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Spatial Modeling of Maritime Risk Using Machine Learning

Andrew Rawson ,1,∗ Mario Brito ,2 and Zoheir Sabeur 3

Managing navigational safety is a key responsibility of coastal states. Predicting and measur-
ing these risks has a high complexity due to their infrequent occurrence, multitude of causes,
and large study areas. As a result, maritime risk models are generally limited in scale to small
regions, generalized across diverse environments, or rely on the use of expert judgement.
Therefore, such an approach has limited scalability and may incorrectly characterize the risk.
Within this article a novel method for undertaking spatial modeling of maritime risk is pro-
posed through machine learning. This enables navigational safety to be characterized while
leveraging the significant volumes of relevant data available. The method comprises two key
components: aggregation of historical accident data, vessel traffic, and other exploratory fea-
tures into a spatial grid; and the implementation of several classification algorithms that pre-
dicts annual accident occurrence for various vessel types. This approach is applied to charac-
terize the risk of collisions and groundings in the United Kingdom. The results vary between
hazard types and vessel types but show remarkable capability at characterizing maritime risk,
with accuracies and area under curve scores in excess of 90% in most implementations. Fur-
thermore, the ensemble tree-based algorithms of XGBoost and Random Forest consistently
outperformed other machine learning algorithms that were tested. The resultant potential
risk maps provide decisionmakers with actionable intelligence in order to target risk mitiga-
tion measures in regions with the greatest requirement.

KEY WORDS: machine learning; Maritime risk assessment; risk mapping

1. INTRODUCTION

Maritime accidents such as collisions and
groundings can result in significant loss of life,
pollution, and economic losses. Accurately charac-
terizing maritime risk within an area is a critical task
for decisionmakers. Coastal states need to determine
the requirement for different risk mitigation mea-
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sures such as traffic routing measures or pilotage
(IMO, 2004). The offshore renewables or oil and
gas industries need to ensure that the risks to their
developments, and impact on navigation safety are
acceptable. Ports and harbors need to ensure that
their waterways are safe for trading vessels and ap-
propriate risk controls are in place. Maritime safety
assessments are often framed in the context of the In-
ternational Maritime Organization’s (IMO) Formal
Safety Assessment (FSA) (Montewka, Goerlandt, &
Kujala, 2014), which provides a structured and sys-
tematic methodology for risk analysis (IMO, 2018).
The FSA is goal-based and proactive rather than re-
active, identifying hazards, assessing risks, identifying
mitigation measures, and performing a cost-benefit
assessment before providing recommendations.

Numerous quantitative methods are proposed
for use in maritime risk studies (OpenRisk, 2018).
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These include statistical analysis of accident data and
incident rates (Bye & Almklov, 2019), the use of ex-
pert judgement in the form of Bayesian Networks
(Hanninen, 2014; Montewka, Goerlandt, & Kujala,
2015) and analytical risk modeling, such as geomet-
ric route models (Li, Meng, & Qu, 2012; Mazaheri &
Ylitalo, 2010; Pedersen, 1995) or time–domain simu-
lations (Pietrzykowski & Uriasz, 2009; Wang, 2013).
While these methods have made a significant contri-
bution to understanding maritime safety, limitations
have been identified in probabilistic risk assessments
more generally (Aven & Zio, 2011), and maritime
risk assessments specifically (EMSA, 2018; Hoorn &
Knapp, 2015; Psaraftis, 2012). Maritime accidents oc-
cur infrequently, limiting the available sample size,
and while some have proposed using near misses
(Du, Goerlandt, & Kujala, 2020) or expert judge-
ment (Mazaheri, Montewka, Kotilainen, Sormunen,
& Kujala, 2014), this may not accurately reflect the
circumstances of previous incidents. Most accidents
are the result of human error (Weng, Yang, Chai,
& Fu, 2019), which requires a detailed understand-
ing of human factors and organizational influences
that can be challenging to model. Furthermore, of-
ten there is a complex interplay of different factors
that leads to an accident, which leads to difficulty in
diagnosing the root cause (Brito, Smeed, & Griffiths,
2014).

While predicting each individual accident oc-
currence is challenging, over time accidents tend to
occur more frequently in some places than others
(Hoorn & Knapp, 2015). Spatially dependent vari-
ables include traffic volume, bathymetry, weather,
and a myriad of other factors (Mazaheri et al., 2014).
By mapping the presence of these risk factors, it may
be possible to develop national scale, high resolu-
tion, strategic risk maps to support decisionmakers.
While some work has attempted such an exercise,
several key challenges need to be addressed. First,
how can the multitude of maritime risk factors be
quantified and integrated into a model given their
heterogenous formats? Second, how can the com-
plex relationships between vessel traffic, incidents,
and relevant contributory factors be determined?
Third, what is the effect of aggregating the input
data, both spatially and temporally, on the effective-
ness of the model? Finally, how can the performance
of these models be evaluated and what is their util-
ity to navigation authorities, given their potentially
high cost.

To address these challenges, this article proposes
a novel approach to maritime risk assessment by us-

ing machine learning methods to predict the like-
lihood of collisions and groundings in U.K. waters.
Several key contributions are made. First, a pipeline
is proposed for integrating massive and heterogenous
maritime data sets into a common spatial data struc-
ture, recognized as an emerging but important trend
(Kulkarni, Goerlandt, Li, Banda, & Kujala, 2020),
partly due to the inherent challenges of achieving
this (Lensu & Goerlandt, 2019). Second, the strength
of different machine learning methods to predict the
spatial distribution of maritime accidents is tested.
In situations with complex, nonlinear relationships
between heterogenous data sets, machine learning
methods have been shown to be effective but there
are few examples for maritime risk assessment (Ad-
land, Jia, Lode, & Skontorp, 2021; Jin, Shi, Yuen,
Xiao, & Li, 2019) and it is a growing method in risk
analysis more generally (Nateghi & Aven, 2021). Fi-
nally, it has been noted that little scientific attention
has been given to implementing maritime risk mod-
els to support decision making (Kulkarni et al., 2020),
and this article sets out a practical, structured frame-
work for achieving this.

The remainder of this article is set out as follows:
Section 2 provides an overview of existing methods
to develop spatial risk models. Section 3 describes
the general methodological approach, which is pro-
posed in developing the spatial model, including the
variables, algorithms, and data preprocessing. Sec-
tion 4 implements this methodology for a case study
on assessing navigational safety in the United King-
dom. Finally, Section 5 discusses the implications
of this work and proposes several areas of future
research.

2. LITERATURE REVIEW

2.1. Spatial Models of Maritime Risk

Mapping the relative likelihood of maritime risk
are often reliant on either expert judgement or his-
torical accidents. First, in practice risk assessment
is performed using expert judgement using hazard
workshops and risk matrices (see for example Port
of Dover, 2016). Limitations of risk matrices have
been widely discussed (Cox, 2008; Hubbard, 2009;
Kontovas & Psaraftis, 2009) and include a fixed spa-
tial scale of assessment. Second, the sparsity of his-
torical accident data might result in regions with-
out previous accidents being incorrectly interpreted
as having zero risk (Rawson, Sabeur, & Correndo,

 15396924, 2022, 10, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/risa.13866 by B

ournem
outh U

niversity T
he Sir M

ichael C
obham

 L
ibrary, W

iley O
nline L

ibrary on [15/11/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Spatial Modeling of Maritime Risk Using Machine Learning 2293

2019). One method to overcome this is to general-
ize the study areas into much larger regions (Bye &
Almklov, 2019), but doing so compromises the im-
portant insights from localized risk factors.

To incorporate the spatial element, several stud-
ies have utilized Geographical Information Systems
(GIS). In general, regions are subdivided into a grid
of smaller spatial units, data sets are mapped across
this grid, and some form of calculation conducted
to derive a risk score. This might include assigning
weightings derived from expert judgement (Halpern,
Walbridge, & Selkoe, 2008), fuzzy logic, or statistical
techniques (Hoorn & Knapp, 2015, 2019). Table I
provides an evaluation of several major regional
scale studies into maritime risk, demonstrating a
great variation in purpose, data sets, methods, and
spatial units. Several limitations are common be-
tween these studies on each of these aspects, which
should be addressed.

First, some studies seek to guide national pol-
icy (Marico, 2015; Safetec, 1999), while others are
tailored to evaluating the impacts of new terminals
(DNV, 2012; Van Dorp, Harrald, & Merrick, 2008,
2014). The scope of the studies is limited to one spe-
cific issue, omitting many other potentially significant
hazards. Furthermore, the models have a high cost
and are conducted in isolation (EMSA, 2018), be-
coming quickly out of date, superseded by changing
shipping patterns or new developments.

Second, the principal inputs used in these assess-
ments include expert judgement, vessel traffic data
collected from the Automatic Identification System
(AIS), historical incident data, and various environ-
mental data sets. Some have criticized maritime risk
assessments as overly qualitative (Psaraftis, 2012)
and limitations of expert judgment have been widely
discussed (Kahneman et al., 1982). In addition, is-
sues with the quality of the accident (Hassel, Asb-
jornslett, & Hole, 2011; Qu, Meng, & Li, 2012) and
vessel traffic data (Harati-Mokhtari, Brooks, Wall, &
Wang, 2007) have been highlighted.

Third, a variety of different techniques are uti-
lized to calculate risk. These range from applying
international accident rates (Genivar, 2013), map-
ping traffic flows with risk factors using a Bayesian
Network (DNV, 2012, 2013) to comprehensive traf-
fic simulations (Van Dorp et al., 2008, 2014). It is
notable that many studies utilize proprietary models
developed by the consultancies involved and there-
fore lack transparency (EMSA, 2018; Psaraftis, 2012).
While these models have their genesis within the

academic literature (Fowler & Sorgard, 2000; Mer-
rick & van Dorp, 2006), several recent studies have
challenged the underlying assumptions of these mod-
els, such as the relationship between traffic flows,
grounding accidents (Mazaheri et al., 2014), and near
misses (Rawson & Brito, 2021).

Fourth, different approaches have been devised
to tackle the spatial element of the assessments
with routes, grid cells, or large regions used. Each
of these seek to reduce the complexity of the as-
sessment from effectively infinite spatial variation
of maritime risk to a manageable scale of assess-
ment. Where grid cells are utilized, none have con-
sidered the potentially significant implications on the
derived results of spatial distortion due to mapping
a square grid on a spherical globe (Barnes, 2016,
2019; Battersby, Stebe, & Finn, 2016). Furthermore,
as a result of different methodological implemen-
tations and assumptions, each study is conducted
in isolation for a specific waterway which prevents
comparison.

Lensu and Goerlandt (2019) noted that a com-
promise is generally required on either the study
area size and data set volume or the methodologi-
cal complexity. In this article, a machine learning ap-
proach to maritime risk assessment is proposed that
addresses this compromise as well as the aforemen-
tioned methodological challenges.

2.2. Machine Learning in Spatial Risk Assessment

Machine learning techniques for risk assessment
are an emerging field of study (Hedge & Rokseth,
2020; Nateghi & Aven, 2021). Supervised learning
of accident data, whereby a model is constructed on
data containing both input and outputs, has two key
applications within transportation safety. First, pre-
dicting the severity of accidents based on the accident
characteristics (Lee, Yoon, Kwon, & Lee, 2019; Li,
Liu, Wang, & Xu, 2012; Zhang & Mahadevan, 2019).
Second, predicting the likelihood of accidents based
on identified risk factors such as driving style, per-
sonal descriptive characteristics (Fang, Qiu, Zhao, &
Jin, 2018; Wang, Liu, Xu, & Lv, 2019), and environ-
mental conditions (Yuan, Zhou, Yang, Tamerius, &
Mantilla, 2017).

Within the maritime domain, this topic has been
rarely addressed though their potential was recog-
nized some time ago (Wang et al., 2004). Several
studies have sought to identify which vessels are
likely to have accidents given their characteristics
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Table I. Review of Selected Major Spatial Risk Models

N Study Description/Scope Spatial Units
Principal Data

Sources Summary of Model

1 MEHRAs
Safetec
(1999)

Identify marine
environmental high-risk
areas around the U.K.
Coast based on the risk
of pollution and
environmental
sensitivity

Varied:
between
4.5 × 75
nm and 60
× 32 nm

Vessel routes
database
Incident data
Environmental
data

For each cell and route, the geometric probability of
vessel/shoreline interactions was multiplied by a
causation factor representing different local
factors/risk controls to produce an incident
probability. Spill probabilities were derived from
conditional tables given accident type and vessel types.
Environmental sensitivity was mapped based on
weighted scores of different receptors.
Risk is presented as incident probability × spill size ×
environmental sensitivity.

2 Prince Rupert
Marine Risk
Assessment
DNV (2012)

A risk assessment for
potential introduction
of LNG and oil tanker
traffic and any possible
associated risks or
hazards.

7 “Routes” Traffic numbers
Environmental
data
Operational data
Generic incident
rates

MARCS Model: creates vessel routes from AIS data,
multiplies by base accident frequencies from incident
data which is modified with environmental data sets to
account for localized risk. Risk controls are then
applied as a percentage effectiveness.

3 Risk
Assessment
for Marine
Spills in
Canadian
Waters
Genivar
(2013)

Estimate the relative risk
for ship-source spills of
oil in Canadian waters.

77 broad
regions

Transit data
Incident data
Environmental
data sets

For each region, calculate volume of oil transiting
through, multiply by a generic accident rate and oil
spill size distributions. An environmental sensitivity
index (ESI) per area is then defined, risk being the
product of oil spill volume and ESI.

4 North East
Shipping
Risk
Assessment
DNV (2013)

Assessment of
navigational risks due to
shipping in open waters

1 nm grid AIS
Environmental
data
Operational data
Generic incident
rates

MARCS Model: creates vessel routes from AIS data,
multiplies by base accident frequencies from incident
data which is modified with environmental data sets to
account for localized risk. Risk controls are then
applied as a percentage effectiveness.

5 Assessment of
Marine Oil
Spill Risk
and Environ-
mental
Vulnerability
for the State
of Alaska
RPSasa et al.
(2014)

Determine the
probabilities of spills
occurring with respect
to geographic region, oil
type, and season, as well
as the potential impacts
from an oil spill.

14 large
broad
regions

Incident data Spill likelihood is calculated based on analysis of
historical incidents per region and per oil type. These
were increased based on future traffic projections. In a
similar fashion, historical incident analysis was used
for spill volumes. Where no incidents occurred in a
region, the rates were manually altered to reflect the
project team’s opinion.
Environmental sensitivities were mapped to derive
vulnerability.

6 BE-AWARE
(2014)

Gain a better
understanding of the
regional and
subregional risk of
accidents and the
potential for marine
pollution events in the
North Sea.

Route
Network

AIS data
Incident data

AIS data are compressed into thousands of network
routes. For each route, the geometric probability and
causation probability are multiplied by the number of
passages. An oil spill output model is then applied.

7 LINZ Hydro-
graphic Risk
Assessment
Marico
(2015)

Assess navigational risk to
prioritize the need for
nautical charting.

Varied: 500
m to 3 km
cells

AIS
S57 Charts
Environmental
data sets

Within each grid cell, for each vessel type, the total
number of transits/year are multiplied by a generic
causation factor and then an event tree to derive
annualized potential consequence for people,
environment, and monetary impacts. A localized
weighted causation modifier is applied (e.g.,
complexity, chart age, hazards, etc.). This is then
multiplied by a weighted consequence factor for each
consequence type (e.g., response complexity, World
Heritage Sites, tourist sites, wetlands, etc.).

(Continued)
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Spatial Modeling of Maritime Risk Using Machine Learning 2295

Table I. (Continued)

N Study Description/Scope Spatial Units
Principal Data

Sources Summary of Model

8 Marine Envi-
ronmental
Risk
Assessment
– Greenland
DNV (2015)

Quantify and describe the
likelihood of marine
accidents with and
without pollution
around Greenland.

10km grid AIS
Incident data
Ice coverage

Risk modeling is undertaken per each grid cell, by
multiplying likelihood and consequence.
Accident frequency is derived by calculating annual
distance traveled, multiplying by base accident
frequencies/nm per vessel type globally and an
adjustment factor (e.g., cells within 2 nm of coast have
a 10× adjustment factor for grounding). Finally, a
table of fuel spill likelihood is used per accident
scenario. Spill volumes are similarly derived based on
vessel size and type tables.
Environmental sensitivities are derived on a per
species basis, using their vulnerability and mortality to
score their sensitivity.

9 VTRA
Van Dorp
et al. (2008,
2014)

The Vessel Traffic Risk
Assessment (VTRA)
assesses the likelihood
of collisions, allisions,
and groundings in the
Puget Sound (USA).

0.5nm grid AIS data
Incident data
Environmental
data
Expert elicitation

A simulation is constructed from AIS data that counts
interactions between vessels, projects future courses
and models possible drifting patterns. A base accident
rate is used, which is modified using a Bayesian
pairwise expert elicitation model to account for other
causal factors. Finally, oil spill outflow for each
accident situation is modeled.

using ship details (Jin et al., 2019) or inspection
outcomes (Heij & Knapp, 2018). However, such
models use only descriptive variables of the vessels
such as age, flag, or size and therefore lacks any spa-
tial element. Others have incorporated spatial and
temporal data sets such as weather conditions to im-
prove the discrimination of accidents between vessel
transits (Adland et al., 2021; Rawson, Brito, Sabeur,
& Tran-Thanh, 2021; Wu, Pelot, & Hilliard, 2009). By
aggregating these data sets, a strategic risk tool can
be developed to identify which regions have a higher
propensity for accidents.

There are two approaches that can be taken in
order to frame the research question; namely, re-
gression to predict some target variable in an area
based on input features; or classification of whether
a variable occurs or not in that location. Accident
frequency as a continuous variable is naturally a re-
gression problem, and some studies have sought to
map crime frequency (McClendon & Meghanathan,
2015), road accident frequency (Pan, Fu, & Thakali,
2017), and susceptibility of landslides (Lee, Hong, &
Jung, 2017). However, the presence or absence of a
certain event can also be predicted spatially using
classification algorithms if we consider that all loca-
tions and times where an incident has occurred is a
positive case whereas all other locations and times
are negative cases. For example, the presence or ab-
sence of forest fires can be modeled as a classifi-

cation exercise using historical fire events and var-
ious spatial variables such as elevation, land use,
and rainfall (Agarwal, Tang, Narayanan, & Zhuang,
2020; Nguyen et al., 2018; Rodrigues & Riva, 2014).
Other examples of this approach include air pol-
lution (Choubin et al., 2020), avalanches (Choubin
et al., 2019), flooding disasters (Li et al., 2019; Mo-
jaddadi, Pradhan, Nampak, Ahmad, & Ghazali, 2017;
Tetri et al., 2019), or road traffic accidents (Moosavi,
Samavaian, Parthasarathy, Teodorscu, & Ramnath,
2019; Yuan et al., 2017). The trained model can then
be applied to the entire data set in order to produce
regional maps of the relative likelihood of certain
events (Li et al., 2019; Mojaddadi et al., 2017; Nguyen
et al., 2018). High resolution and data driven impact
maps can be generated, far exceeding the detail and
scale of what other methods might achieve, includ-
ing areas where no historical events have previously
occurred.

Section 3 describes a general methodological
framework for achieving these aims in the context of
maritime safety before testing its effectiveness using
a U.K. case study in Section 4.

3. GENERAL METHODOLOGY

The proposed methodology consists of four steps
(Fig. 1), which are described in the following subsec-
tions.
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2296 Rawson, Brito, and Sabeur

Fig 1. Methodological approach.

3.1. Step 1: Data Pipeline

Step 1 requires the development of a data
pipeline to identify, quantify, and integrate multiple
risk factors as features into a common data model.
Three principal sources of data are required. First,
accident data are the class label and can be obtained
from national administrations or commercial propri-
etary data sets. Second, all other factors being equal,
we might naturally expect more accidents in locations
where more vessels transit and therefore a key input
is a measure of vessel activity. Multiple standardized
units of measurement can be developed using AIS
data, including the number of transits, hours of tran-
sit, or distance traveled (Bye & Almklov, 2019).

Third, other independent variables related to the
relative likelihood of maritime accidents have been
proposed (Bye & Aalberg, 2018; Hoorn & Knapp,
2019; Kite-Powell, Jin, Jebsen, Papkonstantinou, &

Patrikalakis, 1999; Kristiansen, 2005; Mazaheri et al.,
2014; Mazaheri, Montewka, & Kujala, 2016; Olba,
Daamen, Vellinga, & Hoogendoorn, 2019; USCG,
2010). These can be categorized into human, mechan-
ical, and external factors and an overview is provided
in Table II. Not all of these causal factors are well
suited to integration into a spatial model, but differ-
ent methods have been proposed to model weather
(Adland et al., 2021; Knapp, Kumar, Sakurada, &
Shen, 2011; Rezaee, Pelot, & Ghasemi, 2016) or ship
characteristics (Bye & Aalberg, 2018; Heij & Knapp,
2018; Jin et al., 2019) among others. Some features
might need to be engineered or obtained from ex-
perts. For example, mapping the perceived complex-
ity of navigation as characterized by ship’s masters
(Mazaheri et al., 2014).

Having identified and obtained relevant data
sets, a base spatial model is required to fuse the
heterogeneous data sets with different geometries,
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Table II. Significant Causes of Maritime Accidents

Category Cause

Human and Organizational Factors Inattention and Fatigue
Bridge Resource Management
Communication
Position Monitoring
Training and experience
Regulation

Vessel and Mechanical Factors Ship Dimensions and Maneuverability Characteristics
Vessel Age
Vessel Flag State and Safety Regime
Maintenance
Vessel Speed

External Factors Traffic Density and distribution
Waterway geometry
Depth
Weather (Visibility, wave, ice, darkness, etc.)
Hydrodynamic Effects (e.g., Tidal, Bank Effect)
Support Availability (VTS, Tugs, TSS, Pilotage, Aids to Navigation, etc.)

scales, and accuracy. Binning of spatial data into a
discrete number of cells reduces complexity and en-
ables standardized statistical methods to be applied.
Conventionally, cartesian grid systems, with fixed
x-y dimensions, are widely employed in maritime
studies (Filipiak, Strozyna, Wecel, & Abramowicz,
2018; Wu, Xu, Wang, Wang, & Xu, 2017). However,
such a structure attempts to map a regular lattice
onto a spherical globe, inevitably introducing a num-
ber of distortions in cell size and shape that could
limit the validity of analysis (Battersby et al., 2016).
Within this study, a form of equal-area, hexagonal,
and global tessellation is implemented known as the
Discrete Global Grid System (DGGS) (OGC, 2019).
The final data set should then be quality checked to
identify and correct any missing or spurious values.

3.2. Step 2: Data Preparation

At this juncture there are two methods through
which to frame the problem, namely regression and
classification. If taken as the number of incidents per
year, the relative sparsity of incidents means that in
any individual waterway almost all records will take
the form of 1 or 0. For example, there are few loca-
tions where multiple collisions of commercial vessels
happen every year. As a result, classification models
may be better suited, and have been implemented in
this case study. Each DGGS cell is sampled on ac-
cident occurrence at different temporal scales. The
data have also been aggregated annually, but also
compared by month to test the importance of sea-
sonal factors. For example, the occurrence of an ac-

cident in a cell in one month but not the other 11, is
represented as one positive and 11 negative samples.

3.3. Step 3: Machine Learning Model
Development

The prepared data set consists of a number of ex-
ploratory features, and a binary label of accident oc-
currence or not occurrence. The data set is randomly
split into a training and testing data set with a ratio of
70% to 30%, respectively. Model development and
tuning is conducted utilizing the training data set and
evaluated on the test set.

Classification algorithms have a natural tendency
toward the majority class, incorrectly treating the mi-
nority class as noise (Leevy, Khoshgoftaar, Bauder,
& Seliya, 2018). Strategies to redress this include
data rebalancing, the use of class distribution sen-
sitive models, and the use of cost-sensitive learning
approaches. In this study, a powerful technique to
generate realistic new samples to balance the train-
ing data sets called Synthetic Minority Oversampling
Technique (SMOTE) (Chawla et al., 2002) is used.
As shown in Equation 1, SMOTE searches k-nearest
minority neighbors of each minority instance (Xi),
selecting one of the neighbors as a reference point
(XKNN) and generating a new value (Xnew) by multi-
plying the difference with a random value, r, between
0 and 1 (r).

Xnew = Xi + (XKNN − Xi) × r. (1)

There are a significant number of possible
machine learning algorithms suitable for classifi-
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2298 Rawson, Brito, and Sabeur

cation. This work implements four that have been
shown to achieve good performance in previous
studies, namely Logistic Regression, Support Vector
Machines (SVM), Random Forest, and Gradient
Boosted Trees. Each algorithm has hyperparam-
eters which impact prediction performance and
require tuning by iteratively retraining the model
with different input hyperparameters and comparing
performance. The best performing model is then
chosen for further evaluation and implementation
using the test data set.

3.3.1. Logistic Regression

Logistic Regression has been utilized by many
for maritime risk modeling due to its suitability of
using multiple independent variables, greater trans-
parency, low computational requirements, and capa-
bility to provide a probabilistic output between 0 and
1 (Jin et al., 2019; Knapp et al., 2011; Rezaee et al.,
2016). Independent variables X (x1, x2, x3…) explain
a binary outcome yi, where yi is 1 if an accident oc-
curs, otherwise yi is 0:

Logit (pi) = β0 + β1x1 + · · · + βkxk. (2)

Where Logit(pi) is the logit transformation of the
odds and β0 and βn are the bias and feature coeffi-
cients respectively, and can be rewritten as:

Pi = eβ0+ β1x1+···+βkxk

1 + eβ0+ β1x1+···+βkxk
. (3)

3.3.2. Support Vector Machines

An SVM can perform linear and nonlinear clas-
sification by constructing a hyperplane or set of hy-
perplanes in high dimensional space to maximize the
margin between training examples (Kecman, 2005).
A linear SVM’s decision function is created from the
feature weights vector (w) plus a bias term (b):

wT X + b = 0. (4)

To maximize the margin, it is necessary to min-
imize the weight vector by solving the optimization
problem of: minimize

w,b

1
2 wT w

subject to yi
(
wT xi + b

) ≥ 1 for i = 1, 2, . . . , m. (5)

In cases where the data are not linearly sepa-
rable, the hyperplane margins can be made soft. In
addition, it is possible to apply a kernel function to
transform the data into a higher dimensional space,
where it is linearly separable.

3.3.3. Random Forest

Random Forests develop an ensemble of de-
cision trees and has attractive properties such as
training speed and robustness when using high-
dimensional and unbalanced data sets (Brieman,
2001). Decision trees are constructed in a top-down
recursive manner that partitions the data into dif-
ferent groups. At each step, a feature k is split by
a threshold value tk so as to maximize the purity of
each subset such that each node is as homogenous as
possible. The cost function (J) that is optimized can
be represented as below, where G and m represent
the impurity and number of instances of each subset,
respectively.

J (k, tk) = mleft

m
Gleft + mright

m
Gright. (6)

Gini impurity (G) is used to measure the pro-
portion of training instances that belong to the same
class, where pi,k is the ratio of class k among the train-
ing instances in the i-th node.

Gi = 1 −
n∑

k = 1

pi,k
2. (7)

Decision trees are prone to overfitting and ran-
dom forest introduces several features (Breimen,
2001). First, bagging (bootstrap aggregating) involves
the training data set being sampled with replacement.
Second, randomly selecting attribute variables when
splitting the data set. This leads to decorrelation of
each model. The model prediction is the aggregated
majority decision of the ensemble of individual trees.

3.3.4. Gradient Boosted Trees (XGBoost)

Overfitting of decision trees can also be ad-
dressed through boosting, which generates an ensem-
ble of weaker models that seek to correct the residual
errors in previous models to create a stronger clas-
sifier (Friedman, 2001). New models are iteratively
trained on the gradient of the loss function through
gradient descent. For training data xi and labels yi,
a tree ensemble model takes the form where K is the
number of trees, f is a function in the functional space
F of the set of all possible trees. The prediction scores
of each tree are summed so as to reach a final score
and the predicted value (ŷi).

ŷi =
K∑

k=1

fk (xi) , fk ∈ F. (8)
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Spatial Modeling of Maritime Risk Using Machine Learning 2299

In order to learn the functions that describe the
structure of the tree and leaf scores, an additive strat-
egy is undertaken to sequentially add trees and fix the
errors in what has been learnt. The prediction value
at step t is given as y ˆi(t), with n number of predic-
tions, then at each stage of training we want to add
the tree that optimizes a regularized objective func-
tion where l is the loss function between prediction
y ˆand target y. A regularization term (�) is used to
prevent overfitting and measures the complexity of
the model, consisting of T as the number of leaves in
a tree, the vector of leaf scores w, complexity param-
eter γ and λ as the parameter to scale the penalty.

obj(t) =
n∑

i=1

l
(

yi, ŷ(t−1)
i + ft (xi)

)
+ � ( ft ) + constant, (9)

where

� ( f ) = γ T + 1
2
λw2. (10)

Through second order Taylor expansion, where
gi and hi are the first and second order gradient statis-
tics of the loss functions, respectively, and removing
the constants, the specific objective at step t becomes
as presented in Equation 11.

obj(t) =
n∑

i=1

[
gi ft (xi) + 1

2
hi f 2

t (xi)
]

+ � (ft ) . (11)

The optimal weights and tree structure functions
are computed using Equations 12 and 13, respec-
tively:

w∗
j = Gj

Hj + λ
, (12)

obj∗ = −1
2

T∑
j = 1

G2
j

Hj + λ
+ γ T. (13)

Finally, each tree is optimized one level at a time,
splitting a leaf with the score it gains defined in Equa-
tion 14, namely, the score on the left leaf, the score
on the new right left, the score on the original leaf,
and regularization on the additional leaf. If the gain
is smaller than γ , then the branch should not be split.
The gain for each feature indicates its relative con-
tribution toward the model making accurate predic-
tions, therefore implying its importance.

Gain = 1
2

[
G2

L

HL + λ
+ G2

R

HR + λ
− (GL + GR)2

HL + HR + λ

]
− γ (14)

Extreme Gradient Boosting (XGBoost) intro-
duces several innovations including parallel learning
to improve performance, while being computation-
ally less costly and therefore fast (Chen & Guestrin,
2016). In addition, XGBoost utilizes the techniques
of shrinkage and subsampling to prevent overfit-
ting, the former reducing the influence of each tree
through training, and the latter training on a random
subset of data columns. XGBoost has been shown
to have good predictive capabilities in accident pre-
diction, often exceeding the accuracy of other mod-
els (Leevy et al., 2018) in both road transportation
(Parsa, Movahedi, Taghipour, Derrible, & Moham-
madian, 2020; Shi, Wong, Li, Palanisamy, & Chai,
2019; Wang et al., 2019) and maritime risk (Adland
et al., 2021; Jin et al., 2019). It has also been shown to
be highly efficient and therefore scalable to massive
data sets (Leevy et al., 2018), which is a significant
advantage when analyzing large maritime traffic data
sets.

3.4. Step 4: Results Evaluation and
Implementation

Multiple performance measures for machine
learning classification algorithms are available.
These include model accuracy, recall (ratio of true
positives to false negatives and true positives), speci-
ficity (ratio of true negatives to true negatives and
false positives), precision (ratio of true positives
to true positives and false positives), and F1 score
(harmonic mean of precision and recall). In this
study, the Area Under Curve (AUC) of the Receiver
Operating Characteristics (ROC) Curve is used as
the primary performance measure. The ROC curve
plots the true positive rate (recall) against the false
positive rate (1 – specificity). The resulting score
measures the model’s ability to separate positive and
negative samples. A score of 0.5 indicating random
performance and a score of 1.0 indicating perfect
performance.

Predicted class probabilities need to be cali-
brated as upsampling the minority class through
SMOTE causes high probabilities for the majority
class. This can be corrected by adjusting for the ratio
of positive to negative classes in the data (Pozzolo,
Caelen, Johnson, & Bontempi, 2015), where ps is the
probability of selecting a positive or negative sample
and β is the ratio of positive to negative samples dur-
ing sampling.
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2300 Rawson, Brito, and Sabeur

Calibrated P = βps

βps − ps + 1
. (15)

Following this the probability of accidents in
each cell can be displayed, and the relative signifi-
cance of each feature to accident occurrence consid-
ered.

4. UNITED KINGDOM EEZ CASE STUDY

4.1. U.K. Strategic Management of Vessel Safety

The Maritime and Coastguard Agency (MCA)
is responsible for managing the safety of shipping in
U.K. waters. The MCA must ensure that existing wa-
terways are safe and that any proposed future de-
velopments do not compromise the safety of navi-
gation. At a regional or local level, risk assessments
are also required by developers for offshore wind
farms (MCA, 2021) and oil and gas infrastructure
(DECC, 2012). For U.K. ports and harbors, the Port
Marine Safety Code (PMSC), states that a risk assess-
ment should “ensure that marine risks are formally
assessed and are eliminated or reduced to the lowest
possible level” (DfT, 2016, p. 5). Such activities are
hampered by the scale of the task, with the United
Kingdom responsible for more than 10,000 miles of
coastline and two million square miles of sea. As a
result, there is no overarching and holistic maritime
risk assessment for U.K. waters utilized by the MCA.
To address this, the methodological framework de-
veloped in Section 3 is evaluated within the context
of the U.K.’s EEZ in the following section.

4.2. Data sets

In this case study a spatial model is constructed
using DGGS at resolution 11 (Barnes, 2016), which
consists of 2,941 hexagonal cells (excluding those en-
tirely on land) each with an area of 290 km2 and a di-
ameter of 22 km. This resolution was found to exhibit
a balance between spatial precision and real-world
implementation, providing similar cell sizes as used
in other studies. However, the approach described
above can be conducted at any resolution, utilizing
a finer or coarser spatial scale as required.

4.2.1. Vessel Traffic

Anonymized monthly AIS data in the United
Kingdom for 2017 is available from the Marine Man-

agement Organization (MMO) in ESRI shapefile
polylines format (MMO, 2014). These tracks have
been grouped into unique daily vessel movements
and annualized for each grid cell for each vessel
type utilizing a spatial join (see Fig. 2). Within the
MMO data set, vessels are classified into 11 type cate-
gories based on their AIS message information. Ves-
sels have been recategorized into five principal types
based on their size and purpose (Table III). Some
vessel types have been overwritten based on their op-
erational activities, for example freight ferries and oil
and gas supply vessels are described as cargo vessels
but have been assigned passenger and tug and service
vessels, respectively.

4.2.2. Incident Data

Incident data were provided by the U.K.’s Ma-
rine Accident Investigation Branch (MAIB) under a
Freedom of Information Request for the years 2010–
2020. The data have been filtered to the U.K. EEZ
and filtered to collisions (n = 1,226) and groundings
(n = 901), shown in Fig. 3. The same vessel type cat-
egorizations shown in Table III have been applied.
While every effort has been made to ensure the ac-
curacy of the underlying accident database, several
examples were found of erroneous locations assigned
to accidents. Where these have been identified the in-
cident attributes were corrected manually, however,
we must accept some degree of uncertainty in the
quality of the underlying accident data sets which
have been commented on previously (Hassel et al.,
2011; Qu et al., 2012).

4.2.3. Other Data Sets and Feature Engineering

Based on the risk factors identified in Table II,
the following model features were developed (Figs. 4
and 5):

(1) Annual Vessel Movements for Vessel Class I
(n): as described in Section 4.2.1.

(2) Annual Vessel Movements for all other Vessel
Classes (n): collision incidents would include
collisions between the target vessel type and
other vessel types.

(3) Average Depth of grid cell (meters): developed
as part of the United Kingdom’s renewable en-
ergy atlas (https://www.renewables-atlas.info/)
and indicates increased probability of encoun-
tering shallow waters.
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Spatial Modeling of Maritime Risk Using Machine Learning 2301

Fig 2. Vessel traffic movements by vessel type

Table III. Vessel Categories

Vessel Category MMO Vessel Types

Commercial (Dry or liquid bulk) Cargo (*), Tankers
Passenger (Cruise Ships and

Ferries)
Passenger Vessels, high speed craft (*).

Fishing Fishing
Recreational (Leisure) Sailing and Pleasure Craft
Tug and Service Craft Cargo (*), Unknown, Port Service Craft, Vessels engaged in dredging or underwater operations, high

speed craft (*), military or law enforcement.

Note: * indicates some vessels split into different categories.

(4) Mean Wind Speed (m/s) and Mean Signifi-
cant Wave Height (meters): obtained from
the EU Copernicus earth observation system
(CERSAT-GLO-REP_WIND_L4-OBS and
GLOBAL-REANALYSIS-WAV-001-032).
Data consist of a NetCDF format grid that
contained hourly and monthly values for
2017, which are aggregated. Feature indicates
presence of metocean factors which might
compromise ship handling performance.

(5) Mean Spring Tidal Current (knots): developed
as part of the United Kingdom’s renewable en-
ergy atlas (https://www.renewables-atlas.info/)
and indicates presence of hydrodynamic fac-
tors which might increase navigational com-
plexity.

(6) Distance from Shore (km) and Inland Wa-
terways (binary): calculated for each DGGS
cell using a spatial query from the GADM
world landmass shapefile under free academic
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2302 Rawson, Brito, and Sabeur

Fig 3. Historical Accidents (2010-2020)

license (https://gadm.org/download_world.
html). Feature indicates relative navigational
complexity of a waterway and distance to
shore.

(7) Average vessel density (0 –1): the proportion of
navigable waters in a cell which has high den-
sity traffic. A 1,000 m high resolution grid was
generated of the entire study area, and the to-
tal number of vessel transits calculated per grid
cell. Where the number of transits was greater
than 100/year, this cell was classed as high den-
sity (N100). The average density of each DGGS
cell was then calculated and compared against
the percentage of that cell which is not-land
(PArea). Feature indicates presence of major
shipping routes or concentrated traffic flows,
which might increase the likelihood of vessel
interactions.

Density = N100

PArea
(16)

(8) Presence or absence of major ports (binary):
The Department for Transport publishes an-
nual statistics for what are classed “major” or
“minor” ports in the United Kingdom (DfT,
2020). All 53 major ports were located as a five
nautical mile circular buffer, with the presence
or absence of a port within a DGGS cell taken
as a feature. Feature indicates locations of in-
creased navigational complexity and vessel ac-
tivity.

(9) Presence or absence of major shipping routes
(binary): Feature indicates the presence of
IMO mandated traffic schemes as identified
from the relevant nautical publications.

4.3. Model Development

Given the identified model features, the process-
ing steps identified in Section 3 are undertaken. First,
the data set is split into a training and testing data
set with the ratio of 70:30. Second, each spatial unit
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Fig 4. Model features (1).

was resampled using expected annual and monthly
accident frequencies to form a classification prob-
lem. For example, if during the 10 years of accident
data, one incident occurred in a grid cell, this could
be expressed as one positive sample and nine nega-
tive samples. It was necessary to undertake this re-
sampling after splitting into train and test data sets in
order to prevent identical samples appearing in both
data sets. Third, the data set was split into 12 different
implementations, six collision, and six grounding im-
plementations for each of the five vessel categories
and a combined total. Fourth, positive and negative
samples in the training data set were balanced using
SMOTE.

Each of the four algorithms described in Sec-
tion 3.3 are implemented using the Scikit-Learn and
XGBoost python libraries. Each model was trained
independently to reflect the different factors that
might influence a commercial vessel as opposed to a
fishing vessel, and a collision as opposed to a ground-
ing. Hyperparameter tuning was conducted using a

parameter grid with randomized search using 25 it-
erations with five-fold cross validation used to de-
termine the optimal parameters. Each model was as-
sessed to maximize the AUC of the ROC curve. The
best model in each case was then used on the set aside
test set to evaluate their effectiveness. The models
were developed using aggregated annual data sets
and monthly data sets, evaluate the significance of
temporal factors.

4.4. Results

4.4.1. Algorithm Performance

Fig. 6 compares the accuracies achieved by each
of the machine learning algorithms using the same
features and general methodology. Of the 12 mod-
els, XGBoost exceeded Logistic Regression and a
Linear SVM in all 12, and Random Forest in 75%
of cases. This supports the findings of other studies
that XGBoost is a powerful multi-application ma-
chine learning model that achieves high performance

 15396924, 2022, 10, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/risa.13866 by B

ournem
outh U

niversity T
he Sir M

ichael C
obham

 L
ibrary, W

iley O
nline L

ibrary on [15/11/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



2304 Rawson, Brito, and Sabeur

Fig 5. Model features (2).

(Adland et al., 2021; Jin et al., 2019; Wang, Deng, &
Wang, 2020). Some have argued that logistic regres-
sion models will rarely perform as well given their in-
herent statistical assumptions and static relationships
between variables, but their greater transparency can
be an advantage (Adland et al., 2021). Linear SVM’s
performed marginally better than Logistic Regres-
sion but did not achieve the performance of the tree-
based algorithms. Random Forest by contrast was
consistently marginally weaker than XGBoost, how-
ever, achieved the highest accuracies in the case of
collision risk for commercial vessels, recreational,
and all vessel types combined.

Fig. 7 further differentiates the XGBoost perfor-
mance scores utilizing the AUC ROC value for ac-
cident type, vessel type and temporal units. All 12
models achieved AUC ROC scores in excess of 0.87,
indicating both an overall strong performance and
which particular model configurations perform more
or less well. First, the model performance is on av-
erage higher for ship groundings as opposed to ship

collisions. This suggests that spatial factors are more
important for ship groundings, which given the ne-
cessity for shallow water is to be expected. While
ship collisions often occur in areas of shallow water,
where ship navigation is more constrained and they
navigate closer together, they can also occur offshore
in deep water.

Second, model performance varied significantly
by vessel type. For example, fishing vessels obtained
the lowest scores and may be due to underrepresen-
tation of their movements as they are not required
to carry AIS. While this is also true for recreational
craft, their activities are much more concentrated in
specific regions such as the Solent and are therefore
more predictable.

Third, in most cases, aggregating the data into
annualized Figs. reduced performance as opposed to
using monthly figures (Fig. 7). Monthly figures al-
low for temporal variations in vessel activity and
weather conditions to be captured, which would oth-
erwise be lost. Furthermore, providing monthly fig-
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Fig 6. Comparison of algorithm performance.

Fig 7. XGBoost performance between annualized and monthly
data sets.

ures increases the sample size and training data by
12, likely improving performance. A notable excep-
tion is recreational craft collision, which while highly
seasonal, did not achieve as high performance as an-
nualized figures.

4.4.2. Implementation

Given the consistently superior performance of
XGBoost, the trained models utilizing this algo-
rithm have been implemented in order to generate
risk maps for collision and grounding of different
vessel types. The annualized collision and ground-
ing frequencies for each vessel type are shown in
Figs. 8 and 9, respectively. Several observations can
be made. First, the accident data presented in Fig. 3
show that accident distribution is not uniform with a
small sample size, and therefore there are large re-
gions where no accidents have occurred. By contrast,
the trained models have both correctly learnt which
locations have frequent accidents and identified re-
gions where it predicts could have accidents in the
future, given the presence of certain risk factors.

Second, for some vessel types the risk is highly
concentrated in specific waterways. For example, pas-
senger vessel collisions and groundings are shown
to be most likely in ferry ports such as Southamp-
ton/Portsmouth, Liverpool, Belfast, and inland wa-
terways such as the Thames. Tug and service vessels
are highly concentrated in ports and harbors as they
include tugs and pilot vessels, but the risk of collision
involving North Sea oil and gas fields is evident in
Fig. 8. The risks associated with recreational craft are
concentrated inshore near popular cruising destina-
tions such as the Solent.

Third, the distribution of risk for groundings is
much more concentrated inshore than for collisions,
given the significance of water depth in hazard occur-
rence. However, the model has identified some wa-
terways further offshore, such as within the Thames
Estuary and Dover Straits which contain numerous
sand banks where historical ship groundings have oc-
curred.

4.4.3. Variable Importance

Table IV compares the XGBoost feature impor-
tance rankings for collision and grounding between
the vessel types. First, the overwhelmingly most im-
portant feature is distance from shore, and it can
be seen in Fig. 3 that the majority of accidents are
coastal. While other types of maritime accident do
occur offshore, such as sinkings and fires, collisions
and groundings are principally near shore hazards.
As depths of water are averaged per cell, some shal-
low water shoals may be underrepresented contribut-
ing a minor influence on the model.

Second, the frequency of vessel movements
is a key contribution to accident frequency. The
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2306 Rawson, Brito, and Sabeur

Fig 8. Predicted collision frequency using XGBoost.

statistical relationship between accidents and vessel
movements have been challenged by some (Maza-
heri et al., 2014) but supported by others to varying
degrees of significance (Bye & Aalberg, 2018; Raw-
son & Brito, 2021). However, the analysis shows that
most accidents occur in the busiest locations such as
ports. In addition, the density of traffic increases the
proximity between vessels and has an influence on
collision risk for some vessel types. It is interesting
that the presence of noncommercial traffic is a more
significant contributor to collision risk for commer-
cial and passenger vessels, suggesting that these ves-
sel types are more likely to collide with other vessel
types than similar vessels.

Finally, the influence of metocean conditions
such as wind, wave, and tide are among the least im-
portant features. This is contrary to the findings of
other works that metocean features are critical for
predicting certain accident types such as insurance
claims (Adland et al., 2021), hurricane impacts (Raw-
son et al., 2021), and fishing vessel casualties (Rezaee

et al., 2016). There are two likely reasons for this dif-
ference. First, the aforementioned works include a
variety of other hazards such as capsize or cargo dam-
age which are much more related to weather con-
ditions than collisions or groundings, which are far
more commonly associated with human error. Sec-
ond, by aggregating the metocean conditions into
monthly and annual averages, the most exposed lo-
cations are typically furthest from shore where acci-
dents are much less likely.

5. DISCUSSION AND FUTURE RESEARCH
DIRECTIONS

The case study demonstrates that a machine
learning approach to map navigation safety is a
powerful and effective tool for strategic maritime
risk assessment. In particular, this approach has sev-
eral attractive qualities over conventional methods,
which make them well suited for practical imple-
mentation as a decision support tool for navigational
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Fig 9. Predicted grounding frequency using XGBoost.

authorities. First, the proposed model provides a high
resolution, standardized, and visual tool for decision-
makers to effectively plan the safety of navigation
between different waterways. Coastal states have an
obligation to assess the degree of risk within their
waterways and determine the requirement for risk
control measures (IMO, 2004). These measures can
be expensive, such as Emergency Towage Vessels
(ETVs) which cost tens of millions of pounds (Trans-
port Committee, 2011) and require both justification
and allocation to the regions where they would be
most effective. Furthermore, marine spatial planning
of new developments such as offshore wind farms
to deconflict with maritime risk can be more effec-
tively undertaken. A national, data-driven risk map
can support these activities, providing an important
visual appreciation of the spatial distribution of risk
(Hoorn & Knapp, 2015). Second, the model can be
quickly and cost effectively updated with new traf-
fic conditions at regular intervals without the need to
commission new studies, overcoming a major limita-

tion of conventional models (EMSA, 2018). Further-
more, the model can be tested with future case sce-
narios by adding additional shipping routes or miti-
gation measures and evaluating the impact on risk.

Whist this case study has shown significant
promise in achieving these goals, several limitations
and areas of further work remain. First, there are
challenges associated with the availability and repre-
sentativeness of the training data (Guikema, 2020).
For example, accidents are underreported (Hassel
et al., 2011; Qu et al., 2012) and not all risk factors
identified as important (Table II) can be easily quan-
tified into aggregated spatial models. Furthermore, a
machine learning approach cannot predict accidents
for which there are no previous examples. For exam-
ple, allisions between commercial ships and offshore
wind farms is a credible hazard (MCA, 2021) but is
absent from the training data.

Second, only a single spatial scale of assessment
has been utilized for model development. Aggre-
gating data into spatial units improves the scalabil-
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ity of subsequent analysis but can lead to statistical
challenges associated with the Modifiable Areal Unit
Problem (MAUP) (Openshaw, 1984; Rawson et al.,
2019). While a spatial data structure such as a DGGS
inherently supports multiresolution analysis, the in-
fluence of changing resolutions on machine learn-
ing model performance requires further exploration.
Furthermore, it is likely that many features exhibit
positive spatial autocorrelation whereby risk is clus-
tered into specific waterways. To support model de-
velopment and integration of massive data sets, this
work has aggregated data into discrete spatial units
without regard for the relationships between neigh-
boring cells. Further work could be undertaken to
better understand these spatial and statistical rela-
tionships.

Finally, while a strategic maritime risk map is
valuable to decisionmakers, a tactical decision sup-
port tool could be envisaged which identifies risk in
real-time to enable coastguards to intervene to pre-
vent an accident. In such a case, the model would
be trained on individual ship positions or transits
and the specific conditions that the vessel is exposed
to (Adland et al., 2021; Rawson et al., 2021). Fur-
thermore, the characteristics of each vessel, such as
age, flag state, or size, could be included as new fea-
tures in the model development (Jin et al., 2019).
However, given the requirement for massive ves-
sel traffic, metocean, and other data sets to achieve
this, a big data processing solution would be re-
quired (Abualhaol, Falcon, Abielmona, & Petriu,
2018; Lensu & Goerlandt, 2019). While some work
has considered the application of architectures such
as Apache Spark or Hadoop for maritime risk anal-
ysis (Chatzikokolakis, Zissis, Vodas, Spiliopoulos, &
Kotopoulos, 2019; Filipiak et al., 2018; Zhang, Meng,
& Fwa, 2019), further research is required to inte-
grate machine learning processes with big data infras-
tructure for maritime risk assessment.

6. CONCLUSIONS

Spatial maritime risk assessments can support
decisionmakers by comparing and monitoring the
risk profile between different waterways and en-
abling the targeted deployment of risk mitigation.
However, previous risk models have been criticized
due to their significant cost, methodological assump-
tions, and limited scale. Within this article, a method-
ological framework utilizing machine learning mod-
els to map the risk of collisions and groundings
across the United Kingdom has been presented and
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tested. The results demonstrate that a data process-
ing pipeline using a DGGS, combined with a ma-
chine learning algorithm can predict which areas of
the United Kingdom are likely to experience mar-
itime accidents to a high degree of accuracy. Further-
more, the model is able to assess the relative risk of
regions where no historical accidents have previously
occurred, overcoming challenges with conventional
quantitative models.

This work demonstrates how heterogenous spa-
tial data sets such as bathymetry, vessel traffic, meto-
cean, and accidents can be effectively integrated into
a common spatial model, overcoming the static na-
ture of previous works (Jin et al., 2019). While many
of these data sets are aggregated, by differentiating
between monthly and annualized samples, the model
performance is shown to be more effective with a
finer temporal resolution. Furthermore, the use of
XGBoost is shown to have consistently greater pre-
dictive performance than alternative machine learn-
ing algorithms. From these outputs, the contribution
of different risk factors is discerned, providing ad-
ditional transparency as to how the model is devel-
oped. Finally, the practical and operational benefits
to coastal states and navigational authorities of im-
plementing such a strategic risk tool are described.
High resolution, visual and automated risk assess-
ment tools can support decisionmakers with better
managing the safety of navigation and reducing the
risk of loss of life and pollution at sea.
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