to
decide when to leave the house to catch a bus without having long wait
times at a bus stop. However, we previously noted the latency of this
information caused by delays of wireless network infrastructure and the
fact that the data in our operational area passes through a number of 3rd

party systems [6]. Therefore, the RTPI system might suggest a vehicle is
further away than it is in reality. This could cause a passenger to miss a
bus and thus unnecessarily inconvenience them. In Bournemouth, one
of the two cities used as an example in this study, the latency of the
internet-based ‘live position’ is approximately 30–40 s. To alleviate this
issue, we have proposed a short-horizon prediction which will be useful
in the further development of ETA and long-term predictions, and in
bringing the ‘live’ locations closer to reality. The commonly deployed
Automatic Vehicle Location (AVL) systems [7], could supply data for
such approaches.

To compare any potential model, the assessment of their perfor-
mance is of crucial importance, this has to be reported in a way
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that allows to replicate and compare the results. However, this is not
possible in all cases as some authors report relative errors [8–10] and
no consistency in the reported parameters can be distinguished. The
precondition for all machine learning algorithms should be verifiable,
and the RoyalSociety’s report highlights this as a central feature [11].
This has also been recognised in the healthcare sector where guidelines
for the development and reporting of predictive models exist [12].
The difference in standards might be explained because ETA predic-
tions do not affect the health or safety of a passenger and a spurious
algorithm might at most cause inconvenience rather than physical
harm. However, for an operating company, this might cause a loss of
revenue through a decline in patronage, and the society as a whole
might be subjected to more congestion that could simply be reduced
by providing accurate ETA predictions. Furthermore, the doctrine of
science is replicability. The reproducibility crisis is most prominently
known from psychological research [13] however due to its notoriety,
it has been actively addressed [14]. It has also been identified as a
problem in ‘harder’ sciences such as biomedicine [15] and also arti-
ficial intelligence [16]. Although results gained from machine learning
techniques might be considered hard evidence, because the final model
is based on mathematical concepts, they often suffer from similar
problems as seen in psychology where the research is often subjective
to the researcher. The similarities between the two fields are that the
findings cannot usually be explained due to the ‘black box’ effect. The
field of psychology has now started to apply lessons from problems seen
in machine learning research [14]. A suggested way of addressing such
problems is meta-science that could shed light on the true accuracy
of findings [17]. However, this relies on comparable measurements
of accuracy, which is not found in a large proportion of the public
transport literature. Therefore, comprehensive standards of reporting
are urgently needed in the field of predictive bus transportation re-
search. This as a consequence poses the issue that high-quality data is
required to develop good predictive models. We and other researchers
have highlighted that data quality issues need to be considered in
the context of public transport research [6,18–20]. Therefore, in this
study we demonstrate a method to synthesis bus journeys based on
limited and low quality data. This allows on the one hand to generate
a hybrid dataset to develop models from. On the other hand it has the
potential to be used to generate synthetic datasets that can be used
for benchmarking in an attempt to combat the highlighted replicability
issues faced by public transport research.

In our data, a notable lack of quality hampers the development
of predictive algorithms. The quality issues include the lack of clear
journey identification, linkable to a timetable, artefacts such as gaps
in recordings, falsely reported line numbers, and direction of travel
(inbound vs. outbound). These quality issues make it impossible to
develop accurate predictive algorithms. Unfortunately, the simplest
solution of recording high-quality historical data is not feasible due
to closed source data collection by 3rd party companies. To address
this issue, this study describes a reference curve-based synthetic data
generator, which bases its assumptions on limited real-world data. This
allows to test algorithms in a controlled environment and enables the
injection of user-defined artefacts into the dataset to test their effect on
prediction quality. We also show that mixing real and synthetic data
improves the prediction accuracy.

2. Background

Methods for ETA prediction can include simple historical averages
or be based on statistical models. However, due to the complexity of the
ETA prediction, machine learning methods have become increasingly
popular [21]. In recent years, artificial Neural Networks (NN) have
revolutionised a number of other domains. Therefore, NNs should be
expected to have similar potential when applied to bus ETA prediction
problems. A comprehensive review specifically investigating NN appli-
cations in public transport [22] found that only 16% (12) addressed
2

ETA of buses, whereas the rest of the studies applied the technique
to other modes of transport. This suggests that the area of bus ETA
prediction using NNs might be underrepresented in the context of
public transport research. This relative absence of NNs to predict bus
ETA is striking as NNs have revolutionised other areas of data science
such as image and speech recognition [23,24].

The challenge of all machine learning approaches is to fine tune
the model parameters, one solution is to use genetic algorithms [25] to
optimise machine learning algorithms inspired by nature. Several inno-
vative variations have been demonstrated in the recent literature, such
as an algorithm inspired by the mating of red deer populations [26],
or the simplification of parameter search with a simplified metaheuris-
tic [27]. The same authors also demonstrate methods applicable to
supply chain management using the Taguchi method to outperform
conventional genetic algorithms [28] as well as the potential use of
blockchain algorithms in the management of supply chains [29], ad-
ditionally they show applications to predict photovoltaic electricity
generation [30] as well as bioremediation [31].

Nowadays, the majority of buses have onboard AVL systems, which
are equipped with GPS sensors and transmit the location of the bus
at frequent intervals, typically ranging between 20 and 60 s. The
availability of vehicle locations are the basis for any ETA prediction
and are accessible through the AVL system and do not necessarily need
any additional investment in static sensors.

The biggest hurdle in developing machine learning solutions gen-
erally is the difficulty to acquire enough good-quality data to develop
a useful algorithm. In some fields, this has led to the use of simulated
data ranging from medicine [32] to geophysics [33]. Regarding public
transport journey simulation, the literature is scarce. Some examples
related to bus data simulation include bus platooning [34] as well as
traffic simulation [35]. However, to the best of our knowledge, no
study has investigated the use of simulated data to train a next step
prediction model for urban bus networks. In many areas of machine
learning research, benchmark datasets are common [36]. These allow
researchers to objectively compare algorithms against each other. This
is missing in the field of urban bus networks. Therefore, the presented
data generator could allow the generation of a standardised benchmark
dataset that could lay the foundation for further research in public
transport.

3. Real-world data processing

3.1. Data collection

Data is accessible via the infrastructure of our collaborators, and two
British cities have been selected with the largest number of vehicles
and access to recorded travel data. AVL data was collected from two
different bus operators from Reading (UK) line 17 and Bournemouth
(UK) line 1 (Fig. 1). Each vehicle transmits its position approximately
every 40 s, which is recorded by the company providing the Electronic
Ticketing Machines (ETMs) with the integrated AVL-system. Due to
data handling by several independent entities, only a limited amount
of information is transmitted. The available data are:

• Timestamp
• Position (latitude and longitude)
• Line number
• Direction (outbound or inbound)

For the Bournemouth operator, it became apparent that the trans-
mitted directions are often incorrect and so are the line numbers when a
vehicle changes its line during an operational run. The data collected in
Reading had a better integrity with reliably transmitted direction, thus
simplifying the data processing steps. Based on this limited information,
it is not possible to match a vehicle to a timetable corresponding to the

journey it is currently serving. A journey is a specific trip found in the
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Fig. 1. Location of both example cities and the journey shape used for all experiments. The line 1 in Bournemouth is shown yellow and the line 17 in Reading in blue. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
timetable of a bus line, e.g., the outbound 9 AM service 1. In contrast, a
route pattern (also referred to as ‘shape’) is the route as travelled on the
road, which can vary slightly for each journey for the same bus service.
In the example of line 1 in Bournemouth, there are several patterns
which can include different starting points along the route, resulting
in shorter overall journeys or slightly different routes. In both cities,
reliably matching a vehicle directly to a specific route pattern is not
possible as the unique route pattern identifiers were not accessible to
us. Therefore, one route pattern for each city was arbitrarily selected
and used to generate synthetic data, which is an acceptable approach
as in the selected cities the differences between patterns are negligible.

3.2. Identifying route sections for filtering

The bus route used in Bournemouth is line 1, starting in the town
centre towards Christchurch (Fig. 1). The complete route shape in-
cludes longer journeys and therefore needs to be truncated. In the
second example of Reading line 17 was used, which can have up to
90 different route patterns per direction with different runtimes and
minor variations in route shapes (Fig. 1). Additionally, a complicating
factor is that the route follows a one-way system in the city centre,
meaning that the routes are different depending on the served direction.
Therefore, a two-pronged approach was used. To initially filter journeys
that were too far away from the shape, all available shapes for both
directions were combined to a template shape. Any journey outside a
radius of 3 𝑥 the mean distance to the template shape was excluded. The
final filtering with the ability to enforce the direction was done using
an arbitrarily selected route pattern from the many different patterns
available for each line covering the entire length of the route. In the
case of Reading these route patterns are mostly identical, however, in
Bournemouth the patterns can be very different. We have described
these issues previously [6].

3.3. Identification of individual journeys

Due to the lack of explicit journey identification, a heuristic ap-
proach was used to separate individual journeys that will then be used
as a basis to generate synthetic data.

Bournemouth operator does not reliably transmit the direction a
vehicle currently serves. However, an observation made was that at
the end of a journey vehicles stopped transmitting data for a short
period of time. Thus, once it reappears in the data stream, a gap in
the timestamps can be detected. A new journey was defined as a time
3

gap of more than 15 min. If such a gap is detected, it is assumed a new
journey has started.

Reading operator reliably reports the direction of travel, making
the identification of an individual journey easier. Furthermore, vehicles
tend to serve the same line and do not change lines between runs, by
selecting a single direction, large gaps in transmission timestamps can
be observed, making the separation of journeys accurate.

3.4. Trajectory generation

It is assumed that the vehicles follow the identified outbound jour-
ney shape. This allows us to represent a journey as a trajectory which
is the distance travelled along the route shape. Using such a trajectory,
a journey can be represented in two dimensions based on the distance
travelled and the run time from the start of the journey.

3.5. Additional processing steps

To ensure a clean dataset, repetitions at the start where the vehicle
did not move further than 10 m were removed and a journey is assumed
to start once the vehicle has moved further than this threshold. The
journey was presumed to have ended as soon as it had reached its
maximum trajectory.

4. Synthetic data generation

The data generation process uses a heuristic data-based approach to
generate synthetic journeys. This process is broken down into several
sub steps:

• The interpolation of the route shape as the reported points are
not evenly distributed along the route.

• The identification of the normal run time for a journey is based
on historical data, which also allows the identification of delays.

• The probability-based simulation of the delays.

The above steps are described in detail in the following subsections.

4.1. Interpolating the journey based on the route shape

A synthetic journey is generated based on future timetables. To
avoid all vehicles starting at the same point, a time offset is added to
the start time of the timetable, which is a random number between 0
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and 40 s (the transmission interval). This is added to the scheduled
start time. The distance that should be offset is then calculated by
multiplying the offset by the average speed observed in the real world
data 8 m/s (30 km/h). The timestamps are then interpolated to a user-
defined interval — 40 s in the presented example. Calculating the
time difference between two subsequent stops on the route segment
gives the overall runtime. This can be divided by the transmission
frequency of 40 s to give the number of transmissions expected on
this route section. By assuming the vehicle travels at a constant speed,
the progress along the shape can be estimated and the coordinates
of the shape at the transmission points can be extracted. However,
the coordinates of the reference journey pattern are not equidistant;
the distances between consecutive reported locations vary between
6 m and 100 m. Therefore, interpolation solely based on the shape
would give very different speeds depending on the road shape. This
is avoided by generating an interpolation based on the distance along
the route. The closest calculated distance of the shape coordinates is
used to calculate the difference between the interpolation coordinate
and the shape coordinate. If this distance is greater than 5 m, the two
neighbouring points on the shape are used to interpolate the positions
between these two coordinates to make the data more realistic. This
does not account for variations in the speed or the curvature of the
earth, but as the distance is at most 100 m, it is a reasonable omittance.
Additionally, it appears that wider gaps are found on straight road
sections and the frequency increases in meandering sections, making
the proposed approach a good compromise.

4.2. The problem of determining delays

As arrival times at bus stops are not recorded, it cannot be de-
termined whether a vehicle was running on time or was delayed. An
additional difficulty is that the journey times vary and depend on the
time of the day and weekdays. This variation in timetabled runtime
compensates for the expected traffic status. TomTom, a location tech-
nology company, records congestion characteristics for different cities
based on consumer GPS data. The data for Bournemouth indicates the
percentage of delay that needs to be added to a journey at a certain time
of day. The maximum in Bournemouth is on a Wednesday afternoon
with an expected 71% increase in travel time (pre-pandemic) [37].

Most times of the day, the timetable overestimates the travel time
compared to the expected time based on TomTom’s data. However, it
needs to be kept in mind that the vehicles travel between Bournemouth
and Christchurch and the data only accounts for Bournemouth. Fur-
thermore, stops to let passengers board or debark are not considered in
the TomTom dataset. This means the timetable accounts for expected
variations in traffic conditions and thus cannot be used to simulate
vehicle delays.

Another avenue explored was the use of Google services to predict
delays based on consumer data, which was not possible as buses travel
in bus lanes, making the route very different from a prediction based
on Google Maps.

4.2.1. Probability based simulation of delays
By assessing all journeys within the real-world dataset by weekday

and hours of day, a reference trajectory can be derived. This refer-
ence trajectory is simply the mean trajectory of all observed journeys
(Fig. 2(a)). As a result, the outliers are removed and the reference
curve represents the baseline of a ‘normal’ journey (Figs. 2(b) and
2(c)). This allows to calculate the probability that a journey will be
delayed or early for every time of each week day. Reference curves
were generated using a centred moving 3 h window except for the
first and last hour where a truncated window was used. This gives the
advantage that the time dependency of delays is simulated, meaning
that a vehicle following a delayed bus will most likely also be delayed,
thus approximating the delay propagation along a single line.
4

4.2.2. Journey generation
To generate a journey, the timetables of one week are queried and

used as a template. The reason for this approach is that although the
timetables for Bournemouth are available until the end of the current
calendar year, this is not the case in Reading where only one week is
available. As the timetable normally does not drastically change within
the same year, this is a justifiable approach. Subsequently, the reference
curve queried and the following relevant data points are extracted:

• The mean reference trajectory.
• The standard deviation as well as 95% confidence intervals.
• The probabilities of delayed or early arrival with respect to the

reference curve (Fig. 2).

4.2.3. Delays
Based on the reference curve, the probability of a journey being

delayed or early can be calculated. Whether a journey is delayed is
decided by sampling from a normal distribution for each entry of
the reference table, a random number r is generated and stored in
a probability list {𝑟𝑜...𝑟𝑛}. These parameters double as a modification
parameter to generate the delay or time gain. To remove variations of
the list of probabilities, a Savitzky–Golay filter is applied with a window
of 7 and a polynomial order of 3. A decision whether a vehicle will be
on time, early or delayed is made based on the smoothed probability
list. A vehicle will arrive early if 𝑟 < 𝑝𝑒𝑎𝑟𝑙𝑦. If 𝑝𝑒𝑎𝑟𝑙𝑦 < 𝑟 < 𝑝𝑒𝑎𝑟𝑙𝑦 + 𝑝𝑑𝑒𝑙𝑎𝑦𝑒𝑑
vehicle is delayed. If neither of the conditions is true, the vehicle is
assumed to be on time. To simulate the variations in time gained, the
initially expected runtime 𝑡 of the reference curve is calculated as well
as the difference of the last position of the reference curve 𝛾. The ratio
of expected variation is calculated based on the confidence interval of
the reference curve 𝜈. Thus, the progress along the trajectory under the
influence of a time gain can be calculated as follows:

𝜈 = (𝜎𝑖∕𝛾𝑖) ∗ (𝑅 = {1
0)

𝑃 = 𝑃𝑖−1 + 𝑡 − (𝑡 × ((0.9 × 𝜈) × 1.25))

Where: 𝜈=volatility, 𝛾=reference, 𝑃=position, 𝑡 =expected time at position
If the next position will be delayed, a random modification factor m

is generated by sampling from a beta continuous random distribution
(𝛼=1, 𝛽=2). This tailed distribution was chosen as it makes large
reductions in delay less likely and a vehicle will in most circumstances
make up no or very little time. The delay volatility is defined as the
ratio of the reference curve standard deviation to the reference curve
itself multiplied by m. Additionally, the delay of the previous step
𝑑𝑖−1 is calculated and subtracted from the current delay to prevent an
exponential increase in delay. To account for random major changes
outside the ‘norm’ of delay or time gains observed in the real data,
GPS noise is generated using a uniformly sampled random number R
which also acts as a weight of the additional delay. Thus, a position
with simulated noise can be described as:

𝜂 = 𝜈 × (𝑅 = {1
0 + 1)

𝑃 = 𝑃𝑖−1 + (𝑡 + [(𝜈 × 𝑚) − 𝑑𝑖−1 ± 𝜂])

Where: 𝜂= noise to be added, 𝜈=volatility, 𝑃=position, 𝑡 =expected time at
next position

If the bus is most likely on time, the probability 𝑝 of it being on
time is used to generate an adjustment towards the reference curve as
follows:

𝑃 = [𝑃𝑖−1 + 𝑡] − [𝑝 × 𝑡]

Where: 𝑃=position, 𝑝 = probability a vehicle is on time 𝑡 =expected time at
next position

The generated trajectory is then interpolated to give positions in
time intervals of 40 s consistent with the transmission rates of the
recorded data.
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Fig. 2. (a) The historical trajectories of a one day block in Bournemouth (Tuesday 9–12 am). (b) The relative difference from the reference curve along the trajectory. Journeys
delayed at more than 60% of the positions are highlighted in red. (c) Probability of travelling early or late on the trajectory. The discrepancy in the sum of the two conditions
represents the fraction of vehicles that arrive on time. (c) The average time difference to the reference curve with the uncertainty highlighted. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)
4.3. Injection of artefacts

The original data is affected by artefacts caused by the behaviour
of vehicles as well as data collection issues. Three noteworthy artefacts
have been incorporated into the simulation of the synthetic data and
are described below.

4.3.1. Injection of GPS noise
GPS recordings are affected by noise which can depend on the

surrounding environment, such as high-rise buildings. In the cities used
in this study, buildings tend to be low and thus effects due to reflection
of the GPS signal are unlikely and have not been observed. To simulate
the inaccuracies of the GPS recording, random noise sampled from a
normal distribution (mean=0, 𝜎=7) is added to latitude and longitude.

4.3.2. Injection of repeated locations
Due to operational reasons, journeys have scheduled buffers to

allow vehicles to catch up with the timetable. This means that the
vehicle often repeatedly transmits the same location at the start or end
of a journey. At the journey start, 83% of the journeys have repeated
locations, whereas end-repetitions are seen in 67% of journeys. The
number of repeats varies depending on how long a vehicle is stationary.
A skew-normal distribution [38] was fitted to both the start and end
repetitions and this reference distribution is used to sample the number
of repeats at either end of the journey. This artefact is optional and
datasets with as well as without have been generated as in theory it
is possible to gather journey data only for the journey itself without
buffer times at either end.

4.3.3. Geofencing artefacts
The original data collected contained characteristic circular pat-

terns. We empirically demonstrated previously [6] that the origin of
such characteristic artefacts are the geofencing methods used by some
AVL-systems to determine if a vehicle has arrived at a bus stop [6].
5

Unless the bus has been very close to the stop, the AVL-system ‘snaps’
the real position of the vehicle to a circular geofencing boundary with a
radius of 10 m. As this is an unusual artefact, it is generated optionally.

4.4. Data generation

For both cities, datasets were generated for 145 days and for three
different conditions:

• a journey only with GPS noise,
• a journey with GPS noise and circular artefacts,
• a journey with GPS noise, and start and end repeats.

Additionally, a hybrid dataset was generated for the city of Reading
containing 5000 journeys, of which 50% were synthetically generated
and the remaining half were taken from the original dataset.

5. Prediction methods

5.1. Benchmarks

Two naïve benchmark algorithms were used to compare all models
against.

Average speed: This method uses the average speed of a vehicle
since the start of its current journey. Thus, it does not reflect any short-
term speed variation. The calculated speed is used to interpolate the
position of the vehicle from the trajectory of its journey pattern for the
next 40 s.

Current speed: This method uses the last three transmitted po-
sitions of a vehicle to calculate its current average speed, hence ac-
counting for temporary speed variations. The prediction is made by
interpolating the position for the next 40 s from the journey trajectory.
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(

5.2. Target representation

The target was represented as a trajectory, by projecting the coordi-
nates onto the route pattern of a journey. This ensures that inaccuracies
locating a vehicle off-route are removed. In practice, this method
predicts a number representing the progress along the trajectory with a
max of 1, which is the final destination. To illustrate the performance
of the model, the trajectory can be decoded into coordinates to allow
the calculation of a Haversine distance between the predicted and
actual location, which is more intuitive than a loss based on the
trajectory. Two variations of this target representation were used: a.
the unconstrained progress along the trajectory, which could lead to a
vehicle appearing to move backwards, b. the distance travelled in the
next time interval added to the last known position, which enforces a
forward prediction.

5.3. Input features

The features included were: coordinates normalised to a bounding
box representing the operational area of the bus company, the time
delta between consecutive recordings, the elapsed time from the start
of the journey, and time embeddings as described below. The input
features were min–max normalised.

5.4. Handling of time

The time information was split into its components to make it
possible for the algorithms to learn periodic patterns. To achieve this,
the timestamp was translated into the minute of the day, the hour of the
day, and day of the week. These were embedded in a multidimensional
space as detailed in the architecture description 5.6.

5.5. Input windows

A moving window was applied to each journey. The window size
was a minimum of 10 data points growing by one time step at a time
until the end of the journey. This ensures a realistic simulation of the
progress of a journey as would be observed in a real world application.

5.6. Architecture

Two neural networks were used with identical architecture except
for the Recurrent Neural Network (RNN) module [39], which was
either a Gated Recurrent Unit (GRU) [40] or a Long Short Term
Memory (LSTM) network [41]. The time embeddings were learned by
the network in a multidimensional space. The dimensions were chosen
as half of the possible number of values for each embedded variable. As
an example, the hour of the day was embedded in 12 dimensions as the
maximum number of hours is 24. These embeddings with a total of 52
dimensions were fed into a linear layer to reduce their dimensions back
to the original number of time-based features. The output of the linear
layer was concatenated with the remaining input features and fed into
either a GRU or LSTM layer followed sequentially by a 1D batchnorm, a
linear layer, a leaky ReLU, a second batchnorm and a final linear layer.
To ensure the outputs were bounded, a sigmoid function was applied.

5.7. Hyper-parameters

To allow for direct comparison between the models, all training
hyper-parameters were kept constant between the two cities. It is
appreciated that this might not always yield the best performance but
will illustrate the influence of the modifications made on the perfor-
mance. The variables used were chosen through empirical exploration
following the recommendations described by [42]. Each model was
trained for 50 epochs using the one-cycle policy [42] with a maximum
learning rate of 10−1 (Bournemouth) and 10−2 (Reading). As a loss
function, the mean average error (MAE) was used.
6

6. Results and discussion

It is crucial to compare predictive algorithms using several different
metrics to ensure a balanced interpretation of the results. Furthermore,
it has to be kept in mind that in the presented example the two cities
are considerably different. The most striking difference is the practice
regarding journey shapes. The idea behind a journey shape is that
it gives the exact route along the road of a certain journey. This,
however, is handled differently by the bus operators. In the example of
Reading each journey has an individual shape amounting to 90 shapes
a day. These are mostly very similar or identical. In the example of
Bournemouth fewer shapes are used, however, the shapes are signif-
icantly different in length as well as route, highlighting the need for
standardisation of public transport data. As a result, only a subset of
the journeys in Bournemouth are similar enough to be simulated in one
approach, thus this dataset contains fewer journeys than the dataset
generated for Reading (17,115 vs 7839 journeys). These differences
have to be kept in mind and are crucial for the interpretation of the
results. The median accuracies for mean speed benchmarks in Reading
are lower in all datasets compared to the current speed benchmark and
are shown in Fig. 3. The current speed benchmark for Bournemouth is
comparable to the average speed benchmark. In the example of Reading
this is not the case and the current speed benchmark suffers from higher
prediction errors compared to the average speed benchmark (Fig. 3). An
explanation could be that vehicles in Reading are more likely to stop for
brief periods, which is reflected in a 13% increase of standard deviation
of the travelling speed compared to Bournemouth. Interestingly, the
histogram for the Reading benchmarks shows a peak around 80 m for
the dataset with repeated start and ends (Fig. 4). This is explained
by the benchmarking method, which uses the last three positions to
estimate the average speed. Thus, a vehicle’s speed can change from
stationary to moving within 120 s or vice versa. Considering this time
frame, 80 m/120 s corresponds to an average speed of 24 km/h, which
is a realistic prediction for an urban bus network and in accordance
with the estimated speed from the mean speed benchmark (Figs. 3 &
4)).

6.1. Perfect journeys

The first set of experiments shows the ‘perfect’ synthetic jour-
ney. These are generated without any of the discussed artefacts and
therefore, should represent the simplest prediction problem. Poor per-
formance of both architectures can be observed in the Bournemouth
dataset. Both architectures perform virtually identical with a mean
error of 63.8 m (𝜎=55 m) (Fig. 5(a)). This is an accuracy comparable
to the benchmarks (current speed: 64.2 m, mean speed: 62.1 m). This
underwhelming performance could be explained by the smaller dataset
compared to the Reading data, however, a more likely explanation is
the variability of the journey shape and routes in Bournemouth, which
naturally results in less realistic synthetic data. As a consequence,
it is difficult to identify individual journeys from the original data.
Furthermore, the data generation suffers from the fact that the vehicles
do not follow a consistent route, which would be expected to cause
unrealistic synthetic journeys. In contrast, the prediction for Reading
performs well with a mean error of 41.5 m (𝜎=46.5) and 47.5 m
𝜎=47.2) for the GRU and LSTM respectively (Fig. 5(a)). Both models

significantly improve on the error compared to the benchmark (current
speed: 68 m, mean speed 50.7 m). As mentioned previously, this dataset
contains more journeys per day, however, the most likely explanation
of this performance improvement can be attributed to the uniform
journey shape, which will reduce errors in the data generation.
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Fig. 3. Boxplot illustrating the prediction errors of the two nïve benchmark algorithms for both cities.
Fig. 4. Boxplot illustrating the prediction errors of the two nïve benchmark algorithms for both cities.
6.2. Ticketing machine artefacts

The introduction of the characteristic circular artefacts into the
dataset would be expected to make any prediction more difficult. This
is indeed observed in the predictions for Bournemouth. The average
GRU performance was reduced by 2.5 m compared to the artefact free
journeys. Notably, the performance of the LSTM did not significantly
decrease and remained at 63.9 m (Fig. 5(a)). Similar findings were
observed in Reading where the mean error of the GRU increased by
5 m. Interestingly, the mean error of the LSTM decreased by 2 m.

6.3. Repeats at start and end

The introduction of repeats at the start and end of the journey
did have a strong impact on the prediction performance. The mean
prediction error in Bournemouth increased by 5 m and 2 m for the
GRU and LSTM, respectively. In Reading, the GRU prediction worsened
drastically by 24 m, whereas the LSTM was not affected and remained
at 47.8 m (Fig. 5). This is an intuitive response of the LSTM which,
due to its ability to forget irrelevant information, is able to focus on
the data relevant for the next step prediction.

6.4. Using hybrid data to improve predictions

The described hybrid dataset was used to demonstrate a possible ap-
plication. As an intuition, it was assumed that the addition of synthetic
data, which are cleaner and not affected by uncontrollable artefacts,
should improve the overall prediction. When using an unconstrained
prediction along the trajectory, this however is not observed and a
model trained on purely synthetic or hybrid data performs worse
on inference on real data (Fig. 5). This, however, is not the case if
the prediction is forced forward as described in Section 4.4. If the
prediction space is limited, an improvement in the inference accuracy
of networks trained on both the real world dataset can be observed both
in the purely synthetic and the hybrid dataset. The largest improvement
can be observed if hybrid data were used for training (Fig. 5(b)).
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6.5. Discussion of results

The results of this study show that the addition of synthetic data
can improve predictive algorithms, which suffer from data quality
issues. The use of synthetic data is used in many settings [43], such
as healthcare settings to preserve privacy [44] but is also used in the
assessment of algorithms such as feature selection methods where the
control of features is important [45]. Some authors have also used
synthetic data to estimate the upper theoretical limits of predictive
algorithms [46]. The generation of hybrid datasets consisting of both
real and synthetic data is less common, but examples such as from
computer vision exist [47] or for classification problems with heavily
unbalanced data [48]. Furthermore, some studies used synthetic data
to augment small datasets, for example to improve pandemic datasets
and the associated machine learning models [49]. Examples from the
field of public transport are rare and mostly focus on optimisation of
transport networks and specifically bus routes to minimise delays [50–
52]. However, in general, a knowledge gap appears to prevent the
combination of simulated data with machine learning algorithms [53],
which could be beneficial to improve many areas especially in public
transport research. This study demonstrates the use of such hybrid
datasets to improve prediction quality. Furthermore, it highlights the
lack of framework previously noted by us [54]. A prediction accuracy
comparison with the wider literature for this study is not possible as
similar research aims to solve different problems. The reason for this is
that the research focus regarding short horizon predictions are focused
on time frames of >5 min [55,56] or are defined as a distance rather
than a time horizon [57]. Shorter prediction horizons are found in
the literature but are aimed at predicting different metrics such as
speed [58] or the elimination of bus-bunching [59]. As there are, to
the author’s knowledge, no examples in the literature predicting the
position of urban buses in an ultrashort prediction horizon, a compar-
ison with other studies cannot be drawn. Additionally, this study does
not claim predictive superiority but demonstrates that the use of hybrid
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Fig. 5. (a) Boxplots for both cities and for each of the dataset and network architecture combinations. It is apparent that the performance in Reading is considerably better and
the expected deterioration with the introduction of artefact can be observed. (b) top: Boxplots showing the error ranges in meters for the unconstrained networks the grey boxes
show a network trained on real data as reference. The red boxes show the error of the holdout portion of the synthetic or hybrid dataset the orange boxes show the inference
errors on the real dataset. (b) bottom: Boxplots showing the error ranges in meters for the forced forward networks the grey boxes show a network trained on real data as
reference. The dark blue boxes show the error of the holdout portion of the synthetic or hybrid dataset the light blue boxes show the inference errors on the real dataset. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
data can improve prediction accuracy. This knowledge will be of value
to public transport researchers and can be applied to any prediction
problem as well as to any model architecture to push the limits of the
available data.

7. Conclusion

The importance of making public transport as convenient as possible
is self-evident and could help increase passenger numbers and reduce
urban congestion and pollution. Reliable predictions of current vehicle
position and arrival times play a crucial part in this endeavour. How-
ever, this is being inhibited by the lack of reliable data, making any
such algorithm development difficult.

Therefore, the described method of generating realistic journeys
builds a bridge between the low quality recordable data and the real
world. As a result, it is a platform to develop algorithms in a simulated
and controlled environment, which can later be deployed in a real
world scenario. Additionally, this platform allows simulation of user-
specified artefacts as demonstrated by the repetition of positions or
geofencing based disturbances. This study has highlighted several areas
of improvement for urban bus network data to allow the development
of reliable predictive solutions. The most striking observation was that
any RNN based predictions in Bournemouth barely outperformed the
naïve benchmark. This is due to the varied route shapes and lengths
of the same bus line, making generalisation unfeasible. Thus, it can
be recommended from a managerial as well as software development
point of view that either route shapes should be standardised between
the lines or that the lines are subdivided based on their route shapes.
This will greatly improve the potential of the data collected and the
development of data-based software solutions.
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The second observation was that the prediction performance can be
improved if the data is as clean as possible. This means that technology
providers need to collaborate to ensure the best possible outcome for
public transport as a whole. Although geofencing methods to determine
the arrival at a stop are useful, the produced artefacts of some systems
do have a negative impact on the tested predictive algorithms. Further-
more, an indication whether a vehicle has started or ended a journey
will help in the overall prediction accuracy. The differences between
the two example cities highlight the need for a national standard if
accurate predictions are desired, universally preventing the need to
develop a predictive system from the ground up for each city and
operational line. This would be a big step forward to an implementation
of mobility as a service and would benefit all public transport operators.

The limitations of this study are that the ground truth can only be
approximated due to the lack of high-quality data. This, however, is
also the driving force behind the demonstrated approach to further ad-
vance this research and any other research relying on public transport
data, the following key points should be considered for future research:

• Develop a standardised framework to transmit and record public
transport data.

• Standardise the use of route patterns to ensure they can be used
for data driven applications.

• Develop a benchmarking framework specifically for predictive
algorithms in urban bus networks.

In the meantime, until such standardisations become reality, our
data generation method described here is a good approximation of
reality and a useful tool in simulating effects on urban bus networks.
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