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Abstract 

Very High Cycle Fatigue (VHCF) using ultrasonic machines is a subject that is receiving growing attention. Recent 
developments focus on biaxial stresses which are of interest to industries such as the aeronautical where plane stresses appear in 
the fuselage and wings. It has been shown before that in-plane cruciform specimens can be changed so that different biaxiality 
ratios are achieved from equibiaxial to pure shear. This paper analyses how these biaxiality ratios relate to one another between 
the in-plane orthogonal directions x and y in cruciform specimens. Specimens in this study are composed of Aluminum 6082-
T651, a medium strength alloy used in many highly stressed engineering applications, including trusses, cranes, bridges, and 
transportation. These asymmetric models are purposely designed to develop orthogonal biaxial stresses with non-unitary 
biaxiality ratios. Comparing the simulation results with the experimental data shows that the strain rates can provide acceptable 
prediction of biaxiality ratios. Moreover, it was observed that the biaxiality ratios obtained from stress, displacement and strain 
are not equal and, in fact, can be correlated by an expression that was derived during this research. 
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1. Introduction 

Most of the existing test equipment in the market for both classical and VHCF are uniaxial test machines (Lage et 
al., 2014), in the sense that the state of stress created is unidirectional. However, critical components used by the 
aerospace, automotive, energy, naval, medical, space and other industries are usually subjected to complex 
multiaxial loading conditions (Bathias, 2006 and Freitas et al., 2014). Typical biaxial in-plane fatigue machines 
require that the centre of the specimen does not move during the test, meaning that the actuators (usually four) must 
be precisely synchronised (Freitas et al. 2014 and Baptista et al., 2014). Furthermore, the almost only available in-
plane biaxial machines available so far in the market use servo-hydraulic actuators. Thus, these machines are not 
good candidates to be used in VHCF. 

For biaxial fatigue testing, there are currently two methods of producing biaxial stresses in material for different 
types of specimens (Freitas, 2017). The first method employs thin-walled cylinder tube specimen subjected to 
combined tension–torsion loading, whereas the second method uses cruciform specimens subjected to the biaxial 
tension-tension loadings. Fig. 1 represents schematically the range of biaxial principal stress states, 𝜎𝜎1 and 𝜎𝜎2, in the 
four quadrants. It shows the range of possible combination of stresses, from in-plane biaxial stress states in the first 
and third quadrants to the presence of shear stresses in the second and fourth quadrants. 

 

Fig. 1. Schematic representation of biaxial stress states (based in Freitas, 2017). 

 

Fig. 2. (a) VHCF testing machine resonant system components with biaxial specimen; (b) CT (pure shear, out-of-phase) mode shape with 𝐵𝐵 =
−1; (c) TT (equibiaxial, in-phase) mode shape with 𝐵𝐵 = 1 (Montalvão and Wren, 2017 and Costa et al., 2020). 
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Montalvão and Wren (2017) and Costa et al. (2019) proposed an original approach to biaxial fatigue testing in the 
VHCF regimen (Fig. 2 (a)). Having as a starting point the same principles used in the design of VHCF machines and 
UFT specimens as Bathias (2006), Lage et al. (2014), and Baptista et al. (2014, 2015) it was shown that, at least 
when using cruciform specimens for in-plane axial-axial (biaxial) testing, only the specimen needs to be redesigned. 
No changes are required to be made to the machine are required as, for example, in a work where combined axial-
torsion is obtained (Costa et al., 2017). Based on those design principles, Montalvão et al. (2019) developed test 
specimens that can deliver biaxiality ratios 𝐵𝐵 ∈ [−1 1], i.e., that can produce any ratio between the biaxial principal 
stress states (Fig. 1), 𝜎𝜎1 and 𝜎𝜎2, ranging from pure shear (𝐵𝐵 = −1) to equibiaxial (𝐵𝐵 = 1) (Fig. 2 (b)). When the 
biaxiality ratio is determined from two orthogonal stresses in the 𝑥𝑥 and 𝑦𝑦 directions, the biaxiality ratio is defined as: 

𝐵𝐵𝜎𝜎 = {
𝜎𝜎𝑦𝑦 𝜎𝜎𝑥𝑥⁄    𝑖𝑖𝑖  |𝜎𝜎𝑥𝑥| ≥ |𝜎𝜎𝑦𝑦|
𝜎𝜎𝑥𝑥 𝜎𝜎𝑦𝑦⁄    𝑖𝑖𝑖  |𝜎𝜎𝑥𝑥| < |𝜎𝜎𝑦𝑦|  (1) 

which can be written in the simpler form: 

𝐵𝐵𝜎𝜎 = (𝜎𝜎𝑥𝑥
𝜎𝜎𝑦𝑦

)
𝑠𝑠𝑠𝑠𝑠𝑠 (|𝜎𝜎𝑦𝑦|−|𝜎𝜎𝑥𝑥|)

  (2) 

This means that for 𝐵𝐵 = ± 1  we have the same in-plane stresses in both directions (symmetric cruciform 
specimens) and for the limit case where 𝐵𝐵 =   we have uniaxial stress in one direction only. The signal is indicating 
if the mode shape is either in-phase (TT, or Tension-Tension) when positive (+), or out-of-phase (CT, or 
Compression-Tension) when negative (-). 

When biaxiality ratios 𝐵𝐵 ≠ ±1 are being sought, the non-unitary biaxiality ratio can be achieved by changing the 
arms’ lengths in different directions by different proportions (Fig. 4) (Montalvão et al., 2019). If the arm in the 
horizontal direction is shortened by a quantity −Δ𝑥𝑥, this corresponds to a reduction in the mass in the horizontal 
direction; hence, to an increase in the natural frequency. To compensate for this increase in the natural frequency, 
the arm in the vertical direction is extended by a quantity +Δ𝑦𝑦 until the frequency is reduced back to 20 kHz. Fig. 3 
shows one example of what a specimen with a non-unitary biaxiality ratio may look like following this procedure. 

 

Fig. 3. Result from the “change in arms’ dimensions” method to obtain an out-of-phase CT specimen with a non-unitary biaxiality ratio at 20 kHz 
(Montalvão et al., 2019). 

In this paper, the authors further investigate these non-symmetrical cruciform specimens used to generate non-
unitary biaxiality ratios through Finite Element Analysis (FEA). Results show that one cannot define a single 
biaxiality ratio when it comes to dynamic specimens, but rather that there are three (or four) biaxiality ratios to be 
considered: strain biaxiality ratio 𝐵𝐵𝜀𝜀 , stress biaxiality ratio 𝐵𝐵𝜎𝜎 , displacement biaxiality ratio 𝐵𝐵𝑑𝑑 , and ‘design’ 
biaxiality ratio 𝐵𝐵Δ (i.e., a biaxiality ratio that is based in the dimensional change in arms’ lengths). Furthermore, it is 
shown that these ratios are not independent from one another and that they can be correlated with an expression that 
was empirically determined, which is at least valid for CT specimens (i.e., where 𝐵𝐵 <  ). This relation is an 
important result that is important for both future research in this field and application of the methods by industry. 
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2. Background Principles 

2.1. Biaxiality ratios definitions 

The specimens used in this study are based on the ones proposed by Montalvão et al. (2019), made from 
Aluminum 6082-T651. This is a medium strength alloy with a fibrous core microstructure that is heat treatable and 
have high corrosion resistance rate. It is used in many highly stressed engineering applications, including trusses, 
cranes, bridges, and transportation. It also has excellent extrudability which helps in the manufacturing and 
machining of the specimens. 

In this paper, specimens described by Montalvão et al. (2019) were analysed, where the biaxiality ratio 𝐵𝐵Δ (the 
‘design’ ratio) was initially defined as the ratio between the changes in the arms lengths (Fig. 4), i.e.: 

𝐵𝐵𝛥𝛥 = (𝛥𝛥𝑥𝑥
𝛥𝛥𝑦𝑦

)
𝑠𝑠𝑠𝑠𝑠𝑠 (|𝛥𝛥𝑦𝑦|−|𝛥𝛥𝑥𝑥|)

  (3) 

In the work from Montalvão et al. (2019) it was assumed that the biaxiality ratios would only differ slightly no 
matter if strains, stresses, changes in arms lengths or displacements at the tips were used. Small changes were 
attributed to the fact that the rectangular tips of the specimens are not lump masses (as the design model assumes): 
they also deform elastically, although this is much less relevant than what is happening closer to the specimen’s 
centre where the width and thickness change. be the same. However, and as it will be shown with this work, more 
in-depth analysis shows that this is not true. If we now define the two missing biaxiality ratios: 

𝐵𝐵𝜀𝜀 = (𝜀𝜀𝑥𝑥
𝜀𝜀𝑦𝑦

)
𝑠𝑠𝑠𝑠𝑠𝑠 (|𝜀𝜀𝑦𝑦|−|𝜀𝜀𝑥𝑥|)

  (4) 

𝐵𝐵𝑑𝑑 = (𝑑𝑑𝑥𝑥
𝑑𝑑𝑦𝑦

)
𝑠𝑠𝑠𝑠𝑠𝑠 (|𝑑𝑑𝑦𝑦|−|𝑑𝑑𝑥𝑥|)

  (5) 

where 𝜀𝜀𝑥𝑥 and 𝜀𝜀𝑦𝑦 are the strains at the centre of the specimen in the 𝑥𝑥 and 𝑦𝑦 directions, respectively, and 𝑑𝑑𝑥𝑥 and 
𝑑𝑑𝑦𝑦  are the displacements at the tips of the specimens in the 𝑥𝑥 and 𝑦𝑦 directions, respectively, then what we will 
observe is: 

𝐵𝐵𝜎𝜎 ≠ 𝐵𝐵𝜀𝜀 ≠ 𝐵𝐵𝑑𝑑  (6) 

𝐵𝐵𝑑𝑑 = 𝐵𝐵𝛥𝛥  (7) 

Therefore, the underlying question is: How can non-unitary cruciform biaxial specimens be designed so that they 
deliver a determined 𝐵𝐵𝜎𝜎  (or 𝐵𝐵𝜀𝜀) when the design variables (i.e., geometrical dimensions) are based on 𝐵𝐵Δ instead? Is 
there any relationship between them? That is what we will find out in this paper. 

2.2. Hooke’s law 

We need to go back to first principles to understand why the biaxiality ratios 𝐵𝐵𝜎𝜎 , 𝐵𝐵𝜀𝜀 and 𝐵𝐵𝑑𝑑  differ between them. 
Without going into details, as any textbook on mechanics of materials will show, Hooke’s law for a linear elastic 
isotropic material can be defined as: 
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{ 
 
  
𝜎𝜎𝑥𝑥 =

𝐸𝐸
(1+𝜐𝜐)(1−2𝜐𝜐) [(1 − 𝜐𝜐)𝜀𝜀𝑥𝑥 + 𝜐𝜐(𝜀𝜀𝑦𝑦 + 𝜀𝜀𝑧𝑧)]

𝜎𝜎𝑦𝑦 =
𝐸𝐸

(1+𝜐𝜐)(1−2𝜐𝜐) [(1 − 𝜐𝜐)𝜀𝜀𝑦𝑦 + 𝜐𝜐(𝜀𝜀𝑥𝑥 + 𝜀𝜀𝑧𝑧)]

𝜎𝜎𝑧𝑧 =
𝐸𝐸

(1+𝜐𝜐)(1−2𝜐𝜐) [(1 − 𝜐𝜐)𝜀𝜀𝑧𝑧 + 𝜐𝜐(𝜀𝜀𝑥𝑥 + 𝜀𝜀𝑦𝑦)]
  (8) 

{ 
 
  
𝜀𝜀𝑥𝑥 =

1
𝐸𝐸 [𝜎𝜎𝑥𝑥 − 𝜐𝜐(𝜎𝜎𝑦𝑦 + 𝜎𝜎𝑧𝑧)]

𝜀𝜀𝑦𝑦 =
1
𝐸𝐸 [𝜎𝜎𝑦𝑦 − 𝜐𝜐(𝜎𝜎𝑥𝑥 + 𝜎𝜎𝑧𝑧)]

𝜀𝜀𝑧𝑧 =
1
𝐸𝐸 [𝜎𝜎𝑧𝑧 − 𝜐𝜐(𝜎𝜎𝑥𝑥 + 𝜎𝜎𝑦𝑦)]

  (9) 

Cruciform test specimens are moderately thin throughout, with a considerably thinner central area (Fig. 4). 
Maximum stresses and strains will occur at the centre, where will have a situation of plane stress with 𝜎𝜎𝑧𝑧 ≃   and 
𝜀𝜀𝑧𝑧 ≠  . In other words, stresses develop in the 𝑥𝑥𝑥𝑥 plane only, but strains are developing in all three cartesian 
directions, so it is not difficult to understand that 𝐵𝐵𝜎𝜎  does not necessarily has to be equal to 𝐵𝐵𝜀𝜀. 

 

 

Fig. 4. Cruciform test specimen’s general drawing (Montalvão and Wren, 2017) (symmetric equibiaxial case for illustration purposes only). 

3. Methodology 

To better understand how the 4 biaxiality ratios 𝐵𝐵𝜎𝜎 , 𝐵𝐵𝜀𝜀 , 𝐵𝐵𝑑𝑑  and 𝐵𝐵Δ  change and compare with each another, 
Hooke’s law equations (8) and (9) are used, as well as Finite Element Analysis (FEA) using ANSYS Workbench 
2021 R2. Initially, specimens are modelled in free-free configuration and a simulation of the type Modal is run. The 
objective is to slightly adjust dimensions so that specimens are tuned to have either a CT or a TT mode shape at 
20±0.5 kHz, which is the operational range available at the machine’s at both the University of Lisbon in Portugal 
and the ADDISONIC lab at Bournemouth University in the UK. Similar simulations are then run but with the 
specimen assembled at the machine, as depicted in Fig. 2, to have a better representation of reality and further refine 
the specimens’ design. 

Hex dominant elements were used with attention to distortion of the elements to produce results with an 
acceptable level of accuracy. This was determined after mesh convergence was achieved when refining both the 
global mesh and local mesh at the centre. 

The relation between displacements at the tips of the specimen and stress and strain at the centre, which is needed 
in the case of experimental testing as stress and strain are monitored from the displacement at the tips from a 
contactless laser sensor, is determined from a simulation of the type Harmonic (used to get the frequency response 
functions). Excitation forces of 0.25N, 0.5N and 1N were applied to the model at one of the anti-nodes (i.e., 
specimen’s tips). The different excitation forces were used to assess the system’s response against increasing 
loading conditions. Three different loads were used to check linearity of the model. The analyses settings are set up 
to test the specimen at the exact value of the natural frequency in the vicinity of 20 kHz. 
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In this paper, three of the asymmetric specimens described by Montalvão et al. (2019) were analysed (table 1). 
The reason why CT and TT specimens with biaxiality ratios ranging from 𝐵𝐵Δ = ±     to 𝐵𝐵Δ = ±     were chosen, 
is because these biaxiality ratios are well set apart from each other and somewhat extreme in terms of dimensions 
(especially for 𝐵𝐵Δ = ±     where substantial dimensional changes are required). However, any other specimens 
could have been chosen and should not condition the findings of this study. The geometry is based on a cruciform 
configuration, featuring corner elliptical fillets between the specimen’s arms, to reduce stress concentrations and to 
maximise stress at the specimen’s centre (Baptista et al., 2014, 2015). 

Table 1. Changes in arms’ lengths and biaxiality ratios for specimens with non-unitary biaxiality ratios analysed in this study. 

Specimens type CT (shear, out-of-phase) Specimens type TT (biaxial, in-phase) 

Model 𝛥𝛥𝛥𝛥 (mm) 𝛥𝛥𝛥𝛥 (mm) 𝐵𝐵𝛥𝛥  Model 𝛥𝛥𝛥𝛥 (mm) 𝛥𝛥𝛥𝛥 (mm) 𝐵𝐵𝛥𝛥  

CT.77 1.5 -1.95 -0.77 TT.77 2 -1.55 0.77 

CT.62 2.5 -4.05 -0.62 TT.62 4 -2.5 0.62 

CT.40 4 -10.1 -0.40 TT.40 10 -4 0.40 

4. Results and Analysis 

FEA was used to determine the stresses, strains, and displacements in the 3 cartesian directions 𝑥𝑥, 𝑦𝑦, and 𝑧𝑧. 
Results are shown in table 2. Hooke’s law was used to validate results (i.e., determine stresses from FEA strains and 
vice versa) which were found to be correct. 

Table 2. Stress, strain, and displacement at tips FEA results for both the CT and TT specimens with different ‘design’ biaxiality ratios. 

 
𝜎𝜎𝑥𝑥 

(MPa) 

𝜎𝜎𝑦𝑦 

(MPa) 

𝜎𝜎𝑧𝑧 

(MPa) 
𝜀𝜀𝑥𝑥 𝜀𝜀𝑦𝑦 𝜀𝜀𝑧𝑧 

𝑑𝑑𝑥𝑥 

(mm) 

𝑑𝑑𝑦𝑦 

(mm) 

CT.40 119 -221 1.1 2.67E-03 -3.61E-03 4.57E-04 1.75E-02 -4.35E-02 

CT.62 218 -301 0.6 4.41E-03 -5.17E-03 3.74E-04 3.53E-02 -5.70E-02 

CT.77 283 -337 1.1 5.47E-03 -5.98E-03 2.41E-04 4.80E-02 -6.23E-02 

CT.100 366 -365 0.7 6.76E-03 -6.75E-03 1.21E-05 6.47E-02 -6.47E-02 

TT.40 414 72 3.4 5.40E-03 -9.14E-04 -2.18E-03 9.57E-02 3.84E-02 

TT.62 321 144 3.2 3.78E-03 5.20E-04 -2.09E-03 7.85E-02 4.87E-02 

TT.77 267 175 3.1 2.90E-03 1.20E-03 -1.99E-03 6.82E-02 5.27E-02 

TT.100 198 198 2.7 1.83E-03 1.83E-03 -1.80E-03 5.41E-02 5.41E-02 

 
With this data, the 𝐵𝐵𝜎𝜎 , 𝐵𝐵𝜀𝜀 and 𝐵𝐵𝑑𝑑  biaxiality ratios can now be determined, which results are shown in table 3. 

Table 3. Biaxiality ratios 𝐵𝐵𝜎𝜎, 𝐵𝐵𝜀𝜀 and 𝐵𝐵𝑑𝑑 for both CT and TT specimens with different ‘design’ biaxiality ratios. 

 𝐵𝐵𝜎𝜎 𝐵𝐵𝜀𝜀 𝐵𝐵𝑑𝑑(=𝐵𝐵Δ) 𝐵𝐵𝜎𝜎 × 𝐵𝐵𝜀𝜀   𝐵𝐵𝜎𝜎 𝐵𝐵𝜀𝜀 𝐵𝐵𝑑𝑑(=𝐵𝐵Δ) 𝐵𝐵𝜎𝜎 × 𝐵𝐵𝜀𝜀 

CT.40 -0.54 -0.74 -0.40 0.40  TT.40 0.17 -0.17 0.40 -0.03 

CT.62 -0.72 -0.85 -0.62 0.62  TT.62 0.45 0.14 0.62 0.06 

CT.77 -0.84 -0.92 -0.77 0.77  TT.77 0.66 0.41 0.77 0.27 

CT.100 -1.00 -1.00 -1.00 1.00  TT.100 1.00 1.00 1.00 1.00 
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In this paper, three of the asymmetric specimens described by Montalvão et al. (2019) were analysed (table 1). 
The reason why CT and TT specimens with biaxiality ratios ranging from 𝐵𝐵Δ = ±     to 𝐵𝐵Δ = ±     were chosen, 
is because these biaxiality ratios are well set apart from each other and somewhat extreme in terms of dimensions 
(especially for 𝐵𝐵Δ = ±     where substantial dimensional changes are required). However, any other specimens 
could have been chosen and should not condition the findings of this study. The geometry is based on a cruciform 
configuration, featuring corner elliptical fillets between the specimen’s arms, to reduce stress concentrations and to 
maximise stress at the specimen’s centre (Baptista et al., 2014, 2015). 
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FEA was used to determine the stresses, strains, and displacements in the 3 cartesian directions 𝑥𝑥, 𝑦𝑦, and 𝑧𝑧. 
Results are shown in table 2. Hooke’s law was used to validate results (i.e., determine stresses from FEA strains and 
vice versa) which were found to be correct. 

Table 2. Stress, strain, and displacement at tips FEA results for both the CT and TT specimens with different ‘design’ biaxiality ratios. 
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The first aspect to notice from table 3 is that 𝐵𝐵𝑑𝑑 = 𝐵𝐵Δ. This is important because when using machines such as 
the one shown in figure 16 where the displacement at the tips is measured from a laser, the ‘design’ biaxiality ratio 
𝐵𝐵Δ can be validated. On the other hand, and as it was noted before, that 𝐵𝐵𝜎𝜎 ≠ 𝐵𝐵𝜀𝜀 ≠ 𝐵𝐵𝑑𝑑. 

However, what is more interesting to note from the observation of tables 2 and 3, is that if we take the product 
between the stress biaxiality ration and the strain biaxiality ratio the following is obtained: 

|𝐵𝐵𝜎𝜎 𝐶𝐶𝐶𝐶 × 𝐵𝐵𝜀𝜀 𝐶𝐶𝐶𝐶| = |𝐵𝐵𝛥𝛥 𝐶𝐶𝐶𝐶|  (10) 

|𝐵𝐵𝜎𝜎 𝑇𝑇𝑇𝑇 × 𝐵𝐵𝜀𝜀 𝑇𝑇𝑇𝑇| ≠ |𝐵𝐵𝛥𝛥 𝑇𝑇𝑇𝑇|  (11) 

FEA analysis can be used to better understand what is happening. Let us take as an example specimen TT.40 
(Fig. 5). Firstly, the deformation of non-unitary TT specimens is harder to predict, as the motion due to the Poisson 
ratio in one direction is ‘counteracted’ by the motion in the same direction of the vibrating pattern. This will also 
induce high stresses at locations that are not intended, at the corners as shown in Fig. 5 (b), which could lead to the 
development of cracks at the corners rather than of developing from the centre. However, this does not still explain 
why for CT specimens |Bσ CT × Bε CT| = |BΔ CT| while for TT specimens this is not true, i.e., |Bσ TT × Bε TT| ≠
|BΔ TT|. If we now look at the deformation of the specimen in one direction, comparison of Fig. 5 (c) with Fig. 5 (d), 
shows that the deformation at the centre of the specimen is out-of-phase with the arms. This does not happen with 
CT specimens, as the movement of the arms follows the same direction as the deformation that would result from a 
positive Poisson’s ratio. 

 

Fig. 5. FEA results using as an example TT.40 specimen: (a) 𝜎𝜎𝑥𝑥, (b) 𝜎𝜎𝑦𝑦, (c) 𝑑𝑑𝑦𝑦, (d) 𝑑𝑑𝑦𝑦 close-up at the centre of the specimen. 

If Hooke’s law is taken into consideration, the product between the stress and strain biaxiality ratios (for plane 
stress) can be written as: 

𝐵𝐵𝜎𝜎 × 𝐵𝐵𝜀𝜀 = [𝜎𝜎𝑥𝑥𝜀𝜀𝑥𝑥+𝜐𝜐(𝜎𝜎𝑥𝑥𝜀𝜀𝑦𝑦−𝜎𝜎𝑦𝑦𝜀𝜀𝑥𝑥)−𝜐𝜐2𝜎𝜎𝑦𝑦𝜀𝜀𝑦𝑦
𝜎𝜎𝑦𝑦𝜀𝜀𝑦𝑦+𝜐𝜐(𝜎𝜎𝑦𝑦𝜀𝜀𝑥𝑥−𝜎𝜎𝑥𝑥𝜀𝜀𝑦𝑦)−𝜐𝜐2𝜎𝜎𝑥𝑥𝜀𝜀𝑥𝑥

]
𝑠𝑠𝑠𝑠𝑠𝑠(|𝜀𝜀𝑦𝑦|−|𝜀𝜀𝑥𝑥|)

 (12) 
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This equation was used to confirm the results presented in tables 2 and 3, showing that there are some challenges 
with the design of TT (biaxial, in-phase) specimens that do not seem to exist when CT specimens (shear, out-of-
phase) are considered. Costa et al. (2019) already observed before and through experimental work problems with TT 
(equibiaxial) specimens which have further been highlighted with this work.  

5. Conclusions 

This paper analyses non-unitary biaxiality cruciform specimens that are designed for Ultrasonic Fatigue Testing 
(UFT) at 20 kHz. The results can be easily transferred to cruciform specimens that are not meant to be used in UFT 
testing machines, since the analysis relays on first principles. It is hoped that this paper will give insight to 
researchers and engineers who are interested in in-plane biaxial fatigue testing about the challenges (as well as 
advantages) with the use and design of such specimens. Notwithstanding, this paper also highlights that biaxiality 
ratios must be distinguished between stress, strain, and deformation, as they are not necessarily the same. 
Furthermore, it has been shown that, at least for CT specimens, they can be related with one another. Therefore, the 
designer can consider the newly presented relationship to ensure the stress or strain ratios being obtained at the 
centre of the specimen are as per the design intent. Finally, this paper demonstrates that further research is still 
required when it comes to the design of biaxial specimens for fatigue testing, but that they have the potential to be 
used to replicate a varied number of combinations of biaxiality ratios that could better replicate real life loading 
conditions. 
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