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Abstract

This paper considers a massive multiple-input multiple-output (MIMO)
uplink system in correlated Rayleigh fading channels. A transmitter with
two antennas needs to send data timely to a base station with a large
number of antennas. We assume the channel coefficients keep constant
during two consecutive time slots and change independently in the following
two successive time slots. We construct a Riemannian-distance (RD)
based noncoherent detector for such a system. Also, we propose a novel
noncoherent parametric space-time coding method. We first attain the
closed-form solutions of the optimal sub-constellation structures for fixed
modulation orders with the max-min rule. Then, we determine the optimal
modulation order for each sub-constellation. The analytical results show
that our proposed scheme can attain a larger RD distance than the existing
massive uniquely factorable constellation coding (MUFC) scheme. Further,
we illustrate that our proposed coding scheme enables a low-complexity
RD decoding algorithm. Simulation results show that our proposed scheme
performs better than the current phase shift keying modulation scheme and
MUFC scheme.
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1. Introduction

The massive multiple-input multiple-output (MIMO) technique has
attracted significant attention from the industry and academics due to its
high spectral and energy efficiency [1]. It is widely considered one of the
fundamental technologies for fifth-generation (5G) wireless communications.
Especially, massive MIMO is regarded as a promising contributor to ultra-
reliable low-latency communication (URLLC) [2], which is a crucial feature
brought by 5G; URLLC will be used in mission-critical communications, like
reliable remote robots. For critical use cases, it is anticipated to achieve a
probability of error down to 10−5 to 10−9 and an air interface latency down
to 1ms in a single transmission with tens of bytes long [3]. Due to the
strict constraint on latency and reliability, it requires a reevaluation of the
current physical layer design approaches. Among them, the short data packet
transmission is considered to be the main feature that needs to be tailored
to the physical layer for URLLC [4]. With reliable and quasi-deterministic
links, massive MIMO systems are expected to be the main enabler for the
transmission of the short data packet. Nevertheless, the benefits of massive
MIMO are conditioned on the acquisition of the instantaneous channel
state information (CSI), particularly at the massive base station (BS) [2].
For coherent training-based signaling schemes, the transmitter requires to
transmit pilot sequences to the BS periodically [1, 5]. The BS can estimate
the instantaneous CSI with simple linear estimators, like the least square and
linear minimum mean square error method [5]. Then, the BS can decode the
following data symbols by regarding the estimated CSI as the accurate CSI.
With such a scheme, the massive MIMO can be exploited for URLLC under
low-mobility conditions [2]. However, the number of coherent time slots in
high mobility conditions is limited. There will be not enough coherent time
slots for the transmission of data symbols. Moreover, the usage of pilot
sequences may introduce a certain latency and training overhead [6].

As an alternate method, noncoherent transmissions have regained the
attention of researchers, in which neither the transmitter nor the receiver
requires instantaneous prior knowledge of CSI [7]. Over the last two decades,
considerable efforts have been dedicated to noncoherent coding schemes in
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typical MIMO systems with fewer antennas at both the transmitter and
receiver ends [8, 9, 10, 11]. These work mainly focused on unitary space-time
code designs since unitary constellations are optimal when the signal-to-noise
ratio (SNR) is high or the number of coherent time slots is large. With the
advent of massive MIMO technology, some works have initially reconsidered
the noncoherent constellation design criteria [12, 13, 14, 15, 16, 17, 18].
In particular, the favorable propagation condition of a large number of
antennas is widely used in signal optimization criteria and constellation
design [12, 13, 14, 15, 16, 17, 18]. In [12, 13, 18], noncoherent space-
time modulations are proposed for multi-users by using PSK modulations
methods. In [15, 16, 17], one-slot symbol-by-symbol detection with pulse
amplitude modulation (PAM) constellations is used to convey information
bits. Unfortunately, the symbol-by-symbol detection scheme cannot leverage
the transmitted signal’s phase to convey information, resulting in low spectral
efficiency. Motivated by this, in [13], based on the Riemannian distance (RD)
criterion, a massive uniquely factorable constellation (MUFC) is exploited
to convey information bits during two consecutive coherent time slots in a
massive single-input multiple-output (SIMO) system [13, 14], which conveys
information bits on multidimensional parameter spaces and has shown
superior performance to the PAM constellations, especially in the low SNR
scenario and large antenna region. The proposed MUFC can achieve the
maximum RD distance under the power constraint and transmission rate
based on the max-min rule. However, whether there exist benefits for the
MUFC scheme when using multiple antennas at the transmitter has not yet
been explored. Also, we note that the aforementioned noncoherent coding
work focused on independent and identically distributed (i.i.d.) Rayleigh
fading channels and a few works involved correlated Rayleigh fading channels.

In [17], a modified PAM constellation is proposed for a massive SIMO
system, which shows that the correlation factor can be exploited to improve
the considered system’s error performance with an emphasis on the design
of a novel noncoherent detector and space-time constellation design. In this
paper, we consider a massive MIMO system under correlated Rayleigh fading
channels, in which a transmitter with two antennas sends data timely to a
BS with many antennas. Also, we assume the correlation matrix can keep
constant in multiple time slots. At the same time, the instantaneous CSI
remains unchanged for a coherence time of two symbols, after which they
change into new independent values that keep fixed for the following two
consecutive time slots. Since the orthogonal pilot overhead scales linearly
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with the number of transmitting antennas, there will not be enough time
slots for data symbols with a coherent transmission scheme [19]. For such a
system, we focus on designing a noncoherent detector and constructing the
noncoherent space-time constellations for a massive MIMO system under
correlated Rayleigh fading channels. The main contributions of our work
can be summarized as follows:

1. We propose a modified RD-based detector for a massive MIMO uplink
system under correlated Rayleigh fading channels.

2. A novel noncoherent parametric space-time coding scheme is proposed
based on the max-min rule for RD-based detector. The optimal design
for the proposed detector is theoretically derived and has a larger RD
distance than the existing MUFC coding scheme proposed in [14].

3. A low complexity decoding algorithm is derived for the proposed coding
scheme to decrease the signal processing delay further.

Notations : Matrices are denoted by uppercase boldface characters (e.g., A),
while column vectors are denoted by lowercase boldface characters (e.g., b).
(·)∗, (·)T , (·)H , and | · | denote the conjugate, transpose, conjugate transpose,
and absolute value operation, respectively. tr(·) and ∠(·) denote the trace
and angle operation, respectively. Z denotes the ring of integers; C denotes
the field of complex number. The Euclidean norm is denoted as || · ||. IK
denotes the K ×K identity matrix. <{·} denotes the real part of a complex
number. j ,

√
−1. |S| denotes the cardinality of the constellation S. The

operator diag{a} forms a diagonal matrix out of its vector argument.

2. System Model

In this paper, we consider a massive MIMO uplink system, in which
a transmitter equipped with two antennas timely transmits data to a BS
having M antennas1. We denote the channel between the transmitter and
BS is G ∈ CM×2. In this system, we use the IEEE 802.11n MIMO channel
model [20, 21] represents the diffuse multipath component by a stochastic
process including properties between antenna signals [22], i.e.,

G = (RRx)
1
2 H((RTx)

1
2 )T , (1)

1To extend our proposed scheme to multiple users, one possible way is to resort to the
time-division multiple access scheme, i.e., allocating separate orthogonal time slots to each
user.
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where RRx ∈ CM×M and RTx ∈ C2×2 are spatial correlation matrices for the
receiver antennas and transmitter antennas. H is a matrix of independent
zero mean, unit variance, complex Gaussian random variables. Since the
transmitter only has two antennas, the antenna can always be spaced
sufficiently apart so that they become uncorrelated. Therefore, we assume
RTx = I2. For the sake of notation simplicity, we denote G = R

1
2 H with

R ∈ CM×M and [H]ij ∈ CN (0, 1). We consider a block-fading communication
scenario, in which the channel keeps constant during two time slots, after
which they change into independent values.

Also, we assume R is previously known at the BS, and its eigenvalue
decomposition (EVD) can be expressed as R = URΣUH

R , in which UR ∈
CM×M is a unitary matrix with UH

RUR = URUH
R = IM . Σ = diag{λ} =

diag{λ1, · · · , λM}, λ1 ≥ · · · ≥ λM ≥ 0 is a real diagonal matrix consisting of
all the eigenvalues. R can keep constant during multiple time slots because
it is far less frequently varying than the instantaneous CSI matrix H.

At the transmitter end, a space-time coding matrix S ∈ C2×2 encodes
message with the power constraint E{tr{SHS}} = 1. Then, the received
signal matrix Y ∈ CM×2 at BS can be represented as

Y = R
1
2 HS + N, (2)

where N ∈ CM×2 is the noise matrix, the elements following i.i.d. complex
Gaussian distribution, i.e., [N]ij ∈ CN (0, σ2

n). For such a system, we consider
a noncoherent transmission scheme, focus on recovering the signal matrix
S from the statistical information of Y without the instantaneous CSI H.
First, we take a pre-processing of Y by multiplying Σ−

1
2 UH

R . For the sake of

simplicity, we denote Ỹ = Σ−
1
2 UH

RY. Then, we can rebuild (2) as

Ỹ = H̃S + Ñ, (3)

where H̃ = UH
RH and Ñ = Σ−

1
2 UH

RN. With (3), we can arrive at
Proposition 1.

Proposition 1. With M increasing, in correlated Rayleigh fading massive
MIMO uplink network, we can attain

arg min
A

E
{
‖Ỹ

HỸ

M
−A‖2

F

}
= SHS +

tr{Σ−1}
M

σ2
nI2. (4)
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The proof of Proposition 1 is provided in Appendix A.
Besides, we can use an RD-based detector for (3) based on the least square

(LS) criterion [13, 14]:

Ŝ = arg min
S∈S

1

M
‖Ỹ − H̃S‖2

F

= arg min
S∈S

tr
{ỸHỸ

M

}
+ tr{SHS} − 2 tr{(ỸHỸ

M
SHS)

1
2}. (5)

By jointly considering (4) and (5), a noncoherent RD-based detector for
the massive MIMO uplink communication system under correlated Rayleigh
fading channel can be finally formulated as

Ŝ = arg min
S∈S

tr
{ỸHỸ

M
− tr{Σ−1}

M
σ2
nI2

}
+ tr{SHS}

− 2 tr{
[
(
ỸHỸ

M
− tr{Σ−1}

M
σ2
nI2)SHS

] 1
2}, (6)

where S is the space-time constellation set for S. Based on the max-min
rule, the optimization framework with RD criterion for S can be built as

Ŝ = arg max
S

min
∀Si,Sj∈S,Si 6=Sj

tr{SHi Si}+ tr{SHj Sj} − 2 tr{(SHi SiS
H
j Sj)

1
2}

s.t. E{tr{SHi Si}} = 1,

E{tr{SHj Sj}} = 1. (7)

where Si and Sj are any two distinct entries in S.

3. Parametric Space-time Coding with Alamouti Code structure

This section is dedicated to constructing S for the considered system and
finding the optimal solution to the problem given in (7). Our main idea is
to determine the objective function in (7) explicitly. Then, based on the
max-min rule, we can first determine the optimal constellation structure
for the fixed modulation order scheme. Finally, we can determine the
optimal modulation orders to maximize the objection functions minimum
value further.
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3.1. Parametric Space-time Coding Scheme

The matrix S is constructed by an Alamouti code matrix U with UHU =
UUH = I2 and a power allocation matrix P with P = diag([p1, p2]), p1, p2 ≥ 0

satisfying S = P
1
2 U. First, U can be parameterized as

U =

(
ejφ1 cos(θ) ejφ2 sin(θ)
−e−jφ2 sin(θ) e−jφ1 cos(θ)

)
, (8)

where 0 ≤ φ1, φ2 < 2π, and 0 ≤ θ ≤ π
2
. In (8), cos(θ) and sin(θ) represent

the amplitude information of transmitted symbols in U. Further, we can
rewrite U as

U =

(
ejφ1 0

0 e−jφ1

)(
cos(θ) ejφ sin(θ)

−e−jφ sin(θ) cos(θ)

)
, (9)

where φ = φ2 − φ1 with 0 ≤ φ < 2π. Then, S can be written as:

S =

( √
p1 0
0
√
p2

)(
ejφ1 0

0 e−jφ1

)(
cos(θ) ejφ sin(θ)

−e−jφ sin(θ) cos(θ)

)
. (10)

To ensure the unique identification of S with the RD receiver, SHS should
be uniquely identified. Therefore, diag{[ejφ1 , e−jφ1 ]} can be ignored. Let
a ,
√
p1 and b ,

√
p2, S can be equivalently transformed into

S =

(
a 0
0 b

)(
cos(θ) ejφ sin(θ)

−e−jφ sin(θ) cos(θ)

)
, (11)

where a ≥ 0 and b ≥ 0 under the power constraint E{tr(SHS)} = E{a2} +
E{b2} = 1, 0 ≤ θ ≤ π

2
, 0 ≤ φ < 2π.

Note that when b = 0, the proposed scheme degrades to the MUFC
scheme proposed in the massive SIMO uplink system [14]. In this paper, we
will investigate whether the increased number of transmitter antennas can
improve the coding gain of MUFC.

Let us denote Si ,

(
ai 0
0 bi

)(
cos θi ejφi sin θi

−e−jφi sin θi cos θi

)
and Sj ,(

aj 0
0 bj

)(
cos θj ejφj sin θj

−e−jφj sin θj cos θj

)
. Then, for the objective function

in (7), we can attain tr{SHi Si} = a2
i + b2

i and tr{SHj Sj} = a2
j + b2

j . Besides,
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we have tr{(SHi SiS
H
j Sj)

1
2} = tr{(SjSHi SiS

H
j )

1
2}. Since SjS

H
i SiS

H
j is a two-

by-two semi-positive matrix, we can achieve

tr{(SjSHi SiS
H
j )

1
2} =

√
tr{SjSHi SiSHj }+ 2(det{SjSHi SiSHj })

1
2

=
√

(aibj + biaj)2 + (a2
i − b2

i )(a
2
j − b2

j)Ξ(θi, θj, φi, φj),

(12)

where

Ξ(θi, θj, φi, φj) = cos2 θi cos2 θj+sin2 θi sin
2 θj+2 sin θi cos θi sin θj cos θj cos(φi−φj)

.
Also, we attain

det{SjSHi SiS
H
j } = a2

i b
2
i a

2
jb

2
j . (13)

By combing (12) and (13), the objective function in (7) can be expressed
explicitly,

tr{SHi Si}+ tr{SHj Sj} − 2tr{(SHi SiS
H
j Sj)

1
2}

= a2
i + b2

i + a2
j + b2

j − 2
√

(aibj + biaj)2 + (a2
i − b2

i )(a
2
j − b2

j)Ξ(θi, θj, φi, φj).

(14)

Remark: We observe that when ai = bi and aj = bj, the value of (14)
equals zero. Also, when ai = bj, bi = aj, θi = π

2
− θj and φi = π − φj, the

value of (14) degrades to zero. In other words, when ai > bi, there always
exists a scenario for aj < bj, that has zero RD with ai > bi. In such cases,
the receiver can not distinguish Si and Sj. Given this, we further assume
that a > b in (11) to ensure reliable transmission. Then, by using the polar
coordinate, we further parameterize a ,

√
p cos(τ) and b ,

√
p sin(τ) with

0 ≤ τ < π
4

and p > 0.
Based on the above discussions, we can parameterize our proposed space-

time constellation S as

S =

{
S ∈ S

∣∣∣∣S =
√
p

(
cos(τ) 0

0 sin(τ)

)(
cos(θ) ejφ sin(θ)

−e−jφ sin(θ) cos(θ)

)}
,

(15)

where p ≥ 0, 0 ≤ τ < π
4
, 0 ≤ θ ≤ π

2
, and 0 ≤ φ < 2π. Our aim is to

determine four sub-constellations P , T , Θ, and Φ, correspondingly, where√
p ∈ P , τ ∈ T , θ ∈ Θ and ejφ ∈ Φ that satisfy the constraints in (7).
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3.2. Closed-form Solution of Optimal S
With the parametric structure of S in (15), (14) can be transformed

into (16):

tr{SHi Si}+ tr{SHj Sj} − 2tr{(SHi SiS
H
j Sj)

1
2}

= pi + pj − 2p
1/2
i p

1/2
j

√
sin2(τi + τj) + cos(2τi) cos(2τj)Ξ(θi, θj, φi, φj). (16)

We assume the
√
p, τ , θ, and ejφ are independently chosen from P with

|P| = 2kp , T with |T | = 2kτ , Θ with |Θ| = 2kθ and Φ with |Φ| = 2kφ , where
kp, kτ , kθ, and kφ are the corresponding modulation orders. To achieve the

optimal S, we can instead determine the optimal P̂ , T̂ , Θ̂, and Φ̂. The main
solution is here: first, we will determine the optimal structure of P̂ , T̂ , Θ̂,
and Φ̂ for each scenario and the optimal solution for the achieved minimum
RD. Finally, we will determine the optimal modulation orders of the four
sub-constellations. For the first step, we can attain Proposition 2.

Proposition 2. For fixed kp, kτ , kθ, and kφ, the optimal P follows an

arithmetic sequence with P̂ = {√p0,
√
p0 + ∆p, · · · ,√p0 + (2kp − 1)∆p}

with |P̂| = 2kp and p0 ≥ 0; the optimal T is also an arithmetic sequence
T̂ = {0,∆τ, · · · , τc} with ∆τ = τc

2kτ−1
and |T̂ | = 2kτ , 0 ≤ τc ≤ π

4
; the

optimal Θ follows an arithmetic sequence with Θ̂ = {θ0, θ0 +∆θ, · · · , π
2
−θ0},

∆θ = π/2−2θ0
2kθ−1

, and |Θ̂| = 2kθ (0 ≤ θ0 ≤ π
2
); the optimal Φ satisfies Φ̂ = 2kφ-

PSK. Denote the achieved maximal RD for each set of (kp, kτ , kθ, kφ) is

dR1(kp, kτ , kθ, kφ) , dR1(pi, pj, τi, τj, θi, θj, φi, φj)

, max min
∀Si,Sj∈S,Si 6=Sj

√
tr{SHi Si}+ tr{SHj Sj} − 2 tr{(SHi SiSHj Sj)

1
2}.

The key parameters p0, ∆p, τc, θ0, and d(kp, kτ , kθ, kφ) with optimal sub-
constellations can be determined with closed-form solutions as2:

1. when kτ = 0, kp 6= 0, kθ 6= 0, and kφ 6= 0: τc = 0; θ0 is the solution to

the equation sin(2θ0) sin( π

2
kφ

) = sin(π/2−2θ0
2kθ−1

), p0 = 3
Ω1

with

Ω1 , 3+6(2kp−1) sin(
π/4− θ0

2kθ − 1
)+2(2kp−1)(2kp+1−1) sin2(

π/4− θ0

2kθ − 1
),

2There exist 15 scenarios for possible combinations (kp, kτ , kθ, kφ) since at least one
parameter is a positive integer.
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and ∆p = 2 sin(π/4−θ0
2kθ−1

)
√

3
Ω1

. In such a case, dR1(kp, kτ , kθ, kφ) = ∆p.

2. when kτ = 0, kp = 0, kθ 6= 0, and kφ 6= 0: τc = 0; p0 = 1 and ∆p = 0;

θ0 is the solution to sin(2θ0) sin( π

2
kφ

) = sin(π/2−2θ0
2kθ−1

); In such a case,

dR1(kp, kτ , kθ, kφ) = 2 sin(π/4−θ0
2kθ−1

).

3. when kτ = 0, kp 6= 0, kθ = 0, and kφ 6= 0: τc = 0; θ0 = π
4
; p0 = 3

Ω2
with

Ω2 , 3 + 6(2kp − 1) sin(
π

2kφ+1
) + 2(2kp − 1)(2kp+1 − 1) sin2(

π

2kφ+1
),

and ∆p = 2
√

3
Ω2

sin( π

2
kφ+1 ). In such a case, dR1(kp, kτ , kθ, kφ) = ∆p.

4. when kτ = 0, kp 6= 0, kθ 6= 0, and kφ = 0: τc = 0; θ0 = 0; p0 = 3
Ω3

with

Ω3 , 3 + 6(2kp − 1) sin(
π

2kθ+2
) + 2(2kp − 1)(2kp+1 − 1) sin2(

π

2kθ+2
),

and ∆p = 2 sin( π
2kθ+2 )

√
3

Ω3
. In such as case, dR1(kp, kτ , kθ, kφ) = ∆p.

5. when kτ = 0, kp = 0, kθ = 0, and kφ 6= 0: τc = 0; p0 = 1 and ∆p = 0;
θ0 = π

4
; In such a case, dR1(kp, kτ , kθ, kφ) = 2 sin( π

2
kφ+1 ).

6. when kτ = 0, kp = 0, kθ 6= 0, and kφ = 0: τc = 0; p0 = 1 and ∆p = 0;
θ0 = 0; In such a case, dR1(kp, kτ , kθ, kφ) = 2 sin( π

4(2kθ−1)
).

7. when kτ = 0, kp 6= 0, kθ = 0, and kφ = 0: τc = 0; θ0 = π
4
; p0 = 0 and

∆p =
√

6
(2kp−1)(2kp+1−1)

. In such a case, dR1(kp, kτ , kθ, kφ) = ∆p.

8. when kτ 6= 0, kp 6= 0, kθ 6= 0, and kφ 6= 0: θ0 is the solution

to sin(2θ0) sin( π

2
kφ

) = sin(π/2−2θ0
2kθ−1

); τc ∈ [0, π
4
) is the solution to the

equation cos(2τc) sin(π/2−2θ0
2kθ−1

) = sin( τc
2kτ−1

), and p0 = 3
Ω4

with

Ω4 , 3 + 6(2kp − 1) sin(
∆τ

2
) + 2(2kp − 1)(2kp+1 − 1) sin2(

∆τ

2
),

and ∆p = 2
√
p0 sin(∆τ

2
). In such a case, dR1(kp, kτ , kθ, kφ) = ∆p.

9. when kτ 6= 0, kp = 0, kθ 6= 0, and kφ 6= 0: p0 = 1; θ0 is the

solution to the equation sin(2θ0) sin( π

2
kφ

) = sin(π/2−2θ0
2kθ−1

); τc ∈ [0, π
4
) is

the solution to the equation cos(2τc) sin(π/2−2θ0
2kθ−1

) = sin( τc
2kτ−1

). In such

a case, dR1(kp, kτ , kθ, kφ) = 2 sin(∆τ
2

).

10. when kτ 6= 0, kp 6= 0, kθ = 0, and kφ 6= 0: θ0 = π
4
; τc ∈ [0, π

4
) is

the solution to the equation cos(2τc) sin( π

2
kφ

) = sin τc
2kτ−1

. p0 = 3
Ω4

and

∆p = 2
√
p0 sin(∆τ

2
). In such a case, dR1(kp, kτ , kθ, kφ) = ∆p.
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11. when kτ 6= 0, kp 6= 0, kθ 6= 0, and kφ = 0: θ0 = 0; τc ∈ [0, π
4
) is the

solution to the equation cos(2τc) sin(π/2−2θ0
2kθ−1

) = sin( τc
2kτ−1

). p0 = 3
Ω4

and

∆p = 2
√
p0 sin(∆τ

2
). In such a case, dR1(kp, kτ , kθ, kφ) = 2

√
p0 sin(∆τ

2
).

12. when kτ 6= 0, kp 6= 0, kθ = 0, and kφ = 0: τc = π
4
; p0 = 3

Ω4
and

∆p = 2
√
p0 sin(∆τ

2
). In such a case, dR1(kp, kτ , kθ, kφ) = 2

√
p0 sin(∆τ

2
).

13. when kτ 6= 0, kp = 0, kθ 6= 0, and kφ = 0: p0 = 1 and ∆p = 0;

θ0 = 0; τc ∈ [0, π
4
) is the solution to the equation cos(2τc) sin(π/2−2θ0

2kθ−1
) =

sin( τc
2kτ−1

). In such a case, dR1(kp, kτ , kθ, kφ) = 2 sin(∆τ
2

).

14. when kτ 6= 0, kp = 0, kθ = 0, and kφ 6= 0: p0 = 1 and ∆p = 0; θc = π
4
;

τc ∈ [0, π
4
) is the solution to the equation cos(2τc) sin( π

2
kφ

) = sin τc
2kτ−1

.

In such a case, dR1(kp, kτ , kθ, kφ) = 2 sin(∆τ
2

).

15. when kτ 6= 0, kp = 0, kθ = 0, and kφ = 0: p0 = 1 and ∆p = 0; θ0 = π
4
;

τc = π
4
. In such a case, dR1(kp, kτ , kθ, kφ) = 2 sin(∆τ

2
).

The proof of Proposition 2 is provided in Appendix B.

3.3. Optimization of Cardinality for Each Sub-constellation

After that, the optimal constellation size can be further attained by

{k̂p, k̂τ , k̂θ, k̂φ} = arg max
kp,kτ ,kθ,kφ

dR1(kp, kτ , kθ, kφ)

s.t. kp + kτ + kθ + kφ = 2L.

kp ∈ Z+
0 , kτ ∈ Z+

0 , kθ ∈ Z+
0 , kφ ∈ Z+

0 . (17)

where Z+
0 denotes the set for non-negative integers. L is the data transmission

rate per channel use, i.e. L = log2 |S|
2

. An exhaustive search scheme can
efficiently solve this optimization problem. In Table 1, we provide the optimal
cardinality of each sub-constellation and corresponding constellation param-
eters for our proposed coding scheme S. From Table 1, we can observe that
the regular structure of our proposed constellation enables the transmitter
and the receiver to generate a complete constellation of various sizes by just
using 10 parameters, i.e., kp, kτ , kθ, kφ and {p0,∆p, τc,∆τ, θ0,∆θ}, which is a
practical merit for the proposed code.

In Figure 1, we compare the achieved RD of our proposed scheme with
the MUFC scheme under the same data transmission rate. From Figure 1,
it shows that our proposed scheme has a larger RD than the MUFC coding
scheme in [14] when the cardinality of S is larger than 16.
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Table 1: Optimum modulation orders and key parameters for sub-
constellations

L
Optimum

(kp, kτ , kθ, kφ)
Key Parameters in optimal P , T ,Θ,Φ dR1(kp, kτ , kθ, kφ)

0.5 (0, 0, 0, 1) p0 = 1,∆p = 0; τc = 0,∆τ = 0; θ0 = π
4
,∆θ = 0; Φ =BPSK. 1.4142

1 (0, 0, 0, 2) p0 = 1,∆p = 0; τc = 0,∆τ = 0; θ0 = π
4
,∆θ = 0; Φ = 4PSK. 0.7654

1.5 (0, 0, 1, 2) p0 = 1,∆p = 0; τc = 0,∆τ = 0; θ0 = 0.4777,∆θ = 0.6154; Φ = 4PSK. 0.6058
2 (1, 0, 1, 2) p0 = 0.5589,∆p = 0.4529; τc = 0,∆τ = 0; θ0 = 0.4777,∆θ = 0.6154; Φ = 4PSK. 0.4529

2.5 (1, 1, 1, 2) p0 = 0.6728,∆p = 0.3318; τc = 0.4073,∆τ = 0.4073; θ0 = 0.4777,∆θ = 0.6154; Φ = 4PSK. 0.3318
3 (1, 1, 1, 3) p0 = 0.7446,∆p = 0.2576;τc = 0.2996,∆τ = 0.2996; θ0 = 0.6027,∆θ = 0.3655; Φ = 8PSK. 0.2576

3.5 (1, 1, 2, 3) p0 = 0.7902,∆p = 0.2110;τc = 0.2380,∆τ = 0.2380; θ0 = 0.3828,∆θ = 0.2684; Φ = 8PSK. 0.2110
4 (2, 1, 2, 3) p0 = 0.5237,∆p = 0.1343; τc = 0.1718,∆τ = 0.2380; θ0 = 0.3828,∆θ = 0.2684; Φ = 8PSK. 0.1718

4.5 (2, 1, 2, 4) p0 = 0.6342,∆p = 0.1288;τc = 0.1619,∆τ = 0.1619; θ0 = 0.5291,∆θ = 0.1709; Φ = 16PSK. 0.1288
5 (2, 2, 2, 4) p0 = 0.6999,∆p = 0.1044;τc = 0.3745,∆τ = 0.1248; θ0 = 0.5291,∆θ = 0.1709; Φ = 16PSK. 0.1044
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Figure 1: The achieved minimum RD distance compared with [14].

4. Low Complexity RD-based Receiver

The proposed RD-based receiver in (6) needs to calculate the objective
function value 4L times to determine the final result. However, there exists
a low-complexity algorithm.

Let us denote Ψ = ỸHỸ
M
− tr{Σ−1}

M
σ2
nI2 =

(
ψ11 ψ12

ψ∗12 ψ22

)
, ΨH = Ψ. Then

12



the RD-based Receiver can be built as

Ŝ = arg min
S∈S

tr{Ψ}+ tr{SHS} − 2tr{(ΨSHS)
1
2}

= arg min
S∈S

tr{SHS} − 2

√
tr{ΨSHS}+ 2(det (ΨSHS))

1
2 , (18)

where

ΨSHS =

(
ψ11 ψ12

ψ∗12 ψ22

)(
a2 cos2 θ + b2 sin2 θ (a2 − b2)ejφ sin θ cos θ

(a2 − b2)e−jφ sin θ cos θ a2 sin2 θ + b2 cos2 θ

)
.

(19)

Then,

tr{ΨSHS} =
p

2
(ψ11 + ψ22) + p cos(2τ)

[ψ11 − ψ22

2
cos(2θ) + <{ψ12e

−jφ} sin(2θ)
]
,

(20)

det{ΨSHS} = p cos2(τ) sin2(τ)(ψ11ψ22 − |ψ12|2). (21)

Finally, we have

{p̂, τ̂ , θ̂, φ̂} (a)
= arg min√

p∈P,τ∈T ,θ∈Θ,ejφ∈Φ
p− 2

√
p

(
1

2
(ψ11 + ψ22)

+ cos(2τ)
[ψ11 − ψ22

2
cos(2θ) + <{ψ12e

−jφ} sin(2θ)
]

+ sin(2τ)
√
ψ11ψ22 − |ψ12|2

) 1
2

(b)
= arg min√

p∈P,τ∈T ,θ∈Θ,ejφ∈Φ
p− 2

√
p

(
1

2
(ψ11 + ψ22)

+ cos(2τ)

√
(
ψ11 − ψ22

2
)2 + <2{ψ12e−jφ} sin(2θ + η)

+ sin(2τ)
√
ψ11ψ22 − |ψ12|2

) 1
2

(c)
= arg min√

p∈P,τ∈T ,θ∈Θ,ejφ∈Φ
p− 2

√
p

(
1

2
(ψ11 + ψ22) +

√
t21 + t22 cos(2τ − ξ)

) 1
2

,

(22)

13



where tan η = ψ11−ψ22

2<{ψ12e−jφ} , t1 = ψ11−ψ22

2
cos(2θ̂) +<{ψ12e

−jφ̂} sin(2θ̂) and t2 =√
ψ11ψ22 − |ψ12|2, tan ξ = t2

t1
.

We can estimate φ with φ̂ = arg maxejφ∈Φ<{ψ12e
−jφ} from the equality

(a); From the equality (b), we can estimate θ with

θ̂ = arg min
θ∈Θ

∣∣∣∣θ − (
π

4
− 1

2
arctan

ψ11 − ψ22

2<{ψ12e−jφ̂}
)

∣∣∣∣. (23)

From the equality (c), we can first estimate τ with

τ̂ = arg min
τ∈T
|τ − 1

2
ξ|. (24)

and then estimate p with

p̂ = arg min√
p∈P

∣∣∣∣p− (1

2
(ψ11 + ψ22) +

√
t21 + t22 cos(2τ̂ − ξ)

) 1
2
∣∣∣∣. (25)

Based on the above discussion, we can summarize our proposed low-
complexity RD-based receiver as Algorithm 1. With Algorithm 1, we can
attain that the proposed algorithm only needs to calculate 2kp+2kτ +2kθ+2kφ

times, which is of lower complexity than the original receiver built in (6).

5. Simulation Results

We apply an exponential decaying correlation model [23] in our simula-
tions. In detail, the (m,n)-th entry of the correlation matrix of R is generated
by [R]m,n = γ|m−n|, where 0 < γ < 1. The SNR in all simulations is defined

by SNR, E{tr{SHS}}
2σ2

0
.

In this section, we conduct a series of computer simulations to verify
the performance of our proposed scheme further. First, we study the
proposed scheme’s symbol error rate (SER) compared with the MUFC
scheme proposed in [14] at L = 2.5bits per channel use in Figure 2. To make
a fair comparison, we assume the MUFC uses the same RD detector (6) for
decoding. From Figure 2, we can see that the proposed scheme is superior
to the MUFC coding scheme when M is larger than 16 for both γ = 0.1 and
γ = 0.5. Also, the performance gap enlarges when the SNR increases from
10dB to 20dB.
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Algorithm 1 Proposed Low-complexity RD-based Detector

Input: Y, UR, Σ, P̂ , T̂ , Θ̂, and Φ̂.
Output: φ̂, θ̂, τ̂ , and p̂;

1: Calculate Ỹ = Σ−
1
2 UH

RY, Ψ = ỸHỸ
M
− tr{Σ−1}

M
σ2
nI2 = [ψ11, ψ12;ψ21, ψ22].

2: if kφ 6= 0 then

3: φ̂ = arg maxejφ∈Φ<{ψ12e
−jφ};

4: else
5: φ̂ = 0
6: end if
7: if kθ 6= 0 then
8: θ̂ = arg minθ∈Θ

∣∣θ − (π
4
− 1

2
arctan ψ11−ψ22

2<{ψ12e−jφ̂}

)∣∣.
9: else

10: θ̂ = π
4
;

11: end if
12: Calculate t1 = ψ11−ψ22

2
cos(2θ̂) + <{ψ12e

−jφ̂} sin(2θ̂) ,

t2 =
√
ψ11ψ22 − |ψ12|2, and ξ = arctan t2

t1
.

13: if kτ 6= 0 then
14: τ̂ = arg minτ∈T |τ − 1

2
ξ|.

15: else
16: τ̂ = 0;
17: end if
18: if kp 6= 0 then

19: p̂ = arg min√p∈P
∣∣p− (1

2
(ψ11 + ψ22) +

√
t21 + t22 cos(2τ̂ − ξ)

) 1
2
∣∣.

20: else
21: p̂ = 1.
22: end if
23: return φ̂, θ̂, τ̂ , and p̂.
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In Figure 3, we compare our proposed scheme with the scheme proposed
in [12] with M increasing when γ = 0.1 and γ = 0.5, respectively. In [12],

S is constructed by PSK constellation symbols. In detail, S = 1√
2

[
1 x∗

x 1

]
,

where x is randomly chosen from 4L-PSK constellations. For the sake of
fair comparison, we also assume the detector used at the BS for [12] is the
RD detector proposed in (6). From Figure 3, we observe that our proposed
scheme has a significant advantage over the scheme in [12], especially when
the SNR is low.

In Figure 4, we study the SER performance of our proposed scheme when
the correlation factor γ varies from γ = 0.1 to γ = 0.5. Also, we provide
the performance of MUFC [14] and PSK scheme [12] for comparison. In
this figure, M= 128, SNR=10dB, L = 2.5bits/channel use. Figure 4 shows
that the SER of our proposed scheme degrades with γ increasing. This
phenomenon indicates that to extend the work to the case with more than
two transmitter antennas, one possible way is to use antenna selection based
on the knowledge of the correlation coefficient. Also, we can observe that
the SER of our proposed scheme is better than MUFC and PSK scheme.
Also, we note the performance gap with the MUFC scheme decreases with γ
increasing. Finally, in Figure 5, we investigate the SER performance of our
proposed scheme with L varying when M= 128, SNR= 10dB and γ = 0.3.
Since Table 1 shows when L ≤ 2, the MUFC scheme is equivalent to our
proposed scheme, we only provide the results when L ≥ 2.5. From Figure 5,
we can attain that our proposed scheme has a superior error performance to
the PSK modulation scheme proposed in [12] and the MUFC scheme in [14].

In Figure 6, we investigate the diversity gain (the slope of SER curves) of
our proposed scheme through the simulation results. We observe error floors
for our proposed scheme in the high SNR scenario. With M increasing, the
error floors tend to vanish. This phenomenon is mainly because our proposed
scheme relies on the assumption of asymptotic orthogonality property in
massive MIMO systems.

6. Conclusion

In this paper, we have investigated a massive MIMO uplink system
in correlated Rayleigh fading channels, in which a transmitter with two
antennas needs to upload data timely to a BS having a larger number
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of antennas. We have built a modified RD-based detector and a novel
parametric space-time coding scheme for such a system. Analytical results
are derived for optimal constellation structural and optimal modulation
orders. The attained results show that by using more antennas, the RD
can be increased by using more antennas compared with a single antenna.
Also, we have proved that our proposed noncoherent constellation enables a
fast decoding algorithm. Finally, various simulation results have shown that
our proposed scheme performs superior to the MUFC and PSK modulation
systems.
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Appendix A. Proof of Proposition 1

Since

E
{
‖Ỹ

HỸ

M
−A‖2

F

}
= E

{ 1

M2
tr{(ỸHỸ)2} − 2

M
tr{ỸHỸA}+ tr{A2}

}
,

(A.1)

where ỸHỸ = SHH̃HH̃S + SHH̃HÑ + ÑHH̃S + ÑHÑ.
Thus, we can attain

E
{

tr{ỸHỸA}
}

= M tr
{

(SHS +
tr{Σ−1}
M

σ2
nI2)A

}
, (A.2)

E
{

tr{(ỸHỸ)2}
}

= E
{

tr{SHH̃HH̃SSHH̃HH̃S}
}

+ 2E
{

tr{SHH̃HH̃SÑHÑ}
}

+ 2E
{

tr{ÑHH̃SSHH̃HÑ}}+ E
{

tr{ÑHÑÑHÑ}
}

= M2tr{(SHS +
tr{Σ−1}
M

σ2
nI2)2}+Mtr2{SHS}+ tr{Σ−2}tr2(σ2

nI2)

+ 2Mtr{SHS}tr{tr{Σ−1}
M

σ2
nI2}. (A.3)
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Finally, we arrive at

E
{
‖Ỹ

HỸ

M
−A‖2

F

}
= tr

{
(SHS +

tr{Σ−1}
M

σ2
nI2 −A)2

}
+ ∆, (A.4)

where ∆ = 1
M

tr2{SHS}+ 1
M2 tr{Σ−2}tr2(σ2

nI2) + 2
M

tr{SHS}tr{ tr{Σ−1}
M

σ2
nI2}.

When M →∞, we can conclude

arg min
A

lim
M→∞

E
{
‖Ỹ

HỸ

M
−A‖2

F

}
= SHS +

tr{Σ−1}
M

σ2
nI2. (A.5)

This completes the proof of Proposition 1.

Appendix B. Proof of Proposition 2

Let J(kp, kτ , kθ, kφ) , min(pi,τi,θi,φi)6=(pj ,τj ,θj ,φj) tr{SHi Si} + tr{SHj Sj} −
2tr{(SHi SiS

H
j Sj)

1
2}, then, we have dR1(kp, kτ , kθ, kφ) = max

√
J(kp, kτ , kθ, kφ).

For kτ = 0, if τi = τj = τc (τc is a variable within [0, π
4
)), we attain

J(kp, kτ ,kθ, kφ) = min
(pi,θi,φi)6=(pj ,θj ,φj)

pi + pj − 2
√
pipj ×

√
1 + cos2(2τc)(Ξ(θi, θj, φi, φj)− 1), (B.1)

where

Ξ(θi, θj, φi, φj)

= cos2 θi cos2 θj + sin2 θi sin
2 θj + 2 sin θi cos θi sin θj cos θj cos(φi − φj)

(a)

≤ cos2 θi cos2 θj + sin2 θi sin
2 θj + 2 sin θi cos θi sin θj cos θj

(b)

≤ 1, (B.2)

where the equality in (a) holds when φi = φj, the equality in (b) holds when
θi = θj. Therefore, we conclude that when τc = 0, (B.1) can be maximized.
This indicates that using a single antenna is better than using two antennas
when kτ = 0. In such a case, the coding scheme degrades to the MUFC
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scheme proposed in [14], where

J(kp, kτ , kθ, kφ) = min
(pi,θi,φi)6=(pj ,θj ,φj)

pi + pj

−
√

2pipj

√
1 + cos(2θi) cos(2θj) + sin(2θi) sin(2θj) cos(φi − φj). (B.3)

Based on [14], we can attain the results for 1-7 cases in Proposition 2.
For the rest cases, we only need to consider the cases when kτ 6=

0. To determine the optimal S, we first determine the closed-form of
J(kp, kτ , kθ, kφ) when kτ 6= 0, then use the max-min rule to determine the
optimal structure of S.

In line with this, we first consider the case when kφ, kθ, and kp are positive
integers. In such a case, the global minimum value of J(kp, kτ , kθ, kφ) can be
attained by comparing the following five items:

J(pi 6= pj, (τi, θi, φi) = (τj, θj, φj)),

J(pi 6= pj, (τi, θi, φi) 6= (τj, θj, φj)),

J(pi = pj, τi 6= τj, (θi, φi) = (θj, φj)),

J(pi = pj, τi 6= τj, (θi, φi) 6= (θj, φj)),

J(pi = pj, τi = τj, (θi, φi) 6= (θj, φj)).
Since

J(pi 6= pj, (τi, θi, φi) = (τj, θj, φj)) < J(pi 6= pj, (τi, θi, φi) 6= (τj, θj, φj)),

J(pi = pj, τi 6= τj, (θi, φi) = (θj, φj)) < J(pi = pj, τi 6= τj, (θi, φi) 6= (θj, φj)),

J(kp, kτ , kθ, kφ) can be further constrained in the following three items:

J(pi 6= pj, (τi, θi, φi) = (τj, θj, φj)), (B.4a)

J(pi = pj, τi 6= τj, (θi, φi) = (θj, φj)), (B.4b)

J((pi, τi) = (pj, τj), (θi, φi) 6= (θj, φj)). (B.4c)

We observe that the structure of Θ and Φ only affect (B.5) with

J((pi, τi) = (pj, τj) = (pt, τc), (θi, φi) 6= (θj, φj))

= min
pt,τc,(θi,φi) 6=(θj ,φj)

2pt − 2pt ×
√

1 + cos2(2τc)(Ξ(θi, θj, φi, φj)− 1), (B.5)

where pt and τc are variables to be optimized. With the max-min rule, we can
attain that the optimal Θ and Φ should ensure max(θi,φi) 6=(θj ,φi) Ξ(θi, θj, φi, φj)
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is minimal. Similar to the method in [14], we can attain Φ̂ = 2kφ-PSK, Θ̂ =

{θ0 + i∆θ}2kθ−1
i=0 with θ0 (0 < θ0 <

π
4
) being the solution to sin(2θ0) sin( π

2
kφ

) =

sin(π/2−2θ0
2kθ−1

) and ∆θ = π/2−2θ0
2kθ−1

. With the optimal θ0, we attain

max
(θi,φi) 6=(θj ,φj)

Ξ(θi, θj, φi, φj) = cos2(
π/2− 2θ0

2kθ − 1
). (B.6)

Since the structure of T only affects (B.7) with

J(pi = pj = pt, τi 6= τj, (θi, φi) = (θj, φj)) = min
pt,τi 6=τj

2pt − 2pt cos(τi − τj),

(B.7)

we can conclude that the optimal T is an arithmetic sequence. i.e., T =
{0,∆τ, · · · , τc} with ∆τ = τc

2kτ−1
. Then, we can simplify (B.7) as

J(pi = pj, τi 6= τj, (θi, φi) = (θj, φj)) = min
pt

2pt − 2pt cos(
τc

2kτ − 1
), (B.8)

Also, since τc ∈ [0, π
4
), we can simplify (B.5)

J((pi, τi) = (pj, τj), (θi, φi) 6= (θj, φj))

= min
pt

2pt − 2pt ×
√

1− cos2(2τc) sin2(
π/2− 2θ0

2kθ − 1
), (B.9)

By jointly maximizing (B.8) and (B.9) concerning τc, we can attain the
optimal τc by solving (B.10),

J(pi = pj = pt, τi 6= τj, (θi, φi) = (θj, φj))

= J(pi = pj = pt, τi = τj = τc, (θi, φi) 6= (θj, φj)), (B.10)

which is equivalent to

cos(2τc) sin(
π/2− 2θ0

2kθ − 1
) = sin(

τc
2kτ − 1

), 0 ≤ τc <
π

4
. (B.11)

With the optimal Θ, Φ, and T , the minimum value between (B.4b)
and (B.4c) can be maximized and equals to

min
pt

4pt sin2(
∆τ

2
). (B.12)
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Further, we find that the structure of P only affect J(pi 6= pj, (τi, θi, φi) =
(τj, θj, φj)) with

J(pi 6= pj, (τi, θi, φi) = (τj, θj, φj)) = min
pi 6=pj

(
√
pi −
√
pj)

2. (B.13)

Using the max-min rule, we can conclude that the optimal P is also an
arithmetic sequence P = {√p0,

√
p0 +∆p, · · · ,√p0 +(2kp−1)∆p}. Then, by

jointly maximizing (B.12) and (B.13), the optimal p0 and ∆p should satisfy

4p0 sin2(
∆τ

2
) = (∆p)2. (B.14)

Besides, considering the average power constraint for P ,

2kp−1∑
i=0

[
√
p0 + i∆p]2 = 2kp , (B.15)

we can attain the optimal p0 = 3
Ω4

with

Ω4 , 3 + 6(2kp − 1) sin(
∆τ

2
) + 2(2kp − 1)(2kp+1 − 1) sin2(

∆τ

2
),

and ∆p = 2
√
p0 sin(∆τ

2
). Finally, with the optimal P , T , Θ, and Φ, we can

attain dR1(kp, kτ , kθ, kφ) = 2
√
p0 sin(∆τ

2
). This completes the proof of case 8.

By referring to the proof process of case 8, we can derive the following
conclusions for 9-15:

1. When one of kp, kθ, and kφ is equal to zero, there exist three scenarios:

(a) kp = 0, kθ 6= 0, and kφ 6= 0: In this case, J(kp, kτ , kθ, kφ) is the
minimum value between{
J(pi = pj, τi 6= τj, (θi, φi) = (θj, φj)),

J((pi, τi) = (pj, τj), (θi, φi) 6= (θj, φj)).

By jointly considering (B.5) and (B.7), we have the optimal P =

{1}, Φ̂ = 2kφ-PSK, and Θ = {θ0 + i∆θ}2kθ−1
i=0 , with θ0 (0 < θ0 <

π
4
)

being the solution to sin(2θ0) sin( π

2
kφ

) = sin(π/2−2θ0
2kθ−1

) and ∆θ =
π/2−2θ0
2kθ−1

. The optimal τc satisfies that (B.11). In such a case, we

have dR1(kp, kτ , kθ, kφ) = 2 sin(∆τ
2

). This completes the proof of
case 9.
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(b) kθ = 0, kp 6= 0, and kφ 6= 0: In this case, J(kp, kτ , kθ, kφ) is the

minimum value among


J(pi 6= pj, (τi, θi, φi) = (τj, θj, φj)),

J(pi = pj, τi 6= τj, (θi, φi) = (θj, φj)),

J((pi, τi, θi) = (pj, τj, θj), φi 6= φj).

By max-min rule, we attain the optimal Θ = {π
4
}, Φ̂ = 2kφ-PSK.

T = {0,∆τ, · · · , τc}, where ∆τ = τc
2kτ−1

. Specially, τc satisfies

cos(2τc) sin(
∆φ

2
) = sin

τc
2kτ − 1

. (B.16)

The optimal P = {√p0,
√
p0 +∆p, · · · ,√p0 +(2kp−1)∆p} with p0

and ∆p satisfying (B.14) and (B.15). Thus, we have p0 = 3
Ω4

and

∆p = 2
√
p0 sin(∆τ

2
). In such a case, we have dR1(kp, kτ , kθ, kφ) =

2
√
p0 sin(∆τ

2
). This completes the proof of case 10.

(c) kφ = 0, kp 6= 0, and kθ 6= 0: In this case, J(kp, kτ , kθ, kφ) is the
minimum value among
J(pi 6= pj, (τi, θi, φi) = (τj, θj, φj)),

J(pi = pj, τi 6= τj, (θi, φi) = (θj, φj)),

J((pi, τi, φi) = (pj, τj, φj), θi 6= θj),
By max-min rule, we have the optimal Φ = {1}, Θ = {θ0 +

i∆θ}2kθ−1
i=0 , where θ0 = 0 and ∆θ = π/2

2kθ−1
; The optimal T =

{0,∆τ, · · · , τc}, where ∆τ = τc
2kτ−1

. The optimal τc satisfies that

cos(2τc) sin(∆θ) = sin
τc

2kτ − 1
. (B.17)

P = {√p0,
√
p0 + ∆p, · · · ,√p

0
+ (2kp − 1)∆p}, where p0 and ∆p

satisfy
∑2kp−1

i=0 [
√
p0+i∆p]2 = 2kp and 4p0 sin2(∆τ

2
) = (∆p)2. Thus,

we have p0 = 3
Ω4

and ∆p = 2
√
p0 sin(∆τ

2
). In such a case, we have

dR1(kp, kτ , kθ, kφ) = 2
√
p0 sin(∆τ

2
). This completes the proof of

case 11.

2. When two of kp, kθ, and kφ are equal to zeros, there exist three scenarios

(a) kp 6= 0, kθ = 0, and kφ = 0: In this case, J(kp, kτ , kθ, kφ) is the

minimum value between

{
J(pi 6= pj, (τi, θi, φi) = (τj, θj, φj)),

J(pi = pj, τi 6= τj, (θi, φi) = (θj, φj)),

By the max-min rule, the optimal Θ = {π
4
}, Φ = {1}. The

optimal T = {0,∆τ, · · · , π
4
} with ∆τ = π

4(2kτ−1)
. The optimal P =
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{√p0,
√
p0 + ∆p, · · · ,√p2kp−1} under average power constraint∑2kp−1

i=0 (
√
p0 + i∆p)2 = 2kp and 4p0 sin2(∆τ

2
) = (∆p)2. Thus, we

have p0 = 3
Ω4

and ∆p = 2
√
p0 sin(∆τ

2
). In such a case, we have

dR1(kp, kτ , kθ, kφ) = 2
√
p0 sin(∆τ

2
). This completes the case of 12.

(b) kθ 6= 0, kp = 0, and kφ = 0: In this case, J(kp, kτ , kθ, kφ) is the

minimum value between

{
J((pi, τi, φi) = (pj, τj, φj), θi 6= θj),

J((pi, θi, φi) = (pj, θj, φj), τi 6= τj).

the optimal P = {1}, Θ = {θ0+i∆θ}2kθ−1
i=0 , where θ0 = 0 and ∆θ =

π/2

2kθ−1
; Φ = {1}. The optimal T = {0,∆τ, · · · , τc} with ∆τ =

τc
2kτ−1

and 0 ≤ τc ≤ π
4

satisfying cos(2τc) sin(∆θ) = sin τc
2kτ−1

. In

such a case, we have dR1(kp, kτ , kθ, kφ) = 2 sin(∆τ
2

). This completes
the proof of case 13.

(c) kφ 6= 0, kp = 0, and kθ = 0: In this case, J(kp, kτ , kθ, kφ) is the

minimum value between

{
J((pi, τi, θi) = (pj, τj, θj), φi 6= φj),

J((pi, θi, φi) = (pj, θj, φj), τi 6= τj).

By the max-min rule, we can attain the optimal P = {1}, and
Φ̂ = 2kφ-PSK. We assume θi = θj = θc, then we have

Ξ(θi, θj, φi, φj)− 1 = − sin2(2θc) sin2 π

2kφ
. (B.18)

Then, we obtain the optimal Θ = {π
4
} and T = {0,∆τ, · · · , τc}

with ∆τ = τc
2kτ−1

, and τc satisfying

cos(2τc) sin(
∆φ

2
) = sin

τc
2kτ − 1

. (B.19)

In such a case, we have dR1(kp, kτ , kθ, kφ) = 2 sin(∆τ
2

). This
completes the case 14.

3. All of kp, kθ, and kφ are zeros, and there exists one scenario: In this
case, we have J(kp, kτ , kθ, kφ) = J((pi, θi, φi) = (pj, θj, φj), τi 6= τj).
By the max-min rule, we have the optimal P = {1}, Θ = {π

4
}, and,

Φ = {1}. The optimal T = {0,∆τ, · · · , π
4
} with ∆τ = π

4×(2kτ−1)
. In

this case, we have J(kp, kτ , kθ, kφ) = 4 sin2 π
8(2kτ−1)

. In such a case, we

have dR1(kp, kτ , kθ, kφ) = 2 sin(∆τ
2

). This completes the case of 15.

This completes the proof of Proposition 2.
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Figure 2: (a) γ = 0.1. (b) γ = 0.5.
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Figure 3: (a) γ = 0.1. (b) γ = 0.5.
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Figure 4: SER vs the correlation coefficient.
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Figure 5: SER vs The transmit rate per channel use.
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