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Face image-sketch synthesis is widely applied in law enforcement and digital entertainment fields.
Despite the extensive progression in face image-sketch synthesis, there are few methods focusing
on generating a color face image from a sketch. The existing methods pay less attention to learning
the illumination or highlight distribution on the face region. However, the illumination is the key
factor that makes the generated color face image looks vivid and realistic. Moreover, existing methods
tend to employ some image preprocessing technologies and facial region patching approaches to
generate high-quality face images, which results in the high complexity and memory consumption in
practice. In this paper, we propose a novel end-to-end generative adversarial fusion model, called GAF,
which fuses two U-Net generators and a discriminator by jointly learning the content and adversarial
loss functions. In particular, we propose a parametric tanh activation function to learn and control
illumination highlight distribution over faces, which is integrated between the two U-Net generators
by an illumination distribution layer. Additionally, we fuse the attention mechanism into the second
U-Net generator of GAF to keep the identity consistency and refine the generated facial details. The
qualitative and quantitative experiments on the public benchmark datasets show that the proposed
GAF has better performance than existing image-sketch synthesis methods in synthesized face image
quality (FSIM) and face recognition accuracy (NLDA). Meanwhile, the good generalization ability of
GAF has also been verified. To further demonstrate the reliability and authenticity of face images
generated using GAF, we use the generated face image to attack the well-known face recognition
system. The result shows that the face images generated by GAF can maintain identity consistency and
well maintain everyone’s unique facial characteristics, which can be further used in the benchmark of
facial spoofing. Moreover, the experiments are implemented to verify the effectiveness and rationality
of the proposed parametric tanh activation function and attention mechanism in GAF.

. Introduction

Face image-sketch synthesis aims to generate a face sketch
rom an input face image, or vice versa, which are widely applied
n many areas such as digital entertainment and law enforcement.
pecifically, we are concerned about the sub-problem of gener-
ting face image from a sketch, since it is one of the important
echnologies of legal safety supervision. For example, due to the

Trigueros, Meng, & Hartnett, 2021). When verifying the security of
a face recognition system, it tends to produce inaccurate verifica-
tion results using the sketches to attack face recognition system.
Because it is difficult to match two different image modalities,
i.e. face images and sketches (Galea & Farrugia, 2018; Peng et al.,
2021). One feasible solution is to generate a face image from
navailability of suspect face images, face sketches are drawn the query sketch and then attack the face recognition systems.
Cha
fea
fea
the
anually using professional software in terms of the witness
escription, and are further used for police hunting (Klare, Li, &
ain, 2011; Wang & Tang, 2009; Wang, Tao, Gao, Li, & Li, 2014).
nother increasing public concern is the face spoofing attacks
o face recognition systems (Peng, Wang, Li, & Gao, 2021; Saez
llenging issues are raising, i.e. (1) if and what extent face
tures can be regenerated from sketches; (2) what extent face
tures extracted from face sketches can be inverted to obtain
real face image.
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In recent years, many researchers have devoted efforts to
tudy the face image-sketch synthesis. Although the extensive
rogressives in face image-sketch synthesis (Peng, Wang, Li, &
ao, 2020) have been achieved, there are few methods focusing
n generating a face image from a sketch. The classic method is
o divide a face into a set of overlapped patches with different
cales, and train a machine learning model to generate the face
mage from a query sketch (Wang & Tang, 2009; Xiao, Gao, Tao,
Li, 2009). Xiao et al. (2009) use the embedded hidden Markov
odel (EHMM) (Nefian & Hayes, 1999) to learn the nonlinearity
f image-sketch pair with less training samples. Recently, gener-
tive adversarial networks (GANs) and their variants have been
mployed in learning the nonlinear relationship of image-sketch
airs, and yielded promising results (Peng et al., 2016; Sangkloy,

Lu, Fang, Yu, & Hays, 2017; Sannidhan, Prabhu, Robbins, & Shasky,
2019; Wang, Sindagi, & Patel, 2018; Yi, Liu, Lai, & Rosin, 2019;
Zhu, Li, Wang, & Gao, 2019). These methods usually regard the
task of face image-sketch synthesis as an image-to-image trans-
lation problem. The raising issue is that the generated face images
cannot reach high resolution using the GANs model alone (Sangk-
loy et al., 2017). Because of the effectiveness of the StackGANs in
improving the resolution of the generated images (Zhang, Xu, &
Li, 2017), it is becoming more and more popular in face image-
sketch synthesis task (Sannidhan et al., 2019; Wang et al., 2018;
Zhu et al., 2019). In particular, Zhu et al. (2019) propose a deep
collaborative framework with two opposite networks to synthesis
face images from sketches, whose structure is similar to the exist-
ing CycleGAN (Zhu, Park, Isola, & Efros, 2017). Furthermore, Duan,
Chen, Wu, Cai, and Lu (2021) propose a multi-scale gradient self-
attention residual learning framework, which strengthens the
constraint of facial features using the self-attention mechanism.
However, these methods usually have a high complexity due to
a large number of parameters involved in deep networks. For
example, the methods (Peng et al., 2016; Yi et al., 2019) are used
to learn the features of individual facial regions (e.g. eyebrows,
eyes, nose and mouth) by a set of sub-networks. The method (Yu
et al., 2020) tends to use the image preprocessing method to
obtain the different facial pixel-wise labeling masks as the input
of the neural network for learning. This process can hardly be
end-to-end due to the traditional image preprocessing methods
that are difficult to combine with neural networks for end-to-
end learning. The other methods are used to increase the depth
of networks, i.e. at least 60 convolutional layers in a network
model (Zhu et al., 2019). Moreover, all of existing methods ignore
learning and controlling the illumination distribution over the
faces. It often happens that the face area of the generated face
images has no illumination highlight (Duan et al., 2021; Wang
t al., 2018; Xiao et al., 2009) or has stronger illumination high-
ight (Nefian & Hayes, 1999; Sannidhan et al., 2019; Wang &
ang, 2009; Zhu et al., 2019) compared with the ground truth
ace image. It is not difficult to find that a generated face image
ooks like a fake image or even a color sketch due to the lack of
earning method to control the illumination distribution over the
ace in the existing methods of generating the color facial image
rom an input sketch. In fact, the illumination highlight is the key
actor that makes the generated color face image looks vivid and
ealistic.

To tackle the high complexity and illumination highlight is-
ues, we propose a novel end-to-end robust adversarial fusion
etwork that fuses two U-Net generators and a discriminator by
ointly learning the content and adversarial loss functions. Specif-
cally, to learn and control illumination highlight distribution for
he generated face image, we proposed a parametric tanh activate
unction, which is integrated between the two U-Net generators
y designing an illumination distribution layer. Moreover, we

use the attention mechanism into the second U-Net generator a
o refine the features of the face regions instead of the existing
ethods (Peng et al., 2016; Yi et al., 2019; Yu et al., 2020) that
mploy a set of sub-network to learn the features of individual
acial regions (e.g. eyebrows, eyes, nose and mouth). This effec-
ively reduces the computational complexity and is easier to be
pplied.
The main contributions of this paper include:

• We propose a novel end-to-end adversarial fusion network
model, called GAF, that fuses two U-Net generators and a
discriminator by jointly learning the content and adversarial
loss functions for the task of generating the color facial
image from an input facial sketch. In particular, the attention
mechanism is fused into the second U-Net generator. Unlike
the traditional methods employing a set of sub-network to
learn the features of individual facial regions (e.g. eyebrows,
eyes, nose and mouth), we fuse the attention mechanism
into the second U-Net generator to refine the features of the
face region details and keep the identity consistency, which
can effectively reduce the computational complexity and is
easier to be applied.

• To learn and control illumination highlight distribution over
the faces, we propose an illumination activation function
in the field of generating the facial image from the facial
sketch, i.e., a new extension of tanh termed parametric tanh
(ptanh). Unlike the slope of the standard tanh activation
function is not adjustable, ptanh can be trained using back-
propagation with other layers jointly. It makes that learning
and controlling the illumination highlight distribution is an
ease problem in the convolution network. In GAF, the ptanh
is integrated between the two generators by an illumination
distribution layer. In the illumination distribution layer, the
ptanh is used to learn the highlight for the face region of the
generated face image.

• The qualitative and quantitative experiments on the public
benchmark datasets prove that the proposed GAF method is
superior to the existing image-sketch synthesis deep learn-
ing methods in synthesis face image quality (FSIM) and face
recognition accuracy (NLDA). Meanwhile, the good gener-
alization ability of GAF has also been verified on the pub-
lic sketch-photo synthesis datasets. In particular, to ver-
ify the reliability and authenticity of face images gener-
ated using GAF, we use the generated face image to attack
the well-known face recognition system, FaceNet (Schroff,
Kalenichenko, & Philbin, 2015), to quantitatively evaluate
whether the generated face image and the ground truth face
image are the same people. The result shows that the face
images generated by GAF can keep the identity consistent
and well maintain everyone’s unique facial characteristics.
Moreover, the experiments are implemented to verify the
effectiveness and rationality of the proposed parametric
tanh activation function and attention mechanism in GAF.

2. Related work

The task of face image-sketch synthesis has been receiving
more and more attention. However, it still remains challenging
due to great geometrical deformations and large texture differ-
ence between face images and sketches. In this section, specifi-
cally, previous researches on the task of generating face images
from sketch inputs are reviewed.

To tackle the task of generating a color face image from a
sketch, some methods based on the traditional machine learning
algorithms are proposed (Wang & Tang, 2009; Xiao et al., 2009).
or example, Xiao et al. (2009) propose a synthesis face image

lgorithm that embedded the hidden Markov model (EHMM) to
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learn the complex nonlinear relationship between photos and
sketches. In recent years, deep learning models have been widely
used in many fields and achieved state-of-the-art results, spe-
cially the generative adversarial networks (GANs) model. GANs
showed a significant success in the task of the image-to-image
style translation (Isola, Zhu, Zhou, & Efros, 2017; Zhu et al., 2017).
herefore, researchers try to use GANs and their variants to solve
he face image-sketch synthesis task. For example, Sangkloy et al.
irst use an adversarial deep architecture network to generate
ealistic images from the sketch inputs, where the sketches are
ith sparse color scribbles (Sangkloy et al., 2017). Moreover,
i et al. combine the variational auto-encoder and conditional
ANs (cGANs) to preserve the attributes of the generated face
mage and improve the quality of the overall image (Di & Pa-
el, 2018). However, there was also some deformations in the
acial parts, such as the serious deformations and aliasing defects
ver the mouth and hair regions. The reason for deformation
s that the training process of the original GANs and cGANs
odel is unstable. To improve the resolution of the generated

mage, the StackGANs model was proposed (Zhang et al., 2017).
urthermore, Zhu et al. (2017) propose the CycleGAN by adding
n inverse mapping and a cycle consistency loss function to
ackle unpaired images. Subsequently, the StackGANs and Cycle-
AN are also widely applied in the face photo-sketch synthesis
ask. For example, Wang et al. (2018) propose a novel synthe-
is framework with the Multi-Adversarial Networks (PS2-MAN)
ased on CycleGAN, which iteratively generates low resolution
o high resolution images in an adversarial way. Sannidhan
t al. (2019) combine the trained Convolution Neural Network
nd a conditional Generative Adversarial Network (cGANs) to
enerate the synthesis sketch and photo image at the same time.
n particular, Yi et al. (2019) propose a hierarchical GANs model
hat the generator including the global network and six local
etworks for the whole images and the individual facial regions,
espectively. Since face photos can be described using features
rom different face regions, Peng et al. (2016) present a novel
ultiple representations-based method that combines multiple

epresentations to represent an image patch. In particular, the
ultiple filters were used to the multiple features of face images,
nd the Markov networks were used to exploit the interacting
elationships between the sketch and face image. However, the
enerated images of the work (Peng et al., 2016) often have
erious illusions. Moreover, the face patch methods usually need
ome extra calculation process due to each face patch needs to be
rocessed separately. To reduce the extra calculation process of
he patch methods, Zhu et al. (2019) propose a deep collaborative
ramework with two opposite networks to synthesis face image-
ketch and designed a collaborative loss for the two opposite
appings. This deep collaborative framework is similar to the
xisting CycleGAN (Zhu et al., 2017). In addition to the limited
eneralization ability, these face image-sketch methods usually
ave a higher complexity due to a large number of parameters
nvolved in a complex or deep network architecture. Moreover,
hese existing methods ignore learning and controlling the illumi-
ation distribution over the face. It is easy to observe that the face
rea of generated face images has no illumination highlight (Duan
t al., 2021; Wang et al., 2018; Xiao et al., 2009) or has stronger
llumination highlight (Sannidhan et al., 2019; Wang & Tang,
009; Zhu et al., 2019) compared with the ground truth image.
he illumination highlight is the key factor that directly affects
he visual quality of the generated face image.

In this paper, to reduce the complexity and generate high-
uality face images from the sketch inputs, we propose a novel
nd-to-end robust generative adversarial fusion network called
AF based on the cGANs (Isola et al., 2017), which fuses two U-

et generators and a discriminator by jointly learning the content
nd adversarial loss functions where the U-Net generators fuse a
arametric tanh activation function and the attention mechanism.
ere, we propose a parametric activation function to learn and
ontrol illumination highlight distribution over faces, which is
ntegrated between the two U-Net generators by an illumination
istribution layer. Moreover, we fuse the attention mechanism
nto the second U-Net generator of GAF to keep the identity
onsistent and refine the generated facial details. The attention
echanism is very popular at present (Oktay et al., 2018), which

s widely used in the fields of classification (Chen & Shi, 2021;
ang et al., 2017; Zhu, Li, Yang, & Ye, 2020), machine transla-

ion (Vaswani et al., 2017), image captioning (Anderson et al.,
018) etc. Duan et al. (2021) prove the effectiveness of the self-
ttention mechanism on strengthening the constraint of facial
eatures and more robust to the interference of background and
ther factors. Existing research has confirmed that the attention
echanism fusion network model can help the network model
uppress the features unrelated to learning tasks and enhance the
eatures related to learning tasks at the same time.

. Proposed method

In this section, the proposed GAF model is described in detail.
oreover, the illumination distribution layer that contains the
arametric tanh activation function (ptanh) is introduced. The
rinciple of ptanh to learn and control illumination highlight
istribution over the faces is explained. Finally, the effectiveness
f the attention mechanism fuses into the second U-Net generator
f GAF is presented.

.1. Overview of the proposed GAF

Fig. 1 shows the pipeline of the proposed end-to-end GAF
odel. The GAF fuses of two U-Net generators U and A, and a
onvolutional discriminator D by joining learning the content loss
nd adversarial loss function. In particular, we design an illu-
ination distribution layer between generator U and generator
to learn and control illumination highlight distribution over

he face. In the illumination distribution layer P , a novel activate
unction is used, i.e., the parametric tanh activate function (ptanh
unction), to learn and control illumination. We have discovered
hat the illumination distribution layer can do a better job when it
orks on image intensities instead of image features. So we force
he first U-Net generator U to generate an initial face image YU
nstead of latent feature maps, which is then used as the input
f the illumination distribution layer P . Moreover, we fuse the
ttention mechanism into the second U-Net generator A to keep
he identity consistent and refine the generated facial details.

To generate face images from sketches, the training face
ketch-image pairs are equipped at the GAF input sketch X and
he ground truth photo Y respectively. The U-Net generator U
xtracts the global features of the input sketch X to generate the
nitial face image YU . Then, the face YU goes into the illumination
istribution layer (ptanh function) to output the face image Y ′

U
ith the highlight over the face and good contrast. After that,
he Attention U-Net further refine the generated face image Y ′

U .
o this end, GAF loss function contains two terms to generate
he initial colored face image YU and the final colored face image
A. Correspondingly, the adversarial losses Ladv for YU and YA are
efined as follows:

adv(U,D)
= Ex∼pdata(x)[logD(Y ) + log(1 − D(U(x)))]
= Ex∼pdata(x)[logD(Y ) + log(1 − D(YU ))],

(1)

adv(U, P, A,D)
=Ex∼pdata(x)[logD(Y ) + log(1 − D(UPA(x)))] (2)

=Ex∼pdata(x)[logD(Y ) + log(1 − D(YA))],
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Fig. 1. Framework of GAF. We input the sketch X to generate the initial face image YU using the U-Net generator. Then, the initial face image YU as the input of
he illumination distribution layer to obtain the face image Y ′

U with the highlight in the face area and a good contrast. Finally, the Attention U-Net is used to refine
he face image Y ′

U and generated the final face image YA . The overall object function contains the content loss and adversarial loss between the initial face image
U , the final generated image YA after refine and the ground truth face image Y .
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where Y is the target face image, U , P , A and D represent the U-
Net generator, the illumination distribution layer, the attention
mechanism based generator and the discriminator, respectively.

To make the generated face images YU and YA close to the
ground truth image Y in content features. The content losses of
the generated face image Lc for YU and YA are defined as follows:

Lc(U) = ∥U(X) − Y∥ = ∥YU − Y∥, (3)

Lc(U, P, A) = ∥UPA(X) − Y∥ = ∥YA − Y∥. (4)

Then the overall objective function of GAF can be formulated as
follows:
U∗, P∗, A∗

= arg min
U,P,A

max
D

(Ladv(U,D) + λLc(U)

+Ladv(U, P, A,D) + λLc(U, P, A)),
(5)

where λ is a parameter to balance the adversarial loss and the
content loss. To optimal the overall objective of the proposed
GAF, we separate the overall objective function to optimize the
discriminator, the illumination distribution layer and the gener-
ators:

D∗
= argmax

D
(logD(Y ) + log(1 − D(YU ))), (6)

U∗
= argmin

U
(log(1 − D(YU )) + λ∥YU − Y∥), (7)

D∗
= argmax

D
(logD(Y ) + log(1 − D(YA))), (8)

U∗, P∗, A∗
= arg min

U,P,A
(log(1 − D(YA)) + λ∥YA − Y∥). (9)

The optimization process of GAF is shown in Algorithm 1.

Algorithm 1: Optimization process of GAF
Input: Initialized the generators U , A, the

illumination distribution layer P , the
discriminator D, nEpoches = k ∈ R.

Output: Optimized U , A, P , D.
for i = 1 to k do
Generate the initial face image YU by U .
Optimize discriminator D based on Eq. (6).
Fix discriminator D and optimal U-Net generator
U by solving Eq. (7).
Refine the initial face image YA by U , P , A.
Optimize discriminator D based on Eq. (8).
Fix discriminator D and optimize U , P , A based on
Eq. (9).
end for

3.2. Illumination distribution layer

Illumination highlight is the key factor that makes the gener-
ated face image look realistic and close to the real face image.
Inspired by the work (Zhang, Ji, Hu, Gao, & Lin, 2018), we define
slope of the function mapping input pixels to output pixels.
owever, the existing of the slope of the standard activation
unctions like tanh, sigmoid or ReLU, which cannot be adjusted
or repeated training and learning in convolutional networks.
o design an adjustable re-mapping function of the illumination
ighlight distribution, we propose a new parametric tanh (ptanh)
unction. The ptanh function is defined as:

(x) = tanh(mx) =
emx

− e−mx

emx + e−mx , (10)

where x represents the input, m is a learnable parameter control-
ling the slope of the function to learn the illumination highlight
distribution over the face. The proposed ptanh can be trained by
using back propagation with other convolution layers jointly. The
updating of parameter m is derived from the chain rule as foll-
ows:
∂L
∂m

=
∂L

∂ f (x)
∂ f (x)
∂m

, (11)

here L is the objective function, ∂L
∂ f (x) is the gradient propagated

from the deeper convolution layers. By derivation, we get the
gradient of m as follows:

∂ f (x)
∂x

= m[1 −
(emx

− e−mx)2

(emx + e−mx)2
], (12)

∂ f (x)
= x[1 −

(emx
− e−mx)2

]. (13)

∂m (emx + e−mx)2
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Fig. 2. Illustration of the illumination distribution layer.

The ptanh learns and controls illumination highlight for the
nitial generated face image, as shown in Fig. 2. From Fig. 2, it
can be seen that the illumination distribution layer uses the ptanh
activate function to adjust the contrast of the initial face image.

3.3. Attention U-Net in GAF

The effectiveness of the attention mechanism on strengthen-
ing the constraint of facial features and more robust to the inter-
ference of background and other factors has been proved (Duan
et al., 2021). To refine the details of the generator output YU ,
inspired by the existing Attention U-Net (Oktay et al., 2018), we
fuse the attention mechanism into the second U-Net generator of
GAF. Current face detail refinement methods are used to involve
additional sub-networks (or sub-methods) to learn the outline
and details of different face regions such as eyebrows, eyes, nose
and mouth, separately (Peng et al., 2016; Yi et al., 2019; Yu
et al., 2020). Herein, we show that the same goal can be achieved
by integrating attention gates (AGs) into the U-Net model. It
does not require the training of additional sub-networks. Thus,
it does not result in additional computational burden. Moreover,
AGs can suppress feature responses in irrelevant background
regions (Oktay et al., 2018).

The attention gate model gives different weights to features
by the attention coefficients according to specific learning tasks.
Let xl be the activation map of a specified convolutional layer
l ∈ {1, . . . , L}. For each layer, AG computes attention coeffi-
cients αl

∈ [0, 1] to identify salient image regions and prune
feature responses to preserve the activations only relevant to the
specific task. Attention gating is to scale the input features xl
with the αl through element-wise multiplication. Moreover, there
is a global gating signal g which provides information to AGs
to disambiguate task-irrelevant feature content in the xl. In U-
Net architecture, g is collected from the skip connection at the
l − 1 layer. The output of AG x̂l is concatenated with the xl. It
is observed that applying the feature information extracted from
coarse-scale layer to attention gating in skip connections can
progressively suppress feature responses outside the face area.

To demonstrate the effect of the AGs in GAF model, we show
the response region of attention mechanism to face image fea-
tures in our network. This is indeed to purposely further enhance
the features that the AGs focus on so that the highlighted features
are prominent in the output YA. For comparison, we also add a
test of replacing the Attention U-Net with the usual U-Net in GAF
model and show the results in Fig. 3. Fig. 3(c) is the visualization
of the attention mechanism response to image features in GAF.
The response and suppressing areas of the AGs can be clearly
noted in Fig. 3(c). That is, the AGs diminish low-level background
blue color features, which highlight the features of the face region
and hair. Fig. 3(a) is generated by GAF replacing the Attention
U-Net with the usual U-Net. Compared to Fig. 3(b) generated by
the GAF model, it can be noted that the facial regions are very
Fig. 3. The effectiveness of Attention U-Net for generating face image. (a) is
generated by GAF model replacing the Attention U-Net with U-Net; (b) is
obtained by using GAF model; (c) is the visualization of the attention mechanism
response to image features in GAF. (d) is the ground truth.

blurred. Fig. 3(b) is clearer and closer to the ground truth Fig. 3(d)
than Fig. 3(a), which justifies that the AGs enhance the features
of facial and hair regions and optimize the generated face images.

4. Experiments and results

In this section, we carry out a variety of performance tests
and generalization experiments on the public face sketch-photo
synthesis datasets to demonstrate the outstanding performance
of the proposed GAF model. In particular, a face verification
evaluation scheme is used to evaluate the quality of the gen-
erated face images in Section 4.3. Moreover, the factors that
affect the performance of the proposed GAF are analyzed by the
experiments.

4.1. Experimental datasets

To verify the effectiveness and generalization of the proposed
GAF. Experiments are conducted on the public face image-sketch
synthesis datasets1: the CUFS dataset (Wang & Tang, 2009) and
the CUFSF dataset (Phillips, Moon, Rizvi, & Rauss, 2000). In par-
ticular, the CUFS dataset consists of three datasets including the
Chinese University of Hong Kong (CUHK) (188 persons), the AR
dataset (Martinez & Benavente, 2018) (123 persons), and the
XM2VTS dataset (Messer et al., 2000) (295 persons). The CUFSF
dataset contains 1194 subjects from the FERET dataset (Phillips
et al., 2000). For each dataset, there is a sketch image drawn by
the artist and a face image taken in a frontal pose, under normal
or variety lighting condition, and with a neutral or exaggerated
expression. Some samples are shown in Fig. 4. In particular, most
faces in the CUHK dataset are Asian faces, and most faces in the
AR, CUFSF and XM2VTS are Western faces.

In our experiment, we train GAF on the CUHK dataset and
the AR dataset respectively to obtain two trained GAF models
of generating the face image from a sketch input for Asian and
Western faces. Especially, in the CUHK database, 88 sketches are
selected for training, 100 sketches are selected for testing; in
AR dataset, 123 sketches for training, 43 sketches for testing.
Moreover, the data augmentation method is utilized to expand
the training dataset. Additionally, 1194 sketches of the CUFSF
dataset and 295 sketches of the XM2VTS dataset are utilized to
test the generalization ability of the proposed GAF.

4.2. The visualization results of generating face images from sketches

To compare with the existing methods, we follow the official
training and testing assignment for the CUHK dataset, i.e., 88
sketches are selected for training, 100 sketches are selected for
testing. In our experiment, the size of the input sketch of GAF is

1 http://mmlab.ie.cuhk.edu.hk/facesketch.html

http://mmlab.ie.cuhk.edu.hk/facesketch.html
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Fig. 4. Examples of face image-sketch pairs from (a) CUHK student dataset, (b)
AR dataset, (c) XM2VTS dataset, and (d) CUFSF dataset.

equal to the size of the official cropped sketch, i.e., 200 × 250.
For the parameters of GAF model, we use minibatch SGD and
Adam solver (Kingma & Ba, 2015) with learning rate being 0.0002,
and the momentum parameters β1 = 0.5. We empirically set
parameter λ = 100 for the overall function in Eq. (5).

The synthesized face image results are shown in Fig. 5 for the
CUHK dataset. Herein, we compare our method with the state-
of-the-art face photo-sketch synthesis methods such as MrF-
SPS (Peng et al., 2016), pix2pix (Isola et al., 2017), CycleGAN (Zhu
et al., 2017), DualGAN (Yi, Zhang, Tan, & Gong, 2017) and SCA-
GAN (Yu et al., 2020). The MrFSPS method combines multiple
features from sketch images by using multiple filters and de-
ploying Markov networks to exploit the interacting relationships
between the neighboring sketch patches (Peng et al., 2016). The
pix2pix (Isola et al., 2017) and CycleGAN (Zhu et al., 2017) are the
tate-of-the-art methods to solve the problem of style transfer
f paired and unpaired images, in which the generators all are
ased on U-Net. The DualGAN (Yi et al., 2017) is a unsupervised

learning method for general-purpose image-to-image translation,
which only relies on unlabeled image data. Moreover, the CA-
GAN method employs the facial composition information to the
face image synthesis, particularly employing a perceptual loss
function to enhance the similarity of the synthesized face images
and the real face images. In Fig. 5, it can be observed that the syn-
thesized face images of the MrFSPS method are slightly blurred.
Furthermore, the results of the pix2pix, DualGAN and CycleGAN
can overcome the blurry effect by designing special loss functions.
However, they tend to produce undesirable artifacts, specially
the CycleGAN resulting in color distortion outputs. The CA-GAN
can produce high-resolution synthesis face images. However, a
few of the results still have color distortion. In contrast, the
proposed GAF model is able to preserve high-frequency details
and avoid color distortion simultaneously. In particular, GAF uses
the illumination distribution layer to enhance the light distribu-
tion over face area to make the synthesized face images vivid.
Especially, the proposed illumination distribution function can
adjust the contrast of the generated face images to make the light
distribution uniform.
Result analysis The traditional MrFSPS method tends to gen-
erate the face image with blur in the neck area (Wang et al.,
018). The pix2pix, DualGAN and CycleGAN can overcome the
lurry effect due to using the adversarial loss and L-1 loss func-
ion. However, they tend to produce undesirable artifacts due to
he instability during the training process. Also, applying Cycle-
AN to photo synthesis results in color distortion due to the lack
f L-1 loss when training the network. In contrast, the proposed
AF model applies the L-1 reconstruction errors of the initial
ynthesized image and the final synthesized image against the
round truth to training. Moreover, the proposed GAF first uses a
-Net generator to extract the global features of the input sketch
o generate the initial face image. Then, using a U-Net with atten-
ion gating mechanism to suppress unrelated features. This can
ffectively maintain the identity consistency of the synthesized
ace image and the corresponding ground truth. Here, we also
arry on the experiment to verify the performance of the GAF
hat only uses one U-Net with attention gating mechanism. The
ynthesized results on the CUHK and AR dataset are shown in
ig. 6. It is easy to find that the image synthesized by the GAF
hat only uses one U-Net with attention gating mechanism has
evere blurring. This result further illustrates the rationality and
ecessity of the GAF composed of two generators to obtain good
ynthesis result. Moreover, the illumination distribution function
n the illumination distribution layer not only enhances the light
istribution of the face area but also adjusts the contrast of the
ynthesized images. The detailed analysis is presented in the
ection 4.6.

.3. Identity verification

To verify the reliability and authenticity of face photos gener-
ted using GAF, we quantitatively evaluate whether the generated
ace photo and the ground truth face photo are the same per-
on by using the well-known face recognition system, FaceNet
Schroff et al., 2015). For the FaceNet, it first employ the MTCNN
etwork (Cai, Fan, Feris, & Vasconcelos, 2016) to preprocess the
est face photos. Then, using the pre-trained network model
o extract the features of each test face photo. Moreover, we
an obtain the face similarity by calculating the Euclidean dis-
ance between the features of the generated face photo and the
round truth face photo. Here, we use the pre-trained Inception
esNet v1 model (He, Zhang, Ren, & Sun, 2016) based on the
GGFace2 (Parkhi, Vedaldi, & Zisserman, 2015) dataset to extract

the features of the generated face photo and the ground truth
face photo. Specifically, the identity validation process is shown
in Fig. 7.

We measure the face similarity between the generated face
image and the ground truth face photo on the AR dataset (Mar-
tinez & Benavente, 2018). To generate face images from the
sketches, we randomly select 123 sketches as the training dataset
to train GAF model, and 43 sketches for testing. For the pa-
rameters of GAF model, we also use minibatch SGD and Adam
solver (Kingma & Ba, 2015) with learning rate being 0.0002 and
he momentum parameters β1 = 0.5. The parameter λ is em-
irically set to 100 for the overall function Eq. (5). Then, we

can obtain 43 generated face images from the 43 test sketches.
Furthermore, we randomly select 4 generated face images and
the corresponding ground truth face images as the input of the
FaceNet (Schroff et al., 2015).

The output Euclidean distance matrix between any two face
images is shown in Table 1 where the GAF-image0, GAF-image1,
GAF-image2, GAF-image3 represent the face images of 4 indi-
viduals generated by the GAF model; GT-image0, GT-image1,
GT-image2 and GT-image3 correspond to the individual ground
truth face photos. We set the similarity threshold is d = 1 at
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Fig. 5. Comparison of sketch to photo synthesis results on the CUHK student dataset. From top to bottom: Input sketch, Ground truth, MrFSPS, pix2pix, DualGAN,
CycleGAN, SCA-GAN and Our method.
Table 1
Inter-class distance matrix between any two face images where GAF-image0, GAF-image1, GAF-image2, GAF-image3 represent the
generated face image of different individuals by GAF model. GT-image0, GT-image1, GT-image2 and GT-image2 represent the
corresponding ground truth face image, respectively. The similarity threshold is 1 at FAR = 0.1%. That is, the FaceNet system
determines that the two face images are not the same person when the Euclidean distance between the two face images is greater
than 1. Otherwise, the two face images are the same person when the Euclidean distance between the two face images is less than
1. The Euclidean distance of the same person face images is 0.
Euclidean distance GT-image0 GAF-image0 GT-image1 GAF-image1 GT-image2 GAF-image2 GT-image3 GAF-image3

GT-image0 0.0000 0.8995 1.2375 1.2403 1.3744 1.3075 1.3344 1.3781
GAF-image0 0.8995 0.0000 1.2536 1.0368 1.2648 1.1146 1.4329 1.3074

GT-image1 1.2375 1.2536 0.0000 0.9091 1.3163 1.3330 1.3517 1.4093
GAF-image1 1.2403 1.0368 0.9091 0.0000 1.2606 1.1814 1.3040 1.3078

GT-image2 1.3744 1.2648 1.3163 1.2606 0.0000 0.7942 1.1918 1.06723
GAF-image2 1.3075 1.1146 1.3330 1.1814 0.7942 0.0000 1.2738 1.0204

GT-image3 1.3344 1.4329 1.3517 1.3040 1.1918 1.2738 0.0000 0.9809
GAF-image3 1.3781 1.3074 1.4093 1.3078 1.0672 1.0204 0.9809 0.0000
FAR = 0.1% in the face verification system, that is, the face
valuation scheme determines that the two face images are not
he same person when the Euclidean distance between the two
ace images is greater than 1. Otherwise, the two face images are
he same person. It is desired that the Euclidean distance of the
ame person’s face images is 0. From the Table 1, it can be noted
that the face images generated by GAF are consistent in keeping
the identity such as the distances tend to be 0. In particular, facial
images from different identity sketches well maintain everyone’s
unique characteristics.

Table 1 focuses on measuring the similarity of face images
between different people, i.e., inter-class distance. To measure the
similarity of face images from the same people, we still use this
face verification system to measure the intra-class distance of face
images. Fig. 8 shows that a person usually has multiple photos
with different expressions or different lighting in practice, i.e. face
photos GT-00 to GT-05. The GAF-image0 to GAF-image6 represent
the face images generated by GAF from the facial sketches of six
persons, i.e. image0 to image6. Herein, we also set the similarity
threshold is d = 1 at FAR = 0.1% of the face verification sys-
tem. Table 2 shows the intra-class distance matrix for the face
similarity. From the Table 2, it can be noted that the Euclidean
distance between any two images is less than 1. Although there
are a few of distances to close to 1, it is reasonable since there is a
big difference between neutral and large expressions. Therefore,
we can conclude that the face images generated by GAF can
maintain the identity consistency. In particular, the proposed face
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Fig. 6. Comparison of sketch to photo synthesis results on the CUHK and AR
dataset. From left to right: Input sketch, GAF that only uses one U-Net with
attention mechanism, the proposed GAF, ground truth.

Table 2
Intra-class distance matrix between any two face images. The two face images
are the same person when the Euclidean distance between the two face images
is less than 1. (GT-ij denotes the jth ground truth face photo of the ith
erson).
Euclidean distance GT-00 GT-01 GT-02 GT-03 GT-04 GT-05

GAF-image0 0.9601 0.4207 0.4324 0.3304 0.6136 0.6038
GT-10 GT-11 GT-12 GT-13 GT-14 GT-15

GAF-image1 0.9760 0.5900 0.9984 0.9717 0.7803 0.8697
GT-20 GT-21 GT-22 GT-23 GT-24 GT-25

GAF-image2 0.8964 0.6643 0.5510 0.4599 0.7030 0.6122
GT-30 GT-31 GT-32 GT-33 GT-34 GT-35

GAF-image3 0.9012 0.3984 0.5310 0.5411 0.7056 0.5134
GT-40 GT-41 GT-42 GT-43 GT-44 GT-45

GAF-image4 0.8803 0.7615 0.4599 0.5791 0.4945 0.6582
GT-50 GT-51 GT-52 GT-53 GT-54 GT-55

GAF-image5 0.8995 0.8203 0.7030 0.7056 0.4055 0.8043
GT-60 GT-61 GT-62 GT-63 GT-64 GT-65

GAF-image6 0.9886 0.5907 0.6122 0.5134 0.6582 0.8146

evaluation scheme can accurately assess the identity consistency.

4.4. The quantitative analysis

In this subsection, we present the quantitative results by com-
arison the state-of-the-art face image-sketch synthesis meth-
ds such as MrFSPS (Peng et al., 2016), pix2pix (Isola et al.,
017), CycleGAN (Zhu et al., 2017), DualGAN (Yi et al., 2017) and
A-GAN (Yu et al., 2020) on CUHK dataset.
The synthesized face image quality assessment: We adopt

he Feature Similarity Index Metric (FSIM) (Zhang, Zhang, Mou,
Zhang, 2011) to objectively assess the quality of the syn-

thesized face images. The FSIM obtains the quality index by
measuring the feature similarity between a synthesized image
and the ground truth, in which the features include the phase
consistency (PC) and the image gradient magnitude (GM). The
comparison results are shown in Table 3. It can be noted that
he MrFSPS method (non-deep learning method) is better than
he others (deep learning methods). However, their FSIMs are still
omparable.
The face recognition assessment: We use the existing face

ecognition method, Null-space Linear Discriminant Analysis
NLDA) (Chen, Liao, Ko, Lin, & Yu, 2000), to statistically eval-
ate the face recognition accuracy based on the synthesized
ace images. Herein, we use the CUHK dataset, and employ the
round-truth photos as the training data and the synthesized
mages as the test data in NLDA. Performing on the face image
ata generated by our GAF, the NLDA algorithm reaches the
ighest accuracy. Moreover, Fig. 9 also shows the recognition

accuracy against variations of the number of the principal feature
vectors employed by NLDA. It can be noted that around first
40 principal feature vectors, the NLDA algorithm achieves the
highest recognition accuracy.

4.5. Generalization verification

Generalization is used to describe a model’s ability to react to
new data. That is, a model can digest new data and make accu-
rate predictions after being trained on a training set. A model’s
generalization ability is the key to the success of a model (Bishop,
006). Therefore, we employ the existing public dataset (XM2VTS
nd CUFSF) based on the trained GAF model to verify the gener-
lization. Moreover, we conducted the same experiment on the
rained pix2pix (Isola et al., 2017) and CycleGAN (Zhu et al., 2017).

For the XM2VTS dataset, all face sketches are used, i.e., 295
ketches are selected for testing. For the CUFSF dataset, all face
ketches are used to test, i.e., 1194 sketches are selected for
esting. Fig. 10 shows the face generation results for the XM2VTS
atasets on pix2pix, CycleGAN, and the proposed GAF model.
rom Fig. 10, it is not difficult to find that the proposed GAF
odel can accurately and clearly capture the facial expression,
ye direction and facial beard. Moreover, GAF obtains a more
lear face image than the other two models. In addition, Fig. 11
hows the face generation results for the CUFSF datasets. These
esults are also obtained from the trained pix2pix, CycleGAN, and
he proposed GAF model. From Fig. 11, it is obvious to find that
GAF has a better generalization ability than the other models
for the face generation task. We can find that the generated
photos using GAF have artifacts. The reason for the artifacts is
the size of the original sketch image is too small, i.e., the size
of the original sketch image is 64 × 80. However, the trained
GAF model is formed by training GAF model on AR dataset. The
input size of GAF model is 200 × 250. Therefore, when we input
the size of the CUFSF’s sketch is 64 × 80 to the trained GAF, the
generated photos have artifacts. Even so, the trained GAF can well
maintain identity consistency. From all the results, the proposed
GAF model has good generalization ability.

4.6. Effectiveness of illumination distribution layer

To validate the illumination distribution layer, we remove
it from the GAF model, that is, the two GAF models with and
without the illumination layer are trained on the CUHK dataset
respectively. The results are shown in Fig. 12. It can be noted
that there are distinct highlights on the face areas in the second
column due to the illumination distribution. Moreover, it can
also be noted that the contrast of the generated face images is
adjustable and the illumination is evenly distributed over the face
area. The illumination distribution layer makes the resulting face
images more realistic and vivid.
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Fig. 7. The identity verification scheme based on the FaceNet.
able 3
he assess results of the synthesized face image quality (FSIM) and the face recognition (NLDA) by comparison of photo-sketch synthesis methods based on CUHK
ataset.
Criterion MrFSPS (Peng et al.,

2016)
pix2pix (Isola et al.,
2017)

CycleGAN (Zhu et al.,
2017)

DualGAN (Yi et al., 2017) SCA-GAN (Yu et al.,
2020)

Ours

FSIM↑ 0.8031 0.6997 0.7826 0.7939 0.7950 0.7963
NLDA↑ 96.7 93.8 96.07 97.4 98.5 99.02
Fig. 8. An example of multiple face photos of the same person. The GAF-image0
represents the face image from an input sketch image0 generated by the GAF
model. GT-00 to GT-05 represent the multiple ground truth face photos with
different expressions and lighting.

Fig. 9. The recognition accuracy against variations of the number of principal
feature vectors in NLDA on the CUHK dataset.
Fig. 10. The face images generated on the XM2VTS dataset using the trained
pix2pix, CycleGAN, and the proposed GAF model. From left to right: input sketch,
the face image generated using the trained pix2pix, the face image generated
using the trained CycleGAN, the face image generated using the trained GAF,
ground truth.

Fig. 11. The face images are generated on the CUFSF dataset using the trained
pix2pix, CycleGAN, and the proposed GAF model. From left to right: input sketch,
the face image generated using the trained pix2pix, the face image generated
using the trained CycleGAN, the face image generated using the trained GAF,
ground truth.
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Fig. 12. Comparison of GAF model trained without/with the illumination distri-
bution layer on the CUHK dataset. From left to right: input sketch, the generated
photo with the illumination distribution layer, the generated photo without the
illumination distribution layer and the ground truth.

Fig. 13. The performance validation experiment for the attention mechanism
and illumination distribution layer on the pix2pix model. From left to right:
input sketch, the face images are generated using the pix2pix model, the face
images are generated using the pix2pix model plus the illumination distribution
layer, the face images are generated using the pix2pix model plus attention
mechanism, the face images are generated using the pix2pix model plus the
illumination distribution layer and attention mechanism and the ground truth.

To further verify the effectiveness of the illumination distri-
bution layer and attention mechanism, we apply them to the
existing pix2pix models (Isola et al., 2017). The results are shown
in Fig. 13. It is easy to observe that the face images generated by
pix2pix using illumination distribution layer and the pix2pix us-
ing attention mechanism are better than that of the pix2pixe only.
Moreover, the pix2pix using the illumination distribution layer
and attention mechanism together shows the best performance.
This test furtherly verifies the effectiveness and practicability of
the illumination distribution layer and attention mechanism.
5. Computational complexity

The traditional methods of generating face images from
sketches are used to employ sub-networks for learning the dif-
ferent face feature regions, which usually leads to a high cost of
computation and storage requirement such as MrFSPS (Peng et al.,
2016). Particularly, the MrFSPS method uses the nearest neighbor
searching (NNS) that is very time-consuming. The computational
complexity of MrFSPS is up to O(cp2MN) (Zhang et al., 2018),
here c denotes the number of all candidates of the search
egion, p denotes the image patch size, M denotes the number
f image patches on each image, and N denotes the number
f training data. For the proposed GAF and SCA-GAN (Yu et al.,
020), since there is no NNS part, the computational complexity
s only O(1) when the size of the training dataset is fixed.

The SCA-GAN method (Yu et al., 2020) performed training on
single Pascal Titan Xp GPU using a training set of 500 samples.

t took six hours to reach the best prediction state. Our GAF
erformed training on a single GeForce GTX 1080 GPU using the
ame number of training samples. It took three and a half hours
o reach the desired prediction state.

. Conclusion

In this paper, we study the problem of generating face image
rom a sketch, propose a novel end-to-end generative adversarial
usion network model, i.e. GAF. GAF fuses two U-Net generators
nd a discriminator by joining learning the content and adver-
arial loss function. In particular, a parametric tanh activation
unction is proposed to learn and control illumination highlight
istribution over faces, which is integrated between two U-Net
enerators by an illumination distribution layer. It is making that
earning and controlling the illumination highlight distribution is
ot a difficult problem in the convolution network. Additionally,
e fuse the attention mechanism to the second U-Net generator
hat can not only maintain the identity consistent, but also refine
he generated facial details. Moreover, the experimental results
how that the proposed GAF can achieve promising progress
n the face image quality results, the recognition accuracy of
ynthesized face image and the attack face recognition system
esults.
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