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Abstract: Chronic obstructive pulmonary disease (COPD) concerns the serious decline of human
lung functions. These have emerged as one of the most concerning health conditions over the last two
decades, after cancer around the world. The early diagnosis of COPD, particularly of lung function
degradation, together with monitoring the condition by physicians, and predicting the likelihood
of exacerbation events in individual patients, remains an important challenge to overcome. The
requirements for achieving scalable deployments of data-driven methods using artificial intelligence
for meeting such a challenge in modern COPD healthcare have become of paramount and critical
importance. In this study, we have established the experimental foundations for acquiring and indeed
generating biomedical observation data, for good performance signal analysis and machine learning
that will lead us to the intelligent diagnosis and monitoring of COPD conditions for individual
patients. Further, we investigated on the multi-resolution analysis and compression of lung audio
signals, while we performed their machine classification under two distinct experiments. These
respectively refer to conditions involving (1) “Healthy” or “COPD” and (2) “Healthy”, “COPD”,
or “Pneumonia” classes. Signal reconstruction with the extracted features for machine learning
and testing was also performed for securing the integrity of the original audio recordings. These
showed high levels of accuracy together with the performances of the selected machine learning-
based classifiers using diverse metrics. Our study shows promising levels of accuracy in classifying
Healthy and COPD and also Healthy, COPD, and Pneumonia conditions. Further work in this study
will be imminently extended to new experiments using multi-modal sensing hardware and data
fusion techniques for the development of the next generation diagnosis systems for COPD healthcare
of the future.

Keywords: artificial intelligence; machine learning; COPD; compressed sensing; signals reconstruction;
dictionary learning

1. Introduction

The World Health Organization (WHO) reported that chronic obstruction pulmonary
disease (COPD) was the fifth leading cause of death in the world at the beginning of the
century [1]. However, in 2018, ref. [2] reported that COPD was the third largest cause
of mortality in the world, and now, ref. [3] expects COPD deaths to grow to the leading
cause of death by 2030. COPD is a complex respiratory disease defined as a degenerative
inflammatory condition that chronically limits airflow for many pulmonary disorders [4].

Patients with COPD have acute exacerbations that may lead to emergency hospital-
ization; however, they are more likely to be re-hospitalized after their initial discharge [5].
The cost of healthcare for COPD is substantial, and expectations are that the costs will
grow even more as COPD prevalence increases [2]. In the U.K. alone, ref. [6] reported
that the cost of COPD reached £1.9 billion a year to the National Health Service (NHS).
Hence, the prevention, early detection, and management of COPD conditions is an essential
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strategy for health care services [7]. Therefore, there is a need for the advancement of new
decision support systems, which enable clinicians in monitoring, intelligently detecting,
and understanding COPD conditions, leading to early preventions of likely exacerbation
events. These systems will also serve the rest of the clinical community into pursuing
their specific care operations more efficiently, including the timely drug delivery for COPD
patients in their homes. Currently, the amount of effort for monitoring patients with COPD,
both in their homes and hospitals, requires large deployments of medical care staff, which
has become unsustainable. It is, therefore, important to opt for other approaches to meet
the care needs of COPD patients of the present time and future. With the advancement
and affordability of wearable sensors, information, and communication technologies, over
the last two decades, it has become possible to generate large observation and measure
big data, which can be efficiently analyzed for critical health conditions and processes,
understanding, and extraction of knowledge. For the case of chronic respiratory diseases,
there is a potential of exploring sensors and measurements-based patients signal data
nowadays for the real-time analysis and diagnosis of their health conditions and sub-
conditions potentially. The confirmation of these conditions using machine learning and
classification methods may lead us to understand the likelihood of critical exacerbation
events with lung function failures, which may occur for COPD patients and others with
similar respiratory conditions.

In particular, adventitious lung sounds may occur on top of healthy lung sounds
due to damage or obstructions of the lungs and airways. When observed and measured,
they are normally classified into two main categories: Continuous, around 250 ms and
discontinuous, about 25 ms [8]. Continuous lung sounds, such as wheezing, are often heard
in conditions, such as chronic obstruction pulmonary disease (COPD), and discontinuous
sounds, such as crackles, are common in pneumonia [9]. Additionally, within the respiratory
auscultations, the background noise of the heart, digestive system, and internal and external
noise can be heard, causing a low signal-to-noise ratio. Plus, the sounds overlap in the time
and frequency domains, while the breathing rhythm makes the signals non-stationary by
nature, with changing statistics over time.

As a result, the reconstruction and classification of respiratory auscultation present
challenges from non-stationary signals, transient signals of discontinuous crackle sounds,
to noises that can all overlap in time and frequency space. Notwithstanding, auscultation
recordings are generated from a single sensory point, while the sounds are from multiple
locations of the three-dimensional lung organ. This indeed creates multiple challenges in
separating these mixed sounds [10].

A common theme will be in using a low band or pass filter to separate heart sounds
from lung sounds [9–11]. However, low pass filters can induce unwanted artifacts or
aliasing [12], that is undesirable noise. Additionally, ref. [11] found that not cutting out the
heart sounds had negligible effects on the results. Therefore, separating the heart sounds
may not be an essential step here.

Researchers have used a range of transform methods for time-frequency analysis for ad-
ventitious lung sounds and lung conditions from short-time Fourier transforms (STFT) [11–13],
empirical mode decomposition (EMD) [13,14] to wavelet transforms (W.T.) [10,11]. Noticing
the STFT and EMD have challenges in extracting features of non-stationary, transient, and
overlapping signals where [11] suggests that Fourier-based methods cannot detect transient
signals. Plus, ref. [14] shows that EMD can detect crackles, however, cannot distinguish over-
lapping lung sound crackles; this is in line with [15], where EMD works more effectively on
non-overlapping signals. In addition, according to [11], the technique of utilizing continuous
wavelet transform and STFT was an improvement on STFT alone. Through multi-resolution
analysis, W.T. can capture more delicate signal details [12]. In addition, multi-resolution analy-
sis in structural health monitoring of mechanical equipment has shown the ability to identify
impulse and transient signals within noise [16]. Therefore, the W.T. form of multi-resolution
offers a range of capabilities that aids in extracting features from respiratory auscultation
audio over STFT and EMD.
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The STFT, EMD, and W.T. all have inverse transforms; however, there is little research
on signal reconstruction of respiratory auscultations from important representative features.
Although, ref. [13] utilized compressed sensing and signal reconstruction to transmit the
respiratory auscultation audio from a sensor to a smartphone. An essential factor in
rebuilding the signal can map the output feature back to the input and shows the features
selected capture the most important information in the original audio signals. Therefore,
signal reconstruction is an essential part of this research work before we utilize most of its
dominant features for respiratory diseases classification using machine learning. This paper
is, therefore, purposely set out and presented in the following way: The data used in the
study, the data cleaning process, the data transformation and feature reduction methods,
and the reconstruction results. We then proceed with a review and implementation of
classification methods and major results, leading to summarizing our findings, a discussion,
and a conclusion with recommended future work.

2. Materials and Methods

The data utilized in this study was the ICBHI Respiratory challenge database [17].
The dataset contains 920 audio recordings of 126 patients. The audio samples vary in the
number of channels (Mono and Stereo), sampling rate (4000–44,100 Hz), and duration
(30–90 s). There is accompanying information on patient diagnosis and demographics for
each patient. For this study, we used the Healthy, COPD, and Pneumonia of diagnosis
classes of auscultation. Table 1 shows the classes used, breaking down demographics
per class.

Table 1. ICBHI 2017 challenge database selected class breakdown.

Conditions Number of
Recordings

Biological Sex
(Count)

Age Range
(Years)

Male Female Min Max

COPD 793 512 266 45 93
Healthy 35 15 20 0.25 16

Pneumonia 37 30 7 4 81

As modelling requires the data samples to be of the same length and the audio samples
varied in duration, a random seven-second section was selected, which could capture a
breathing cycle, where a breathing cycle ranges from 12–18 revolutions per minute [18].
Because of the imbalances between classes, the Healthy and Pneumonia classes of audio
sections had two data augmentation options, out of five, applied to ensure each sample
was different from each other. The augmentation options are time-stretching [19,20], where
audio is sped up or down; pitch-shifting [20,21], where the audio frequency is moved up or
down; added noise [19], where extra noise is added; time-shifting [20], where time is rolled
forward or backward; and no augmentation. Two out of five options gave permutations
of up to 20 different options, allowing for each sample to be augmented differently. The
process increased the Healthy class from 35 to 735 audio samples and the Pneumonia class
from 39 to 740 audio samples.

2.1. Audio Cleaning and Normalization

The pre-processing cleaning stage reduces noise and places all samples into a normal-
ized format. The process contains the following steps:

• Thresholding;
• Signal smoothing;
• Detrending;
• Audio loudness normalization;
• Normalization.
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When loading the audio, the audio samples are down sampled to 4000 Hz, bringing
all samples into the same sample rate. Outliers in the audio amplitude, expected by
stethoscope contact movement, were reduced by thresholding. By thresholding the signal
amplitude above four standard deviations and reduced to the mean, crackles can appear
within four standard deviations. With down-sampling and removing outliers, cleaning the
audio with a smoothing filter will also remove some noise. The choice of filter is the Savol
filter, a moving filter with a polynomial function that is well suited for noise reduction
for lung sounds [22]. The audio samples are non-stationary and can display trending;
therefore, detrending reduces the non-stationary [23] (p. 47). The works of [24] highlight
that respiratory audio has two components: air turbulence and lung structural sounds,
which compete with each other when listened to from different locations. Therefore, the
EUB R128 normalization is used. Finally, the values are normalized to bring them into the
same range.

2.2. Wavelet Transform

Wavelet transform (W.T.) is used for multi-resolution audio signals, breaking them
down into different levels of frequency ranges, where the formula is shown in Equation (1).
The mother wavelet (Ψ*) chosen is the Morlet wavelet because the distribution characteris-
tics are similar to the transient crackle with a sudden peak.

wn(s)=
N−1

∑
n’=0

xn’ Ψ
*[

(n’−n)δt
s

] (1)

The complex Morlet wavelet returns the real and imaginary components that this
study will analyze. This analysis supports our objectives as W.T. is robust to noise, localizes
audio characteristics [12], and has inverse transform [25]. The inverse transform allows for
the reconstruction of the signal from the multi-resolution analysis to audio signals

2.3. Compressed Sensing

Compressed sensing underlines the sparse encoder dictionary learning. The main
principles of compressed sensing are:

• Incoherence;
• Sparsity.

Incoherence is a property in that the samples are not connected by time or spatial
domains, which expanses the time-frequency localization problem or uncertainty problem.
In that, the samples are more spread out and sparse within the domain [26]. Whereas in
compressed sensing matrices, the values in the rows do not correlate with those in the
columns [27] (p. 90). Sparsity is a property where samples are spread out, where the low
values nearing zero can be zeroed out altogether. This allows the data to have minimal
or low non-zero elements. The sparsity constraint placed on compressed sensing enables
the change from an over-complete solution to be relaxed and a unique solution to be
found [28]. When compressed sensing comes to matrix forms, the matrix structure, which
maps linearly when restricted to sparsity [29] naturally preserving the so-called restricted
isometric property (RIP) [27] (pp. 90–96). The ability to sub-sample from subspace aids
feature reduction, which is with less than the Nyquist sample rate, which allows for meeting
the objective of signal reconstruction.

2.4. Dictionary Learning

Dictionary leaning incorporates compressed sensing with the factors of sparsity by
relaxing the linear constraints and utilizing an error-bound element and incoherence factor
between each atom (column) in the dictionary [28]. Additionally, dictionary learning uses
algorithms, such as gradient descent or orthogonal matching pursuit (OMP) to aid in
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finding a sparse representation and reconstruction process by selecting highly correlated
samples for the dictionary atom [30]. Dictionary learning is calculated by Equation (2).

[u,v]=argmin 1
2 ||X−UV|| L2+α×||U|| L1(U,V)

with ||V_k||2 <= 1 for all 0 <= k < n_components
(2)

Dictionary learning supports the decomposition of the multi-resolution analysis matrix
into a reduced number of components; the multiplication of the components and the trans-
form results in reconstructing an approximation of the multi-resolution analysis matrix.

2.5. Singular Value Decomposition

Singular value decomposition (SVD) is a method that factorizes real, or complex,
matrices into three matrices. It is often used in signals processing in order to compress
signal data to their most representative matrix form of features and make it more efficient
to work with complex signals. Specifically, the method exposes many of the important and
interesting representational features of signals from the original matrix. For an illustration
and the special case of real matrices, SVD is performed as follows:

A=U∑VT (3)

where A is a (n × p) matrix to decompose [31]. U is a (n × n) orthogonal matrix, whose
columns are known as the left-singular vectors; ∑ has the same dimensions (n × p) as A
and has the so-called singular values in its diagonal. VT is an orthogonal (p × p) matrix,
which is the transpose matrix of V, whose rows are known as the right singular vectors.
Further, SVD computations involve the extraction of the eigenvalues and eigenvectors
of AAT and ATA. Their eigenvectors make up the columns of V and U, respectively. The
singular values are the diagonal elements of the ∑ matrix. They are usually arranged in
descending orders. Additionally, they are the square roots of the eigenvalues of AAT or
ATA, ref. [32]. In addition, we note that SVD supports signals of noise reduction, in this
case, through matrix characteristics decomposition, which leads to the most interesting
number of features representing the signal, while assuring the ability to recover the original
matrix through SVD matrices operations.

2.6. Signal Reconstruction Metrics

In order to understand the accuracy of the signal reconstruction, comparing the pre-
processed signal with the reconstructed signal will highlight the accuracy. Therefore, the
mean square error (MSE) and the correlation coefficients can be used as metrics for signal
similarity analyses.

The mean square error is a measure of the difference calculated by Equation (4) [30],
where A is the original signal and B is the reconstructed signal. The MSE shows the average
difference in the distance between two signals.

MSE =
∑n(A[n]− B[n])2

m
(4)

Another measure of signal similarity is the correlation coefficient between the two
signals A and B [33], as calculated by Equation (5).

Corr Coe f =
∑
(

Ai − A
)

∑
(

Bi − B
)√

∑
(

Ai − A
)2

∑
(

Bi − B
)2

(5)

where A is the original signal mean, and B is the recovered signal mean. The correlation
coefficient shows the linear dependence between the signals.
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2.6.1. Summary of Extracted Features

The framework extracted features is where U contained 153 features, VT contained 90
features, and S contained 9 features. The number of features was the same for the real and
imaginary components of the signals.

2.6.2. Signal Reconstruction Results

The results of signal reconstruction are shown in Table 2 below.

Table 2. Result summary of signal reconstruction from extracted features.

Stats MSE Correlation Coefficient

count 2268 2268
mean 0.030668 0.576079

std 0.012137 0.150377
min 0.005188 0.014053
0.25 0.022598 0.488954
0.5 0.029151 0.582712

0.75 0.036262 0.682031
max 0.142799 0.924803

2.6.3. Summary of Signal Reconstruction

The results of the MSE show the reconstruction accuracy averages at 3 × 10−3, with
the best result reaching 5 × 10−4, meaning that the distance between the pre-processed and
reconstructed signals is very small. Likewise, the correlation coefficients have a mean score
of 0.57, while the highest score reaches 0.92. Reconstruction results demonstrate that the
reconstruction is an excellent approximation of the pre-processed original audio signal.

2.7. Classification

The study covered two different classifications, one of “Healthy” and “COPD” and
the second of “Healthy”,” COPD”, or “Pneumonia”. Pneumonia was chosen as the ad-
ventitious sounds are mainly crackles, whereas COPD is mainly wheezing, which allows
for discrimination between the two classes. As the complex Morlet wavelet gives the real
and the imaginary components of the signal, each component is classified. The models
for classification are: The Gaussian mixture model (GMM), decision tree classifier (DTC),
support vector machine (SVM), and random forest classifier (RFC).

The GMM is a classification algorithm, which allows for overlapping borders of Gaus-
sian distribution clusters that may support the overlapping frequencies of lung sounds [34].
DTC uses a divide-and-conquer strategy for classification that offers transparency and,
therefore, allows for an objective analysis [35]. The SVM utilizes a boundary separation, or
if data are highly dimensional, a separation of categories with a hyper-plane, which can be
linear, polynomial, quadratic, or of higher orders [35]. The RFC is an ensemble approach, a
powerful tool for data mining in which the combining of multiple trees for the outcome
can be viewed as a bias-variance decomposition. Specifically, it aids the performance [35],
which is supported by the random bagging of sampling with replacement from the training
data and bootstrap of the features [36]. Additionally, random forests can give information
on feature importance; therefore, it is an excellent option for classification. Grid search,
which cycles through different parameters for the models to find the optimal parameters, is
used to increase the model’s performance. The grid search parameters for the RFC number
of estimators range from one hundred to six hundred with increments of fifty, and the
depth range from ten to one hundred with increments of ten.

Classification Metrics

The performance of the models is evaluated by looking at the true positives (T.P.),
true negatives (T.N.), false positives (F.P.), and false negatives (F.N.) [10]. We utilized
the accuracy, F1 scores, receiver operator characteristic (ROC) curves, and area under
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curve (AUC) scores [36]. For the Healthy, COPD, and Pneumonia classifications, the ROC
curves will be the one-versus-all classification, which compares one class to the other two
classes. five-fold cross-validation is utilized, while the results are the averages across the
five-fold and the cross-validation standard deviation to ensure that the model performance
is robustly assessed. The level of coverage of the model’s performance is reported with
confidence intervals of 95% [36].

3. Results
3.1. Healthy and COPD Classification Results

The results are set out with baseline results, model parameter optimization results,
the ROC, and the area under the curve plots. The baseline results for the classification of
healthy and COPD is shown in Table 3.

Table 3. Healthy vs COPD classification baseline results. All the baseline results have been achieved
with the following parameter settings: Random forest (RFC): d = 500, e = 280 (in these, d stands for
depth, and e stands for the number of estimators); GMM: components = 2, covariance = full; SVC:
gamma = auto, C = 3000.

Classification Details Classification Model F1-Score Accuracy

SVD U, Real

RFC, d = 500, e = 280 78.5 80
GMM, components = 2 33.5 44

DTC 69.5 70
SVC, C = 3000 68.5 69

SVD Vt, Real

RFC, d = 500, e = 280 71 72
GMM, components = 2 35 47

DTC 59 59
SVC, C = 3000 53.5 54

SVD S, Real

RFC, d = 500, e = 280 71 71
GMM, components = 2 35.5 38

DTC 60 60
SVC, C = 3000 35 54

SVD U, Imag

RFC, d = 500, e = 280 78.5 79
GMM, components = 2 37 53

DTC 69 69
SVC, C = 3000 70 70

SVD Vt, Imag

RFC, d = 500, e = 280 71 72
GMM, components = 2 47.5 48

DTC 59 59
SVC 53.5 54

SVD S Imag

RFC, d = 500, e = 280 71 72
GMM, components = 2 35 54

DTC 63 64
SVC, C = 3000 35 54

Taking the SVD and random forest further with parameter tuning, the results are
shown in Table 4. Cross-validation scores and confidence intervals are reported.

ROC curves are used to display the discriminative ability of the classification models.
The comparison of the different models are shown in Figure 1, and the comparison of
the real and imaginary components using Random forest classifier ROC curve results are
shown in Figure 2.
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Table 4. Healthy vs. COPD classification of parameter tuning results. In these, d stands for depth,
and e stands for the number of estimators.

Classification Details Classification Model Macro F1-Score Accuracy CV Score CV Std CI 95%

SVD U, Real
RFC, d = 25, e = 390 78.5 79 76 5 73–78

SVC, C = 2265.8 68.5 69

SVD Vt, Real
RFC, d = 20, e = 400 72.5 73 68 5 65–70
SVC, C = 17,911.6 53.5 54

SVD S, Real
RFC, d = 25, e = 390 72 72 73 6 70–75

SVC, C = 1251.9 35 54

SVD U, Imag RFC, d = 30, e = 390 79.5 80 76 5 74–79
SVC, C = 80,190.1 70 70

SVD Vt, Imag RFC, d = 20, e = 400 79.5 80 76 5 74–79
SVC, C = 58,523.6 70 70

SVD S Imag RFC, d = 30, e = 400 71 72 73 5 70–74
SVC, C = 2764.8 35 54
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Figure 1. ROC curves of classification models of each SVD element and real and imaginary compo-
nents: (a) ROC curves of real components of SVD U element; (b) ROC curves of real component of
SVD VT element; (c) ROC curves of real component of SVD S element; (d) ROC curves of imaginary
component of SVD U element; (e) ROC curves of imaginary component of SVD VT element; (f) ROC
curves of Imaginary component of SVD S element.
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Figure 2. ROC curve of classification of healthy and COPD classifications of each signal component
and SVD elements: (a) Chart of the ROC curve of the RFC for real components on the classification of
Healthy and COPD in the first panel; (b) chart of the ROC curve of the RFC for imaginary components
on the classification of Healthy and COPD.

The ROC curve results for the classification of Healthy, COPD, and pneumonia are
shown in Figures 3 and 4 below.
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real and imaginary components of the signals: (a) ROC curves of real components of SVD U element;
(b) ROC curves of real component of SVD VT element; (c) ROC curves of real component of SVD S
element; (d) ROC curves of imaginary component of SVD U element; (e) ROC curves of imaginary
component of SVD VT element; (f) ROC curves of imaginary component of SVD S element.
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Figure 4. RFC classification of Healthy, COPD, and Pneumonia one-vs-rest ROC curves for each
SVD element and real and imaginary components of the signals: (a) ROC curves of real components
of SVD U element; (b) ROC curves of real component of SVD VT element; (c) ROC curves of real
component of SVD S element; (d) ROC curves of imaginary component of SVD U element; (e) ROC
curves of imaginary component of SVD VT element; (f) ROC curves of imaginary component of SVD
S element.

3.2. Healthy, COPD, and Pneumonia Classification Results

The baseline results for the classification of healthy, COPD, and pneumonia are shown
in Table 5.

Table 5. Healthy vs COPD vs Pneumonia baseline classification results. All the baseline results have
been achieved with the following parameter settings: Random forest (RFC): d = 500, e = 280 (in these,
d stands for depth, and e stands for the number of estimators); GMM: components = 2, covariance =
full; SVC: gamma = auto, C = 3000.

Details Classification Model Macro F1-Score Accuracy

SVD U, Real

RFC, d = 500, e = 280 59.7 51
GMM, components = 2 30.3 37

DTC 50.7 60
SVC, C = 3000 45 46

SVD Vt, Real

RFC, d = 500, e = 280 59.3 60
GMM, components = 2 31 32

DTC 46 46
SVC, C = 3000 44.7 45

SVD S, Real

RFC, d = 500, e = 280 69.7 70
GMM, components = 2 22 40

DTC 55.3 56
SVC, C = 3000 19 39
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Table 5. Cont.

Details Classification Model Macro F1-Score Accuracy

SVD U, Imag

RFC, d = 500, e = 280 60.3 61
GMM, components = 2 48 50

DTC 52 52
SVC, C = 3000 46.3 47

SVD Vt, Imag

RFC, d = 500, e = 280 62.3 62
GMM, components = 2 32.7 32

DTC 49 50
SVC, C = 3000 44.3 45

SVD S Imag

RFC, d = 500, e = 280 67.3 67
GMM, components = 2 20.7 39

DTC 58.7 59
SVC, C = 3000 19 39

The random forest and SVC classifiers were the best performing and taken forward
for parameter tuning; the results are shown in Table 6.

Table 6. Healthy vs COPD vs Pneumonia classification of parameter tuning results. In these, d stands
for depth, and e stands for the number of estimators.

Classification Details Classification Model Macro F1-Score Accuracy CV Score CV Std CI 95%

SVD U, Real
RFC, d = 20, e = 300 58.7 59 58 3 56–59

SVC, C = 1143.9 43.7 45

SVD Vt, Real
RFC, d = 40, e = 500 60.3 61 59 4 57–61

SVC, C = 1839.8 46.7 47

SVD S, Real
RFC, d = 20, e = 400 70 70 68 4.5 66–70

SVC, C = 1536.9 21

SVD U, Imag RFC, d = 30, e = 500 60.3 61 58 4.9 56–61
SVC, C = 1536.9 46 47

SVD Vt, Imag RFC, d = 20, e = 400 62.3 63 59 3.8 57–61
SVC, C = 1536.9 49 50

SVD S Imag RFC, d = 20, e = 300 67.7 68 68 4.2 65–70
SVC, C = 1536.9 19.7 39

3.3. Summary of Classification Findings

The random forest models produced the best performing models for the classification
of Healthy versus COPD and Healthy versus COPD versus Pneumonia. The best features
for the Healthy versus COPD classification were the SVD’s U and VT for the imaginary
component of the auscultation’s audio, both having accuracies of 80% and the area under
ROC curves showed that the SVD U elements were better at discriminating between
healthy and COPD than the SVD VT elements with values of 0.87 and 0.77, respectively,
with the random forest model. Similarly, for the classification of Healthy versus COPD
versus Pneumonia, the best results were from the random forest classifier, highlighted in
Figure 3. However, the best features were on the SVD’s S (Singular) values of both the real
and imaginary components of the auscultation recordings, while achieving 70% and 68%
accuracy, respectively. The random forest model’s ability to discriminate between classes on
the SVD S elements was relatively close values, with the real components ranging between
0.82 to 0.86 (see Figure 3c) and the imaginary components ranging from 0.80 to 0.83 (see
Figure 3f).
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4. Discussion

There are some encouraging results in the classification of Healthy and COPD; the
imaginary components of the signal and the orthogonal SVD elements are the best per-
formers, which may relate to the harmonic resonance of wheezes often identified in COPD
patients. The classification of the Healthy versus COPD achieved a good accuracy of 80%,
with 95% confidence levels of 76–79% on the audio signals imaginary components on the
SVD’s U and V.T. elements. For the Healthy versus COPD versus Pneumonia, an acceptable
level of accuracy of 70% with a 95% confidence level of 66–70% on the audio signals real
components on the SVD’s S (singular values), with good levels of discrimination between
conditions. For the signal reconstruction, the best scores are MSE of 5.2 × 10−3 with a mean
score of 3.0 × 10−2 and a correlation coefficient score of 0.92 with a mean score of 0.57.
Indeed, this suggests a good level of signal recovery. When comparing the results in the
Healthy versus COPD versus Pneumonia, we find that the best performance was from the
real component of the signal with the SVD’s element, which relates to the signal’s strength,
especially between the COPD and Pneumonia that had higher classification numbers in the
confusion matrix.

In comparison, ref. [11], who also utilized W.T., achieved scores of 39.97–49.86%
in classifying normal lung sounds, wheezes, and crackles on the ICBHI 2017 challenge
database. Ref. [11]’s choice of adventitious sounds can be related to Healthy, COPD,
and Pneumonia, respectively, in which this study demonstrated higher accuracies of
classification. In addition, ref. [37] discusses the challenge of achieving above 50% accuracy
in the ICBHI 2017 challenge database, where they aimed to classify normal, wheezes,
crackles, and both wheezes and crackles. Ref. [37] suggested that there may be issues
with the dataset as they found an audio of a patient diagnosed with respiratory disease,
but the annotated notes for the specific audio recording had no adventitious sound noted.
However, no adventitious sounds do not mean a lack of disease, as [38] noted. Ref. [39]
utilized discrete wavelet transforms and deep learning for classifying the ICBHI 2017
challenge database into healthy and unhealthy, which achieved an F1 score of 81.64%,
similar to the F1 scores of the best models of Healthy versus COPD of 83%. However,
this study’s approach was more focused on COPD, whereas [39] unhealthy had a broader
range of diseases. Ref. [40] achieved high accuracy of 92.30% by utilizing a 17-layered
2D-convolutional neural network (CNN) with features of MFCC and spectrograms to
classify the ICHBI dataset auscultation recordings into their associated diseases.

The advantage of our proposed approach is the ability to achieve signal reconstruction
and recovery to approximate the original signal with high credibility. Furthermore, the
recovery of our signals to their high level of accuracy, together with the good levels of their
correct classification rates on the health conditions using machine learning highlights, is
a way forward for understanding human respiratory conditions. Our method is specifi-
cally feasible for respiratory auscultation classifications and supports the hypotheses on
health conditions.

In addition, while other work has focused on statistical and neural network-based
approaches, our results demonstrate a new method of utilizing compressed sensing for
auscultation classifications. Nevertheless, further optimization of the extraction process
needs to be deployed together with large volumes of experimental datasets to increase the
accuracy of both signal recovery and machine classifications. In future work, experimenting
with multi-modal data and dictionary learning for improving the diagnostic and prognosis
of COPD conditions should be the focus.

5. Conclusions

The developed benchmark work in this study not only provides good levels of accu-
racy for signal reconstruction, but it also brings good performing machine classification
of respiratory lung sounds. These are brought in good context of their associated chronic
health conditions. Specifically, on the machine classification side, the random forest classi-
fier is the performing algorithm with accuracies ranging from around 80% for classifying
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cases of “Healthy” and “COPD”. It reaches accuracies of approximately 70% for classifying
cases, including “Healthy”, “COPD”, and “Pneumonia”. These were all obtained with
confidence intervals showing the stability of the models. The ROC curves show the discrim-
ination ability of the classifiers, although with limitations. Our work has also the potential
of applications in other respiratory disease classifications and beyond. However, more
work needs to be performed, since we need to improve the performance of our classifiers
to higher levels first while validating them under much larger and diverse datasets. Our
future work will specifically involve research investigations on obstructive pulmonary
chronic respiratory diseases using larger datasets in order to scale our approaches in terms
of their accuracies and performances. We will also aim to identify lung sounds that cor-
respond to various sub-conditions of COPD, particularly those which may highly lead to
patients’ exacerbation events. We will aim in the near future to automatically predict the
likelihood of occurrence of such serious events, ahead of time and with good contexts, in
order to accelerate medical responses to patients under critical respiratory conditions.
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