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Abstract—Remote photoplethysmography (rPPG) using
camera-based imaging has shown excellent potential recently in
vital signs monitoring due to its contactless nature. However, the
optimum filter selection for pre-processing rPPG data in signal
conditioning is still not straightforward. The best algorithm
selection improves the signal-to-noise ratio (SNR) and therefore
improves the accuracy of the recognition and classification of
vital signs. We recorded more than 300 temporal rPPG signals
where the noise was not motion-induced. Then, we investigated
the best digital filter in pre-processing temporal rPPG data
and compared the performances of 10 filters with 10 orders
each (i.e., a total of 100 filters). The performances are assessed
using a signal quality metric on three levels. The quality of the
raw signals was classified under three categories; Q1 being the
best and Q3 being the worst. The results are presented in SNR
scores, which show that the Chebyshev II orders of 2nd, 4th,
and 6th perform the best for denoising rPPG signals.

Index Terms—digital signal processing, heart rate, health mon-
itoring, vital signs, human-computer interaction, photoplethys-
mography (PPG), image processing

I. INTRODUCTION

Camera-based remote photoplethysmography (rPPG) is a
powerful contactless alternative technique for vital signs mon-
itoring which comes without any requirements for body-worn
sensors (including wearables or skin-interfaced devices), cuffs,
or cumbersome measurement tools that might induce medical
risk or discomfort such as allergic reactions and pain [1].
In addition, unlike contact-based health monitoring systems,
rPPG-based health monitoring devices may enable rapid, mass
population vital sign screening like never before similar to
matured body temperature mass screening solutions [2], [3].

In rPPG, the vital signs are extracted in real time by ana-
lyzing the frames of video recordings composed in the RGB
color model. Even though rPPG and contact photoplethysmog-
raphy (cPPG) exploit different wavelengths, their principles
are similar in concept [4]. Analyzing the green channel in the
frequency domain usually gives adequate information about
heart rate depending on the external factors (e.g., lighting,
imaging device) [5]. However, contactless techniques are not
without their challenges. Like cPPG, rPPG applications might
suffer from the noise induced by the image sensor (e.g.,
electronic shot noise, readout noise, flicker noise) or subject
motion [6].

Numerous techniques have been proposed to improve the
rPPG data quality, which in principle, all recreate the pulse sig-
nals from the RGB channels generated from the video frames.
The most common technique is the Independent Component
Analysis (ICA) for eliminating the noise from the contami-
nated signal where RGB channels are treated as statistical data
sets [7]. The most prevalent component analysis method, Joint
Approximation Diagonalization of Eigen-matrices (Jade)-ICA,
was introduced in 2010 for a heart rate prediction study [8].
Later, a chrominance-based method was shown to be effective
in motion-linked noise suppression [9]. It generates the pulse
by creating orthogonal signal components directly from the
RGB channels. Then the Spatial Subspace Rotation method
(2SR) was shown to outperform ICA and chrominance-based
methods in signal-to-noise ratio (SNR) analyses [10]. It derives
pulse data by estimating the RGB subspace rotation and does
not require apriori skin or pulse-related information. The
signature blood volume pulse (PBV) method recreates the
pulse signal by discriminating the distortions from its source
using a signal component called ’signature’ [11].

Besides those well-established techniques, researchers also
proposed adaptive filters for various rPPG applications. A
robust motion noise suppression technique was proposed by
combining the chrominance-based method with an adaptive
filter whose parameters are assigned via the least mean square
algorithm [12]. An adaptive bandpass filter was implemented
for noisy frequency domains analyzing a spectrogram of
the pulse signal with a sliding time window [13]. Though
primarily used in electrocardiography (ECG) applications, the
wavelet filter was also adapted for the rPPG data taken from a
webcam for suppressing the noise induced by subject motion,
and light variations [14].

Frequency domain features in cPPG have long been proven
to contain vital information related to heart rate and oxy-
gen saturation [4]. Additionally, researchers have shown the
morphological features to be helpful when measuring blood
pressure (BP) with the aid of machine learning techniques
[15], [16]. A few attempts have been made in rPPG to
investigate this relation for BP using similar features [17],
[18]. Even though those studies justify using morphological
features directly in artificial neural networks, one must take
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great care when conditioning the signals beforehand, as the
filters strongly affect the dimensions and SNR score of the
pulse signal. Most of the signal processing studies in remote
imaging are focused on designing adaptive filters for motion-
induced noise and on new pulse generation techniques for
better assessment accuracy [19].

Many digital filters could be used in the pre-processing,
and researchers have preferred various types for different ap-
plication areas. A comprehensive filtering study on rPPG was
needed to determine the most effective filter. An ideal filter in
signal conditioning for denoising purposes should be examined
for academic research and the commercial digital healthcare
applications and software currently being developed.

This study narrows down the myriad alternatives of filters in
removing unwanted noise induced by the video camera sensors
and will allow us to observe the reactions of the filters applied
upon different raw signal (not conditioned) quality scores. We
present the performances of 100 filters applied to more than
300 temporal rPPG recorded in this study.

II. METHODS

A. Research Model

A hundred digital filter performances on rPPG signals were
ranked in this study, and an optimal one was proposed. The
filters were applied to rPPG datasets generated from video
frames. The study model was summarized as a flowchart
in Figure 1. Region of interest (ROI) masks were manually
marked for each individual before generating rPPG datasets
as shown in Figure 2. Fourier analyses have been applied to
the green channels of all eligible recordings.

Signal operations were carried out in custom-written MAT-
LAB scripts (MathWorks, USA). rPPG pulse signals were
generated as normalized raw green channel data by taking
the spatial average of the ROI pixels in video frames since
the green channel, amongst blue and green, carries the most
robust information about heart rate [5]. No other processing
technique was applied before the filtering. This is formalized
in Equation 1 where µ(Gi) represents the temporal mean in
the time domain.

Gn = −1 ∗ Gi

µ(Gi)
(1)

As this study focused on analyzing the performances of
the selected digital filters in suppressing the sensor-induced
noise but not motion, SNR was chosen as the only metric
in performance evaluation. De Haan et al.’s method outputs
a quality score in dB after calculating the energy around
the harmonics [9]. This is formulated as in the following
where S(f) represents the spectrum and Ut(f) represents the
frequency range around harmonics.

Signal =
15∑

f=0.2

(Ut(f)S(f)) (2)

Noise =
15∑

f=0.2

((1− Ut(f))(S(f))) (3)

SNR score = 10 log10

(
Signal

Noise

)
(4)

The recordings were first classified into three categories
according to their unfiltered quality: Q1, Q2, and Q3. The Q1
category has 40, the Q2 category has 144, and the Q3 category
has 137 recordings (321 in total). Each temporal dataset in Q1
has a raw signal-to-noise ratio (SNR) score of 4 dB or above
and has a mean amplitude of 0.5 (RGB unit) or above. Each
dataset in Q2 has an SNR score between 0-4 dB and has a
mean amplitude below 0.5 (RGB unit). The signals in the Q3
category have all negative SNR scores. Figure 1 shows 15-
second sample rPPG signals in three categories.

The study model adopted in this work was previously
proposed in [20] by Liang et al. to cPPG data, and they
presented their findings categorically. Therefore, it would be
feasible to compare the performances of the digital filters
applied in this particular trial and the reactions of cPPG and
rPPG signals to those filters.

B. Experimental Setup and Data Collection

Seventeen participants were recruited for this study (7
females and 10 males). They had mixed skin tones and were
aged between 22 and 38. Four hundred and eight videos
were recorded with two commercial products: 204 via a CCD
Sony DSCH300 and 204 via a CMOS iPad Pro 2017 (24
recordings for each participant: 2 video cameras, for each
camera 2 light settings, for each setting 2 light colour, for each
colour 3 illuminance levels, 2x2x2x3=24). Figure 3 shows the
controlled environment with the equipment setup.

Eighty-seven recordings were dismissed from the database
because the estimated HRs did not match the ground-truth
values measured by a commercial pulse oximeter due to the
low quality of raw RGB signals. We anticipate that this is
due to the lack of ambient light and participants’ dark skin
tone. Each recording was in 30 fps, and video length was 30
seconds. Participants were asked to keep as still as possible
while sitting, and were exposed to two different light settings
where the sources were positioned firstly in the same level
with the faces, and secondly the level above the faces directed
downwards.

It was previously shown that even minimal illuminance
intensity variations might affect the rPPG signal morphol-
ogy [21]. With that being said, each lighting set contained
three illuminance intensity levels for white and yellow LED
spotlights (Neewer 480 LED Panel Light), respectively and
separately to change the nature of the noise and diversify the
data pool. Illuminance intensity levels were adjusted at 30-60-
100 Lux when the source was at level with the participants’
faces, and to 60-90-130 Lux when the source was positioned
above the faces directed downward as depicted in Figure 3.
These settings were chosen so that participants would not
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Fig. 1: Flowchart of the study model (Abbreviations: ROI-region of interest, RGB-red green blue, rPPG-remote photoplethysmography,
SNR-signal-to-noise ratio

experience any eyestrain. The room had no light source except
the controlled lighting equipment used for the study and had
no window. Previous studies have shown that the cheeks are
the best ROIs for generating rPPG data. [22], [23]. Since
the participants were instructed not to move during video
recordings, we manually marked the ROIs for each participant
separately using drawpolygon and poly2mask functions in
MATLAB without running an automated algorithm as illus-
trated in Figure 2.

C. Parameters Setting

A hundred different filters were applied to rPPG datasets
that we recorded for this study, including wavelet, Savitzky-

Golay, moving average, median, FIR least-square, Hamming,
elliptic, Chebyshev, and Butterworth filters. These ten filter
types are prevalently used in rPPG and cPPG research, as
shown in Table I, especially in the pre-processing phase when
raw data is conditioned before any morphology analyses.

Wavelet filters exploit discrete wavelet transform. We ap-
plied a wavelet filter with levels from 1 to 10. Savitzky-
Golay filters smooth signals by fitting data to a low-degree
polynomial. A 3rd order Savitzky-Golay filter was used with
ten-odd consecutive frame lengths. As the name annotates, the
moving average filters smooth signals by returning the average
of neighboring elements in a dataset. We ran a moving average
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Fig. 2: ROIs are selected as both cheeks and marked in custom-written image processing scripts. Filtering experiments were conducted only
on the green channel as it carries the most vital cardiac information.

Fig. 3: Experimental setup contains 2 light settings, each setting
contains 2 light colors, each color contains 3 illuminance intensity
levels.

filter with ten-odd consecutive orders.
Median filters work with the same principle; they output

the median value of neighboring elements. A median filter
with ten-odd consecutive orders was used. Two finite impulse
response (FIR) filters were implemented. FIR-hamming is a
window-based filter, and the FIR-Least square uses the mean
square error for filtering specifications. We applied both types
with orders from 1 to 10.

Elliptic filters exhibit quick transitions on pass-band and
stop-band. We implemented an elliptic filter with ten even
consecutive orders. Two types of Chebyshev filters were also
adopted. Type 1 Chebyshev filters are usually known to
have steeper roll-off. We adopted both types with ten even
consecutive orders. Type 2 Chebyshev was found to be the

optimal rPPG filter according to the results obtained in this
study, and its magnitude-squared transfer function is shown in
Equation 5 [24].

|Ha(jΩ)|2 =
ε2C2

n(Ω)

1 + ε2C2
n(Ω)

(5)

where Cn represents Chebyshev polynomial and ε represents
the ripple factor. Stop-band attenuation was set to 30 Hz.
Butterworth filters, on the other hand, are the most common,
and they are usually designed for flat frequency response
in the pass-band; ten even consecutive orders were adopted.
Passband ripple was set to 0.1 Hz. Band-pass borders were
set in the range 0.83-1.66 Hz where applicable, which is
equivalent to 50-100 beats per minute (bpm).

III. RESULTS

SNR scores of the filtered signals were computed, then
mean SNRs on Q1, Q2, and Q3 levels were calculated. The
mean raw signal quality score for Q1 was 5.4 dB, for Q2
was 2.8 dB, and for Q3 was -2.65 dB. After filtering, no
signal kept a negative quality score. Figure 4 shows the overall
performance scores of all the filters on the horizontal axis.
Most of the filters improved signal quality. However, the filters
that have caused data loss (i.e., condition that a heart rate
estimation is not possible in filtered signal) were marked as
”not applicable (NA)” in the figure. Namely, the highest three
orders of Butterworth, Chebyshev I & II, and Elliptic filters
are not usable in rPPG. We anticipate this is mainly due to
suppression of the individual pulse waves when applied 16th
orders of these filters and above. On the other hand, Chebyshev
II, with 4th order, seems to be the optimal filter on all three
levels.

IV. DISCUSSION

Given that Elliptic and Chebyshev filters have sharp transi-
tion properties, these filters and Butterworth provide the best
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Fig. 4: All the tested filters’ performances are shown. They were used in different settings for conditioning raw rPPG signals. SNR values
of Q1, Q2, and Q3 are combined next to each other to indicate an augmentative signal quality score.
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SNR scores. However, higher orders of these distort the data
causing incorrect frequency extraction. Indeed, Butterworth
had been previously reported to have performed relatively
poorly in cPPG. In contrast, they might perform better than
Elliptic filters in rPPG, especially with low orders. In the
histogram of the results depicted in Figure 4, the only case
in which the highest order of the relevant filter works better
than its lower order was in the FIR-hamming filter. However,
it might be due to our experiments’ relatively high sampling
rate (30 fps). Since this technique is window-based, it needs to
be carefully handled as higher orders will suppress the pulse
signals, leading to incorrect frequency analysis.

TABLE I: Recent rPPG studies which claimed to have used the most
common undynamic filter types

Filter type Paper reference
Butterworth [5] [25] [26] [27] [28]

[29] [30] [31] [32] [33]
[34] [35] [36] [37]

Wavelet [14] [38] [39] [40]
Elliptic [41]

Moving Average [42]
Sav-Gol [43]

Hamming Window [44]

The optimal filtering study conducted for cPPG has pre-
sented valuable results [20], and the signal quality indicator
used was skewness which measures the symmetry (or asym-
metry) of a given quantitative distribution [45]. Even though
the skewness was shown to be the optimal signal quality
indicator for cPPG, we preferred to use SNR instead in our
rPPG experiments; because the high-frequency noise induced
by the sensor and light variations needed to be assessed
inclusively. The findings in these two studies have several
similarities and significant performance differences. While the
Chebyshev II and elliptic filters performed well in both cPPG
and rPPG results, the difference between Chebyshev I and
Butterworth stands out drastically. This is not surprising given
that the lowest quality cPPG and rPPG signal natures are
morphologically dissimilar.

Also, the Butterworth and Chebyshev filters perform well
when removing high-frequency noise in PPG-shaped pulse
waves. Thus, it increases the SNR but not skewness. As de-
picted in Table I, most rPPG studies have used Butterworth in
their experiments. The moving average and median filters also
performed relatively poorly in cPPG. However, the 11th order
of these two exceptionally performed well in our experiment’s
Q2 group of rPPG signals. Another finding is that the window-
based filters usually fail in bad-quality raw rPPG signals (i.e.,
Q3), including wavelet transforms. High-order Chebyshev’s
and elliptic filters can fix the Q3 signal quality at least 5 dB
up.

V. CONCLUSION

Prior to this study, no critical comparative analysis has
been made for ranking the most common unsophisticated

filters in remote photoplethysmography (rPPG). Indeed, it was
an open question that if the filters previously shown to be
optimal for contact photoplethysmography (cPPG) would also
be effective for rPPG signals obtained using commercial video
cameras. Our analysis shows how a better filter selection
would significantly impact the pre-processing phase of signal-
processing rPPG pulses. The effects of the filter selected
for the initial conditioning phase should be scrutinized to
thoroughly understand the nature of the diagnostic features
in rPPG morphology. Therefore, in this study, we reported the
performances of 10 different filters with 10 orders each (i.e.,
100 in total) and concluded that the Chebyshev type II filter
with the order of 4 is the optimal filter for rPPG signal pre-
processing applications. The existing noise in the raw signals
was mainly induced by the sensor, not motion, as the subjects
were asked to keep as still as possible in advance during the
video recordings. As most rPPG studies stated that the Butter-
worth filters were applied in their experiments, a performance
analysis needed to be conducted to see how it compares to
similar filter types in suppressing the sensor noise. Window-
based filters were shown to be disadvantageous, especially
when working with raw rPPG signals of low quality (negative
SNR).
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