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Abstract
Fluid simulation is well-known for being visually stunning while computation-
ally expensive. Spatial adaptivity can effectively ease the computational cost by
discretizing the simulation space with varying resolutions. Adaptive methods
nowadays mainly focus on the mechanism of refining the fluid surfaces to obtain
more vivid splashes and wave effects. But such techniques hinder further perfor-
mance gain under the condition where most of the vast fluid surface is tranquil.
Moreover, energetic flow beneath the surface cannot be adequately captured
with the interior of the fluid still being simulated under coarse discretization.
This article proposes a novel boundary-distance based adaptive method for
smoothed particle hydrodynamics fluid simulation. The signed-distance field
constructed with respect to the coupling boundary is introduced to determine
particle resolution in different spatial positions. The resolution is maximal
within a specific distance to the boundary and decreases smoothly as the dis-
tance increases until a threshold is reached. The sizes of the particles are then
adjusted towards the resolution via splitting and merging. Additionally, a wake
flow preservation mechanism is introduced to keep the particle resolution at
a high level for a period of time after a particle flows through the boundary
object to prevent the loss of flow details. Experiments show that our method
can refine fluid–solid coupling details more efficiently and effectively capture
dynamic effects beneath the surface.
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1 INTRODUCTION

Fluid simulation plays an essential role in visual effects, for the physical-based result can produce magnificent
eye-catching effects to maximize the sense of reality. Nevertheless, higher demand for simulation details usually means
the rapid growth of computational cost due to the need for the finer discretization of multidimensional space and time.
Though the choice of time step (temporal adaptivity) can be readily adapted using Courant–Friedrichs–Lewy (CFL)
condition, the mechanism of spatial adaptivity can still be further exploited considering variable conditions for better effi-
ciency. The spatial adaptivity mechanism enables achieving exquisite fluid behaviors with more affordable expenses by
optimizing the interval of sampling points to refine local areas with pertinence.

Nowadays, research on spatial adaptivity for Lagrangian fluid simulation mainly targets surface-based optimization,
aiming at refining the surface details like splashes, waves and thin films to enrich the visual effects. Horvath and Solen-
thaler1 use a higher resolution for particles within a certain distance to the free surface of the fluid; Winchenbach et al.2
make the desired size of particles increase smoothly with the distance to the surface.

However, the surface-based strategy has the disadvantage of an inflexible intervention mechanism, which causes low
computational efficiency and the failure to enhance specific dynamic areas. On the wide fluid surface, the area with
the most high-frequency details is often the part where the fluid is coupled with other objects, such as a boat sailing
across the water surface, arousing the waves around and behind the body. Meanwhile, the boat’s rotating propeller below
the surface can constantly transmit kinetic energy into the water, further producing splashes to the surface. When such
a scenario is simulated using coarse discretization with surface-based refinement, the vast and calm surface brings a
large computational burden, causing computational resources to be wasted in these unimportant areas. Also, the energy
dissipation from the propeller area cannot be restrained effectively.

To conduct spatial adaptivity with more flexibility and efficiency, we propose a novel adaptivity method with bound-
ary refinement for smoothed particle hydrodynamics (SPH) fluid simulation, where particle resolution increases as the
distance to the interested boundary object decreases (see Figure 1). The sizes of the particles are adjusted towards the
resolution via splitting and merging. Moreover, a wake flow preservation mechanism is introduced to retain the refined
resolution for a specific period after a particle flows through the boundary object to prevent the loss of flow details. The
results show that our method can enrich fluid details more economically and produce more accurate visual effects in
contrast to the surface-based strategy.

2 RELATED WORK

Methods for spatial adaptivity in fluid simulation depend heavily on the fluid simulation approaches on which they are
based. For Eulerian approaches that simulate the fluid with grids, a standard scheme uses octrees to split some grids
into finer grids.3 Meanwhile, tilted grids can also be used4 to avoid numerical issues. For particle-based Lagrangian
approaches, the sizes of particles are adaptively adjusted.2 For hybrid approaches that inherit the traits of both Eulerian

F I G U R E 1 Contrary to the previous surface-based refinement method (a), our method (b) refines fluid particles near boundary objects
to allow the fine-scale fluid-boundary coupling to enhance boundary coupling details. Our method can also be combined with the
surface-based method to refine near the boundary and the surface (c).
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and Lagrangian methods, one can improve the efficiency by limiting the regions where particles are used5 or combining
octrees with an adjustable number of particles based on regional characteristics.6

SPH7 is a Lagrangian fluid simulation method that possesses the advantages of natural mass conservation and sim-
plicity of advection computation. For adaptive SPH, Adams et al.8 resampled particles with different radii based on the
size of local geometric features. Solenthaler and Gross9 introduced a two-scale mechanism that coupled a low-resolution
simulation with a high-resolution one, and particles were directly inserted or deleted at the boundary between the two
resolutions, which broke the mass-preserving condition. Horvath and Solenthaler1 extended the previous work9 to sup-
port multiple levels of resolution and conserve mass. Orthmann and Kolb10 increased the spatial resolution by splitting
particles using a 1:2 pattern and applied a temporal blending technique to achieve a smooth particle splitting process by
maintaining continuous physical fields. Vacondio et al.11 used the variational principle to search for an optimized split-
ting pattern that minimized density error. They also introduced a coalescing scheme to realize the dynamic reduction of
resolution. Winchenbach et al.2 achieved adaptivity in incompressible SPH by introducing a new split-merge mechanism
that produced an approximately continuous resolution based on the distance from the free surface of the fluid. Winchen-
bach and Kolb12 later proposed a method to optimize the density error from the splitting process into an arbitrary number
of particles by optimizing the position and mass of the split particles to increase the stability of the previous method.2

A popular approach for boundary handling of SPH fluids is particle-based methods that represent the solid objects
with particles.13,14 However, for fluid simulation using adaptive methods, particle-based boundary representation may
encounter the problem of size discrepancy between fluid and boundary particles. Another approach for boundary han-
dling is the boundary integral method. Fujisawa et al.15 used empirically derived functions to handle triangle-mesh
boundaries. Koschier and Bender16 precomputed the integral of boundary on a fixed grid, where the precomputing
was rather expensive. Bender et al.17 improved this method by precalculating a volume term. Chang et al.18 integrated
computer-aided design mesh file boundary representation into SPH by converting the volume integral to surface integral.
Winchenbach et al.19 proposed a boundary integral method that supports adaptive SPH, which approximated the bound-
ary integral locally at each particle with a plane based on the signed-distance field (SDF) of the boundary object. Though
the boundary handling for adaptive SPH has been well-studied, more attention needs to be paid to designing the adap-
tive mechanism dedicated to the fluid–solid boundary. So in this article, we present a spatial adaptivity method with the
boundary refinement mechanism for SPH fluid simulation to capture detailed interaction effects.

3 ADAPTIVE SPH

3.1 SPH basics

To simulate fluid behavior, the SPH method7 describes physical fluid motion according to the Navier–Stokes equation:

𝜌
Dv
Dt

= −∇p + 𝜌𝜐∇2v + fext, (1)

where the change rate of the velocity v is determined by pressure p, density 𝜌, dynamic viscosity 𝜐 and external body
force fext.

To perform numerical computation, SPH discretizes the fluid into particles and calculates the physical attributes of
each particle using the attributes from neighboring particles and a kernel function W , as:

Ai =
∑

j
Aj

mj

𝜌j
W(xi − xj, hij), (2)

where A is the physical attribute. i is the current particle. j denotes neighboring particles of i, whose distance to i is smaller
than the support radius hij. hij = (hi + hj)∕2, where hi = 2ri and r is the particle diameter. m is mass. x is position. This
article uses a cubic spline function for the kernel function W . Any value followed by the subscript i or j means the value
of that particle.

According to Equation (2), density located at particle i can be approximated as:

𝜌i =
∑

j
mjWij, (3)

where Wij is short for W(xi − xj, hij).
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Using the state equation from Becker and Teschner,20 the pressure at the particle i can be calculated as:

pi = B
((

𝜌i

𝜌0

)𝛾

− 1
)
, (4)

where B = 𝜌0c2
s∕𝛾 . 𝜌0 is the rest density denoting the density of the fluid without any compression. cs is the speed of sound

in the fluid, which is often set to 100 m∕s. 𝛾 is set to 𝛾 = 7 for weakly compressible fluids.
The pressure force on the particle can then be computed as:

Fp
i = −mi

∑

j
mj

(
pi

𝜌
2
i

+
pj

𝜌
2
j

)
∇Wij. (5)

The viscosity force can be approximated as follows:

Fvis
i = mi

∑

j
mj𝜐

(
vij ⋅ xij

|xij|2 + 0.01h2
i

)
∇Wij, (6)

where vij = vi − vj is the relative velocity between i and j. xij = xi − xj.
The total force on a particle can be expressed as:

Fi = Fp
i + Fadv

i + Fbound
i , (7)

where Fadv is the advection force consisting of gravity G, viscosity force Fvis, and surface tension.21 Fbound is the force from
the boundary to the fluid, which is explained in Section 4. The velocity and position of the particle are updated each time
step with vi ∶= vi + ΔtFi∕mi, xi ∶= xi + Δtvi, where Δt is the length of the time step.

3.2 Split-merge based adaptivity

Winchenbach et al.2 achieved SPH adaptivity by splitting and merging particles with strict conservation of the total fluid
mass. In this method, the desired size for each particle is computed using a sizing function based on the distance to the
fluid’s free surface:

mopt
i = mbase

(
min(|𝜙f

i |, |𝜙max|)
|𝜙max|

(1 − 𝛼) + 𝛼

)
, (8)

where mopt is the optimal mass that is the desired mass for the particle. 𝛼 is the adaptivity ratio that denotes the largest
mass ratio allowed between particles. mbase is the largest allowed particle mass.𝜙f is the distance to the fluid’s free surface
similar to Horvath and Solenthaler,1 which is negative inside the fluid. 𝜙max is the max distance to the surface within
which particles are refined. Equation (8) ensures that the optimal mass decreases linearly and smoothly as the distance
to the free surface decreases.

Splitting or merging is applied to each particle to adjust its mass towards mopt if necessary. To determine the operation
each particle needs, the particles are classified into five categories according to the ratio between the particle’s mass and
the optimal mass, mrel

i = mi∕mopt
i . The five classes are S (mrel

i < 0.5), s (0.5 ≤ mrel
i ≤ 0.9), o (0.9 < mrel

i < 1.1), l (1.1 ≤
mrel

i ≤ 2), and L (2 < mrel
i )

Particles of class L undergo splitting to become multiple smaller particles (Section 3.2.1); particles of class s are
merged into nearby s or S particles by distributing all of its mass to nearby particles (Section 3.2.2); and particles of
class l redistribute their excess mass to nearby s particles similarly to merging (Section 3.2.2). The process is shown
schematically in Figure 2.

3.2.1 Splitting

Particles of class L are split into n children particles where n = ⌈mi∕mopt
i ⌉. The mass and positions of children particles

are determined using precomputed split patterns. They are further optimized online by solving a minimization problem
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F I G U R E 2 Schematic diagram of particle (a) splitting, (b) merging, and (c) redistribution.

on density error to reduce the error induced by splitting.12 The other physical attributes of children particles are inherited
from their parents.

3.2.2 Merging and redistribution

Particles of class s undergo merging, distributing all of their mass to nearby s or S particles, while particles of class l
redistribute their excess mass mi −mopt

i to nearby s particles. The distance between the mass-distributing particle i and
the mass-receiving particle j must be within hi∕2. The mass to distribute mdist is equally divided among the mass-receiving
particles, while the other physical attributes are weight-averaged between i and j as:

A∗
j =

mdist

n
Ai +mjAj

mdist

n
+mj

, (9)

where A∗ is the attribute’s new value after redistribution, and n is the number of mass-receiving particles.

3.2.3 Techniques to increase stability

Even with optimized splitting patterns and online optimization, splitting and merging can still introduce some density
errors.12 Temporal blending2 and local viscosity12 can increase the stability of particle splitting and merging.

Temporal blending is applied to particles that recently participated in splitting, merging, or mass redistribution. The
original particle o before splitting or redistributing mass is stored. Then, o is used to modify the density and velocity of its
children or particles that received mass from it. The blended density is computed as:

𝜌
blended
i = (1 − 𝛽)𝜌i + 𝛽𝜌o, (10)

where 𝜌o is the density of the original particle, computed using Equation (3), but ignoring the density contribution from
its children. 𝛽 is a temporal blending factor that is initialized to 0.5 for particles generated in splitting and 0.2 for particles
involved in redistribution or merging. Then, 𝛽 is decreased by 0.1 every time step until it reaches 0. 𝜌blended

i is used instead
of 𝜌i in further computations. The velocity of the original particle vo is set to the average velocity of all its children particles
and is used to update the original particle’s position xo. The blended velocity vblended

i = (1 − 𝛽)vi + 𝛽vo is used instead of
vi to update the particle’s position xi.

In the local viscosity technique, the viscosity coefficient 𝜐 in Equation ( 6 ) is multiplied with a factor 1 + 0.5(𝛽i + 𝛽j)∕2
to increase the viscosity of newly split, merged, or redistributed particles locally, thus increasing stability.

4 SEMI-ANALYTIC BOUNDARY HANDLING

A suitable boundary handling method for adaptive SPH is proposed in Reference 19. This method uses a local plane to
approximate the boundary at each particle. The plane approximation is based on a discrete SDF evaluated before simula-
tion. The plane’s distance d to the particle equals the SDF magnitude at the particle’s position, and the normal vector of



6 of 14 XU et al.

the plane is the normalized SDF gradient. To approximate the boundary’s contribution, the integral of the kernel function
W is evaluated over the region on the side of the plane that contains the boundary:

𝜆
′(d) =

⎧
⎪
⎨
⎪⎩

1
30
[81q6 − 144q5 + 80q3 − 42q + 15] 0 ≤ q ≤ 0.5

−8
15
[2q6 − 9q5 + 15q4 − 10q3 + 3q − 1] 0.5 < q ≤ 1

1 − 𝜆′(−q) −1 ≤ q < 0

, (11)

where q = d∕hi.
A penalty term is introduced to penalize solid penetration: 𝛽(d) = 1 − d∕hi. The penalty term is directly multiplied

onto 𝜆′(d), obtaining the corrected value 𝜆(d) = 𝛽(d)𝜆′(d).
The density equation Equation (3) is then modified to consider the boundary:

𝜌i =
∑

j
mjWij +

∑

b
𝜌0𝜆

b
i , (12)

where b denotes the boundary object(s). 𝜆b
i = 𝜆(sdfb(xi)), where sdfb(xi) is the signed-distance to b from the position of i.

The pressure at the boundary can be mirrored13 or extrapolated14 from the pressure of nearby fluid particles. In the
case of pressure mirroring, the pressure force from the boundary is:

Fp
i←b = −mi𝜌0

pi

𝜌
2
i

∇𝜆b
i . (13)

The friction between the fluid and solid follows the Coulomb model, which is proportional to the boundary’s pressure
force on the particle:

Ffric
i←b = 𝜇||F

p
i←b||tib, (14)

where tib is a unit vector pointing to the direction of relative tangential velocity between fluid and boundary.
The total force from the boundary objects to a particle is Fbound

i =
∑

b(F
p
i←b + Ffric

i←b).

5 ADAPTIVE BOUNDARY COUPLING

The region near the boundary objects is often of interest in fluid-boundary coupling. Therefore it is desirable to use the
refined particles near the important boundary objects to emphasize the details of boundary coupling. However, refining
the entire surface can cause an unnecessary increase in particle number. Previous work2 refines particles only near the
free surface of the fluid, which cannot cover the entire boundary region and can cause detail loss in boundary cou-
pling. Moreover, in some cases, only the region near the boundary object is of interest, such as a ship sailing on a vast
water surface.

Given the above problems, we propose a boundary refinement method to refine particles near specific boundary
objects. The method can either be used alone to refine only near the boundary or combined with surface-based refinement
schemes2 to refine both the surface and the boundary regions, which is outlined in Algorithm 1.

To achieve particle refinement near boundary objects, we modify the sizing function of Equation (8) to consider the
distance to boundary objects. Instead of optimizing particle mass according to the distance to the free surface 𝜙f , we use
the distance to boundary objects to define a value 𝜙b to adjust the particle size:

𝜙
b
i = min

(
max

b∗

(
−sdfb∗ (xi) + 𝜙fine

b∗

)
, 0
)
, (15)

where b∗ denotes the interested boundary objects near which the fluid particles should be refined.𝜙fine
b∗ is a user-controlled

parameter: all particles with distance to b∗ smaller than 𝜙fine
b∗ are refined to the smallest scale. We use 𝜙fine

b∗ = hi unless
explicitly mentioned.
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Algorithm 1. Boundary refinement for SPH. New steps in our method are marked blue

SPH computation
Establish neighbor list
Compute and blend density
Calculate advection forces
Compute fluid pressure
Apply boundary pressure and friction
Update and blend velocity
Update position

Adaptive mechanism
Compute 𝜙b from boundary SDF (Equation 15)
Wake flow preservation (Algorithm 2)
if combine surface-based: detect surface
Calculate optimal mass (Equation 16)
Splitting, merging, and redistribution

To only refine the region near the boundary, one can replace 𝜙f
i with 𝜙b

i in Equation (8), namely:

mopt
i = mbase

(
min(|𝜙b

i |, |𝜙max|)
|𝜙max|

(1 − 𝛼) + 𝛼

)
, (16)

and to refine both near the boundary region and the fluid surface, one should substitute 𝜙f
i in Equation (8) with 𝜙i =

max(𝜙b
i , 𝜙

f
i ).

5.1 Wake flow preservation by delaying merge

For scenarios where the fluid flows past the boundary object or the boundary object moves through the fluid, interesting
wake flow effects are generated behind the boundary object, such as the wave behind a ship moving through water.
However, when using 𝜙b

i to determine particle size, the wake flow loses detail because the optimal mass quickly returns
to the largest value as the boundary object moves away from the particle. Consequently, the particles in the wake flow
merge into larger particles, reducing the detail level.

To preserve wake flow detail, we inhibit the particle merging process if the particle was recently in the vicinity of the
boundary, as Algorithm 2 shows. For each interested boundary object b∗, the user can set a duration to delay merging
𝜏

max
b∗ for particles that have flowed around it, and each particle tracks its remaining duration to delay merging, denoted

as 𝜏i. Every time step, for each particle i and each interested boundary object b∗, if the particle satisfies sdfb∗ (xi) ≤ hi,
we set its remaining duration 𝜏i ∶= 𝜏max

b∗ if the duration is not already longer. The duration is decremented at each time
step by the time step length Δt as 𝜏i ∶= 𝜏i − Δt. As long as the particle satisfies 𝜏i > 0, 𝜙b

i is not allowed to decrease: if
the newly computed value 𝜙b

i,t for the time step t is lower than the previous value 𝜙b
i,t−1, we set it to 𝜙b

i,t ∶= 𝜙
b
i,t−1. To

Algorithm 2. Wake flow preservation

for each particle i
for each interested boundary object b∗:

if sdfb∗ (xi) ≤ hi:
set duration 𝜏i ∶= max(𝜏max

b∗ , 𝜏i)
decrement duration 𝜏i ∶= 𝜏i − Δt
if 𝜏i > 0:

𝜙
b
i,t ∶= max(𝜙b

i,t, 𝜙
b
i,t−1)
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retain the smoothness of the 𝜙b field, the 𝜙b
i values for 𝜏i > 0 are then propagated to surrounding particles using the

method from Horvath and Solenthaler.1 This approach effectively delays particle merging in the wake flow by the time
length of 𝜏max

b∗ .

6 RESULTS AND DISCUSSIONS

To test the effectiveness and capabilities of our method, in this section, we use multiple scenarios to compare the proposed
approach with simulations of uniform particle scale and the surface-based state-of-the-art SPH adaptive scheme,2 which
adapts resolution near the free surface.

We use weakly compressible SPH20 for fluid simulation and the semi-analytic boundary handling method proposed in
Reference 19 for boundary coupling. The time step length is determined using the CFL condition with a scaling parameter
of 0.5. Surface reconstruction and rendering are conducted using Houdini and mantra with Intel Xeon Gold 5218. All
simulations are coded using the Taichi programming language22 and run on an NVIDIA Tesla V100 GPU.

6.1 Efficiency comparison

Efficiency is a crucial aspect of adaptive simulation mechanisms. We show that our method can produce a similarly
detailed result using fewer particles than the surface-based adaptive mechanism2 and is more vivid than a low-resolution
simulation.

6.1.1 Boat-sailing

In this scenario, a boat sails quickly across a calm fluid surface, stirring up waves and splashes around and behind the
body. For the adaptive methods, we use the max particle size rbase = 0.2 and an adaptive ratio 𝛼 = 32 and choose 𝜙fine

b∗ = 0
in our method. For uniform size simulations, we perform a low-resolution and a high-resolution simulation using r = 0.2
and r = 0.063, where the particle size respectively equals the largest and smallest particle size in adaptive simulation. The
particles are color-coded according to velocity.

Figures 3 and 4 show the experimental results rendered with reconstructed fluid surface and particles, respectively.
Considering the splashes around the ship, the visual level of detail is similar between the previous surface-based method2

(Figure 3c) and our method with or without wake flow preservation (Figure 3b,a). The three adaptive results are all
much more detailed than the uniform low-resolution simulation (Figure 3d), though they may lack some detail com-
pared to high-resolution (Figure 3e). For the wake flow effect, the result of our method without wake flow preservation
(Figure 3a) is relatively coarse, but when wake flow preservation is added to our method (Figure 3b), the visual detail
level is comparable to the surface-based method (Figure 3c).

F I G U R E 3 Surface reconstruction result of the boat-sailing experiment: (a–c) Are adaptive simulations using max particle size
rbase = 0.2 and adaptive ratio 𝛼 = 32; (d, e) are uniform scale simulations with r = 0.2 and r = 0.063. (a) Ours, 𝜏max

boat = 0; (b) ours, 𝜏max
boat = 1; (c)

surface-based;2 (d) low-resolution; (e) high-resolution
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F I G U R E 4 Boat-sailing experiment. Adaptive methods use rbase = 0.2 and 𝛼 = 32 . (a) Ours, 𝜏max
boat = 0 ; (b) ours, 𝜏max

boat = 1 ; (c)
surface-based;2 (d) low-resolution ( r = 0.2 m); (e) high-resolution ( r = 0.063 m)

F I G U R E 5 Particle count and time consumption in (a) boat-sailing and (b) cylinder moving experiment. Solid lines denote particle
count; dashed lines denote time consumption. One frame equals 1∕24 s.

To evaluate the efficiency of the proposed method, the particle count and time consumption using different methods
are plotted in Figure 5a. The solid lines show the particle count, and the dashed lines show the time consumption. It can
be seen that the uniform low-resolution simulation uses the least particles. While our adaptive method with 𝜏

max
boat = 0

increases the particle count slightly. Further, our method with 𝜏max
boat = 1 begins with a low particle count, which increases

since frame 65 when the boat starts moving and producing wake flow, and decreases back to a low value after frame 107
when the boat leaves the simulated zone because the duration to delay merging for the wake flow has expired. Under
both conditions, our method significantly reduces the average particle count over time compared to the surface-based
method2 and the high-resolution simulation. The time consumption curves follow a similar trend. This experiment shows
that our method can reduce the time cost compared to the state-of-the-art surface-based adaptive mechanism2 with no
or negligible negative influence on visual quality.

6.2 Effect evaluation

6.2.1 Cylinder moving

Figure 6 shows an experiment where a cylinder is moved horizontally through a water tank in a straight line to generate
a wave pattern. The particles are colored according to whether their initial positions are on one side of the moving path
of the cylinder. A jagged pattern can be seen from the vertical view (first row), and curved patterns can be seen from the
side view of a cross-section (second row). Figure 6a shows the result of a uniformly scaled high-resolution simulation
performed using the smallest allowed particle size in the two adaptive simulations, r = 0.063 , which should be the most
accurate among the three simulations. Figure 6b uses our boundary refinement method where particles are adaptively
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F I G U R E 6 Cylinder moving experiment, where the cylinder moves horizontally in the tank. The first row is the vertical view; the
second row is a cross-section of the side view. Our method better reproduces the jagged (vertical view) and curved (side view) wave patterns
in the high-resolution simulation. Adaptive methods use max particle size rbase = 0.2 and 𝛼 = 32. (a) High-resolution (r = 0.063 m); (b) ours,
𝜏

max
cylinder = 21; (c) surface-based2

F I G U R E 7 A cross-section of the propeller spinning experiment where color denotes velocity. Adaptive methods use rbase = 0.1,
𝛼 = 32, 𝜏max

propeller = 0. In the zoomed-in areas, our method (b) generates a more detailed vortex compared to (c), closer to the high-resolution
result (a). (a) High-resolution (r = 0.063 m); (b) ours + surface-based;2 (c) only surface-based

refined near the cylinder. We use 𝜏max
cylinder = 21 , which is longer than the simulation duration, to prevent wake flow

merging for the entire simulation to achieve a high level of detail. Figure 6c uses surface-based refinement.2 The two
adaptive simulations use rbase = 0.2 and 𝛼 = 32 . Compared to the surface-based method, our method is more similar to
the high-resolution simulation in terms of the size and number of jags from the vertical view and the shape of the curved
pattern in the cross-section, indicating our method can achieve a better accuracy compared to surface-based method2

under certain settings.
The particle count of the cylinder moving experiment is displayed in Figure 5b. Our method uses a larger number of

particles compared to the surface-based method2 to achieve higher accuracy, but the particle count is still considerably
lower than the high-resolution simulation.

6.2.2 Propeller spinning

In this experiment, a propeller is fully submerged in the fluid and spins horizontally to generate turbulence. We use this
scenario to demonstrate the ability of our method to be combined with surface-based refinement.2

Figure 7 shows the particle view of a cross-section of the propeller spinning experiment. From Figure 7b, it can be seen
that the particle size is refined both near the surface and around the propeller. Compared with only using surface-based
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refinement as in Figure 7c, the combined method can generate more details in a vortex, as shown in the zoomed-in areas,
and also has a more similar shape to the vortex in a high-resolution simulation (Figure 7a). This experiment shows that
adding our method to the surface-based method2 can enhance dynamic details produced by boundary coupling.

7 CONCLUSION AND DISCUSSION

7.1 Limitations

7.1.1 Visual effects

In the surface-based only SPH adaptive mechanism, the sizes of the particles are always transformed smoothly in space
according to a continuous and stable distance. However, our boundary-based adaptive method may encounter the diffi-
culties of particle merging. The divided small particles, as a part of the waves stirred up by the solid boundary, may not
have suitable s or S neighbor particles to be merged when falling back to the fluid surface.

As shown in Figure 8, we make a solid box fly over the fluid surface without substantive contact to demonstrate this
issue. Only the sizes of the fluid particle will be affected by the signed distance field from the solid object. We carried
out this experiment separately with and without the wake flow preservation mechanism. The sizes of the particles are
color-coded as smaller particles have brighter appearances. Here we can see that our wake flow preservation mechanism
delays the merging process effectively.

However, we can also observe that when the solid object leaves the fluid, some small particles are left unmerged on
the surface. This is because our method only allows the merging procedure to take place between particles of s or S class.
When small particles begin to merge, there may be no s or S particles in the range of merging. On the other hand, the
surface-based adaptive mechanism naturally guarantees fluid particles near each other obtain similar sizes as it only
depends on particles’ distances to the fluid surface, so particles of suitable class are easier to be found.

7.1.2 Energy conservation

The particle splitting and merging techniques applied in this article would also introduce potential energy conservation
violations into the simulation. We measured the total energy (including kinetic and gravitational potential energy) for
the boat-sailing experiment in Figure 4 and the moving box experiment in Figure 8 and drew the statistical diagram in
Figure 9.

In Figure 9a, we can see that for the boat-sailing experiment, both our method and surface enhancement method2

obtain energy higher than both high-resolution and low-resolution simulation results. This manifests in the random

F I G U R E 8 Moving box experiment. In this experiment, a box-shaped boundary object moves close to the fluid surface but does not
touch the fluid, causing particle refinement near it but not disturbing it. The leftmost column shows the experimental setup; the other
columns show the result. Color denotes particle size. Our method uses rbase = 0.2 and 𝛼 = 32. The distance between the box and the fluid
surface is 0.1. (a) Our method without wake flow preservation (𝜏max

box = 0); (b) our method with wake flow preservation (𝜏max
box = 1)
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F I G U R E 9 Statistical analysis of energy change (sum of total kinetic and gravitational potential energy) in (a) boat-sailing and (b)
moving box experiments with a frame rate of 24 fps. The energy change with time is expressed with the ratio of the current time’s energy to
the first frame’s.

spatter of fluid particles during the simulation, indicating the instability issue of the method. This issue is further demon-
strated in Figure 9b, where, as the chart shows, the violation of energy conservation energy happens during the merging
process. The energy cannot remain stable when the solid box starts to cause the fluid to split and merge. Moreover, for
the experiment applying wake flow preservation, the period of conserving energy performs worse. Though this instabil-
ity is relatively small (generally less than 1‰ energy fluctuation), it can generate unexpected artifacts if the simulation
scenario is not carefully configured.

7.2 Summary

We propose a new boundary refinement mechanism for adaptive SPH to refine particles near the coupling boundary
and retain resolution for the flow generated by solid objects. Experiments show that, compared to the surface-based only
refinement mechanism2 (Appendix S1) , our method can improve the computation efficiency significantly for enhancing
fluid details when simulating fluid–solid coupling scenarios. Further, the proposed method can produce more accurate
visual results for underwater coupling scenarios such as propeller spinning. Therefore, our method can be widely applied
to most fluid simulation scenarios to improve efficiency and visual quality since many fluid simulations focus on the
interaction between fluid and solid. A limitation of our method is that when a solid particle leaves the refined region due
to splashing and so forth it would lack merge partners and remain in the unrefined region, causing a small redundancy in
particles. Also, the splitting and merging process of our method would cause a potential violation of energy conservation
and generate visual artifacts such as unrealistic splashes.

In the future, we will explore a more stable and accurate particle splitting-merging mechanism for adaptive SPH
fluid simulation. The critical issue is balancing the particles’ sizes close to each other and creating a progressive merging
process to avoid a sudden change of local density field.
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