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Figure 1: A hair shape descriptor approach for hairstyle modelling. (a). Input portrait (b). Hair
shape descriptor (c). Generated full-head hairstyle (d). Side view (e). Back view. Portrait
originates from [1]

Abstract
In recent years, it becomes possible to extract
hair information for hair reconstruction from
multiple cameras or monocular camera. Using
a single image as the input avoids the high cost
setups and complex calibration compared to
multi-viewed reconstruction. Taking advantage
of an extendible hairstyle database, this paper
introduced Struct2Hair, a novel single-viewed
hair modelling approach by extracting hair
shape descriptor (HSD). The HSD is defined
as the fundamental structure-aware feature,
which is a combination of critical shapes in a

hairstyle. A complete dataset of critical hair
shapes is constructed from a known database
of 3D hair models. We first analyse the input
2D image to extract the orientation information
and 2D hair sketch automatically. The extracted
information is then used to retrieve the cor-
responding critical shapes with optimisation
to build the robust HSD. Finally, the HSD
constructs a weighted 3D hair orientation field
to guide full-head hair model generation. Our
method can preserve local geometric features
of hair and retain the whole shape of the
hairstyle globally owing to the HSD, which



will benefit further hair editing and stylisation.

Keywords: Hairstyle Modelling, Hair Shape
Descriptor, Data-driven Modelling

1 Introduction

Hair is an important feature to form character
appearance in both film and video game indus-
try. Hair grooming and combing for virtual
characters was traditionally an exclusive task
for professional designers because of its require-
ments for both technical manipulation and artis-
tic inspiration. However, this manual process is
time-consuming and further limits the flexibil-
ity of customised hairstyle modelling. In ad-
dition, it is hard to manipulate virtual hairstyle
due to intrinsic hair shape. The fast develop-
ment of related industrial applications demands
an intuitive tool for efficiently creating realistic
hairstyle for non-professional users. Recently,
image-based hair modelling has been investi-
gated for generating realistic hairstyle [2, 3].

Early image-based hair modelling algorithm
use multi-viewed images to recover missing
depth information [4, 5, 6, 7]. They mainly
rely on complicated set-up of capturing device,
which is difficult to be implemented by common
users. With the help of data-driven method, sin-
gle portrait image based hair modelling research
achieved great success in recent years [8, 9].
This approach does not require the setup of a
specialised system and allows almost an arbi-
trary portrait image as input. It also reduces
computation cost by eliminating the need for im-
age registration. Furthermore, image based hair
modelling is also the cornerstone for many rel-
evant applications, including portrait manipula-
tion by re-lighting hair and changing hairstyles,
high quality 3D printable relief by adding hair
details and 3D hairstyle space navigation etc
[8, 10, 11, 12, 9, 3].

This paper proposed a pipeline of
Struct2Hair, a single-viewed hair modelling
method based on a novel hair shape descriptor
(HSD). The HSD analysed hairstyle structure
on both hair geometry shape and hair distribu-
tion. We built a large dataset of critical hair
shapes and extracted robust HSD from 2D hair
information. After this, the HSD constructed

a weighted 3D hair orientation field to guide
full-head hair model generation. Compared to
the latest single-image based hair modelling
research [2, 3], our new approach is capable of
extracting and modelling the local feature of a
representative hair, in addition to remixing can-
didate hairstyle models retrieved from database
to obtain a similar hairstyle model. Our method
enhanced the image-based hair modelling by
preserving local geometric features of hair and
retaining a global shape of a hairstyle owing to
the introduction of HSD, which benefits further
hair editing and stylisation.

In summary, this paper demonstrates a work
flow (see Figure 2) that robustly captures a
hairstyle from a single portrait input. Specifi-
cally, critical shapes of a hairstyle on a coarse
level were extracted from generated 2D hair
strands by clustering and optimisation first. We
built a critical hair shape database by analysing
an existing hairstyle model database. The crit-
ical hair shapes is a group of hair strands
which possess similar shape appearance and
close space location, whose centres are the HSD
for each hairstyle in the original database. The
robust HSD is constructed by retrieving and
matching corresponding critical hair shape cen-
tres in the database. The full-head hairstyle was
reconstructed by uniformly distributing the hair
on the scalp with the guidance of HSD. The pro-
duced results were compared against with the
original portraits to evaluate the quality of our
output.

Main contributions of this paper listed below:

• Propose a hair shape descriptor (HSD) to
analyse hair structure

• Generate HSD preserves local geometric
features of hair as well as the global shape
of the hairstyle

• Detailed critical hair shape database benefit
other hair modelling research

• Compact hairstyle storage and fast reload-
ing by HSD

2 Related Works

Image-based hair modelling. The image-based
hair modelling method has been studied for



Figure 2: Struct2Hair: Work flow of full-head
hairstyle generation

many years due to the intuitive sense of hairstyle
given by images compared to traditional hair
scratch. [4, 5, 6, 7] pioneered in modelling hair
from images either by extracting hair silhou-
ette or by recovering 3D hair orientation field to
trace hair growth. With the development of ded-
icated equipments, more robust hair geometry
has been captured. [13] used 16 cameras with
a projector to reveal the rays of light for hair ge-
ometry capturing. [14] assembled hair fibre by
fibre by recovering hair depth from defocused
images. A thermal camera was used in [15]
to segment hair between skin and background.
[16, 17, 18, 11] leveraged specialised capture se-
tups with multiple synchronised cameras to get
high quality input images. Most multi-viewed
hair modelling methods need complicated ac-
quisition setups, which prevents prevalent us-
age.

To avoid the dilemma mentioned above, hair
modelling based on single image was proposed
by [8, 10]. They computed hair orientation map
to generate sparse 2D hair strands. A visually
plausible hair model was inferred from these
strands combined with space constraints by a
heuristic method. Inspired by their research,
we traced 2D hair strands within the hair re-
gion by using the same Gabor filtering results

in [8]. These strands were used to extract 2D
hair sketch for our 3D HSD generation, which
is different from referring 3D hair strands di-
rectly from 2D information. In [9], a shape from
the shading algorithm was used to refine hair
strands generation. They also added a helical
prior for 3D hair strands optimisation to pop up
high-quality portrait relief. However, the afore-
mentioned researches were incapable of gener-
ating full-head hair model due to missing in-
formation in single image. The two most sim-
ilar approaches to ours, which model full-head
hair model from single image by data-driven
method are[2] and [3]. [2] prototyped captur-
ing whole hairstyle model with using a hairstyle
database. Several user input strokes needed for
guiding retrieve hair example in the database. To
make the hair modelling even more easy han-
dling, [3] introduced a fully automatic way to
generate the hair model. The hair region in the
portrait image was detected by a trained convo-
lutional neutral network. They also constructed
a database for data-driven hair modelling. The
resulted hair model could benefit many future
applications including physical-based hair an-
imation and hair space navigation etc. Both
[2] and [3] are top-down methods, they require
hairstyle models remixing and adjustments to
closely match the hairstyle of the original pic-
ture. We have proposed a way to analyse the
key structure of a hairstyle and reconstruct the
full-head hair model from the HSD. Since hair
shapes are difficult to be analysed by a genera-
tive approach, this bottom-to-up method is quiet
challenge currently.

Data-driven method. Data-driven approach
has been used in many areas in addition to hair
capturing. The success of data-driven based re-
search shows its ability in many applications in-
cluding modelling and character animation con-
trol etc [19, 20, 21, 22]. As a single portrait
input naturally lacks of depth information, the
invisible hairs in the back of the head can only
be inferred by heuristic method. Leveraging a
hairstyle database can generate reliable photo-
realistic hair model and keep the global shape
consistency at the same time [23, 2, 3]. Inspired
by these fantastic works, this paper constructs a
hair element database and uses it to model full-
head hairstyle.

Sketch-based modelling. Sketch playing as



guide strokes demonstrates structure informa-
tion of the modelling object. It contributes to
depth hint for image-based modelling and offers
a way of user interaction. In addition, the sketch
is also a robust feature for object retrieving com-
bined with the data-driven method mentioned
above. Recent research witnesses its achieve-
ments at various field including hair modelling
[24, 2, 25, 26, 27]. In this paper, we extracted
2d hair sketch, which was incorporated with the
aforementioned critical hair shape database to
further generate 3D HSD for hairstyle structure
analysing.

3 Critical hair shape database

This work proposed a data-driven approach to
construct a database composed of critical hair
shape. The main purpose of building such a
database is to use a minority of strands from
each full-head hair model to carry the represen-
tative structure of the overall hairstyle.

We propose a two-hierarchic clustering
method to search the optimal key hair wisps to
represent the basic structures of a hairstyle in
distribution, length, shape, etc. This clustering
method can be divided into two steps: scalp re-
gion segmentation and wisp centres searching.
The first step is achieved by a fast down sam-
pling. It aims to reduce the calculation burden of
the following step without losing much informa-
tion of strands’ shape. The second step prelim-
inarily classifies strands by their location. The
critical hair shape database is built based on the
wisp.

3.1 Scalp region segmentation

Here, we heuristically assume that the neigh-
bouring hair strands share the similar geometri-
cal properties including length and shape. Thus,
the hair roots on the scalp have been divided into
m non-overlapping regions by a down sampling
plan named as Minimum and Maximum Dis-
tance Design [28, 29], which is well-developed
for selecting samples to be evenly distributed in
a spatial interval.

We denote the 3D Cartesian coordinates of
all the hair roots as X =

{
x(1), x(2), ..., x(n)

}T
,

x(i) ∈ R3, i = 1, 2, ..., n , where x(i) is the

Figure 3: Scalp region segmentation. 100 opti-
mal samples are selected from 9977
hair roots.

root node of the i th strand, and n is the number
of strands. Instead of sampling from a spatial
interval, we need to sample from a dataset X.
Hence interval sampling problem in Minimum
and Maximum Distance Design is transformed
to the point sampling by selecting the best m
samples X′ from to X minimise [30]:

min
X′⊂X

Φb

(
X′) =

 k∑
j=1

Jjd
−b
j

1/b

. (1)

{dj} is a vector of distinct distance values be-
tween all point pairs in X′ (where the Euclidean
distance is used in this paper). Jj is the number
of point pairs which can be separated by dj . k is
the size of {dj}. b is a positive integer which is
generally set as 20 − 50 if it is a large problem.
For how to select a proper value, we recommend
to further reading page 338 in [29].

Considering there are nearly 10,000 strands in
each hair model from the database (about 100k
hair for a real human), in this paper we set b
as 50, and adopt the integral programming to
heuristically solve the optimisation problem 1
with the genetic algorithm [30], which shows ro-
bustness in searching the global minimum with
a heuristic manner. Then the optimal samples
X′ are evenly distributed on the scalp which can
represent the whole hair roots X. After that, for
each hairstyle model, we can segment the scalp
into 50 non-overlapping areas in this paper by
searching for the neighbour hair roots of each
sample in X′ by the kNN algorithm (see Figure
3).

3.2 Hair wisp centres searching

For a hairstyle model, after segmenting the n
strands into m groups, we apply the K-means++
algorithm [31] to categorize them into c clusters.



The hair strands within the same cluster share
the similar geometric properties.

To distinguish strands with different shapes,
we provide a metric (Equation 3) where three
factors are mainly considered: strand length,
spatial position and tangent value:

ds (si, sj) =
dH (si, sj)

τi,j
(2)

dH (si, sj) is the Hausdorff distance between
two hair strands. As a popular approach in mea-
suring the distance between two curves in a met-
ric space [32], it is presented as:

dH (si, sj) = max
{
supp∈si infq∈sj d (p, q) , supq∈sj infp∈si d (p, q)

}
(3)

In equation 3, si, sj are denoted as the i th
and j th strand of a hair model, p and q are the
nodes distributed on them respectively, where
p, q ∈ R3. d (p, q) here we adopt the Euclidean
distance.

To avoid two hair strands with different
shapes are too close to have a small dH to be
grouped into one cluster, a coefficient τi,j is
added onto the Hausdorff distance. τi,j is the
variable to represent the tangent information be-
tween two hair strands. It is computed as inner
product between the tangent vectors of the two
strands, see Equation 4.

τi,j =
1

l − 1

l−1∑
k=1

⟨tan (pk) , tan (qk)⟩ , l ≥ 2.

(4)
tan (pk) and tan (qk) respectively denote the

unit tangent vector at point pk (on si) and qk
(on sj). l is the number of points on the shorter
strand, wherein, to make points on all strands
distributed equally in distance, the cubic spline
interpolation is used to re-sample these points
beforehand.

The metric in equation 2 shows that two
strands which have a close location, similar
length and tangents will contribute to a smaller
distance.

In section 3.1, we have got the down-sampled
strands. Each strand there represents an individ-
ual spatial area on the scalp. Based on our met-
ric, we apply the K-means ++ method to gather
these strands into c clusters. Then it yields c
centre strands, each of which can largely reflect

(a) (b)

(c)

Figure 4: Hair strand clustering. (a). A hairstyle
model from [2] grouped into 50 clus-
ters. (b). Corresponding 50 cluster
centres. (c). Extracted hair wisps used
in section 3.3

the overall style of strands in a cluster. The clus-
tering result of a hair model is shown in Figure
4(a), 4(b).

3.3 Critical hair shape database building

We develop our critical hair shape database
based on USC-HairSalon hairstyle database [2].
By doing the clustering on 343 models in the
hairstyle database in section 3.2, we obtained a
large set of hair wisps (see Figure 4(c)). Those
hair wisps exhaustively demonstrate natural hair
shapes ranging from short straight hairstyles to
long curly hairstyles. Therefore, we call such
hair wisps as critical hair shapes and collect
them as a database.

4 Hair shape descriptor (HSD)

Due to the complicated intrinsic shape of in-
dividual hair strand, it is difficult to describe
the structure of hairstyle. In order to analyse
and capture hairstyle model from single 2D im-
age, we introduce hair shape descriptor (HSD)
to demonstrate the representation of hair struc-
ture. The Hair Shape Descriptor (HSD) is ex-
plained in this section.



4.1 Image Pre-processing

2D hair sketch extraction. We first cut the
hair region from the input portrait image by im-
age editing software Photoshop, this process is
mostly automatic, excluding some challenging
cases where hair color is similar with the back-
ground. Then we use the Gabor filter in [8] to
compute 2D hair orientation map. Instead of
computing seed points to grow strand, we evenly
sample hair seed points within the region of hair
to preserve the possible shape information. The
2D hair strands are then traced on the image
plane (see Figure. 5(b), 5(c)). In some cases,
a hair strand might be cut into several line seg-
ments after the tracing due to occluded by other
strands or inevitable image noises. Thus the
segments belonging to the same strand should
be connected together first. Here we define an
asymmetric distance between any two segments
as:

dc (si, sj) =
{

d
(
pti, q

h
j

)
if d

(
pti, q

h
j

)
< ϵ & θ < π

6

∞ otherwise
,

(5)
where pti, p

h
j are respectively denoted as the tail

and head nodes of segment si and sj , which
means the distance cost when attaching the head
of sj to the tail of si. d

(
pti, q

h
j

)
is the Euclidean

distance, and the threshold value ϵ is used to fil-
ter out those pairs that are too large to be con-
nected together. θ is the orientation different be-
tween pti and qhj to enforce the hair holding a
natural bending angle.

After the asymmetric distance matrix D =
(dc (si, sj)) is obtained, we use a searching al-
gorithm to connect these segment pairs by the
order from the minimal distance value to the
higher. For a connection, once meeting the end
of this searching, such that no extra segment
can be connected to the current hair strand, then
delete the indexes of these involved segments in
matrix D and begin a new connection (see Fig-
ure 5(d)).

After the complete strands are obtained, we
apply the same K-means++ algorithm in section
3.2 on the generated 2D hair strands to cluster
them. The collection of the cluster centres is our
2D hair sketch. We set 10 as the initial num-
ber of clusters. But our result shows that 10 is
not enough for full-head hairstyle recover. We
tested 10, 25, 50 and 75 clusters, and 50 comes

out as a trade off between reconstruction satis-
faction and computation efficiency (see Figure
5(e)).

2D hair sketch extension. However, the gen-
erated 2D hair strands didn’t reveal the missing
information from the original image. Consider
the hairstyle is a combination of different hair
wisps, hair strands grown from the back side of
the head also participant to add variation to the
visible hair. Thus, we extend the extracted hair
sketch to be attached to the scalp of the head
aligned to the portrait.

Figure 5(e) shows that some extracted strands
are occluded by the front hair, which partly ap-
pear in the current view. To recover the occluded
part for these strands, we extend the extracted
hair sketch with the following steps to let them
grow from hair roots in 2D. The extension re-
sult is shown in Figure 5(h). There is a stan-
dard head model provided in USC-HairSalon
database aligned with each hairstyle. In the fol-
lowing work, in order to do the 2D shape centres
matching, we project the critical hair shape cen-
tres to the 2D portrait plane through fitting the
head model to the face of the portrait by the pose
estimation and shape fitting method in [33].

1. Pose estimation & Head fitting

a) Detect 2D facial landmarks of input
portrait, and manually label their cor-
respondences on the given standard
head model.

b) Estimate the pose of the standard
head model by solving camera matrix
using the Gold Standard Algorithm
[34].

c) Rotate and scale the standard head
model by obtained camera matrix to
make its face aligned to the portrait,
see Figure 5(g).

2. Attach 2D hair sketch

a) Project the 3D hair roots on the stan-
dard head model to the 2D image
plane.

b) Search the nearest hair root for each
strand in the 2D hair sketch, and use
polynomials to fit these strands along
with their nearest hair root, which en-
sures that the occluded strands are at-



(a) Input protrait (b) Hair region (c) 2D hair strands (d) Strands con-
nection

(e) 2D hair sketch

(f) Standard head
model

(g) Head fitting (h) Extended 2D
hair sketch

(i) Matched 3D
centres from
database

(j) Generated HSD

Figure 5: Hair shape descriptor generation. We first segment hair region (b) from input portrait (a),
then trace 2D hair segments (c) on image plane. We perform a segment connection on (c)
to obtain more reliable 2D hair strands (d), and extract the 2D hair sketch (e) from it. To
optimise the 2D hair sketch, the standard head model (f) provided in [2] has been mapped (g)
onto the input portrait. Then we extend 2D hair sketch (h) to make it grow from projected 2D
scalp and search the best matched 3D centres (i) from our critical hair shape database. The
hair shape descriptor (HSD) (j) is generated by adding depth information on 2D extended
hair skecth. Input choose from [1]

tached to the hair roots on the back
head.

Our tests show that for very curly hair styles,
a high-order polynomial sequence is required to
represent their strands. For general cases, the
fifth-order polynomials are enough to ensure a
great performance. Figure 5(h) displays that
those occluded hair strands in Figure 5(e) are
connected to the hair roots on the back head,
which are used to generate the back hair in fol-
lowing steps.

4.2 HSD generation

For each 2D cluster centre, we search the closest
critical hair shape from the table maintained for
the hair shape database according to the shape
and distance constraints. Therein, we firstly
project every entry of the table to the 2D im-

age plane based on the pose estimation pro-
cess. Then the distance metric in equation 2
is used for matching the closet 2D critical hair
shape centre to each strand of hair sketch. The
matched 3D critical hair shape centre is shown
in Figure 5(i).

We build frenet-serret frame for both 2D
strand in hair sketch and its corresponding 3D
critical hair shape centre. The depth of 3D crit-
ical hair shape centre is then applied to guide
the generation of 3D hair sketch. This 3D hair
sketch is our hair shape descriptor (HSD), which
plays as an important structure feature to recon-
struct full-head hairstyle generation in section
5. For each pair of 2D strand and matched hair
shape centre, we can build the corresponding
parametric curve functions as follows.{

x = x1 (s1)
y = y1 (s1)

, s1 ∈ [0, L1] , (6)




x = x2 (s2)
y = y2 (s2)
z = z2 (s2)

, s2 ∈ [0, L2] , (7)

where si, i∈[1,2] represents the curvilinear ab-
scissa along the curve i. x, y and z are the Carte-
sian coordinates of the nodes on a curve. the x-y
plane is coplanar with the portrait plane. For 2D
hair sketch, the coordinates along z-axis (depth
direction) are zeros. x1, y1, x2, y2, z2 are the
parametric functions which are approximated by
the cubic spline functions. L1 and L2 are de-
noted as the total arc length of the two curves.

Afterwards we take a linear mapping from s1
to s2 as:

s2 =
L2s1
L1

, s2 ∈ [0, L2] , (8)

and transfer the depth information to the 2D hair
sketch, then each 3D strand of the HSD can be
represented by

x = x1 (s1)
y = y1 (s1)

z = z2
(
L2s1
L1

) , s1 ∈ [0, L1] . (9)

A generated HSD is shown in Figure 5(j).

5 Full-head hairstyle generation

Based on the HSD obtained above, full-head
hairstyle is generated by treating the whole
hairstyle as a 3D orientation field. All the hair
strands are grown on a predefined region on
the scalp with the evenly distributed hair roots
(we generate 10000 hair strands for the full-head
hairstyle in this paper).

Before that, we firstly propose two assump-
tions rules for generating hair from HSD.

1. For strands whose hair roots are located
within a close distance, their strand lengths
are similar, except some special areas (e.g.
the fringe hair).

2. The orientations of neighbouring nodes on
two strands (attached together) are similar
in common cases.

When doing full-head hair generation, the
HSD represents the shape information as a col-
lection of local hair details. Each strand of HSD

is treated as an initial hair cluster centre to dif-
fuse the entire hairstyle around the scalp. We
adopt an iterative hair generation method to keep
local hair details when generating new hairs.
New hair strands with close distance to HSD
will be grown first, then expanded until full-head
strands generation is completed. The main steps
of the hair generation algorithm are shown as
following:

1. Build a dataset X = {xi} , xi ∈ R3 to store
all the hair roots and a dataset S = {Si} to
store the current strands, which is initiated
by strands in HSD.

2. Loop until X is empty.

a) For each strand Si ∈ S, search m
nearest hair roots in X.

b) Collect all the m nearest hair roots,
and generate strands based on their
neighbour strands in S.

c) Update the current strands set S by
appending the generated strands, and
remove their hair roots from X.

3. S is the generated full-head hair.

(a) 50 (b) 425 (c) 1218

Figure 6: Increasing hair strands around scalp

The number of new generated strands in step
two is increasing with the expanding of S, which
ensures that the local shape information of the
original centres is kept while the shape of new
generated strands between these centres varies
smoothly. This will be reflected in the local gen-
eration step, please see Figure 6 for details.

Taking the first hair generation step as an ex-
ample, given a set of hair roots and initial hair
strands from HSD, there are two phases in gen-
erating the new strands: deciding the strand
length and the corresponding growth direction.



5.1 Deciding strand length

Based on the first priori assumption, for each
hair root, we firstly use the k-NN algorithm to
search m neighbouring hair roots among these
centres, then adopt the Multi-quadric (M-Q) ra-
dial basis function [35] to interpolate its strand
length based on the length data of these cen-
tres. k-NN method used here is aimed at keep-
ing the local length and avoiding a large coeffi-
cient matrix in M-Q interpolation (see the ma-
trix (ϕ (ri,j)) in Equation 12). The form of M-Q
radial function is:

ϕ (r) = (−1)⌈β⌉
(
r2 + c2

)β
, c ≥ 0, β > 0, β /∈ N,

(10)
and the interpolated strand length function is
written as:

l (x) =
m∑
i=1

aiϕ(r), r = ||x − xi||. (11)

In equation 10, the parameters β and c are
used to control the shape of M-Q function where
we recommend to refer [35] for their definitions.
r is the variable of the radial Euclidean distance
between two points. ⌈β⌉ denotes the ceiling
function, we set β = 0.5 in our experiment. N
is the natural number.

In equation 11, x is the 3D position of the hair
root with its corresponding length l(x) to be in-
terpolated. {xi} is the closest m neighbouring
hair roots to x, and ai is the interpolation coef-
ficient of each radial basis ϕ(r). Based on the
HSD, their hair roots {x1, x2, ..., xm} and corre-
sponding hair lengths {l (x1) , l (x2) , ..., l (xm)}
can be used to solve {ai} as the following:


l (x1)
l (x2)
...

l (xm)

 =


ϕ (r1,1) ϕ (r1,2) ... ϕ (r1,m)
ϕ (r2,1) ϕ (r2,2) ... ϕ (r2,m)

... ... ... ...
ϕ (rm,1) ϕ (rm,2) ... ϕ (rm,m)




a1
a2
...
am

,
(12)

where ri,j = ||xi − xj ||.
The strand length of the new strand can be fig-

ured out by giving the 3D position of its hair
root in equation 11. In some special scenarios,
especially the fringe hairs, there is a length gap
between them and their neighbours. Since the
M-Q function is continuous, it makes the hair
at the boundary of the gap a little longer than it
suppose to be. In this case, a pre-defined area

roots 0 1
4

1
3

1
2

0

1
12

1
8

1
5

Table 1: Parameters to edit the shape of fringe
hairs. The parameters in top row are
the proportions of the front hair length,
which is used to cut the fringe hair.
There is no fringe hair when length pro-
portion equals 0. The parameters in the
first column is the ratios, which indicate
how much front hairs will account for
fringe area. When both ratio and length
proportion equal 0, the hairstyle is the
original generated from HSD. For en-
sure the natural look of the hairstyle, ra-
tio is set to 1

5 and the length proportion
is set between 1

3 and 1
2 .

for fringe hair should be given in advance to en-
sure the length of new hair strands located in it
can only be affected by the hair strands in this
area. For hair styles with a fringe hair, we make
the 1/5 area in front of the scalp as the special
area. A hairstyle with a choppy full fringe hairs
is used to demonstrate how these two parame-
ters work, see Table 1 for a detailed discussion
with fringe hair editing.

5.2 Deciding growth direction

After figuring out the length of this new strand,
based on the second priori assumption, we re-
construct the entire curve by integrating along
its growth direction. Beginning with its hair
root, by using the weighted k-NN regression, we
interpolate the orientation of a strand node from
the u neighbour nodes on other centre strands.



Denote the node on a strand as r (s), and its
u neighbours from different centre strands as
r (s1) , r (s2) , ..., r (su). r (s), r (si) ∈ R3, i =
1, 2, ..., u. Then the orientation vector r′ (s) can
be solved by the weighted regression as :

r′ (s) =
∑u

i=1 ω
2
i r′ (si)∑u

i=1 ω
2
i

, (13)

where ωi = (
∑u

i=1 di) − di, di = ||r (s) −
r (si) ||, di is the Euclidean distance between
r (s) and r (si).

{
ω2
i

}
are the weight values.

Starting from the hair root, we iteratively cal-
culate its orientation vector and update the new
node by r (s+ δs) = r (s)+r′ (s) δs until meet-
ing the end of the strand length. Besides, to
make the shape of strands vary smoothly be-
tween centre strands, we adaptively change the
searching range u in a new hair generation step
by ui+1 = 1.5ui, u0 = 1.5.

6 Evaluation

Modelling result. We first test our HSD method
on hairstyle models (as ground truth data) from
USC-HairSalon database to evaluate the feasi-
bility of our algorithm. Through generating hair
from extracted HSD of hairstyle models, the re-
sults show the HSD based hairstyle modelling
can reconstruct a hairstyle as similar as possible
compared to the original hairstyle, see Figure 7.

Next, we test the novel HSD approach on por-
traits with different hairstyles. The results prove
our algorithm’s capability of dealing various
hairstyles. In Figure 8, the rendered hairstyle
models follow the natural way of hair growth.

We also compared our method with the state-
of-the-art single image-based hair modelling al-
gorithms [2, 3]. Figure 9 shows that for the
original view, our method generate the hairstyle
model closely matched the input image, which
has the similar quality of the previous single-
view hair modelling approaches. However, dif-
ferent from their methods, our framework focus
on reconstruction of the reference hairstyle from
its basic structure, which benefits a presence of
rich local details of hair shape.

Furthermore, the Struct2Hair framework is
also compared with the cutting-edge multi-
viewed hair modelling technique by [36]. They

Figure 7: Hairstyle synthesized by HSD ap-
proach compared with ground truth
hairstyle. From left to right: 1 col-
umn is a short straight hairstyle from
USC-HairSalon, 2 column is the cor-
responding synthesized short straight
hairstyle by HSD, 3 column is a long
curly hairstyle from USC-HairSalon,
4 column is the corresponding synthe-
sized hairstyle by HSD.

use four-view images to reconstruct a target
hairstyle. The result from our Struct2Hair is ren-
dered under the four reference views to compare
with their model in Figure 10. It presents the
capability of our framework to generate reliable
hairstyle model with only a single view refer-
ence image.

Meanwhile, as the full-head hair is fully auto-
matically generated from HSD, we consider it is
a compact feature to save and reload hairstyle.
The result in Figure 7 proves its capability of
reconstructing hairstyle. We take this advan-
tages and can down-sized the USC-HairSalon
database from 3.53GB to 41.2MB by represent-
ing hairstyle of HSD.

Limitation. The HSD extraction is based on
image pre-processing. In some cases, portrait
images are lack of clear hair information due to
high reflection or bad illumination which cause
unreliable HSD generation, which result in un-
realistic hairstyle capturing. Our HSD method is
incapable of dealing with the fuzzy hairstyle at



Figure 8: Hairstyle models generated by HSD
approach from single image. From
left to right, 1 column is the origi-
nal portrait, 2 column is the generated
hairstyle model by HSD approach, 3
column is the corresponding side view.
Portraits originate from [1]

the current stage. The intrinsic fuzzy hairstyle
degenerates the consistency of 2D hair strands
extraction. In that case, a better performance 2D
hair strands extraction approach should be con-
sidered. As the HSD descriptor is designed for
capturing hairstyle from single image, the gen-
erated hair model can only keep the hairstyle
matched the original view, and preserve a plau-
sible visual effect when rotating the head due to
the unknown groundtruth of the back side.

Moreover, similar to [3], the head pose esti-
mation method fails when extreme side-viewed
face or tilted head appear in the input portrait.
This causes unreliable critical hair shape manip-
ulation and unsatisfied hair model generation.
This problem can be solved by the improvement
of face alignment method. Also, like the pre-
vious data-driven based single-view hair mod-
elling methods, our Struct2Hair relied on the
critical hair shape dataset constructed from the
USC-HairSalon database. When there is no de-
sired critical hair shape matched to the HSD, the
quality of the reconstructed hair model is less
satisfactory compared to [2, 3]. This requires us

to build a large critical hair shape database in the
future work.

Future work. The HSD method is based on
the analysis of the hair structure, which could
further contribute to a hairstyle editing appli-
cation. A common user with no professional
knowledge can easily comb the hair by chang-
ing the HSD to control the hairstyle.

The compact structure of HSD will help us
enlarge the hairstyle database by adding new
generated HSD into existing database. With the
expansion of database, we could improve our al-
gorithm to capture more realistic and fine local
hair geometric features. This database will ben-
efit future sketch based hair modelling methods.
We have done some tests to re-mixing two HSDs
to populate new hairstyle models for the USC-
HairSalon database. Please see Figure 11 for
details, the γ1 and γ2 represent the correspond-
ing source hairstyles’ contributions to the new
hair model. We will continue to explore gen-
erating new hairstyle model by adding several
source models in the future.

The HSD could also perform as a skeleton for
hair simulation. Take the HSD as the guide to
control hair movement to save computation cost.
We will improve the current work-frame to test
video input based hair simulation as our future
work.

7 Conclusions

The Struct2Hair, a hair shape descriptor (HSD)
approach for hair modelling is introduced in
this paper. Compared to the state-of-the-art
single-viewed hair modelling methods, HSD
based hair modelling provides a bottom-to-up
pipeline, which focuses the basic structure of
a hairstyle. The generated hairstyle models
show the ability of capturing both global and
local feature. The full-head hair grown around
the scalp follows the natural behaviour which
retain the whole shape of the hairstyle glob-
ally. Our compact HSD structure also enables
a way of hairstyle management like saving and
reloading the hairstyle, as well as enlarge the
hairstyle database by appending new extracted
HSD. Promising hairstyle editing and simula-
tion applications can be developed by manipu-
lating the HSD in future.



Input Struct2Hair [2]

Input Struct2Hair [3]

Figure 9: Compare with the state-of-the-art single-viewed hair modelling techniques. From left to
right are the input portraits, hairstyle model generated by Struct2Hair, [2] and [3] respec-
tively. Original image courtesy of Chris Zerbes and Bob HARRIS.

Input Struct2Hair [36] [11]

Figure 10: Comparison with the state-of-the-art multi-viewed hair modelling techniques. From left to
right are the input portraits, hairstyle model generated by Struct2Hair using from the front
view input, [36] and [11] respectively.
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Figure 11: Blend hairstyle one with hairstyle
two by setting different coefficients
γk. From left to right, the hairstyle
is morphing from pure hairstyle one
to pure hairstyle two with the γ1 : γ2
changing from [1 : 0] to [0 : 1].

8 Acknowledgement

The authors would like to thank Liwen Hu for
helping with the comparison and making their

hairstyle models available for research use, the
Menglei Chai for his kind suggestion. The re-
search leading to these results has received par-
tial support from the EU FP7 funded project
AniNex (FP7-IRSES-612627).

References

[1] Rasmus Rothe, Radu Timofte, and
Luc Van Gool. Deep expectation of real
and apparent age from a single image
without facial landmarks. International
Journal of Computer Vision (IJCV), July
2016.

[2] Liwen Hu, Chongyang Ma, Linjie Luo,
and Hao Li. Single-view hair modeling
using a hairstyle database. ACM Trans-
actions on Graphics (Proceedings SIG-
GRAPH 2015), 34(4), July 2015.



[3] Menglei Chai, Tianjia Shao, Hongzhi Wu,
Yanlin Weng, and Kun Zhou. Auto-
hair: Fully automatic hair modeling from
a single image. ACM Trans. Graph.,
35(4):116:1–116:12, July 2016.

[4] Waiming Kong and Masayuki Nakajima.
Generation of 3d hair model from multiple
pictures. The Journal of the Institute of Im-
age Information and Television Engineers,
52(9):1351–1356, 1998.

[5] Stephane Grabli, François X Sillion,
Stephen R Marschner, Jerome E Lengyel,
et al. Image-based hair capture by inverse
lighting. In Proceedings of Graphics Inter-
face (GI), pages 51–58, 2002.

[6] Sylvain Paris, Hector M Briceño, and
François X Sillion. Capture of hair geom-
etry from multiple images. In ACM Trans-
actions on Graphics (TOG), volume 23,
pages 712–719. ACM, 2004.

[7] Yichen Wei, Eyal Ofek, Long Quan, and
Heung-Yeung Shum. Modeling hair from
multiple views. In ACM Transactions on
Graphics (TOG), volume 24, pages 816–
820. ACM, 2005.

[8] Menglei Chai, Lvdi Wang, Yanlin Weng,
Yizhou Yu, Baining Guo, and Kun Zhou.
Single-view hair modeling for portrait ma-
nipulation. ACM Transactions on Graph-
ics (TOG), 31(4):116, 2012.

[9] Menglei Chai, Linjie Luo, Kalyan
Sunkavalli, Nathan Carr, Sunil Hadap, and
Kun Zhou. High-quality hair modeling
from a single portrait photo. ACM Trans-
actions on Graphics (Proc. SIGGRAPH
Asia), 34(6), November 2015.

[10] Menglei Chai, Lvdi Wang, Yanlin Weng,
Xiaogang Jin, and Kun Zhou. Dynamic
hair manipulation in images and videos.
ACM Trans. Graph, 32:4, 2013.

[11] Liwen Hu, Chongyang Ma, Linjie Luo,
and Hao Li. Robust hair capture using
simulated examples. ACM Transactions on
Graphics, 33(4), July 2014.

[12] W. Zhang, J. Chang, J. J. Zhang, M. Wang,
and R. Tong. Image-based hair pre-
processing for art creation: A case study
of bas-relief modelling. In 2015 19th In-
ternational Conference on Information Vi-
sualisation, pages 411–418, July 2015.

[13] Sylvain Paris, Will Chang, Oleg I
Kozhushnyan, Wojciech Jarosz, Wojciech
Matusik, Matthias Zwicker, and Frédo
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