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Abstract—Symbiotic radio (SR) is a key technique to solve the
energy shortage and spectrum limitation of the future Internet of
Things (IoT). In the SR-aided IoT networks supporting energy
harvesting (EH), we study the cooperation schemes and offloading
strategy between the primary users (PUs), IoT devices and
the base station (BS) for reasonably allocating the spectrum,
power and time resources. Considering the monetary transactions
between the PUs and IoT devices, two cooperation schemes,
namely the “Preferential Scenario” and the “No-Preferential
Scenario”, are proposed. In the “Preferential Scenario”, based
on the final strategy, the IoT devices use the purchased spectrum
and power to offload their own tasks to the BS after assisting the
cooperative PUs to offload during a certain time slot. Due to the
assistance of IoT devices for the PUs, IoT devices enjoy a discount
when paying for the purchased spectrum and power. In the “No-
Preferential Scenario”, the IoT devices and the cooperative PUs
offload tasks to the BS together in a certain time slot according to
the offloading strategy. The spectrum and power used by the IoT
devices are purchased at the original price without a discount. For
each scenario, we study the utility maximization problem of the
PUs, where the utility of PUs includes the transmission rates and
income. The utility based resource sharing algorithm is proposed
to obtain an approximately optimal resource allocation scheme.
Our simulation results indicate that the proposed algorithm
provides good performances for both scenarios, while each
scenario applying the proposed algorithm has its own advantages.

Index Terms—Internet of Things, symbiotic radio, backscat-
ter communication, energy harvesting, mobile edge computing,
offloading strategy.

I. INTRODUCTION

The global COVID-19 pandemic accelerates the growth
of Internet of Things (IoT) applications, including the smart
medical care, smart retail, smart transportation and other IoT
applications [1]–[5]. Faced with the continuous growth of
IoT devices, the insufficient spectrum and energy resources
become even more scarce, resulting in the problem of energy
shortage and spectrum limitation for the IoT [6]–[9].

Recently, the backscatter communication (BC) technique,
which could solve the problem of energy shortage for the IoT,
attracts a large number of researchers [10]–[15]. A typical
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example is the ambient backscatter communication (AmBC).
Applying this technique, the passive backscatter devices (BDs)
could transmit their own tasks to the corresponding receivers
by modulating and reflecting the environmental radio fre-
quency (RF) signals, including the TV signals, WIFI signals,
cellular signals, etc [10]–[12]. Compared with the conventional
communication using the active transmitters, the BC technique
improves the energy utilization of IoT. However, due to
the influence of unstable environment RF signals, the BC
technique only supports the short distance communication, and
it is difficult to achieve the highly reliable communication. Liu
et al. [13] developed a novel hybrid scheme that integrated
the BC and the harvest-then-transmit (HTT) protocol, and
investigated the sum-throughput maximization problem of the
secondary system. Li et al. [14] investigated the physical layer
security of the AmBC systems, and proposed an artificial noise
scheme. Toro et al. [15] studied the BC that enabled green
IoT through joint wireless communication and sensing, and
proposed that the IoT devices might operate without batteries.

Similarly, energy harvesting (EH) has been studied as an-
other key technique to solve the problem of energy shortage
[16]–[18]. Applying this technique, IoT devices could harvest
energy/power from the ambient RF signals, and then trans-
mit tasks to the receiver using the harvested energy/power.
Chu et al. [19] investigated a wireless powered intelligent
radio environment, where the fractional non-linear EH was
proposed to enable an intelligent reflecting surface (IRS)
assisted wireless powered IoT network. The purpose was to
improve the overall performance of the considered network by
maximizing the sum throughput. Zhang et al. [20] proposed an
EH multi-codebook based BC scheme to minimize the energy
consumption of backscattering data. Xiao et al. [21] considered
an unmanned aerial vehicle (UAV)-assisted EH network, and
solved the problems of spectrum scarcity and energy shortage
for UAV communication. In the conceived network, the UAV
performed spectrum sensing and communicating with the
receiver and could replenish energy actively for transmission
by harvesting renewable energy.

However, the above techniques still could not solve the
spectrum limitation of IoT. Faced with the spectrum limitation,
cognitive radio (CR) is widely studied, where the spectrum
sensing technique is applied to find the idle spectrum [22]–
[25]. In the CR networks, the secondary users could use
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the authorized spectrum of primary users (PUs). Meanwhile,
the interference between users is inevitable, which limits the
improvement of spectrum utilization. Pei et al. [26] investi-
gated the sensing-access strategies and the sensing order that
could achieve the maximum energy efficiency in CR networks.
Wang et al. [27] proposed a novel joint power and channel
allocation scheme that improved the overall network through-
put and reduced the average power consumption through a
distributed pricing approach. Xu et al. [28] investigated the
resource allocation for IRS assisted full-duplex CR systems
for maximization the total spectral efficiency of the secondary
system. However, faced with a large number of IoT access,
the conventional CR networks have been unable to satisfy the
spectrum requirements for users.

A new technique, symbiotic radio (SR), has recently at-
tracted some attentions. Combining the advantages of BC
and CR techniques, SR is also known as the cognitive
backscatter communication, and could solve the problem of
energy shortage and spectrum limitation of the IoT [29]–[33].
Compared with the BC technique, the BDs in the SR networks
could modulate and reflect the RF signals of the primary
transmitters to support the long distance and highly reliable
communication. By comparing with the CR’s framework, SR
has the primary and secondary systems. In particular, the SR
technique supports the communication between the primary
and secondary transmitters, while the interference between
users could be avoided [32], [34]–[37]. Long et al. [34]
proposed a SR system supporting passive IoT, and investigated
two practical setups, namely parasitic SR and commensal
SR. The problem of sum-rate maximization and transmis-
sion power minimization were studied, and the semidefinite
relaxation technique was applied to solve these problems.
Liu et al. [35] proposed a SR system for multi-user random
access, where a method to avoid interference between multiple
reflected signals was proposed. Zhang et al. [36] studied the
user association problem in symbiotic radio networks, where
an IoT network parasitized in a primary cellular network.
In the conceived networks, the objective of user association
was to link each IoT device to an appropriate cellular user
by maximizing the sum rates of all IoT devices. Zhang et
al. [37] proposed a novel reconfigurable intelligent surface
(RIS)-assisted SR system, and purposed to minimize the total
transmission power at the primary transmitter. The RIS was the
secondary transmitter, which could send messages to the corre-
sponding receiver, and could enhance the primary transmission
by intelligently reconfiguring the wireless environment. In
these research works, the main concern was the downlink
transmission of users.

With the emergence of mobile edge computing (MEC),
the mobile users with the limited resource could offload
computation tasks to the MEC server, which has attracted
many researchers to learn the uplink transmission in the MEC
scenarios [38]–[40]. However, in the IoT networks with a
large number of users, the limited communication resource
and MEC server’s computing resource considerably affect the
uplink transmission rate of users. Therefore, it is a critical
solution to reasonably allocate communication and computing

resources for this problem. Qian et al. [38] investigated the
cellular assisted MEC via non-orthogonal multiple access
(NOMA), where a group of edge-computing users exploited
NOMA to simultaneously offload their computation-workloads
to an edge-server, and conventional cellular-user allowed the
edge users to reuse its authorized frequency channel for the
NOMA-transmission. Wang et al. [39] investigated a joint task,
spectrum, and transmission power allocation problem for a
wireless network in which the BSs were equipped with MEC
servers to jointly provide computational and communication
services to users. Yang et al. [40] proposed a two-stage deep
reinforcement learning-based offloading and resource alloca-
tion strategy to jointly optimize execution latency, processing
accuracy, and energy consumption in the cooperative vehicle
infrastructure system. The above works have concentrated on
the system with less users, and are not suitable for the system
with intensive users. In this paper, the uplink transmission
with intensive users has been developed for the sake of
achieving reasonably resources allocation in the MEC aided
IoT networks, where users could offload their tasks to the BS
integrated with a MEC server in advance.

To further improve the energy utilization of IoT, this paper
studies a SR system that supports the ability of EH. In this sys-
tem, the backscatter unit and EH unit are installed in each IoT
device to facilitate the functions of BC and EH. The primary
systems consist of the PUs and a base station (BS) integrated
with a MEC server. The PUs enjoy the authorized spectrum
and enough transmission power, and could communicate freely
with the BS. The secondary systems consist of the IoT devices
and a BS integrated with a MEC server. There is no authorized
spectrum and available transmission power for the IoT devices.
In order to communicate with the BS, the IoT devices could
trade money with the PUs to obtain the communication re-
sources, including the spectrum and transmission power. In the
face of the requirements of IoT devices, the PUs provide two
cooperation schemes, namely the “Preferential Scenario” and
the “No-Preferential Scenario”. In the “Preferential Scenario”,
for the sake of obtaining the discounts, the IoT devices firstly
help the cooperative PUs to transmit the offloaded tasks to the
BS, and then transmit their own offloaded tasks to the BS. In
the “No-Preferential Scenario”, the IoT devices purchase the
spectrum and transmission power from the cooperative PUs at
the original price, and offload tasks to the BS with the PUs at
the same time.

The main contributions of this paper are summarized as
follows:

• The novel IoT networks are investigated, where the SR
technique is applied. In the conceived SR-aided IoT
networks, each user would like to offload tasks to the
BS that is integrated with the MEC server. The PUs has
the ability to transmit tasks to the IoT devices and BS.
Meanwhile, the IoT devices lack the authorized spectrum
and transmission power to transmit tasks, which could be
shared by the PUs. Considering the cooperation strategy
between the PUs and IoT devices as well as the offloading
strategy of each PU-IoT pair, two scenarios are proposed
and discussed respectively, namely the “Preferential Sce-
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nario” and the “No-Preferential Scenario”.
• In the “Preferential Scenario”, a cooperative protocol for

the PUs, IoT devices and BS is proposed. The IoT devices
have three work stages. Firstly, the IoT devices work as
the backscatter devices to provide the backscatter link for
the matched PUs, for improving the transmission rates of
PUs. Meanwhile, the IoT devices harvest power from the
matched PUs. Then, the harvested power is used by the
IoT devices for transmitting tasks. Based on the above
relationships, the monetary transactions are built. The IoT
devices pay for the harvested power to the matched PUs,
while the PUs gives the discount for the improved rates.
For each PU-IoT pair, the PU and IoT device offload
tasks to the BS during some time slot in the order.

• In the “No-Preferential Scenario”, a different protocol is
proposed. The IoT devices only have one work stage,
namely transmitting tasks together with the matched PUs
using the backscattered power. This would interfere with
the transmission of the matched PUs, and lead to the
decreasing of their transmission rates. For the sake of
monetary benefit, the PUs suffer some degree of inter-
ference from the matched IoT devices. The monetary
transactions are built between the PUs and IoT devices,
where the IoT devices pay for the used power to the
matched PUs. The PU and IoT device offload tasks to
the BS during some time slot together.

• The sum-utility maximization problems of the PUs are
studied. The utility based resources sharing algorithm
is proposed to solve the matching problem of the PUs,
IoT devices and BS, as well as to maximize the sum-
utility of PUs. The matching between the PUs and IoT
devices is to solve the monetary transactions problem,
while the matching between the PU-IoT pairs and BS
is to schedule a proper offloading strategy. To present an
insightful analysis of the proposed algorithm, simulations
are provided for both of the two scenarios while applying
the proposed algorithm. Simulation results validate that
the proposed algorithm has the good performance in both
scenarios, and each scenario has its own advantages when
applying the proposed algorithm.

The rest of this paper is organized as follows: Section
II introduces the system model of the considered network.
Section III and Section IV present the communication and
computing models, cooperation protocols, as well as the
optimized problems for the “Preferential Scenario” and the
“No-Preferential Scenario”. Then in Section V, the utility
based resources sharing algorithm is proposed to solve the
formulated problems for both scenarios, and the stability of
the proposed algorithm is analysed. Simulation results and
performance analysis are investigated in Section VI. Finally,
the main conclusion is summarized in Section VII.

II. SYSTEM MODEL

The system model of SR-aided IoT networks is shown in
Fig. 1, in which there is one BS integrated with a MEC
server, M PUs and N IoT devices. The SR-aided IoT networks

consist of a primary system and a secondary system. In the pri-
mary system, the PUs are the primary transmitters (PTs). The
BS integrated with a MEC Server is the primary/secondary re-
ceiver (PR/SR) in the primary/secondary system. Meanwhile,
the IoT devices are treated as the secondary transmitters (STs)
in the secondary system and backscatter devices (BDs) in
the system of SR, respectively. In the conceived networks,
each PU has the capability of local computation, authorized
spectrum and stable transmission power supply, while the ca-
pabilities of local computation for the IoT devices are limited
to the authorized spectrum and free transmission power.

Fig. 1. System model of SR-aided IoT networks.

Each PU can offload tasks to the BS by the direct link
and backscatter link, in which the backscatter link can be
seen as an additional transmission path of each PU. What’s
more, each IoT device with the reflection coefficient is the
important node of the backscatter link. The PUs and IoT
devices can form multiple PU-IoT pairs. Then, the PU-IoT
pairs and BS which further form multiple PU-IoT-BS triples.
In each triple, there is one BS, one PU and one IoT device, in
which the PU-IoT pair has the cooperative relationship. The
cooperative scenario consists of the preferential scenario and
the no-preferential scenario. In order to distinguish the two
scenarios, we will discuss the two scenarios in Section III and
Section IV, respectively.

In the proposed SR-aided IoT networks, each channel con-
sists of two components, which are the small-scale fast fading
as well as the large-scale fading component that includes
the path loss and shadowing fading. The channel gain from
PU m to the BS is denoted as hm, which equals to ε2mlm.
Furthermore, hn = ε2nln is the channel gain from IoT Device
n to the BS, and the channel gain from PU m to IoT Device
n is denoted as hm,n = ε2m,nlm,n. In the above equations, εm,
εn, and εm,n are small-scale fading components, and lm, ln,
and lm,n are large-scale fading components.

We assume that the BS accurately knowns the channel state
information (CSI) of these links connected to the BS, including
the links from PUs and IoT devices to the BS, and the links
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from PUs to IoT devices, where the adaptive feedback period
scheme [41] is used. In the conceived networks, the users and
BS reuse the past CSI as the side information, and the CSI is
reported to the BS with a feedback period τ . The large-scale
fading components remain unchanged, while the small-scale
fading components have a variation for the feedback period
τ . We use the first-order Gauss-Markov process and Jakes’
model to compute the small-scale fading component over the
feedback period τ , which yields

ε(t+ τ) = ξε(t) + e, (1)

where ε(t) and ε(t+τ) are the small-scale fading components
currently acquired by the BS and the actual small-scale fading
component after the feedback period τ respectively, and ξ
presents the channel correlation during the feedback period
τ . Meanwhile, the channel discrepancy term e is independent
of ε(t), and is distributed according to the complex Gaussian
distribution CN (0, 1− ξ2) [36], [42].

III. PREFERENTIAL SCENARIO

In this section, we firstly present the communication model
of the “Preferential Scenario”. After that, the cooperative
protocol and computing model are introduced. Furthermore,
the objective function of maximizing the utility of PUs is
formulated.

Fig. 2. System model of preferential scenario.

In the “Preferential Scenario”, there are two time slots used
for the transmission of a PU-IoT pair. The transmission of
PU’s and IoT device’s tasks is in order for the PU-IoT pair in
each PU-IoT-BS triple. The “Preferential Scenario” is a win-
win scenario for the performances of PUs and IoT devices,
where the IoT devices in PU-IoT pairs obtain the transmission
power and spectrum resources, and the transmission rates of
the matched PUs are improved.

During the first time slot, the offloaded tasks of PU m
are transmitted by the direct link and the backscatter link,
namely the direct-backscatter link. The IoT Device n is a
backscatter device with a backscatter coefficient αn, which can
help the PU m to improve its transmission rate. At the same
time, the IoT Device n harvests power from the transmission
power provided by the PU m, in which the power harvesting
coefficient ηn takes the main part of harvesting power.

During the second time slot, the IoT Device n transmits its
offloaded tasks using the harvested power. The transmission
rate of PU m is improved under the assistance of the matched
IoT Device m. On the other hand, the IoT Device n would
pay money to the matched PU m for buying the transmission
power with a discount.

A. Communication Model

The tasks to be computed for the PU m and IoT Device
n in the conceived SR-aided IoT networks are denoted as
Dm and Dn, respectively. For the “Preferential Scenario”, the
orthogonal multiple access (OMA) technique is used during
the PU-IoT pair’s transmission period.

As shown in Fig. 2, the required offloading time of PU-IoT
pair (m,n), denoted as UP r as well, is given by

tr = tm,n + tn,m, (2)

where tm,n and tn,m are the required time for offloading
all tasks for the PU m and IoT Device n in this PU-IoT
pair. Based on the uplink transmission, the required time for
offloading all tasks for the PU m and IoT Device n can be
computed by

tm,n =
Dm

Rm,n
, (3)

and

tn,m =
Dn

Rn,m
, (4)

respectively, where Rm,n and Rn,m are the uplink transmis-
sion rates for the PU m and IoT Device n. Additionally, the
computation ability of MEC server is significantly stronger
than the mobile users [43], so the latency of edge computing
is small. Thus, compared to the time of uplink offloading and
that of local computing, the time of edge computing can be
negligible.

Due to the applied OMA technique, there are no interfer-
ences between PUs and IoT devices. The messages of each
user can be decoded by the BS without any interference. More
explicitly, the PUs’ messages are decoded firstly by the BS that
is integrated with the MEC server. Since the backscatter link
is a multi-path component of the direct link. The equivalent
channel for decoding the messages of PU m is denoted by

heq = hm + αnhm,nhn, (5)

where αn ∈ [0, 12 ) is the backscatter coefficient of IoT Device
n, which controls the transmission power of the backscatter
link. During the first time slot tm,n, the direct-backscatter link
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transmission rate Rm,n of uplink transmission for the PU m
is given by

Rm,n = B log2

(
1 +

Pt|heq|2

N0

)
, (6)

where B is the bandwidth of the authorized spectrum, N0 is
the noise power, and Pt is the transmission power.

For the PU m, the transmission power of backscatter link
Pb is given by Pb = αnPt|hm,n|2. Meanwhile, the IoT
Device n can harvest a part of the transmission power Pt
to transmit its own tasks by its power harvesting coefficient
ηn, equaling to αn, and the harvested power Ph is given by
Ph = ηnPt|hm,n|2. The last part of transmission power Pt,
i.e., (1−αn− ηn)Pt|hm,n|2, is used for sustaining the circuit
energy consumption. For the IoT Device n, the direct link
transmission rate Rn,m for uplink transmission in the second
time slot tn,m is given by

Rn,m = B log2

(
1 +

Pt|hm,n|2ηn|hn|2

N0

)
. (7)

The unit price of power is defined as a(m) per dBm for the
PU m. For the IoT Device n with the power harvesting coeffi-
cient ηn, the expenditure EXnodis

n,m of buying the transmission
power from the PU m without any discounts is denoted as

EXnodis
n,m = Pt|hm,n|2ηna(m). (8)

When the cooperation relationship is not considered, each
PU can transmit its own tasks to the MEC server directly.
Under this mode, the direct link transmission rate of PU m
can be computed by

R∗m = B log2

(
1 +

Pt|hm|2

N0

)
. (9)

If each IoT device has the available spectrum to transmit
its own tasks, the direct link transmission rate of IoT Device
n can be computed by

R∗n = B log2

(
1 +

Pt|hn|2

N0

)
. (10)

Comparing Eq. (6) to Eq. (9), we can conclude that the
transmission rate Rm,n of PU m is improved for the existing
of channel component αn|hm,n|2|hn|2. In particular, for the
PU m, the improved rate is denoted as Rdifm,n, which is given
by

Rdifm,n = Rm,n −R∗m (11)

= B log2
1 + ρ|heq|2

1 + ρ|hm|2
,

where ρ equals to Pt

N0
. For the improved rate Rdifm,n, the PU m

offers a discount to the IoT Device n who buys its transmission
power. The discount is denoted by b(m) per bit per second
(bps) for the PU m. Combined with Eq. (8), the income INm,n

of PU m and the actual expenditure EXn,m considering the
discount of IoT Devices n are related as

INm,n = EXn,m

= a(m)Pt|hm,n|2ηn − b(m)Rdifm,n (12)

= a(m)Pt|hm,n|2ηn − b(m)B log2
1 + ρ|heq|2

1 + ρ|hm|2
.

B. Cooperation Protocol

For the tradeoff between the transmission rate and the
money, the achievable utilities are set for the PU m and IoT
Device n. Considering the direct-backscatter link transmission
rate Rm,n and income INm,n of PU m, the achievable utility
θm,n is given by

θm,n = θ1Rm,n + θ2INm,n (13)
= θ1Rm,n

+ θ2

[
a(m)Pt|hm,n|2ηn − b(m)B log2

1 + ρ|heq|2

1 + ρ|hm|2

]
,

where θ1 and θ2 are adjustable factors, satisfying θ1+θ2 = 1,
θ1 ≥ 0, and θ2 ≥ 0. We set ϕ1 and ϕ2 as adjustable
factors as well, which satisfy ϕ1 + ϕ2 = 1, ϕ1 ≥ 0, and
ϕ2 ≥ 0. Furthermore, ϕ1 and ϕ2 can be applied to adjust the
achievable utility ϕn,m relating to the direct link transmission
rate Rn,m and the expenditure EXn,m for IoT Device n,
which is formulated as

ϕn,m = ϕ1Rn,m − ϕ2EXn,m (14)
= ϕ1Rn,m

+ ϕ2

[
b(m)B log2

1 + ρ|heq|2

1 + ρ|hm|2
− a(m)Pt|hm,n|2ηn

]
.

Considering the practical utility of users in all matched PU-
IoT pairs, the settings of acceptable minimum utility for the
PU m and IoT Device n are necessary, which are denoted as
θ∗m and ϕ∗n respectively. Based on the direct link transmission
rate R∗m and income INm,n of PU m, the utility factor θ∗m is
given by

θ∗m = θ1R
∗
m + θ2EV(INm), (15)

where INm is the summary income of PU m when matching
with each IoT device, formulated as

INm =

N∑
n=1

INm,n (16)

=

N∑
n=1

[
a(m)Pt|hm,n|2ηn − b(m)B log2

1 + ρ|heq|2

1 + ρ|hm|2

]
,

and EV(INm) is the average of the summary income of PU
m when matching with each IoT Device, given by

EV(INm) =
INm
N

(17)

=

N∑
n=1

[
a(m)Pt|hm,n|2ηn − b(m)B log2

1+ρ|heq|2
1+ρ|hm|2

]
N

.
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Considering the transmission rate and expenditure of the
harvested power, the utility factor ϕ∗n of IoT Device n can be
formulated as

ϕ∗n = ϕ1R
∗
n − ϕ2EV(EXn) (18)

= ϕ1R
∗
n

+

ϕ2

M∑
m=1

[
b(m)B log2

1+ρ|heq|2
1+ρ|hm|2 − a(m)Pt|hm,n|2ηn

]
N

.

The matching problem of PUs and IoT devices is considered
firstly, and they would form R PU-IoT pairs whose set is
denoted as UP = {1, 2, . . . , R}. The matching between PUs
and IoT devices is a one-to-one matching problem. For any
matched results, each user would not have more than one
cooperator at the same time, which can be denoted as

Cm ∈ {0, 1}, and Cn ∈ {0, 1}. (19)

For Cm = 0, the PU m has failed to form the PU-IoT
pair with any IoT device, namely having no cooperators. In
addition, Cm = 1 means that the PU m has been matched
with a IoT device, i.e. only one IoT device cooperator. So
is the IoT Device n. For the matched UP r, the premise
of matching is that its achievable utility is not lower than
its utility factor. Specifically, the relationships of PU’s and
IoT device’s achievable utility and the respective utility factor
satisfy

θm,n ≥ θ∗m, (20)

and

ϕn,m ≥ ϕ∗n. (21)

The BS integrated with the MEC server offers the total
transmission duration T , which is divided into K time slots.
These time slots have different intervals, which may avoid the
high probability that no triples are willing to take the binary
offloading mode, and then offer a more flexible time to give
more choices to the constructed PU-IoT pairs. The interval of
time slot k is denoted as |tk|, which is less than T . In addition,
the sum of all time slots satisfies

K∑
k=1

|tk| = T. (22)

The matching of R PU-IoT pairs and BS is a many-to-
one matching problem, where the BS can be used R times.
Furthermore, the matching of R PU-IoT pairs and K time
slots is a one-to-one matching problem, which can be given
by

Cr ∈ {0, 1}, and Ck ∈ {0, 1}. (23)

In the obtained triples, there are no repetitive PU-IoT pairs
and time slots. For the UP r in the obtained triple (m,n, k),
it would not appear in another triple, and the number of its
cooperators is 1, denoted as Cr = 1. Meanwhile, for the time
slot k in this triple, there is only one cooperator called UP r,
and Ck equals to 1. For those PU-IoT pairs and time slots not

in any triples, namely having no cooperators, Cr and Ck equal
to 0.

For the obtained triple (m,n, k), the offloading mode of
UP r depends on the proportion factor ρr, which denotes the
relationship of the size between tr and |tk|. Specifically, the
proportion factor ρ is formulated as

ρr =


1 Match with BS, |tk| ≥ tr,
|tk|
tr

Match with BS, |tk| < tr,

0 Do not match with BS.

(24)

For the UP r matched with the BS, there are two cases:
1) When the interval of the matched time slot k is not less
than the required offloading time tr for the UP r in the triple
(m,n, k), the proportion factor ρr is 1. The offloading mode
applied by this PU-IoT pair is the binary offloading; 2) The
proportion factor ρr equals to |tk|

tr
, and the UP r applies

the partial offloading mode to offload partial tasks, when the
interval of the matched time slot k is less than the required
offloading time tr. Meanwhile, the proportion factor ρr is 0
for the UP r not matched with the BS. Further, this PU-IoT
pair dissolves, and all the tasks of PU m and IoT Device n in
this pair are computed by the local servers based on the binary
offloading mode. Considering the hybrid offloading mode of
PU-IoT pairs, the offloaded tasks Dr for UP r are given by

Dr =


Dm +Dn Match with BS, |tk| ≥ tr,
|tk|
tr

(Dm +Dn) Match with BS, |tk| < tr,

0 Do not match with BS.

(25)

For the first and third cases, the binary offloading mode is
applied by the UP r. Specifically, the UP r offload all their
tasks to the MEC server for the first case, while the UP r
dissolves and all the tasks of users in this pair are computed by
the local servers for the third case. When the partial offloading
mode is applied, the tasks of UP r offloaded to the MEC server
are |tk|tr (Dm+Dn), and the remaining tasks of PU m and IoT
Device n in this pair are (1 − |tk|tr )Dm and (1 − |tk|tr )Dn,
respectively, which are computed by the local servers.

C. Computing Model

In the conceived networks, the servers are divided into
two categories, which are local servers and MEC server.
The computation capabilities of local servers are limited to
compute the corresponding users’ tasks. For the local server
of PU m, the computation capability is denoted as Fm, which
is measured by the frequency of CPUs in the unit of cycles
per second or hertz, and is formulated as

Fm ≥
Dmfm
T

, (26)

where fm is the number of CPU cycles needed by 1 bit data of
PU m. Moreover, fn is treated as the number of CPU cycles
needed by 1 bit data of IoT Device n. For the local server of
IoT Device n, the computation capability is given by

Fn ≥
Dnfn
T

. (27)
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For the MEC server, the computation capability is finite as
well, which is denoted as F , measured by the total number of
CPU cycles. As a result, the offloaded tasks of PU-IoT pairs in
all triples should satisfy the following computation constraint:

R∑
r=1

(Dmfm +Dnfn)Crρr ≤ F. (28)

D. Problem Formulation

As the sellers of communication resource, PUs would
consider the benefits of cooperation with the IoT devices. For
the sake of balancing the rate and income of PUs, we study
the sum-utility maximization problem of PUs matched in the
triples, which is formulated as

max
θ1,ϕ1

R∑
r=1

Crθm,n (29)

=

R∑
r=1

Cr
[
θ1Rm,n + θ2a(m)Pt|hm,n|2ηn

− θ2b(m)B log2
1 + ρ|heq|2

1 + ρ|hm|2

]
,

s.t. (a) Fm ≥
Dmfm
T

, Fn ≥
Dnfn
T

, ∀m, ∀n,

(b) θ1 ≥ 0, θ2 ≥ 0, θ1 + θ2 = 1,

ϕ1 ≥ 0, ϕ2 ≥ 0, ϕ1 + ϕ2 = 1,

(c) θm,n ≥ θ∗m, ϕn,m ≥ ϕ∗n, m, n ∈ ∀r,

(d)

R∑
r=1

(Dmfm +Dnfn)Crρr ≤ F,

(e)

K∑
k=1

|tk| = T, |tk−1| 6= |tk| 6= |tk+1|, ∀k ∈ K−2,

(f) Cm ∈ {0, 1}, Cn ∈ {0, 1}, Cr ∈ {0, 1},
Ck ∈ {0, 1}, ∀m, ∀n, ∀r, ∀k.

Note that (a) guarantees that each local server is able to
compute all the tasks of the corresponding users; (b) constrains
the relationships between these adjustable factors θ1, θ2, ϕ1

and ϕ2; (c) are the conditions of forming the PU-IoT pair for
the PU m and IoT Device n; (d) guarantees all the offloaded
tasks can be computed by the MEC server; (e) implies that
the total transmission duration T is divided into K time slots
with different intervals, where K−2 = {2, 3, . . . ,K − 1}; (f)
implies that the matching between the PUs and IoT devices is
one-to-one, and the matching between the PU-IoT pairs and
time slots is.

IV. NO-PREFERENTIAL SCENARIO

In the “Preferential Scenario”, there are two time slots
provided for the transmission of each PU-IoT pair. More
explicitly, the first time slot is for the transmission of the PU
m as well as the process of harvesting power for the IoT
Device n. In addition, the second time slot is for the IoT
Device n to upload its tasks to the BS after the transmission of

the matched PU m, aiming to obtain a discount of improving
the transmission rate of this PU m. Unlike the “Preferential
Scenario”, in the “No-Preferential Scenario”, there is only
one time slot provided for each PU-IoT pair, where the PU
m and IoT Device n upload their offloaded tasks to the BS
simultaneously, and there is no discount for the IoT Device
n due to its interference to the PU m. Without considering
the monetary transactions, the “No-Preferential Scenario” is
a single-win scenario, where IoT devices in PU-IoT pairs
obtain the transmission power and spectrum resources, but
the transmission rates of these matched PUs are negatively
affected.

Fig. 3. System model of no-preferential scenario.

Specifically, the PU m in the UP r uploads its tasks to
the BS by the direct-backscatter link. Meanwhile, the IoT
Device n in this pair uploads the offloaded tasks to the
BS by the transmission power obtained with the backscatter
coefficient αn. Explicitly, the process of harvesting power
based on the power harvesting coefficient ηn is not needed.
Furthermore, the BS integrated with a MEC server applies the
successive interference cancellation (SIC) technique to decode
the received messages. At the BS, the messages of PU m
are firstly decoded under the interference from the matched
IoT Device m, then only the messages of IoT Device n are
decoded. The direct-backscatter link transmission rate of PU m
is influenced by the transmission of the IoT Device n. Hence,
this IoT Device n would suffer from a higher expenditure
for buying the transmission power from the matched PU m
without a discount.

A. Communication Model

The NOMA technique is applied to improve spectral effi-
ciency and user fairness [44], [45]. The PU m and IoT Device
n in the UP r upload their tasks simultaneously. The required
offloading time of UP r is denoted as

tr = max{tm,n, tn,m}, (30)

which is the longer time among the required offloading time of
PU m and IoT Device n in this pair, as shown in Fig. 3, which
aims to guarantee that each user has the authority to offload
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all the tasks. Additionally, the required offloading time of PU
m and IoT Device n are determined, respectively, as

tm,n =
Dm

Rm,n
, (31)

and

tn,m =
Dn

Rn,m
, (32)

where Rm,n and Rn,m are the rates of uplink transmission for
the PU m and IoT Device n. At the BS, the SIC technique is
applied to decode the messages of users, where the messages
of PU m in the UP r is decoded firstly.

In the conceived networks, the bandwidth of the authorized
spectrum is denoted as B, the noise power is denoted as
N0, and the transmission power is denoted as Pt. The direct-
backscatter link transmission rate of the PU m in the UP r is
given by

Rm,n = B log2

[
1 +

Pt(|hm|2 + αn|hm,n|2|hn|2)
N0 + Pt|hm,n|2αn|hn|2

]
, (33)

where αn ∈ [0, 12 ) is the backscatter coefficient of IoT Device
n controlling the transmission power of backscatter link, and
the transmission power of backscatter link for the PU m and
IoT Device n in this pair is given by Pb = αnPt|hm,n|2.

The direct-backscatter link transmission rate Rm,n of PU
m is influenced by the matched IoT Device n, and the direct
link transmission rate R∗m is given by

R∗m = βB log2

(
1 +

Pt|hm|2

N0

)
, (34)

where β is the rate regulation factor, and β ∈ (0, 1]. The
messages of the matched IoT Device n are decoded secondly,
and the backscatter link transmission rate of IoT Device n is
given by

Rn,m = B log2

(
1 +

Pt|hm,n|2αn|hn|2

N0

)
, (35)

where the transmission power is bought from the matched
PU m by the unit price a(m) per dBm. Furthermore, the
expenditure EXn,m of IoT Device n is determined by

EXn,m = Pt|hm,n|2αna(m). (36)

For the “Preferential Scenario”, the transmission power of
IoT Device n in the UP r is harvested from the matched
PU m by the power harvesting coefficient ηn during the
first time slot, and then the IoT Device n uploads tasks
using the harvested power during the second time slot, so
the expenditure EXn,m is relating to the power harvesting
coefficient ηn. Differently, for the “No-Preferential Scenario”,
there is only one time slot for each PU-IoT pair, and no
process of the IoT device n harvesting the power from the
matched PU m. The PU and IoT device in each PU-IoT pair
upload the offloaded tasks to the BS simultaneously, and the
transmission power of IoT device n is determined by the
backscatter coefficient αn, which is relating to the expenditure
EXn,m of IoT Device n as well.

No discounts are provided to the IoT Device n in the UP
r, since the transmission rate of the matched PU m decreases
by the interference of IoT Device n. For the “No-Preferential
Scenario”, the income INm,n is equal to the expenditure
EXn,m of IoT Device n, given by

INm,n = EXn,m (37)

= a(m)Pt|hm,n|2αn.

B. Cooperation Protocol

As the seller, each PU needs to weight the transmission
rate and income. The utility factor θ∗m is the acceptable
minimum utility of PU m, which is relating to the direct link
transmission rate R∗m and the average EV(INm) of the total
income of PU m matching with each IoT device, given by

θ∗m = θ1R
∗
m + θ2EV(INm) (38)

= θ1R
∗
m +

θ2
N∑
n=1

INm,n

N

= θ1R
∗
m +

θ2
N∑
n=1

a(m)Pt|hm,n|2αn

N
,

where θ1 and θ2 are positive adjustable factors, and satisfy
θ1+θ2 = 1. The utility factor θ∗m is the measure of whether the
matching between the PU m and each IoT device is acceptable.
The practical utility of the PU m matching with the IoT Device
n, called achievable utility θm,n, is formulated as

θm,n = θ1Rm,n + θ2INm,n (39)

= θ1Rm,n + θ2a(m)Pt|hm,n|2αn.

As the consumer, each IoT device needs to weight the
transmission rate and the expenditure as well. If each IoT
device has the available spectrum to transmit its tasks, the
direct link transmission rate R∗n of IoT Device n can be
computed by

R∗n = B log2

(
1 +

Pt|hn|2

N0

)
. (40)

Considering the direct link transmission rate R∗n and the
average expenditure EXn, the utility factor ϕ∗n of IoT Device
n is denoted as

ϕ∗n = ϕ1R
∗
n − ϕ2EV(EXn) (41)

= ϕ1R
∗
n −

ϕ2

M∑
m=1

Pt|hm,n|2αna(m)

M
,

where ϕ1 and ϕ2 are positive adjustable factors, and satisfy
ϕ1+ϕ2 = 1 as well. For the IoT Device n matching with the
PU m, the achievable utility ϕn,m is given by

ϕn,m = ϕ1Rn,m − ϕ2EXn,m (42)

= ϕ1Rn,m − ϕ2Pt|hm,n|2αna(m).

The matching between the PUs and IoT devices is one-to-
one matching problem, denoted as

Cm ∈ {0, 1}, and Cn ∈ {0, 1}. (43)



9

For each obtained UP r, the achievable utilities of the PU
m and IoT Device n are not lower than their utility factors,
formulated as

θm,n ≥ θ∗m, (44)

and

ϕn,m ≥ ϕ∗n. (45)

Furthermore, the matching between the K time slots of BS
and the PU-IoT pairs is one-to-one matching as well, which
is formulated as

Cr ∈ {0, 1}, and Ck ∈ {0, 1}. (46)

The offloading mode and offloaded tasks of the PU-IoT pair
in the obtained triple (m,n, k) are related to the proportion
factor ρr, which is given by

ρr =


1 Match with BS, |tk| ≥ tr,
|tk|
tr

Match with BS, |tk| < tr,

0 Do not match with BS,

(47)

where ρr = 1 denotes that the UP r would offload all the
tasks to the BS during the matched time slot k by the binary
offloading mode. When ρr equals to |tk|

tr
, the UP r applies

the partial offloading mode to offload partial tasks. Otherwise,
the proportion factor ρr is 0 for the UP r not matched with
the BS. Further, this PU-IoT pair dissolves, and all the tasks
of PU m and IoT Device n in this pair are computed by the
local servers based on the binary offloading mode. The sizes
of tasks for each user with different ρr are computed by

Dr =


Dm +Dn Match with BS, |tk| ≥ tr,
|tk|
tr

(Dm +Dn) Match with BS, |tk| < tr,

0 Do not match with BS.

(48)

C. Computing Model

The computation capabilities of local servers and MEC
server are finite, the computation capability of PU m’s local
server is given by

Fm ≥
Dmfm
T

, (49)

where fm is the number of CPU cycles needed by 1 bit data
of PU m. The number of CPU cycles needed by 1 bit data of
IoT Device n is denoted as fn, and the computation capability
of IoT Device n’s local server is formulated as

Fn ≥
Dnfn
T

. (50)

We treat F as the total number of CPU cycles for the MEC
server, and F satisfies

R∑
r=1

(Dmfm +Dmfn)Crρr ≤ F. (51)

D. Problem Formulation

Considering the utility of PUs in all the final triples, the
sum-utility maximization problem can be formulated as

max
θ1,ϕ1,β

R∑
r=1

Crθm,n (52)

=

R∑
r=1

Cr
[
θ1Rm,n + θ2a(m)Pt|hm,n|2αn

]
,

s.t. (a) Fm ≥
Dmfm
T

, Fn ≥
Dnfn
T

, ∀m, ∀n,

(b) θ1 ≥ 0, θ2 ≥ 0, θ1 + θ2 = 1,

ϕ1 ≥ 0, ϕ2 ≥ 0, ϕ1 + ϕ2 = 1,

0 < β ≤ 1,

(c) θm,n ≥ θ∗m, ϕn,m ≥ ϕ∗n, m, n ∈ ∀r,

(d)
R∑
r=1

(Dmfm +Dnfn)Crρr ≤ F,

(e)

K∑
k=1

|tk| = T, |tk−1| 6= |tk| 6= |tk+1|, ∀k ∈ K−2,

(f) Cm ∈ {0, 1}, Cn ∈ {0, 1}, Cr ∈ {0, 1},
Ck ∈ {0, 1}, ∀m, ∀n, ∀r, ∀k.

Note that (a) guarantees that each local server is able to
compute all the tasks of the corresponding users; (b) constrains
the relationships between these adjustable factors θ1, θ2, ϕ1

and ϕ2, and gives the range of rate regulation factor β; (c)
are the conditions of forming the PU-IoT pair for the PU
m and IoT Device n; (d) guarantees that all the offloaded
tasks can be computed by the MEC server; (e) implies that
the total transmission duration T is divided into K time slots
with different intervals, where K−2 = {2, 3, . . . ,K − 1}; (f)
implies that the matching between the PUs and IoT devices is
one-to-one, and the matching between the PU-IoT pairs and
time slots is.

V. UTILITY BASED RESOURCES SHARING ALGORITHM

Now we study the resources sharing scheme considering
the monetary transactions, including the power, spectrum,
time, and server resources. In Section III and IV, we have
proposed two scenarios relating to the relationships between
the PUs and IoT devices. In the “Preferential Scenario”, the
relationships between the users in the triples are win-win,
where the transmission rates of PUs are improved by the
assistance of the matched IoT devices, and the IoT devices
could transmit tasks using the obtained transmission power
and spectrum resources with a discounted price. Specifically,
the processes of offloading tasks for the users in each triple
are in order, where PUs go firstly. The PUs in the triples
charge the matched IoT devices for the shared transmission
power, where the discounts relating to the assistance of IoT
devices are considered. In the “No-Preferential Scenario”, the
relationships between the users in the triples are single win,
where the IoT devices obtain the transmission power and
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spectrum resources, and the transmission rates of PUs are
interfered by the matched IoT devices. In detail, the users in
the triples upload tasks at the same time, and the PUs charge
the matched IoT devices for the shared power without any
discounts.

The resources sharing problem is a three-sided matching
problem for the PUs, IoT devices and BS. The three-sided
matching problem is NP-hard [46], [47], and there are no
polynomial-complexity algorithms to find the optimal solu-
tions of Eq. (29) and Eq. (52). To obtain the approximate
solutions, we propose the utility based resources sharing
algorithm to solve the three-sided matching problems in the
conceived networks, which is shown in Algorithm 1. In
detail, we dissolve the resources sharing problem into two sub-
problems, which are the power and spectrum sharing between
the PUs and IoT devices, as well as the time and servers
sharing between the PU-IoT pairs and BS.

Algorithm 1: Utility Based Resources Sharing Algo-
rithm

1 Step 1: Initialize
1) Adjustable factors θ1, θ2, ϕ1 and ϕ2;
2) Utility factors θ∗m and ϕ∗n;

Step 2: Match the PUs and IoT devices
Repeat
1) Update the preference list PLM×N ;
2) PUs without cooperators send the matching

invitations to the most anticipated IoT device;
3) If the IoT device has no cooperator then
4) ϕn,m ≥ ϕ∗n⇒(m,n);

ϕn,m < ϕ∗n⇒remain single;
5) Else if it has a cooperator PU mex then
6) ϕn,m > ϕn,mex

⇒(m,n);
ϕn,m ≤ ϕn,mex

⇒(mex, n);
7) End if
Until PLm|single PU m=O

Step 3: Determine the offloading strategy of PU-IoT
pairs

Compute the offloading time of all PU-IoT pairs;
Repeat
1) Update the preference list PLR×K ;
2) UPs without scheduling send the matching invitations

to the BS for the most anticipated time slot;
3) If the time slot has not been scheduled then
4) (m,n, k)⇒ ρr;
5) Else if it has been scheduled with the UP rex, and

the proportion factor ρrex is known then
6) ρr = 1, ρrex < 1⇒(m,n, k);

ρr < 1, ρrex = 1⇒(mex, nex, k);
ρrex < ρr < 1⇒(m,n, k);
ρr ≤ ρrex < 1⇒(mex, nex, k);
ρr = ρrex = 1, trex < tr⇒(m,n, k);
ρr = ρrex = 1, trex ≥ tr⇒(mex, nex, k);

7) End if
Until PLr|single UP r=O

A. Power and Spectrum Resources Sharing Scheme

For both scenarios, the processes of matching between the
PUs and IoT devices are one-to-one matching, and each user
would like to maximize its own utility, denoted as Eq. (13),
Eq. (14), Eq. (39) and Eq. (42). Furthermore, the PUs are the
providers of the transmission power and spectrum resources,
and have the authorities and priorities to choose the IoT
devices that they would like to cooperate with. For each PU,
the utility brought by each IoT device is different, which
decides the priorities of the PU’s selections among all the IoT
devices. For the IoT devices satisfying Eq. (20) and Eq. (44)
of the PU m, the set is denoted as

PLZFm = {n | θm,n ≥ θ∗m}, (53)

and the elements of PLZFm form the zero-free preference list
PLZFm in the following order:

θm,PLZF
m (1) ≥ θm,PLZF

m (2) ≥ · · · ≥ θm,PLZF
m (N∗

m), (54)

where N∗m is the number of elements of the PLZFm .
In addition, considering the IoT devices not satisfying Eq.

(20) and Eq. (44) of the PU m, they are denoted as 0 in the
complete preference list PLm of the PU m, and the complete
preference list PLm of the PU m is determined as

PLm = [PLZFm ,ON−N∗
m
], (55)

where ON−N∗
m

is the the zero vector with the length N−N∗m.
The complete preference lists of all the PUs are different, and
they form the preference list PLM×N of M PUs in parallel,
which is denoted as

PLM×N =



PLZF1 ,ON−N∗
1

PLZF2 ,ON−N∗
2

...
PLZFm ,ON−N∗

m

...
PLZFM ,ON−N∗

M


. (56)

Based on the preference list PLM×N , each PU who has
not been matched with others sends the matching invitation to
the respective best choice located at the first location of the
corresponding row in the PLM×N . Meanwhile, the invited
IoT devices have two cases, which are single or not single.
No matter which the case is, there may be more than one PU
sending the matching invitations to the same IoT device, and
it’s just a matter of who sends the invitation firstly.

For the invited IoT Device n without a cooperator, if the
achievable utility ϕn,m brought by the PU m is not lower than
its utility factor ϕ∗n, the IoT Device n accepts the invitation
of PU m, and the PU-IoT pair (m,n) is obtained. Otherwise,
the IoT Device n rejects the invitation of PU m and remains
single. For the invited IoT Device m matched with the PU
mex, if the achievable utility ϕn,m brought by the PU m is
higher than the achievable utility ϕn,mex

brought by the PU
mex, the IoT Device n accepts the invitation of PU m and
abandons the PU mex, the PU-IoT pair (m,n) is obtained.
Otherwise, the IoT Device n rejects the invitation of PU m
and keeps the PU-IoT pair (mex, n) with the PU mex.
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After the above processes, the PU m which is rejected or
abandoned by the IoT Device n updates its zero-free prefer-
ence list PLZFm , by treating the utility brought by the the IoT
Device n as 0 and removing the IoT Device n from the PLZFm .
Considering all the rejected or abandoned PUs, the preference
list PLM×N is updated. Based on the updated PLM×N ,
the matching of the PUs without the cooperators and IoT
devices begins again. The above processes are repeated until
the complete preference list PLm of each PU without a
cooperator becomes a zero vector O, and R PU-IoT pairs,
which would share the power and spectrum resources, are
obtained.

B. Time and Servers Resources Sharing Scheme

All PU-IoT pairs need to solve the issue on the number
of tasks, which server to use and the time to operate. In the
conceived networks, there is only one BS integrated with the
MEC server that can compute the offloaded tasks. Moreover,
the matching between the PU-IoT pairs and BS is a many-
to-one matching. For the sake of satisfying the offloading
requirements of all the PU-IoT pairs, the total transmission
duration T is divided into many time slots, while the matching
between the PU-IoT pairs and time slots is a one-to-one
matching. Based on the Eq. (2) and Eq. (30), the required
offloading time can be computed. The required offloading
time of R PU-IoT pairs are different, since the tasks and
transmission rates of all the users are different. The total
transmission duration T is divided into K time slots with
different intervals, in order to provide different solutions to
the PU-IoT pairs with the different offloading time.

Faced with K different time slots, there are two offloading
modes for each PU-IoT pair, which are the binary and partial
offloading modes. Each PU-IoT pair would like to offload tasks
by the binary mode, and the set of the time slots that allow
the UP r to offload tasks by the binary mode is denoted as

PLBMr = {k | |tk| ≥ tr}, (57)

where KBM
r elements form the binary-mode preference list

PLBMr in the following order:

|tPLBM
r (1)| ≤ |tPLBM

r (2)| ≤ · · · ≤ |tPLBM
r (KBM

r )|. (58)

The remaining time slots only allow the UP r to offload
tasks by the partial mode, and the set of these time slots is
denoted as

PLPMr = {k | tr > |tk|, and |tk| 6= 0}, (59)

where the number of elements are denoted as KPM
r , and the

elements form the partial-mode preference list PLPMr in the
following order:

|tPLPM
r (1)| ≥ |tPLPM

r (2)| ≥ · · · ≥ |tPLPM
r (KPM

r )|. (60)

There may be some time slots whose intervals are zero,
and cannot be used by the PU-IoT pairs. In the complete
preference list PLr of UP r, the time slots that cannot be
used are denoted 0. The PLr is formulated as

PLr = [PLBMr ,PLPMr ,OK−KBM
r −KPM

r
], (61)

where OK−KBM
r −KPM

r
is the zero vector with the length K−

KBM
r −KPM

r .
Arranging the complete preference lists of all the PU-IoT

pairs in parallel, the preference list PLR×K is given by

PLR×K =



PLBM1 ,PLPM1 ,OK−KBM
1 −KPM

1

PLBM2 ,PLPM2 ,OK−KBM
2 −KPM

2

...
PLBMr ,PLPMr ,OK−KBM

r −KPM
r

...
PLBMR ,PLPMR ,OK−KBM

R −KPM
R


. (62)

According to the preference list PLR×K , each PU-IoT
pair that is not matching with any time slots would send the
matching invitation to the BS for matching with the respective
first choice. If the invited time slot has not been matched with
other PU-IoT pairs, the time slot would accept the invitation,
and forms the triple (m,n, k) with the UP r. Meanwhile, the
proportion factor ρr is given by Eq. (24) and Eq. (47).

If the invited time slot has been matched with a PU-IoT
pair denoted as UP rex, then the proportion factor ρr of the
inviting UP r would be computed firstly. Then there are a few
cases need to be considered. For ρr = 1 and ρrex < 1, the
PU-IoT pair who could offload tasks by the binary mode is
the first choice for the invited time slot k, and the time slot
k accepts the invitation of UP r and abandons the UP rex,
forming the triple (m,n, k). For ρr < 1 and ρrex = 1, the UP
rex that could take the binary offloading mode is selected by
the invited time slot k, and the inviting UP r is rejected.

For ρr < 1 and ρrex < 1, if the proportion factor ρrex is
lower than the ρr, the invited time slot k accepts the invitation
of UP r, which has the bigger proportion factor to offload more
of its tasks. Otherwise, the UP r is rejected by the invited time
slot k, and the triple (mex, nex, k) matching with the UP rex
is kept. For ρr = ρrex = 1, the invited time slot k would
select the PU-IoT pair having the longer offloading time, in
order to reduce the time wasters. In detail, if the offloading
time of UP r is higher than that of the UP rex, the invited
time slot k accepts the invitation of UP r, and forms the triple
(m,n, k). Otherwise, the triple (mex, nex, k) matching with
the UP rex is kept.

After the above processes, the UP r rejected or abandoned
by the time slot k would not send the matching invitation to it
again, and treats the interval of this time slot as 0. Considering
all the rejected or abandoned PU-IoT pairs, the preference list
PLR×K is updated. Furthermore, the matching between the
PU-IoT pairs and BS starts again. The processes of matching
and updating are repeated until the complete preference list
PLr of each PU-IoT pair without matching with the BS
equals to the zero vector O.

C. Resources Sharing Scheme, Stability and Complexity

1) Resources Sharing Scheme: Based on the proposed
algorithm, the problem of resources sharing in the “Preferential
Scenario” and “No-Preferential Scenario” could be solved.
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Specifically, R triples can be obtained using the utility based
resources sharing algorithm.

For the triple (m,n, k) in the “Preferential Scenario”, the
PU m firstly offloads tasks to the MEC server based on the
proportion factor ρr via the direct-backscatter link. Mean-
while, the IoT Device n in the backscatter link harvests the
power from the PU m depending on the power harvesting
coefficient ηn, and then offloads tasks to the MEC server
depending on the proportion factor ρr by employing the
harvested power. More specifically, the IoT Device n pays
PU m for the harvested power by subtracting the discount of
extra improving its transmission rate, and the extra improved
transmission rate is the difference of the direct-backscatter link
transmission rate and the direct link transmission rate.

For the triple (m,n, k) in the “No-Preferential Scenario”,
the PU m and IoT Device n offload their tasks to the MEC
server depending on the proportion factor ρr simultaneously,
which the IoT Device n obtains the transmission power from
the PU m depending on the backscatter coefficient αn, and
has effect on the transmission rate of PU m. In particular, the
IoT Device n pays the PU m for the obtained transmission
power without any discount.

For users who have not matched with others, their tasks are
computed by the local servers.

2) Stability: For a stable two-sided matching, there will be
no destabilizing pairs [48]. If the PU m∗ and IoT Device n∗

have been matched with other users under the current matching
results, but they prefer each other than the current cooperators,
then, the destabilizing pair (m∗, n∗) is formed between them,
and the matching is not stable.

The proposed three-sided matching problem for the PUs,
IoT devices and BS is in fact a two two-sided matching
problem, which is the matching between the PUs and IoT
devices, and the matching between the PU-IoT pairs and BS.
More specifically, the utility based resources sharing algorithm
is a two-step two-sided matching algorithm. The stability of
the proposed algorithm is analyzed as follows.

We assume that there is a triple (m∗, n∗, k∗) not included in
the current matching results, and this triple is divided into two
pairs (m∗, n∗) and (r∗, k∗). For the PU-IoT pair (m∗, n∗), two
cases are considered. If the PU m∗ has not sent the matching
invitation to the IoT Device n∗, there are two reasons: 1) the
IoT Device n∗ is not in the complete preference list PLm
of PU m∗; 2) the PU m∗ has matched with another better
cooperator. If the PU m∗ has sent the matching invitation
to the IoT Device n∗, the reasons that it has been rejected
are: 1) the requirement of the IoT Device n∗ could not be
satisfied by the PU m∗; 2) the IoT Device n∗ has matched
with another better cooperator. Hence, we could conclude that
the PU m∗ and IoT Device n∗ do not prefer each other than
the current cooperators, and the PU-IoT pair (m∗, n∗) is not
a destabilizing pair.

For the pair (r∗, k∗), two cases are considered as well. If the
UP r∗ has not sent the matching invitation to the time slot k∗,
there are two reasons: 1) the interval of time slot k∗ is 0, and
it is not in the complete preference list PLr of UP r∗; 2) the

UP r∗ has matched with another better cooperator. If the UP
r∗ has sent the matching invitation to the time slot k∗, then the
reason that the UP r∗ has been rejected, is that the time slot k∗

has matched with another better cooperator. Therefor, we could
conclude that the pair (r∗, k∗) is not a destabilizing pair, and
the triple (m∗, n∗, k∗) is not a destabilizing triple. Hence, there
are no destabilizing triples for the current matching results, and
the stability of the proposed algorithm is proved.

3) Complexity: In the communication phase, during the
matching process of the PUs and IoT devices, each PU
sends the invitation to the first choice of its preference list
in each round. The worst case is that each PU may send
their invitations to IoT devices for N times. For M PUs, the
complexity can be computed as O(MN).

After the matching process of the PUs and IoT devices is
finished, M PU-IoT pairs could be obtained at most. For M
PU-IoT pairs, they would like to match with the BS in the
computing phase. During this process, each user pair would
sent the matching invitation to the BS for K times at most.
For M PU-IoT pairs, the complexity is given by O(MK).
Combing above two processes, the complexity of the proposed
algorithm can be expressed as

O(MN +MK) = O(2M2). (63)

VI. SIMULATION RESULTS

In this section, the simulation results are presented to
evaluate the performances of the proposed algorithm in the
“Preferential Scenario” and “No-Preferential Scenario”. Then,
in order to highlight the superiority of the proposed algorithm,
the centralized algorithm and random algorithm are considered
for comparison.

A. Simulation Setup

In this paper, the channel gain is denoted by h = ε2l, where
ε is the small-scale fading component, l is the large-scale
fading component. For both the “Preferential Scenario” and
“No-Preferential Scenario”, the distances between the PUs and
BS are not more than 25 meters, and the distances between
the IoT devices and BS are not more than 20 meters. The
other parameters are set as follows. The bandwidth of the
authorized spectrum is B = 10 MHz, the noise power is
N0 = −30 dBm, and Pt = 25 dBm is the transmission
power. In addition, the computation capability of MEC server
is F = 4× 1011 cycles/s. For the IoT Device n, the task size,
the required number of CPU cycles per bit and the computation
capability are Dn ∈ (0, 30] Mbit, fn ∈ [50, 100] cycles/bit
and Fn = 200 MHz, respectively. Meanwhile, the backscatter
coefficient and the power harvesting coefficient of IoT Device
n are ηn = αn ∈ [0, 12 ). For the PU m, the task size, the
required number of CPU cycles per bit and the computation
capability are Dm ∈ (0, 40] Mbit, fm ∈ [50, 100] cycles/bit
and Fm = 300 MHz, respectively. The local computation
energy per cycle for each user is set as Pm = Pn = 0.5
J/cycle. Considering the money transactions, the unit price of
selling power for the PU m is a(m) ∈ [0.2, 0.3] $/dBm, and
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the preferential price of the improved transmission rate given
by the PU m is b(m) ∈ [0.1, 0.2] $/dBm.

B. Performance Analysis

According to Eq. (29) and Eq. (52), the utility of PUs is
relating to the utility factors θ∗m and ϕ∗n, where the adjustable
factors θ1, θ2, ϕ1 and ϕ2 determine the proportion of the
transmission rates and income, and then influence the utility of
all the PUs. The proposed algorithm is to maximize the utility
of all the PUs based on the established adjustable factors,
instead of maximizing the utility of all the PUs by adjusting the
adjustable factors. Specifically, there are three main cases for
the adjustable factors θ1 and θ2, which are shown as follows:

• θ1 > θ2, PUs prefer the transmission rates;
– θ1 = 1, θ2 = 0, only rates are considered;

• θ1 < θ2, PUs prefer the income;
– θ1 = 0, θ2 = 1, only income is considered;

• θ1 = θ2, the transmission rates and income have the same
proportion for the PUs.

Meanwhile, for the adjustable factors ϕ1 and ϕ2, we have
the following cases:

• ϕ1 > ϕ2, IoT devices prefer the obtained transmission
power;

– ϕ1 = 1, ϕ2 = 0, only power is considered;
• ϕ1 < ϕ2, IoT devices prefer the expenditure;

– ϕ1 = 0, ϕ1 = 1, only expenditure is considered;
• ϕ1 = ϕ2, the obtained transmission power and expendi-

ture have the same proportion for the IoT devices.

As shown in Fig. 4, the approximate solutions of Eq.
(29) and Eq. (52) relating to different adjustable factors
are obtained by the proposed algorithm in the “Preferential
Scenario” and “No-Preferential Scenario”. Fig. 4(a) shows the
approximate solutions in terms of the ‘Utility’ based on the
established different adjustable factors ‘θ1’ and ‘ϕ1’ for the
“Preferential Scenario”, while Fig. 4(b) shows that of the “No-
Preferential Scenario”, where θ2 = 1− θ1, and ϕ2 = 1− ϕ1.
No matter what the scenario is, the sum utility optimized by
the proposed algorithm is the best, when the PUs prefer the
transmission rates completely, namely θ1 = 1 and θ2 = 0.
Inversely, when only income is considered, namely θ1 = 0 and
θ2 = 1, the optimized solution of all the PUs is the lowest. In
detail, when ϕ1 ≥ 0.2 and θ1 = 1, the optimized solution is
relatively higher.

As seen in Fig. 4, the relationships of the utility and
adjustable factors are the same for the “Preferential Scenario”
and “No-Preferential Scenario”, when applying the proposed
algorithm. Fig. 5 shows the gap of the utility optimized by
the proposed algorithm for both scenarios. The value of θ1 is
the main factor influencing the gap of the optimized solution.
Specifically, the performance of the “Preferential Scenario”
and “No-Preferential Scenario” are identical at θ1 = 0.3. The
performance of the “No-Preferential Scenario” is higher than
that of the “Preferential Scenario” when θ1 ≤ 0.3, and the gap
is narrowing as θ1 increases. By contrast, the performance

(a) Preferential Scenario

(b) No-Preferential Scenario

Fig. 4. The variation of the optimized solution with different adjustable
factors, where M = N = K = 25, T = 25s, β = 0.4, Pt = 25 dBm.

Fig. 5. The comparison of the optimized solution of the “Preferential
Scenario” (PS) and “No-Preferential Scenario” (NPS), where M = N =
K = 25, T = 25s, β = 0.4, Pt = 25 dBm.
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of the “No-Preferential Scenario” is lower than that of the
“Preferential Scenario” for θ1 > 0.3, and the gap is widening
as θ1 increases. In order to achieve the best utility of PUs,
the ’Preferential Scenario’ could be selected for solving the
resource allocation problem when θ1 > 0.3, and the “No-
Preferential Scenario” could be selected when θ1 ≤ 0.3.

(a) Utility

(b) Energy consumptions

Fig. 6. The variation of the optimized solution and energy consumptions with
different rate regulation factors and numbers of PUs, where M = N = K,
T =M s, θ1 = θ2 = 0.5, ϕ1 = ϕ2 = 0.5, Pt = 25 dBm.

In the “No-Preferential Scenario”, the utility factor ϕ∗n of
IoT Device n is related not only to the adjustable ϕ1 and
ϕ2, but also to the rate regulation factor β. In Fig. 6, for
different M , the relationships of the optimized solution, energy
consumptions and the rate regulation factor β are investigated.
Fig. 6(a) shows the variation of the optimized solution versus
different M and β. No matter how many PUs there are, the
optimized solution is near constant when 0.1 ≤ β ≤ 0.4, and
it decreases with the increasing of β when 0.5 ≤ β ≤ 1.
Furthermore, the energy consumptions are the lowest when
0.1 ≤ β ≤ 0.4, and it increases with the increasing of β when
0.5 ≤ β ≤ 1, as seen in Fig. 6(b). It can be concluded that

the optimized solution and energy performances are the best,
when the rate regulation factor β of each PU is β ∈ [0.1, 0.4].
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Fig. 7. The comparison of the convergence of the proposed algorithm under
different adjustable factors θ1 and θ2, where M = N = K = 25, T = 25s,
ϕ1 = ϕ2 = 0.5, β = 0.4, Pt = 25 dBm.

Fig. 7 investigates the convergence of the utility based
resources sharing algorithm, and compares the performances
of the proposed algorithm under different adjustable factors
θ1 and θ2. No matter how much the adjustable factors are,
the optimized solution converges to a stable value, when the
iterations are more than 100. For θ1 = 0 and θ2 = 0.25, the
convergence values of “No-Preferential Scenario”, namely the
optimized solution, are better than that of the “Preferential
Scenario”, and the difference between them decreases with
the increasing of θ1. For θ1 = 0.5, θ1 = 0.75 and θ2 = 0.1,
the convergence values of “Preferential Scenario” are better
than that of the “No-Preferential Scenario”, and the difference
between them increases with the increasing of θ1. Furthermore,
for both the two scenarios, the convergence values are the best,
when θ1 = 1. The above analysis echoes that of Fig. 5.

The difference between the “Preferential Scenario” and
“No-Preferential Scenario” is mainly in the transmission rates
and income of PUs. Fig. 8 compares the rates and income
of the “Preferential Scenario” to that of the “No-Preferential
Scenario” considering θ1 = 0 and θ2 = 1. As shown in
Fig. 8(a), the rates of the “Preferential Scenario” are better than
that of the “No-Preferential Scenario”, when the adjustable
factors θ1 and θ2 are the same for both the two scenarios. Due
to the fact that the transmission rates of PUs are improved by
the matched IoT devices in the “Preferential Scenario”, but
that od the PUs are interfered by the matched IoT devices
in the “No-Preferential Scenario”, the rate performances of
the “Preferential Scenario” are better. The transmission rates
of PUs are the best in the “Preferential Scenario”, where the
PUs only consider the rates, namely θ1 = 1. Fig. 8(b) shows
the income of PUs under different scenarios with different
adjustable factors θ1 and θ2. In terms of the scenarios, the
income of PUs of the “No-Preferential Scenario” is better than
that of the “Preferential Scenario”, regardless of the adjustable
factors θ1 and θ2. In the “No-Preferential Scenario”, there are
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Fig. 8. The comparison of the rates and income of the PUs for the “Pref-
erential Scenario” and “No-Preferential Scenario” under different adjustable
factors θ1 and θ2, where M = N = K, T = M s, ϕ1 = ϕ2 = 0.5,
β = 0.4, Pt = 25 dBm.

no discounts for the IoT devices, so the income of PUs is
higher than that of the “Preferential Scenario”. The income
of PUs is the best in the “No-Preferential Scenario”, where
the PUs only consider the rates, namely θ1 = 1. It can be
concluded that each scenario has its own advantages, where
the “Preferential Scenario” applying the proposed algorithm is
good at optimizing the utility by improving the transmission
rates of PUs, and the “No-Preferential Scenario” applying
the proposed algorithm is good at optimizing the utility by
improving the income of PUs.

Fig. 9 compares the optimized solution of the proposed
algorithm to that of the centralized algorithm (CA) and ran-
dom algorithm (RA) in the “Preferential Scenario” and “No-
Preferential Scenario”. The exhaustive search is required by
the CA, and the complexity of CA is given by

O((M !)2M). (64)

As shown in Fig. 9(a) and Fig. 9(b), the performance of the
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Fig. 9. The comparison of the utility optimized by different algorithms, where
M = N = K, T = M s, θ1 = θ2 = 0.5, ϕ1 = ϕ2 = 0.5, β = 0.4,
Pt = 25 dBm.

utility based resources sharing algorithm (UBRSA) is very
close to that of the CA, and obviously better than that of the
RA for both the “Preferential Scenario” and “No-Preferential
Scenario”. Specifically, as the number of users increases, the
approximation degree (AD) between the optimized solutions
of the proposed algorithm as well as the CA is always higher
than 88%. It can be speculated that the approximation degree
is close to 100% by considering the intensive users. In general,
the proposed algorithm could obtain the approximate solutions
of Eq. (29) and Eq. (52), where the approximation degree is
always more than 88%.

The operation number of the proposed algorithm and CA
are compared in Table. I. The operation number of CA in
the “Preferential Scenario” and “No-Preferential Scenario” are
identical for the same numbers of PUs M , and increase rapidly
with the increasing of M . For the proposed UBRSA, the
operation number in the “Preferential Scenario” is approximate
with that in the “No-Preferential Scenario”, and much lower
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TABLE I
THE COMPARISON OF THE OPERATION NUMBER OF UBRSA AND CA

UNDER DIFFERENT SCENARIOS, WHERE M = N = K , T = 25S,
ϕ1 = ϕ2 = 0.5, θ1 = θ2 = 0.5, β = 0.4, Pt = 25 DBM.

than that of the CA in both the two scenarios. The proposed
algorithm can obtain the approximate solution with the low
complexity in the “Preferential Scenario” and “No-Preferential
Scenario”.
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Fig. 10. The comparison of the optimized solution for the proposed algorithm
and other algorithms, where M = N = K, T = M s, θ1 = θ2 = 0.5,
ϕ1 = ϕ2 = 0.5, β = 0.4.

To evaluate the performance of the proposed UBRSA fur-
ther, the heuristic joint task offloading and resource allocation
strategy (hJTORA) [49], as well as the distributed offloading
and resource allocation (DORA) [50] are compared to the
UBRSA as the increasing of the transmission power Pt, by

implementing the “Preferential Scenario” and “No-Preferential
Scenario”. In the hJTORA, the task offloading and resource
allocation problem is decomposed into a resource allocation
(ReA) problem with fixed task offloading decision, a task
offloading problem. Additionally, in the DORA, the convex
and quasi-convex optimization techniques are used to allocate
the communication resource, while offloading decision is
solved by employing the sub-modular set function optimiza-
tion method.

As shown in Fig. 10, the hJTORA attains the best utility
performance of PUs by comparing with the UBRSA as well
as the DORA, while the transmission power Pt is less than 25
dBm. When Pt is greater than 25 dBm, the performance of
the hJTORA is decreasing. The performance of the proposed
UBRSA is better than that of the DORA. Hence, the hJTORA
is not applicable to the system requiring high energy, albeit the
proposed UBRSA with the stable optimization ability can be
able to implement for any system. Furthermore, the proposed
algorithm is identical by considering different transmission
power, and the approximation degree is always higher than
88%.

VII. CONCLUSION

In this paper, we have studied the resources sharing problem
in a novel IoT, which applies the SR and EH techniques. In
the conceived SR-aided IoT networks, both the PUs and IoT
devices would like to offload tasks to the BS that is integrated
with the MEC server. The IoT devices trade money with the
PUs for communication resources. Considering the transaction
modes between the PUs and IoT devices, we propose two
cooperative scenarios (i.e., “Preferential Scenario” and “No-
Preferential Scenario”). Furthermore, the utility maximization
problems of the PUs for the proposed two scenarios are
constructed, and we propose a utility based resources sharing
algorithm to solve the problems in two scenarios. Our simu-
lation and analysis results show that the proposed algorithm
could obtain the stable approximate optimized solution of each
cooperative scenario in the conceived networks. In addition,
the “Preferential Scenario” has an advantage in improving
the transmission rates of PUs, while the “No-Preferential
Scenario” has the advantage in improving the income of PUs.
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