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Early prediction of upper limb 
functioning after stroke using 
clinical bedside assessments: 
a prospective longitudinal study
Margit Alt Murphy 1,2*, Ahmad Al‑Shallawi 3, Katharina S. Sunnerhagen 1 & Anand Pandyan 4

Early and accurate prediction of recovery is needed to assist treatment planning and inform patient 
selection in clinical trials. This study aimed to develop a prediction algorithm using a set of simple early 
clinical bedside measures to predict upper limb capacity at 3-months post-stroke. A secondary analysis 
of Stroke Arm Longitudinal Study at Gothenburg University (SALGOT) included 94 adults (mean age 
68 years) with upper limb impairment admitted to stroke unit). Cluster analysis was used to define 
the endpoint outcome strata according to the 3-months Action Research Arm Test (ARAT) scores. 
Modelling was carried out in a training (70%) and testing set (30%) using traditional logistic regression, 
random forest models. The final algorithm included 3 simple bedside tests performed 3-days post 
stroke: ability to grasp, to produce any measurable grip strength and abduct/elevate shoulder. An 
86–94% model sensitivity, specificity and accuracy was reached for differentiation between poor, 
limited and good outcome. Additional measurement of grip strength at 4 weeks post-stroke and 
haemorrhagic stroke explained the underestimated classifications. External validation of the model 
is recommended. Simple bedside assessments have advantages over more lengthy and complex 
assessments and could thereby be integrated into routine clinical practice to aid therapy decisions, 
guide patient selection in clinical trials and used in data registries.

Early and accurate prediction of post-stroke recovery potential, ideally during the first week, is needed to assist 
selection of treatment approaches and inform patient selection in clinical trials1. A range of models to predict 
upper limb motor outcome have been published2–6. At the simplest level, measurable grip strength at 1 month5 
or presence of shoulder abduction or finger extension at 3-days post stroke7 are suggested as plausible predic-
tors for upper limb recovery. The more complex models propose various neurophysiological and neuroimaging 
techniques combined with clinical assessments8–10.

There are, however, significant barriers to the clinical implementation of existing prediction algorithms. For 
example, use of more comprehensive scales, such as Fugl-Meyer Assessment, within days of stroke is a challenge 
in acute settings, particularly in patients with complex needs. The requirement to take repeated measurements 
within the first weeks11 can also be problematic when typical length of stay within a stroke unit is less than 
2-weeks12,13. Further, the need to draw upon neurophysiological and neuroimaging techniques to determine the 
corticospinal integrity are costly and not accessible to most clinical practices1,14. Prediction models using easily 
accessible clinical data i.e. simple clinical tests with routinely available equipment early after stroke5,6,15 would 
be a more realistic solution for developing clinically usable prognostic algorithms.

Prediction models only including clinical assessments have shown to be inferior compared to the models 
combining clinical and neurophysiological or neuroimaging techniques9,16,17. This seem to be particularly valid 
for patients with initial poor motor function9,16,17. Recently, a prediction algorithm only including clinical bedside 
assessment reported an overall accuracy of 61% at predicting upper limb activity capacity at 3 months post stroke, 
although the sensitivity and specificity varied across the four outcome categories17. An external validation of a 
prediction model for upper limb activity capacity at six months post stroke, discriminating poor outcome (Action 
Research Arm Test < 10) and using shoulder abduction and finger extension as clinical predictor variables, showed 
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high sensitivity (> 0.80) but lower specificity (0.40–0.70)18. For discrimination of a higher outcome level (Action 
Research Arm Test > 32), likewise, the sensitivity was high (> 0.92) but specificity was lower (0.28–0.60)18. These 
studies confirm that prediction models only using clinical assessments can provide clinically useful information, 
perform better than a chance alone and could therefore be considered as alternatives for more complex models17. 
Based on previous literature, to reach clinical relevance, a prediction algorithm only including clinical assess-
ments should be expected reach an accuracy, sensitivity and specificity at least between 60 and 70%.

To target this clinical need we aimed to identify a set of clinical assessments feasible in routine practice early 
after stroke that can provide an accurate and differentiated prediction of upper limb activity capacity at 3-months 
post-stroke.

Methods
Participants.  This study was a secondary analysis of data collected in the Stroke Arm Longitudinal Study at 
Gothenburg University (SALGOT, https://​Clini​calTr​ials.​gov, identifier: NCT01115348), a prospective longitudi-
nal observational study with repeated measurements, aiming to describe the recovery of upper limb functioning 
during the first year after stroke19. The SALGOT cohort comprised a non-selected population of 122 adults with 
first-ever clinical stroke admitted to the stroke unit within 3-days of stroke onset (Fig. 1). Patients with impaired 
upper limb function verified with a score below 66 of the Fugl-Meyer Upper Extremity Assessment (FMA-UE) 
or a score below 57 of the Action Research Arm Test (ARAT) 3-days post stroke were included. The diagnosis 
of stroke was based on World Health Organization (WHO) collaborative study criteria (ischemic infarct and 
haemorrhagic)20. The exclusion criteria were injury or condition prior to the stroke that limited the use of the 
affected arm, severe multi-impairment, diminished physical condition prior to stroke or short life expectancy 
(e.g. late stage of cancer, renal-disease), and not able to communicate in Swedish.

All patients received multi-professional team-based rehabilitation according to the Swedish National 
Guidelines21. Depending on each patient’s individual needs, individual, self-managed and/or group training could 
be provided both in inpatient as well as in outpatient settings. In inpatient setting, team-based interventions, 
are provided 5 days a week and when needed also on weekends. Outpatient rehabilitation includes commonly 

All patients consecutively admitted to the stroke unit within 72h 
and diagnosed with stroke were screened for eligibility in the 
SALGOT study,  n=763

Included in the SALGOT cohort, n=122

Excluded:
No upper extremity impairment day 1-2, n=335
Living outside geographic catchment area, n=56
Prior upper extremity impairment, n=58
Severe multi-impairment, n=90 
Discharged in <72 h, n=10 
Non-Swedish speaking, n=8
Missed for screening, n=43 
Did not want to participate, n=36 
Missed for inclusion, n=5

No outcome (ARAT) data at 3 months post stroke:
Declined visit, n=10
Died before 3 months assessment, n=6
Did not follow test instruction, n=5
New stroke, n=3
Moved away, n=3
Wrist fracture, n=1

Included in the data analysis, n=94

Figure 1.   Flowchart over the inclusion process for the study group. SALGOT Stroke Arm Longitudinal Study at 
Gothenburg University.

https://ClinicalTrials.gov
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interventions provided by physiotherapist and/or occupational therapists 1–3 times a week at primary care 
settings. The SALGOT experimental protocol was approved by the Swedish Ethical Review Authority (225-08) 
and written informed consent was obtained from all participants and/or their legal guardian(s) prior inclusion. 
All methods were performed in accordance with the Declaration of Helsinki. The Transparent Reporting of a 
multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD) statement and the checklist 
for prediction model development was followed22.

Clinical assessments.  The Action Research Arm Test (ARAT) assesses the upper limb activity capacity 
and includes 19 items divided into four subscales (grasp, grip, pinch and gross movement) covering the main 
aspects of arm and hand use in daily activities23,24. Majority of items assess the ability to grasp and move objects 
of different shapes and sizes into different vertical or horizontal locations in the arms workspace. Each item is 
scored on a 4-point ordinal scale (0—can’t perform any part, 1—performs partly, 2—completes the task, but 
with abnormal movement components or body posture or the task takes more than 5 s but less than 1 min to 
complete, and 3—completes the task normally within the 5-s time limit). A maximum score of 57 indicates best 
performance. ARAT has excellent reliability, validity and responsiveness25,26. The reliability at item level have 
also been reported to be sufficient26.

The Fugl-Meyer Assessment of Upper Extremity (FMA-UE) assesses the upper limb motor impairment 
and includes 33 items divided into four subscales: shoulder/elbow, wrist, hand and coordination/speed27. Each 
item is scored on an ordinal 3-point scale, where 2 points are assigned when the movement is performed fully, 
1 point when performed partially and 0 point when the movement cannot be performed. A total score of 66 
indicates better motor function. The FMA-UE has excellent validity and is reliable both at the summed score 
and at item level28–30.

Grip strength was measured with the hydraulic hand dynamometer JAMAR (Sammons Preston, Chicago)31. 
The participants were seated with their arm in 90° of elbow flexion (antigravitational support was provided for 
the elbow position when needed by the tester) and instructed to squeeze the dynamometer with a maximum 
effort32. A mean of three trials was recorded (Pound force; 0–200) and the minimum readable value for grip 
force is 5 according to the manufacture. A mean value greater than 0 indicated a measurable grip strength. Grip 
strength measurement with the JAMAR dynamometer has proven to have excellent validity and reliability31,33.

The severity of stroke and initial arm paresis was determined by the National Institute of Health Stroke 
Scale obtained at admission34. Other clinical characteristics, the presence of sensation impairment, determined 
by the FMA-UE sensation, and the presence of spasticity of elbow and wrist joints determined by the Modi-
fied Ashworth Scale35 were collected for background data. Three experienced and trained physiotherapists, not 
involved in patient care, performed all clinical assessments. During an assessment session the protocols of the 
other assessment times were not available to the assessors.

Selection of data for modelling.  The original data set comprised of 122 participants, of these 6 died prior 
3-months assessment and in 22 cases the 3-months outcome was missing due to different reasons described in 
Fig. 1. These data were removed and thereby 94 participants were retained in data modelling (Fig. 1). Baseline 
data was missing for 5 patients (4 missing ARAT, 1 missing grip strength, 1 missing FMA-UE). For these data 
points a single imputation was used to handle missing data within the data set. Mean was used for the grip 
strength and median was used for the remaining ordinal scales.

The end‑point outcome.  The end-point outcome was defined as the arm activity capacity level, assessed 
by the ARAT, at 3-months post stroke. First, the full data set (n = 94) was plotted to explore potential clusters 
based on the ARAT total scores at baseline and end-point. An a priori K-means cluster analysis on the full data-
set demonstrated five clusters in terms of 3-months functional outcome. The decision to limit to five clusters 
was made after using two statistical methods to define the optimal number of clusters (using Silhouette width 
and total width sum of squares). The final identified clusters according to 3-months ARAT scores were defined 
as poor (0–10 points), limited (11–32 points), good (33–50 points), excellent (51–56 points), and full outcome 
(57 points). These thresholds were similar to those published in several previous stroke cohorts7–9. Subsequently, 
two end-point cut-offs (ARAT ≤ 10 and ARAT ≤ 32) were tested for model development and performance. All 
five identified clusters were used to explore whether the final model could classify patients into the predefined 
clusters.

Selection of independent variables.  The independent variables were selected based on information 
published in the literature, suggesting that measures of grip, wrist or finger extension, and shoulder movement 
can provide good prediction for functional outcome3,5–7,36. The constraints were that the variables needed to be 
collected early after stroke (within 3-days post stroke), easily dichotomised, derived from an existing validated 
upper limb assessment test available in the SALGOT database (FMA-UE or ARAT, NIHSS arm) and were clini-
cally implementable at bedside with relative ease. Items assessing distal hand and grip capacity along with items 
assessing proximal shoulder functions were considered essential parts for modelling. A model with fewer clini-
cal variables were preferred over multiple variables to increase clinical applicability, but without sacrificing of 
predictive performance. Among single items of ARAT, the grasping of 2.5 cm cube was selected as first choice, 
partly because it represents an item with a middle range difficulty level according to Rasch analysis15,37 and partly 
because it can be performed at bedside. Single items of the FMA-UE shoulder and elbow subscale (Part A, voli-
tional movements within and mixed synergies) and grip strength were also considered5,6.

For the analysis, the scores 0 and 1 of the ARAT 2.5 cm cube item were dichotomised as 0 (unable to com-
plete the test within 1 min) and the scores 2 and 3 were assigned score 1 indicating ability to pick up a 2.5 cm 
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cube with the more-affected hand alone and place it on a shelf (about the eyes height level) within 1-min time, 
irrespective to the grasp formation or compensation used. The FMA items score 0 was dichotomized as 0 (no 
active movement), and scores 1 and 2 were dichotomized as 1 (partly or full active movement). Grip strength, 
measured with Jamar hand dynamometer was dichotomised as 0 when unable to generate a measurable force 
and as 1 when able to generate a measurable force.

Data analysis.  Differences in clinical and demographic characteristics between the included (n = 94) and 
excluded (n = 28) patients were tested with either independent T-test, Mann Whitney U-test or Chi Square test.

As a first step, bootstrapping was used to generate 500 samples from existing dataset of 94 participants. During 
selection of independent variables, data was divided into two random statistically equivalent subsets, in which 
70% (n = 66) was used in the training stage (Fig. 2). Forward stepwise logistic regression (LR) and random forest 
(RF) using the boosting method were used to select the independent variables for the prediction models38. RF 
classifiers39, are expected to have higher performance, higher accuracy and are more robust compared to regres-
sion and decision tree analysis40,41. The random forest (RF) machine learning embedded algorithms were used to 
determine the variable importance (entropy)42. Variables with explanatory power more than 10% were considered 
in further modelling. Both methods determine probabilities between zero and one. For the purposes of this study, 
the probability more than 0.5 was treated as favorable outcome and lower than 0.5 as not favorable outcome40.

The testing data set (n = 28) was used to evaluate the model performance. Sensitivity, specificity, kappa cor-
relation coefficient and predicting accuracy were calculated for two functional outcome cut-offs (ARAT ≤ 10 
and ARAT ≤ 32). Models including the total score of the FMA at 3-days post stroke and the arm sub-score of 
the NIHSS at admission were also evaluated for comparison to the models with short assessments alone. Kappa 
coefficients of 0.5 represents moderate agreement, above 0.7 good agreement and 0.8 excellent agreement43.

Multinomial logistic regression was used as extension to binary logistic regression to predict probability of 
the category membership on 5-level outcome. The logistic coefficient (B), odds ratio and 95% coefficient intervals 
were calculated for each independent variable for each alternative category of the outcome variable. Maximum 
likelihood ratio estimation and Chi-square test were used to evaluate the probability of categorical membership.

Using the information gleaned from the regression models, decision support algorithms were developed to 
explore if simple algorithms could be developed to predict the functional outcome profile of stroke patients. The 
misclassified cases in the poor and limited outcome groups were further explored by using the available assess-
ments at 10 days and 4 weeks post stroke along with other clinical characteristics.

Results
The demographic and clinical characteristics of the original non-selected SALGOT cohort (n = 122), the final 
dataset (n = 94) included in the analyses and the excluded group with missing data at 3-months are shown in 
Table 1. The excluded group (n = 28) had a more sever stroke assessed by NIHSS, higher proportion of individuals 
with total anterior circulation infarct and lower upper limb function assessed by FMA-UE 3-days post stroke.

Prediction algorithm.  Several preliminary models using both logistic regression and random forest were 
calculated. The best performing model according to accuracy and agreement estimates, comprising 3 short clini-
cal assessments collected within 3-days post stroke, included ARAT cube 2.5 cm, grip strength and FMA shoul-
der elevation and/or abduction within synergies. The classification accuracy and agreement estimates for the two 
cut-offs (ARAT ≤ 10 and ARAT ≤ 32) at 3-months are shown in Table 2. Overall, the logistic regression showed 
a better performance compared to random forest analysis. High sensitivity (0.96), specificity (0.92) prediction 
accuracy (0.94) and excellent Kappa agreement (0.87) were reached for the ARAT ≤ 10 cut-off. The sensitivity 

Original data set 
n = 122

Pa�ents who died 
n = 6

Imputa�on fail 
n = 22

Final data set 
n = 94

Training set (70%)
n = 66

Tes�ng set (30%)
n = 28

Logis�c Regression Models
= 0 + 1 1 + 2 2 +

⋯+

Random Forest Models

=
σ

∈

Model 
performance

tes�ng

Figure 2.   Flowchart over the modelling process.
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Table 1.   Baseline demographic and clinical data for all patients, patients who survived and patients who 
informed the modelling process. a Statistically significant difference between included and excluded patients 
(Chi-Square or Mann Whitney U-test, p < 0.05). NIHSS National Institute of Health Stroke Scale, FMA Fugl-
Meyer Assessment, mAS, modified Ashworth Scale.

Characteristics
Mean (SD) or n (%)

SALGOT cohort
n = 122

Included in the prediction modelling
n = 94

Excluded from modelling
n = 28

Age, years, mean (SD) 69.6 (12.9) 68.4 (12.5) 73.4 (13.8)

Sex

Female 54 (56%) 54 (57%) 14 (50%)

Male 68 (44%) 40 (43%) 14 (50%)

Stroke type

Haemorrhage 19 (16%) 17 (18%) 2 (7%)

Infarct 103 (84%) 77 (82%) 26 (93%)

Type of ischemic stroke

Total anterior circulation infarct 15 (14%) 6 (8%)a 9 (35%)a

Partial anterior circulation infarct 44 (43%) 34 (44%) 10 (38%)

Lacunar infarct 36 (35%) 30 (39%) 6 (23%)

Posterior circulation infarct 8 (8%) 7 (9%) 1 (4%)

Paretic arm

Right 56 (46%) 40 (43%) 16 (57%)

Left 66 (54%) 54 (57%) 12 (43%)

Stroke severity at admission, median 
(Q1, Q3) 7 (3, 14) 6 (3, 11)a 11 (4, 18)a

Mild (NIHSS 0–4) 42 (36%) 36 (40%) 6 (23%)

Moderate (NIHSS 5–15) 49 (43%) 40 (45%) 9 (35%)

Severe (NIHSS ≥ 16) 24 (21%) 13 (15%)a 11 (42%)a

NIHSS Arm at admission, median 
(Q1, Q3) 2 (1, 4) 2 (1, 4) 3 (1, 4)

0 (no drift) 16 (14%) 14 (16%) 2 (7%)

1–3 63 (54%) 50 (56%) 13 (49%)

4 (no movement) 37 (32%) 25 (28%) 12 (44%)

Thrombolysis 15 (12%) 9 (10%) 6 (21%)

Thrombectomy 5 (4%) 3 (3%) 2 (7%)

Days at stroke unit, mean (SD) 13.7 (8.5) 12 (6.9) 19.5 (10.7)

Ongoing rehabilitation at 3 months

Inpatient 6 (6%) 6 (6%) No data

Outpatient 49 (52%) 48 (51%) No data

Clinical characteristics at 3 days post stroke

FMA-UE, mean; median (Q1, Q3) 29.8 (25.2) 21 (4, 57) 33.1 (24.9)
39 (4, 58)a

18.9 (23.3)
4 (1, 41)a

Sensory impairment (FMA-UE < 12) 65 (53%) 45 (48%) 20 (71%)

Spasticity (mAS ≥ 1), 28 (23%) 22 (23%) 6 (21%)

Clinical characteristics at 3 months

FMA-UE, mean (SD), median (Q1, Q3) 48.4 (22.4) 61.5 (33, 66) 48.4 (22.4)
61.5 (33, 66) No data

Sensory impairment (FMA-UE < 12) 25 (27%) 25 (27%) No data

Spasticity (mAS ≥ 1) 32 (34%) 32 (34%) No data

Table 2.   Model performance determined by logistic regression (LR) analysis and Random Forest (RF) 
modeling for the two ARAT cut-offs between the poor, limited and good functional outcome. ARAT​ Action 
Research Arm Test, FMA Fugl-Meyer Assessment, LR logistic regression, RF random forest.

Thresholds for ARAT at 3 months Final models Sensitivity Specificity Kappa Accuracy

0 = ARAT ≤ 10
1 = ARAT ≥ 11

D3 cube 2.5
D3 grip strength
D3 FMA A.II elevation
D3 FMA A.II abduction

0.96 (LR)
0.81 (RF)

0.92 (LR)
0.83 (RF)

0.87 (LR)
0.58 (RF)

0.94 (LR)
0.82 (RF)

0 = ARAT ≤ 32
1 = ARAT ≥ 33

D3 cube 2.5
D3 grip strength
D3 FMA A.II elevation
D3 FMA A.II abduction

0.88 (LR) 0.82(RF) 0.82 (LR)
0.84 (RF)

0.68 (LR)
0.64 (RF)

0.86 (LR)
0.81 (RF)
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(0.88), specificity (0.82), accuracy (0.86) were somewhat lower for the ARAT ≤ 32 cut-off and the Kappa agree-
ment was moderate (Kappa 0.68). The additional models that also included FMA total score from day 3 post 
stroke and/or NIHSS arm score at admission showed lower (NIHSS Arm alone) or comparable (FMA total alone 
or combined with NIHSS Arm) model performance for differentiation between poor and limited cut-off com-
pared to the models that only included short assessments (Supplementary Table 1).

The observed and predicted frequencies for multinomial outcome at 3-months are shown in Table 3. The 
overall model fit was statistically significant (Chi-square 31.57, p < 0.001). The logistic coefficient (B), odds ratio 
with 95% coefficient intervals for each independent predictor variable are shown in Supplementary Table 2. The 
results showed that the ability to grasp and lift an ARAT cube of 2.5 cm was a good predictor for excellent and 
full functional outcome category, whereas a poor motor performance within 3-days post stroke (ARAT cube, 
grip strength and motor function in shoulder elevation/abduction all 0) identified those who were unlikely to 
have good recovery (Table 3). Differentiation was uncertain for the middle categories due to the small number of 
observations in the study population. However, ability to produce some grip force within 3-days post stroke was 
indicative for at least good functional outcome while the absence of voluntary motor activity in in shoulder eleva-
tion or abduction within 3-days post stroke indicated that excellent or full functional outcome is rather unlikely. 
The grip strength and ARAT cube showed to be the most important independent variables for the prediction of 
limited and good level of functional outcome, respectively (Supplementary Table 2). The developed prediction 
algorithm based on the results from regression analysis along with conditional probabilities is shown in Fig. 3.

Additional explorative analysis.  In the current dataset, 6 participants with predicted poor functional 
outcome and 5 participants with limited outcome actually showed good recovery (Table 4). Furthermore, 2 par-
ticipants with predicted limited outcome showed instead poor recovery. The grip strength assessment at 10 days 
and 4 weeks as well as stroke type were identified as potential variables that could explain the misclassification 
and refine the overall prediction. All 11 participants who showed better recovery than predicted and had initial 
poor or limited outcome prediction showed measurable grip strength at 4  weeks. In contrast, the 2 partici-
pants who showed a worse recovery than predicted at 3-days post stroke showed no measurable grip strength at 
10 days nor 4 weeks post stroke. In addition, in the group who showed better than expected recovery, 7 out of 
11 (64%) had haemorrhagic stroke in contrast to 10 out of 81 (12%) among those with correct prediction. The 2 
participants with worse than expected recovery outcome both had ischemic stroke.

Discussion
The results of this study showed that prediction of upper limb activity capacity at 3-months post stroke can accu-
rately be done as early as 3-days post stroke by using clinically feasible assessments. The final prediction model 
included 3 simple bedside assessments applied in a hierarchical order: (i) ability to grasp, lift up and release a 

Table 3.   Observed and predicted frequencies for prediction algorithm. The percentages are based on total 
observed frequencies in each subpopulation. ARAT​ Action Research Arm Test, FMA Fugl-Meyer Assessment.

Observed and predicted frequencies

Motor function within synergies 
(FMA-UE)
Day 3 Grip strength Day 3

ARAT cube 2.5 cm
Day 3

Multinomial outcome ARAT at 
3 months

Frequency Percentage

Obs Pred Pearson residual Obs Pred

Elevation = 0 AND/OR Abduc-
tion = 0 Grip < 0 Cube < 2

Poor 22 23.217 − 0.611 78.6% 82.9%

Limited 0 0.084 − 0.290 0.0% 0.3%

Good 6 2.681 2.131 21.4% 9.6%

Excellent 0 0.420 − 0.653 0.0% 1.5%

Full 0 1.597 − 1.301 0.0% 5.7%

Elevation > 0 AND/OR Abduction > 0

Grip < 0 Cube < 2

Poor 2 8.800 − 15.384 22.2% 97.8%

Limited 2 0.001 82.557 22.2% 0.0%

Good 4 0.193 8.756 44.4% 2.1%

Excellent 0 0.000 0.000 0.0% 0.0%

Full 1 0.006 12.753 11.1% 0.1%

Grip > 0

Cube < 2

Poor 0 0.069 − 0.265 0.0% 1.0%

Limited 0 0.006 − 0.076 0.0% 0.1%

Good 7 6.786 0.470 100.0% 96.9%

Excellent 0 0.029 − 0.170 0.0% 0.4%

Full 0 0.110 − 0.334 0.0% 1.6%

Cube ≥ 2

Poor 0 3.174 − 1.841 0.0% 6.3%

Limited 0 0.265 − 0.516 0.0% 0.5%

Good 3 3.688 − 0.372 6.0% 7.4%

Excellent 10 9.275 0.264 20.0% 18.6%

Full 37 33.598 1.025 74.0% 67.2%
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small wooden cube approximately at eye height level (ARAT Grasp item); (ii) ability to produce any measurable 
grip strength (Jamar hand dynamometer); and (iii) ability to show at least some active proximal upper limb 
movement (shoulder abduction and/or shoulder elevation within flexor synergy) according to FMA.

In clinical practice, early prediction of motor outcome is necessary to select most appropriate intervention 
for a specific patient as well as to plan discharge and continuing rehabilitation. A patient with expected good 
recovery will need intensive early rehabilitation with focus on movement quality to regain movement patterns 
as close to pre-stroke patterns as possible. On the other hand, a patient with expected limited recovery, where 
the improvements are expected to be slower, strategies are need to prevent further deterioration (e.g. atrophy 
and learned non-use) and the use of technology-based rehabilitation may be required. It may also be that com-
pensatory movement strategies need to be learned earlier when expected recovery is limited or delayed in order 
to regain independence in activities of daily living (ADL). Taken these two main rehabilitation approaches, 
regaining movement patters similar to pre-stroke condition or introducing technology solutions and compen-
satory movement strategies, it becomes clear that differentiation between good and poor or limited recovery 
will have the uppermost importance for clinical decision making. The findings of the current study showed that 
the proposed prediction algorithm had high sensitivity, specificity and accuracy to differentiate poor functional 
outcome (0.92–0.96) and poor and limited outcome (0.82–0.86) from the good outcome categories and can 
therefore be used for these purposes.

Motor impairment and severity of initial upper limb paresis is one of the strongest predictors of functional 
outcome in people with stroke3,6,44. Prediction is more accurate in patients with moderate or mild initial motor 
impairment compared to severe initial impairment11,17,36. It is also worth to notice that even when the clini-
cal scales alone perform well at the group level, recovery pathways at individual may still vary8. An accurate 

Figure 3.   Conditional probability tree algorithm along with 95% confidence intervals for the 5 functional 
outcome strata according to Action Research Arm Test assessed at 3-months after stroke.

Table 4.   Grip strength measured at 10-days and 4-weeks post stroke shown in patients with poor or limited 
predicted functional outcome. Values indicate frequencies (n).

Actual outcome Grip strength > 0

Poor Limited Good Day 3 Day 10 Week 4

Predicted outcome

Poor
22 0 0/22 3/22

6 0 2/6 6/6

Limited

2 0 0/2 0/2

2 0 0/2 2/2

5 0 2/5 5/5
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prediction becomes particularly important for patients who despite predicted poor outcome will over time regain 
motor function that will allow them to use the paretic arm in their routine daily activities. In these patients, the 
compensatory movement strategies should be kept minimal early on to avoid learned non-use and complemented 
with retraining of active-assisted movement control of the paretic arm. In our data, every fifth patient (6 out of 
28) with initial poor motor function and expected poor outcome, actually reached a good functional outcome 
at 3-months post stroke. All these 6 patients had a measurable grip strength present at 4 weeks post stroke. This 
finding suggests that a simple measurement of grip strength might be used to revaluate and refine the prognosis 
and to adjust treatment content for patients with initial poor motor function. It also suggests that rehabilita-
tion interventions preventing secondary complications such as decreased range of motion and pain need to be 
included in the rehabilitation regime in patients with initial limited motor function to facilitate potential delayed 
recovery. For example, poor motor function, reduced range of motion and pain have shown to be associated 
with post stroke spasticity45, but the likelihood to develop contractures was highest for those who did not gain 
motor function within the first 6 weeks of stroke46.

Our data also revealed that 64% of patients showing better than expected recovery had a haemorrhagic stroke 
compared to 12% in the group with correct prediction. This finding is in line with previous research showing 
different recovery patterns in patients with ischemic and haemorrhagic stroke47. In haemorrhagic stroke, the 
initial upper limb motor impairment was worse compared to the ischaemic stroke, but at 3-months post stroke 
no difference in motor function was detected between the two groups47. These findings suggest that in order to 
provide accurate outcome prediction for patients with limited initial motor function regular follow-up assess-
ments during the first months are particularly important for patients with haemorrhagic stroke.

In addition to clinical assessments, neurophysiological and neuroimaging techniques, used to determine 
the corticospinal integrity, have shown to be useful particularly to improve prediction accuracy in patients with 
poor initial motor function1,10,14. Clinical implementation of these advanced techniques has, however, been 
restricted due to the limited availability and expertise to run and integrate the results into clinical decision-
making processes9. The second Predicting Recovery Potential (PREP2) algorithm that combines simple clinical 
assessments and determination of motor evoked potentials (MEPs) using transcranial magnetic stimulation is 
so far the only model that has been implemented in clinical settings and that also has shown impact on clinical 
decision making13. After implementation the length of hospital stay was shortened by 1 week, the therapists 
reported a higher confidence regarding expected outcome and the content of therapy was modified according to 
prediction. Despite this excellent example, the prediction algorithms including simple clinical data will have an 
advantage over the more complex models when implemented in clinical practice. Therefore, there is an urgent 
need to implement and evaluate the usefulness and efficacy of these clinical prediction models in clinical settings 
as well. Recently, a prediction algorithm only including clinical bedside assessment from the PREP2 algorithm 
reported an overall accuracy of 61% at predicting upper limb activity capacity at 3 months post stroke, although 
the sensitivity and specificity varied across the four outcome categories17. The authors concluded that the model 
was overall better than change for each four outcome categories and could be implemented in clinical practice 
with a reservation that individuals with poor initial motor function might need repeated assessments to refine 
prediction17.

Recently a complex computerized longitudinal prediction model was proposed that comprises input of 
repeated clinical assessments of FMA-UE11 and ARAT​48. The overall accuracy for predicting poor, moderate 
and good recovery at 3- and 6-months was around 0.8011. A larger prediction error was noted for patients with 
low initial score compared to patients with higher scores, although the prediction errors decreased with an 
increased number of repeated assessments included in the modelling11,48. This work is promising and in line 
with consensus-based recommendations for clinical assessments in stroke rehabilitation49–51. The short length 
of stay in stroke units52,53 and many other assessments that need to be done early after stroke might, however, 
hinder implementation and compliance of this model. A need to enter test results on a customized platform or 
webpage will add administration time and further hamper successful implementation in clinical practice. Even 
when the use of longer comprehensive assessments early after stroke need to be justified, so that the extra time 
and effort will produce added value, these more comprehensive assessments like FMA and ARAT are needed to 
aid intervention selection and evaluation of outcome during the whole recovery process.

Several demographic and clinical factors like age, sex, stroke type, affected side, hand dominance, intravenous 
thrombolysis have not shown added value in prediction models when motor function is already included3,6,9,11,48. 
Age was, however, included as factor in the PREP2 algorithm to refine differentiation between excellent and 
good outcome groups9. Modelling of PREP2 algorithm also showed that FMA-UE and SAFE score had similar 
prediction accuracy, and therefore the shorter assessment of SAFE was selected. These examples provide evidence 
that a simple model, with few key clinical assessments of motor function could be as good alternative than a 
more complex model.

Prediction models and interpretation of the results need to be meaningful for the patient and clinician. 
The dichotomized binary outcomes of good or poor outcome have been criticized, since they will only provide 
limited information54. Having ability to extend fingers and abduct shoulder 2 days after stroke indicated a 98% 
probability of achieving at least 10 points on the ARAT at 6 months7. This simple prediction model increased the 
awareness of how simple clinical tests can be utilized, but the practical usefulness of this model remains limited 
due to the wide range of functional recovery possible between the 10 and 57 points of ARAT​9. Here the develop-
ment of PREP algorithm has proved that differentiation of end-point outcome with different levels will improve 
the clinical usefulness of prediction8,9. For example, clinically meaningful endpoints evaluated in a large stroke 
population showed that shoulder abduction, finger and elbow extension predicted ability to use the arm at least 
in basic ADL (FMA-UE more than 32 points), while wrist extension and supination predicted the use the arm 
in routine ADL 6 months post stroke (FMA-UE more than 57 points)6.
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Prediction algorithms applied early, and preferably within the first week after stroke onset are most useful 
for rehabilitation and discharge planning. Early prediction is also important when considering the constantly 
decreasing length of hospital stay and improved acute care55. The median time in stroke unit was reported to be 
7 days in Sweden and 2–8 days in Australia in 201952,53. These numbers point out the need to implement simple 
and informative prognosis indicators during the first days after stroke onset. These indicators can be used to 
crudely identify patients with favourable functional recovery who will most likely have a short hospital stay. 
Patients with less favourable initial prognosis will most likely need a longer rehabilitation and then the repeated 
assessments might provide a refined estimate for long-term recovery. For the endpoint, a specified time of 3-, 
6- or 12-months after stroke onset is recommended over the discharge time for prediction models50,54. Most of 
the recovery and also the rehabilitation interventions are concentrated to the first 3-months post stroke, which 
makes this time-point relevant for prediction. However, it is important to notice that continuous functional 
improvements can also be regained after this time. Furthermore, when a prediction model will be implemented 
in clinical practice, appropriate training and support need to be provided to clinicians to safely deliver predic-
tions to patients and families.

Strengths and limitations.  An unselected SALGOT stroke cohort recruited early at stroke unit composed 
the original dataset of this study. The demographic and clinical characteristics, such as age, stroke type, stroke 
severity and endovascular treatment of the original SALGOT dataset are well in line with typical patient cohorts 
in acute stroke. In the prediction modelling, patients with missing data at 3-months endpoint were excluded 
for different reasons (declined, death, not able to follow instructions, recurrent stroke). The subsequent analysis 
showed that the excluded subgroup had more severe stroke and lower motor function 3-days after stroke com-
pared to the final dataset. This means that the findings of the current study are most applicable for patients with 
potential to survive and be assessed at 3-months post stroke. Future studies are warranted to externally validate 
the proposed prediction algorithm in a separate independent dataset.

A limitation of the study was that the potential predictor variables were selected among available assessments 
from the SALGOT-study. However, knowledge from previously developed prediction models guided the variable 
selection3,5–7,36. Taken that, potential predictor variables assessing distal (hand and grip) and proximal (shoulder) 
upper limb function as well as grip strength and stroke severity (NIHSS) were considered. It should be noted 
that all assessments included in the prediction model were collected in a standardized way. If the patients could 
not leave the hospital room, the assessment at 3 days post stroke was performed bedside (sitting upright on the 
side of the bed or on a chair beside the bed). The use of standardized equipment such as hand dynamometer or 
standardized height shelf (ARAT cube) might be a limitation for clinical implementation. On the other hand, 
the ARAT cube item could easily be adapted to clinical settings and instead of using a shelf, the height of the 
lift and release of the cube could be assessed as a lift and release at the tested person’s eye level. Validity of this 
adaptions need however to be investigated in a separate cohort.

A comprehensive data modelling process was used in this study, which strengthens the results. The predic-
tion modelling was first done in the training subsets of data (70%) and subsequently validated in the testing 
subtest (30%). An algorithm randomly assigned cases to each dataset and therefore identification of cases in each 
dataset was not possible. A large number of potential predictors were considered and tested to reach the final 
set of predictors and two statistical analysis methods (logistic regression and random forest) were used. Due to 
the low number of observations available for prediction of the middle categories of functional outcome, these 
results need to be confirmed in a larger dataset.

Clinical implications and conclusions.  The results of the current study demonstrate that simple clinical 
assessments performed at 3-days post stroke can successfully be used to predict the upper limb activity capacity 
level at 3-months after stroke onset. In patients with poor initial motor function (no ability to grasp or move the 
arm and shoulder against gravity) and particularly in those with haemorrhagic stroke a follow-up assessment of 
grip strength during the first 4 weeks post stroke is recommended to refine the initial prognosis.

The suggested prediction model, only including simple bedside clinical assessments, can potentially be used 
in any acute stroke unit around the world. For example, the prediction algorithm might facilitate and inform 
selection of treatment approach. For patients with good expected recovery active functional treatments can be 
introduced early with higher confidence, while for patients with expected limited or delayed recovery interven-
tions reinforcing independence in ADL and preventing secondary complications could be in focus. Although 
external validation of this proposed tool is needed before clinical use.

Data availability
Anonymized data included in the prediction modelling will be made available by request from any qualified 
investigator to the first corresponding author (margit.alt-murphy@neuro.gu.se) with a requirement of an 
approved permission from the Swedish Ethical Review Board.
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