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Abstract 1 

 2 

Freshwater ecosystems are highly vulnerable to the detrimental impacts of both biological 3 

invasions and climate change. Piscivorous alien fishes drive populations of small-bodied native 4 

fishes to extinction and warming is already driving extreme temperature events in lakes and 5 

rivers globally. Here, we use Ecological Niche Modelling (ENM) to predict how climate change 6 

will alter the geographical space of six alien fishes and five native fish genera (which include 7 

multiple endemic species) in Turkey, a hotspot of freshwater fish diversity. The models 8 

predicted that the geographical space of the alien fishes already present in Turkey would 9 

generally increase (including pikeperch Sander lucioperca and perch Perca fluviatilis), but with 10 

the most substantial increases in largemouth bass Micropterus salmoides, a species not yet 11 

present in Turkey but that is invasive in countries nearby and is highly popular for sport angling. 12 

For the native fish genera, general predictions were for reduced geographical space, especially 13 

in the south and east of the country, suggesting the endemic species will become increasingly 14 

imperilled in future. Their populations will also be at increasing risk of deleterious impacts 15 

from the alien piscivores, as the predictions were also for increasing overlaps in the 16 

geographical space of both the alien fishes and native fish genera. These predictions suggest 17 

that the conservation of these endemic species need to consider measures on preventing both 18 

the introduction of alien species (e.g. largemouth bass) and the further dispersal of extant alien 19 

species (e.g. pikeperch), as well as habitat interventions that will limit the effects of climate 20 

change on their populations. These results also indicate that the combination of climate change 21 

and alien invasions could have substantial impacts on this – and similar – hotspots of freshwater 22 

diversity.  23 

 24 
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Introduction 27 

Freshwater ecosystems are highly vulnerable to the detrimental impacts of climate change 28 

(Woodward et al. 2010), with warming already driving extreme temperature events in lakes and 29 

rivers around the world (Gudmundsson et al. 2021; Piccolroaz et al. 2020). These are coupled 30 

with extreme low flow events in rivers, which have globally been experiencing substantial 31 

declines in their fish diversity and population abundances (Su et al. 2021). Contemporary 32 

climate change is resulting in many species in the northern hemisphere shifting their 33 

distributions to areas of higher latitude (Jaric et al. 2019). However, the climate-driven dispersal 34 

of riverine fishes is inherently limited by natural and anthropogenic physical boundaries, 35 

resulting in species not shifting their distributions at a pace sufficient to track the rate of 36 

warming (Comte et al. 2013). Consequently, climatically vulnerable riverine fishes must also 37 

adapt in situ within communities where all species are responding to the altered conditions 38 

(Piccolroaz et al. 2020).  39 

 40 

Where climate is a primary driver of species distributions (Hampe et al. 2004), predicting 41 

changes in their distributions requires consideration of both current and future climate scenarios 42 

(Heikkinen et al. 2006). This is more complex in regions where alien species are frequently 43 

introduced and translocated. This is because when these introductions are successful due to the 44 

effects of climate change (e.g., due to warming), it is highly likely that the integration of the 45 

alien species into the community will result in ecological impacts on native fishes that 46 

exacerbate the impacts already being caused by warming (Radinger et al. 2019; Radinger & 47 

Garcia‐Berthou 2020). Moreover, warming temperatures might also release the thermal 48 

constraints on some warm-water alien fishes that are already present in temperate freshwaters, 49 

facilitating their establishment in areas where the current thermal regime inhibits this (Rahel 50 

and Olden 2008). This is already evident in England and Wales for some alien freshwater fish 51 
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species, including common carp Cyprinus carpio, which are now increasingly developing 52 

invasive populations through warmer summer temperatures (Skeate et al. 2022). Predicting 53 

which of these persistent alien species will go on to develop invasive populations is important 54 

for implementing preventative measures to minimise impacts on native species (Spear et al. 55 

2021; Iacarella et al. 2015). These measures are especially important to implement in regions 56 

where the assemblages include endemic species that are already threatened by other 57 

environmental changes, such as habitat fragmentation (Beatty and Morgan 2013).  58 

 59 

Predatory invasive species have been identified as a major driver of species extinctions, 60 

with invasive predatory mammals implicated in the extinction or endangerment of 738 61 

vertebrate species (Doherty et al. 2016). In freshwaters, invasive piscivorous fishes are a key 62 

driver of fish diversity loss (Britton 2022). For example, invasive peacock basses (Cichla spp.) 63 

are implicated in the substantial declines (> 90 %) in the diversity and abundance of native and 64 

endemic fishes in some hydro-electric reservoirs in southern Brazil (Pelicice and Agostinho 65 

2009; Leal et al. 2021). Largemouth bass Micropterus salmoides, a widely introduced invasive 66 

sport fish, has similarly been associated with large declines in populations of small-bodied, 67 

native prey fishes (Gratwicke and Marshall 2001), including causing extinctions (Hickley et al. 68 

2015). Moreover, depending on the species and ecosystem, impacts of alien piscivorous fishes 69 

are often predicted to negatively affect prey populations more severely than native fishes due 70 

to substantially higher attack and consumption rates (Alexander et al. 2014). Correspondingly, 71 

in regions where these alien fishes have been introduced and are persisting but are not yet 72 

invasive due to thermal constraints, there is high concern that these species will subsequently 73 

develop invasive populations that then have deleterious impacts on native and endemic fish 74 

populations (Britton et al. 2010).     75 

 76 
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Climatically constrained but persistent alien species could thus potentially develop 77 

invasive populations in future. This can be predicted by climate change models to project shifts 78 

in the suitable thermal habitat of these species and hence predict their future distributions (Ruiz-79 

Navarro et al. 2016a). When these predictions in shifting geographical space are completed for 80 

multiple species across large spatial areas, including endemic and native species, the extent of 81 

the spatial overlap in their geographical spaces can predict the extent to which these species are 82 

likely to coexist in future (Ruiz-Navarro et al. 2016b). Where an invading species is predicted 83 

to expand its geographical space and the extent of its co-existence with endemic species of 84 

diminishing geographical space, deleterious impacts on those endemics would then be predicted 85 

through both sub-optimal thermal regimes and increased predation pressure (Pysek et al. 2017). 86 

The identification of areas of high endemism that coincide with areas of highest invasion risk 87 

from persistent alien species can then be prioritised for immediate management actions to 88 

reduce these risks. Consequently, the aim of this study was to predict, in a freshwater 89 

biodiversity hotspot of high endemism, how climate change will alter the climate space for a 90 

range of high impacting alien piscivorous fishes, and overlay these predictions on those of 91 

threatened native fish genera. We posit that the geographical space for the alien piscivores will 92 

expand through warming to overlap the future distribution areas of the native fish genera, 93 

increasing their future interactions that will potentially result in substantially decreased fish 94 

diversity and endemism.    95 

 96 

Material and Methods 97 

The full roadmap on which analyses were based is summarized in Fig. 1 98 

 99 

Study area and fish species 100 

The focal area of study was the country of Turkey, a hotspot of freshwater fish diversity and 101 
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endemism (Fricke et al. 2007), which has a distinct ichthyofauna that comprises of species 102 

present from both Europe and Asia (Smith and Darwall 2006; Cuttelod et al. 2009). To date, 103 

384 freshwater fish species have been recorded from Turkey, of which 208 (54%) are endemic 104 

and 15 (4%) are alien (Çiçek et al. 2020). The country’s latitudinal and longitudinal dimensions 105 

result in substantial differences in regional climates and so its climate change projections, with 106 

these coupled with the presence of large trans-boundary river systems that elevate the risk of 107 

introductions of alien fishes from both Asia and Europe. The risk of alien fish introductions is 108 

further elevated by government authorized aquaculture and stocking programmes based on both 109 

cage aquaculture and capture fisheries, with these acting as major introduction vectors (Tarkan 110 

et al. 2015).  111 

 112 

There were six alien fish species selected for use here based on their current and likely 113 

coexistence with assemblages of native fish genera (Table S1); these were all of the order 114 

Perciformes: ruffe Gymnocephalus cernua, pumpkinseed Lepomis gibbosus, largemouth bass 115 

Micropterus salmoides, European perch Perca fluviatilis, Chinese sleeper Perccottus glenii and 116 

pikeperch Sander lucioperca. All of these fishes are piscivorous and the majority have 117 

deleterious and top-down impacts on small-bodied prey fish populations. Largemouth bass and 118 

Chinese sleeper have yet to be introduced, ruffe is present in the European regions only, with 119 

the remaining species all present across the country with populations either stable (pikeperch) 120 

or increasing (perch and pumpkinseed). All of these are temperate species, except for L. 121 

gibbosus and G. cernua that have wide temperature tolerances (4-30°C). Occurrence data were 122 

collected and modelled at genus-level for the native and endemic species that were all genera 123 

within the Cyprinidae family: Alburnoides, Alburnus, Barbus, Gobio and Squalius, within 124 

which there are numerous endemic species (Table S2). All modelled species were endemics of 125 

restricted distribution belonging to native fish genera and were all temperate.  126 
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 127 

Fish distribution data 128 

Data on the occurrences of the selected alien fishes were obtained from a combination of 129 

sampling (for the species already present within Turkey) and global databases (e.g. the Global 130 

Biodiversity Information Facility (GBIF, https:// www. gbif. org/) (Table S3), where all records 131 

were non-duplicates. The corresponding occurrence unpublished data for native fish genera 132 

were obtained from only sampling programmes completed between 2002 and 2021 (Fig. S1) 133 

and from literature review. The reviewed literature covered peer-reviewed scientific papers and 134 

grey literature (e.g. checklists, institutional reports, conference proceedings), and covered the 135 

same time period as the sampling period. These data were then supplemented by data-mining 136 

online (e.g. geo-referenced images of alien fishes on social media sites). To sufficiently remove 137 

duplicates and avoid sampling bias, the records were rarefied spatially at 5 km intervals by 138 

using SDMtoolbox (Brown et al., 2017) in ArcGIS version 10.8.1 (ESRI, 2020). For alien 139 

species, the total number of occurrence records were: perch: 1679; ruffe: 1859; Chinese sleeper: 140 

812; largemouth bass: 1788; pikeperch: 3230; and pumpkinseed: 1162. For the native fish 141 

genera, the total number of occurrence records were Squalius: 739; Alburnoides: 139; Gobio: 142 

100; and Alburnus: 513. Note that for all of the native species of Table S1, their data were used 143 

at the genera level for the predictive modelling. This was because there were too few occurrence 144 

points for many of the endemic species to be useful at that taxonomic level and, given the high 145 

ecological and morphological characteristics of these species at the genus level, their 146 

occurrence data were able to be combined without compromising the relevance of the outputs.  147 

 148 

Climate data 149 

The climate data used were 19 bioclimate variables (Table S4), downloaded from WorldClim 150 

database version 2.1 (Fick and Hijmans 2017), and that had a spatial resolution of 2.5’ (~4.63 151 
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km at the equator). These data were then clipped to the study area and their correlations tested 152 

in order to reduce the multicollinearity; where variables were highly correlated (r ≥ 0.7), one of 153 

these variables was removed based on the relevancy of the variable to distribution of modelled 154 

species from the SDM toolbox (Brown et al. 2017). This resulted in 8 climate variables being 155 

used for both sets of species (Table S5). It acknowledged, however, that the retained climate 156 

variables are unlikely to be the only determinants of the distribution of these species (Pont et 157 

al. 2006), with other abiotic and biotic variables likely to also be influential, although they could 158 

not be incorporated into the models used (Wu et al. 2019). 159 

 160 

The climate change projections used were for the years 2050 (2041-2060) and 2100 161 

(2081-2100), using the lower and the upper limits of the Shared Socioeconomic Pathways 162 

(SSPs; SSP126 and SSP585) that were obtained from eight different global climate models 163 

(GCMs): BCC-CSM2-MR (Wu et al. 2019), CNRM-CM6-1 (Voldoire et al. 2019) CNRM-164 

ESM2-1 (Seferian et al. 2019), CanESM5 (Swart et al. 2019), IPSL-CM6A-LR (Boucher et al. 165 

2020), MIROC-ES2L (Tachiiri et al. 2019), MIROC6 (Shiogama et al. 2019), MRI-ESM2-0 166 

(Yukimoto et al. 2019). These models represent a gradual decrease in CO2 emissions and 167 

largely higher CO2 respectively, and were used at a resolution of 2.5 (CarbonBrief 2016; 168 

https://www.worldclim.org/data/worldclim21.html). SSPs were used in the 6th Assessment 169 

Report by the Intergovernmental Panel on Climate Change (IPCC 2017), with these data from 170 

Phase 6 of the Combined Model Comparison Project (CMIP6) (Eyring et al. 2016; CarbonBrief 171 

2016). The selection of CMIP6 models over CMIP5 models was primarily through their higher 172 

equilibrium climate sensitivity (ECS) (Carbonbrief, 2016), where model averages with low, 173 

medium and high ESC values were used.  174 

 175 

Geographical space modelling 176 
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Predicted changes in the geographical space of the alien fishes and native fish genera 177 

were determined in bioclimate ensemble (i.e. consensus) (Marmion et al. 2009), as ensemble 178 

models overcome the variability of predictions that might occur between single models (Ruiz-179 

Navarro et al. 2016b). Predictions of current and future fish species distributions were from 10 180 

algorithms in the biomod2 package (Thuiller et al. 2014) in R 2020: (1) generalized linear 181 

models (GLM), (2) Generalized Boosting Model (GBM), (3) random forests (RF), (4) 182 

generalized additive models (GAM), (5) classification tree analysis (CTA), (6) multivariate 183 

adaptive regression splines (MARS), (7) artificial neural networks (ANN), (8) Maximum 184 

entropy (MAXENT.Phillips.2), (9) BIOCLIM (SRE) and (10) Flexible Discriminant Analysis 185 

(FDA). Evaluation of the models used the area under the ROC curve (‘AUC)’ and the true skill 186 

statistic (TSS). AUC values range between 0 and 1, where 1 indicates 100 % accuracy and 187 

values ≤ 0.5 indicate predictive discrimination that is no better than a random guess (Ruiz-188 

Navarro et al. 2016a). TSS values also vary between 0 and 1, with higher values indicating 189 

higher predictive ability, with values <0.2 having no predictive ability (TSS < 0.2) (Ben Rais 190 

Lasram et al. 2010; Lin et al. 2019). The variable importance of the included predictors in the 191 

ensemble model of each species were defined using the variables importance function. Model 192 

evaluation also used Cohen’s Kappa (Heidke skill score) (KAPPA), using an 80:20 split of 193 

training to test data (Allouche et al. 2006). We created a community of different algorithms by 194 

calculating the weighting of the single models that had a ROC (or AUC) value higher than 0.7. 195 

The model outputs of the distribution-climate modelling for each alien species and native genus 196 

for each climate change projection was the simulated extent of the spatial area of Turkey and 197 

Europe (as calibration areas) that populations of these fishes occupy in current climate 198 

conditions, and their predicted spatial distribution under each climate change projection. These 199 

outputs, therefore, indicate the extent of simulated current versus predicted projection for each 200 

species. If a single model had a ROC assessment point below 0.7 then it was removed from the 201 



 10 

ensemble model. However, it was not case for the present study (cf. Table 1). In the study, 202 

pseudo-absence points were used as much as the occurrence point. Each pseudo absence point 203 

was randomly generated with 3 replicates. 204 

 205 

The habitat suitability area of each species was determined by using the minimum 206 

threshold value of 0.1 (as the minimum for each species in the ArcMap version 10.8.1), obtained 207 

after the modeling of all species. The compatibility area was calculated by the controlled 208 

classification (maximum likelihood classification) method in ArcMap after .shp values were 209 

converted to a polygon file. Polygon data of alien species and native fish genera were combined 210 

separately using the ‘merge function’ in ArcMap. Comparisons in overlapping habitats were 211 

completed between alien and endemic fish species across Turkey based on all examined 212 

scenarios. It was calculated as the number of overlapping squares in the new predicted range of 213 

species and this was represented as percent of overlapping range suggesting interaction 214 

probability (0-25.0% = 1, 25.1-50.0% = 2, 50.1-75.0 = 3, 75.1-100% = 4).  215 

 216 
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Results  217 

Ensemble model predictions  218 

Amongst the native genera, the Alburnoides genus and Squalius genus were predicted to have 219 

substantial reductions in their geographical space under future conditions (Fig. S2-7; Table 2). 220 

In the alien fishes, there were species-specificity in their predicted geographical spaces with, 221 

for example, the widest geographical space for ruffe being in current conditions (Table 2, Fig. 222 

S2), whereas for largemouth bass and pumpkinseed it was in future conditions (SSPs 585_2100 223 

and SSPs 126_2100 respectively; Table 2, Fig. S3, S4). In general, the alien fishes with patterns 224 

of increased geographical space under the projected scenarios had increases that were in more 225 

southerly and easterly directions, whereas the native genera had predictions in these directions 226 

of decreasing geographical space (Table 2). The climate variables that contributed most to the 227 

predictions of shifts in geographical space are provided in Fig. 2. 228 

 229 

Overlapping geographical space for alien and native fish genera 230 

The geographical space overlaps of alien largemouth bass and the native Alburnoides genus 231 

was at the highest probability in the 585_2100 scenario and it was generally above 2 (i.e. more 232 

than 50% probability). The other native genera were generally less affected by the geographical 233 

space increases of the alien species (interaction probability £2), other than for the Gobio genus 234 

that had more than 50% encountering probability with alien perch and pikeperch in the 235 

126_2050 scenario (Table 3). The highest extent of geographical space overlaps between all of 236 

the alien species and the native genera, and thus where there is the highest risk of deleterious 237 

impacts on the endemic species, was in the 126_2100 scenario, followed by the 126_2050, 238 

585_2050 and 585_2100 scenarios. These predictions suggest that the risk of ecological 239 

impacts will be higher in future, with this risk elevated above current conditions in all of Turkey 240 

except for eastern areas (Fig. 3). However, all scenarios predicted that the native genera would 241 
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have a high risk of impacts from alien percids (Fig. 3, S2-7).   242 

 243 

Discussion  244 

 245 

The Ecological Niche Modelling (ENM) that were applied to different climate change 246 

projections for both modelled native genera and invasive freshwater fishes in Turkey predicted 247 

that their shifts on geographical space were species-specific, with a general pattern of increases 248 

for the alien species and decreases for the native genera. For the alien species, predictions 249 

ranged from relatively small increases in geographical space (Chinese sleeper) to relatively 250 

large (largemouth bass), and where changes in the annual range of temperature was the most 251 

important variable in the ensemble model predictions. This was in contrast to the native genera, 252 

where the combination of precipitation in the driest month and annual mean temperature was 253 

most influential. Notwithstanding, it is considered likely that the distributions of these alien 254 

species are likely to shift through a combination of anthropogenic-mediated dispersal (usually 255 

between catchments) and natural dispersal (within catchments) (Tarkan et al. 2015), although 256 

the models were limited to only two dispersal scenarios (no dispersal/ full dispersal). Thus, 257 

future predictive models should be developed to also include the influence of hydrological 258 

connectivity (Dominguez Almela et al. 2020; 2022). 259 

 260 

There are a number of factors that are already altering the composition of riverine fish 261 

communities in Turkey, including river impoundments (such as the presence of weirs that 262 

impede migratory species), introductions of alien species (Tarkan et al. 2015), pollution, and 263 

habitat modification (Aksu 2020; 2021). However, these generally influence fish population 264 

abundances, community structure and trait expression, rather than presence (Tarkan et. al. 265 

2012). In general, ENM is considered as suitable for predicting how climate change will 266 
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influence the distributions of fish species in marine and freshwater ecosystems (Rahel and 267 

Olden 2008; Jones et al. 2013; Elliott et al. 2015), especially where the distributions of these 268 

species are strongly temperature driven and so influenced by latitudinal and altitudinal gradients 269 

(Chen et al. 2011; Forister et al. 2010). However, species-specific characters (physiological 270 

tolerance, resilience) and sensitivity to environmental changes can also have a crucial role for 271 

the direction and magnitude of range shifts (Comte and Grenouillet 2015). Here, more complex, 272 

interactive relationships between explanatory environmental factors (e.g. temperature versus 273 

precipitation) for the species concerned and their temporal pattern (i.e. size of distributional 274 

ranges) would need consideration (Conti et al. 2015). For all native genera, predictions 275 

suggested some temperature thresholds might exist, given their predicted expansions of 276 

geographical space under low emission projections, but constrictions under high emissions. A 277 

recent meta-analysis suggested that the ability of species distribution models, such as ENM, to 278 

predict occurrence can be low, with predictions being best used as hypotheses to test with 279 

independent data, especially when being used to inform conservation decisions (Lee‐Yaw et al. 280 

2021). In the context of the present study, the spatial extent of Turkey and the complexity of 281 

the fish communities present mean that the application of the ENM to inform conservation 282 

decisions could be considered as appropriate, given the difficulties of obtaining independent 283 

data over and above that already applied here.  284 

 285 

The most substantial predicted shifts in geographical space were for the alien species in the 286 

eastern and southern parts of Turkey, especially for largemouth bass and Chinese sleeper (as 287 

they are currently not present there), but also for pumpkinseed, perch and pikeperch that are 288 

already present. For largemouth bass, these predictions are consistent with those in the Korean 289 

peninsula and South Africa, where mean annual temperature and the maximum temperature of 290 

the warmest month were the most influential climate variables (Mamun et al. 2018; Khosa et 291 
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al. 2019). The range sizes of all of the alien species and native genera modelled either remain 292 

unchanged or reduced under scenarios of no dispersal, but reductions were only evident in the 293 

native genera under the full dispersal scenario. These reduced geographical spaces in the native 294 

genera are consistent with some recent studies in Iran suggesting that some important habitats 295 

of endemic Alburnus and Albornoides species will become unsuitable in next decades (Esmaeili 296 

et al. 2018; Yousefi et al. 2020) due to changes in annual precipitation temperatures.  297 

 298 

All of the modelled alien species are piscivorous and so have high potential for causing 299 

deleterious, top-down effects on the native fish genera. Given that Turkey is a hotspot of 300 

freshwater fish diversity, with almost one-third of species present being local endemics (Çiçek 301 

et al. 2020), then these climate-based predictions are highly concerning in a conservation 302 

context. Although largemouth bass is currently not present in Turkey, it was the alien fish that 303 

presented the highest risk under the climate change scenarios as it had the highest predicted 304 

overlap in geographical space with the Alburnoides genus that comprises of many local 305 

endemics. Listed as one of the 100 worst alien species in the world (Lowe et al. 2000), the 306 

primary impact mechanism of largemouth bass is predation pressure exerted by established 307 

populations, which is usually sufficient to incur significant ecological impacts in invaded 308 

ecosystems. Reported impacts include significant declines in the native cyprinid fish species 309 

Alburnus alborella in Italy (Bianco and Ketmaier 2001), which belongs to a close genus with 310 

similar body sizes of fish species in Alburnoides genus, and also large declines in populations 311 

of similar small-bodied, native prey fishes in Southern Africa (Gratwicke and Marshall 2001). 312 

Indeed, largemouth bass is commonly considered as causing the displacement, declines and 313 

even extirpation of indigenous fish species, including cyprinids, soon after their establishment 314 

and invasion (de Leoan et al. 2000; Wittenberg 2005). Should they be introduced into Turkey 315 

then it is considered highly likely that this species could drive the extirpation of several 316 
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threatened native endemics of the Alburnoides genus that already have a highly restricted 317 

distribution range. Our models also indicated some similar - but of lower magnitude - overlaps 318 

in geographical space of existing invaders in Turkey (pikeperch, perch and pumpkinseed) and 319 

native genera. Given that both pikeperch and perch predate on similar-sized cyprinid species to 320 

largemouth bass (Mustamaki et al. 2014; Nolan and Britton 2018) then they pose a more active 321 

threat to the endemic Alburnoides species, especially as they increasingly share geographical 322 

space in future. 323 

 324 

Our results clearly suggest that conservation measures are necessary to prevent future impacts 325 

on the endemic fishes of Turkey from these alien piscivorous fishes. For species such as perch, 326 

pikeperch and pumpkinseed, policies and regulations require implementing for preventing their 327 

further dispersal through translocations. For largemouth bass and Chinese sleeper that are not 328 

present, but are present in countries nearby and, in the case of largemouth bass, is a popular 329 

sport fish, then there is a need for introduction prevention, including active surveillance of 330 

potential points of entry. Local populations of endemic and climate-vulnerable species could 331 

be managed actively, such as using managed relocations (MR) to safeguard the species in 332 

future, although care would be needed to prevent potential genetic issues through introducing 333 

fish between different watersheds (Griffiths et al. 2009). Given there is no such stocking 334 

practice on native endemic species in Turkey other than some native trout species (Akkan et al. 335 

2016), in situ conservation management could also focus on habitat quality and quantity 336 

restoration, particularly in the areas where warming water temperatures (from air temperature 337 

increases) degrade the suitable habitats (e.g. Top et al. 2016). 338 

 339 

In conclusion, predictions were for some marked changes in the geographical spaces of the 340 

modelled alien species and native genera of freshwater fishes in Turkey, with further 341 
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predictions that these fishes will increasingly overlap in their geographical space in future, 342 

potentially leading to extirpations of endemic species. While some caution is suggested in these 343 

results, as they are based on ENM that does not consider other abiotic and biotic variables in 344 

their predictions, they nevertheless suggest that conservation measures require implementation 345 

to safeguard these endemic fishes. These measures should integrate strategies to prevent new 346 

introductions and translocations of alien species, and improve the status of endemic species 347 

through assisted translocation and habitat improvement to increase population resilience. While 348 

these results are important for conserving aquatic biodiversity in Turkey, they also highlight 349 

that similar issues are likely to be present in other biodiversity hotspots in the world affected 350 

by alien species and climate change.  351 
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Table 1. The performance metrics of the ensemble distribution models per species. Area under 591 

curve (ROC), true skill statistic (TSS) and Cohen’s Kappa (Heidke skill score) (KAPPA).  592 

Species TSS ROC KAPPA 
Lepomis gibbosus 0.926  0.994  0.922 
Gymnocephalus cernua 0.909 0.990 0.906 
Micropterus salmoides 0.848 0.983 0.846 
Perccottus glenii 0.910 0.991 0.905 
Perca fluviatilis 0.950 0.996 0.942  
Sander lucioperca 0.942 0.996 0.929 
Alburnoides sp. 0.857 0.989 0.857 
Alburnus sp. 0.986 0.996 0.986 
Gobio sp. 0.949 0.993 0.950 
Squalius sp. 0.885 0.987 0.885 

 593 
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Table 2. Distribution area % changes of species (from the number of pixels) according to future projections. 594 
Species Scenario & Year  Species Range Change (%) Current Range Size  Future Range Size (No Dispersal) Future Range Size (Full dispersal) 
Alburnoides sp. SSPs_126_2050 -9.564 13457 9420 12170 
Alburnoides sp. SSPs_126_2100 -8.078 13457 9400 12370 
Alburnoides sp. SSPs_585_2050 -12.365 13457 8706 11793 
Alburnoides sp. SSPs_585_2100 -34.213 13457 6225 8853 
Alburnus sp. SSPs_126_2050 -22.932 10675 4675 8227 
Alburnus sp. SSPs_126_2100 -24.000 10675 4499 8113 
Alburnus sp. SSPs_585_2050 -35.007 10675 3309 6938 
Alburnus sp. SSPs_585_2100 -75.073 10675 249 2661 
Gobio sp. SSPs_126_2050 -46.158 13367 5223 7197 
Gobio sp. SSPs_126_2100 -47.026 13367 5145 7081 
Gobio sp. SSPs_585_2050 -65.901 13367 2553 4558 
Gobio sp. SSPs_585_2100 -93.304 13367 156 895 
Squalius sp. SSPs_126_2050 -33.156 10535 4384 7042 
Squalius sp. SSPs_126_2100 -33.175 10535 4402 7040 
Squalius sp. SSPs_585_2050 -44.357 10535 3262 5862 
Squalius sp. SSPs_585_2100 -80.522 10535 304 2052 
G. cernua SSPs_126_2050 -3.993 77715 48474 74612 
G. cernua SSPs_126_2100 0.382 77715 50143 78012 
G. cernua SSPs_585_2050 -23.957 77715 35192 59097 
G. cernua SSPs_585_2100 -23.957 77715 35192 59097 
L. gibbosus SSPs_126_2050 28.643 116492 92390 149859 
L. gibbosus SSPs_126_2100 31.443 116492 92855 153120 
L. gibbosus SSPs_585_2050 27.952 116492 81189 149054 
L. gibbosus SSPs_585_2100 -2.604 116492 49419 113458 
M. salmoides SSPs_126_2050 -7.422 47479 22459 43955 
M. salmoides SSPs_126_2100  -0.259  47479 23712 47356 
M. salmoides SSPs_585_2050 -9.103 47479 14984 43157 
M. salmoides SSPs_585_2100 -53.820 47479 816 21926 
P. fluviatilis SSPs_126_2050 25.593 78671 64586 98805 
P. fluviatilis SSPs_126_2100 33.662 78671 66682 105153 
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P. fluviatilis SSPs_585_2050 43.859 78671 63050 113175 
P. fluviatilis SSPs_585_2100 47.066 78671 46955 115698 
P. glenii SSPs_126_2050 -42.301 33907 11255 19564 
P. glenii SSPs_126_2100 -39.281 33907 12760 20588 
P. glenii SSPs_585_2050 -51.635 33907 11081 16399 
P. glenii SSPs_585_2100 -99.997 33907 0 1 
S. lucioperca SSPs_126_2050 39.401 85214 63681 118789 
S. lucioperca SSPs_126_2100 46.012 85214 65069 124423 
S. lucioperca SSPs_585_2050 34.296 85214 56618 114439 
S. lucioperca SSPs_585_2100 20.184 85214 25408 68014 
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Table 3. The rate of niche overlap with native species of alien species in Turkey during the 595 

periods when alien species are most widely distributed. Degree of interaction (overlapping) 596 

probability are given in parenthesis and bold text.     597 

 Alburnoides sp. Alburnus sp. Gobio sp. Squalius sp. 

 O A E O A E O A E O A E 

GC_CURRENT 50.0 (2) 5.9 44.1 32.0 (2) 31.7 36.3 41.5 (2) 18.8 39.7 37.0 (2) 33.3 29.6 

SL_126_2050 73.4 (3) 20.5 6.2 47.2 (2) 48.6 4.2 72.5 (3) 19.7 7.8 44.9 (2) 52.2 2.9 

MS_585_2100 76.4 (4) 3.0 20.6 10.3 (1) 88.4 1.3 5.9 (1) 94.1 0.0 41.3 (2) 46.1 12.6 

LG_126_2100 68.1 (3) 29.1 2.8 43.0 (2) 55.1 2.0 33.5 (2) 66.4 0.1 39.7 (2) 59.4 0.9 

PF_126_2050 69.7 (3) 23.0 7.3 44.3 (2) 50.3 5.4 68.7 (3) 22.3 9.0 43.9 (2) 53.6 2.5 

PG_126_2100 18.7 (1) 7.2 74.1 16.5 (1) 19.4 64.1 17.5 (1) 27.1 55.4 22.6 (1) 18.1 59.2 

O: Overlapping, A: Alien, E: Endemic, GC: Gymocephalus cernua, SL: Sander lucioperca, MS: Micropterus 598 

salmoides, LG: Lepomis gibbosus, PF: Perca fluviatilis, PG: Perccottus glenii 599 

  600 
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Figure legends 601 

 602 

Fig. 1. Processing methods in the roadmap of this study. 603 

 604 

Fig. 2. The contribution rate of each environment variable to the modeling. Upper and lower 605 

panels denote endemics and alien species (ALBN: Alnurnodies sp., ALBS: Alburnus sp., GB: 606 

Gobio sp., SQ: Squalius sp., GC: Gymocephalus cernua, LG: Lepomis gibbosus, MS: 607 

Micropterus salmoides, PF: Perca fluviatilis, PG: Perccottus glenii, SL: Sander lucioperca). 608 

See Table S1 and S2 for explanations of environmental variables used. 609 

 610 

Fig. 3. Prediction of overall niche overlap between assessed alien and native species in the 611 

borders of Turkey in different climate models when alien species would have the widest 612 

distribution.   613 
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