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Abstract 

The emergence of position-based simulation 

approaches has quickly developed a group of 

new topics in the computer graphics 

community. These approaches are popular due 

to their advantages, including computational 

efficiency, controllability, stability and 

robustness for different scenarios, whilst they 

also have some weaknesses. In this survey, we 

will introduce the concept of the baseline 

position based dynamics (PBD) method and 

review the improvements and applications of 

PBD since 2018, including extensions for 

different materials and integrations with other 

techniques. 
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1. Introduction 

Dynamic simulation of 3D models is an integral 

part in the field of computer animation. There 

exist many works developing advanced 

simulation techniques, which have been 

reviewed in the papers by Jan et al.1 and Gibson 

and Mirtich2. However, it will always be how to 

make the models appear realistic animation in 

real-time that values the performance at last. 

This fundamental criterion could be achieved by 

shape deformation methods, which could be 

roughly classified into geometry-based and 

physics-based ones. The pure geometry 

approaches, including Free Form Deformations 

(FFDs)3, joint-related approaches4,5 and data-

driven methods6, manipulate the control 

structure of 3D models to change shapes. The 

physics-based approaches use forces to compute 

acceleration based on physical laws such as 

Newton's second law and update the 

corresponding velocities with time integration, 

including impulse-based methods7, mass-spring 

system8, and finite element method (FEM)9. 

Since the geometry-based methods do not 

involve any physics of the surface deformation 

but directly work on the positions, their 

generated animations appear unnatural. The 

physics-based methods generate more realistic 

animations but also have drawbacks like 

overshooting problems and expensive 

computational costs as they require velocity and 

acceleration layers and usually involve heavy 

numerical calculations. Thus, they cannot fulfil 

the criterion either. 

Since position based dynamics (PBD) methods 

well balance animation realism and efficiency 

and meet the mentioned criterion better than 

other methods, they have recently become a 

focal point in computer graphics and 

exceedingly popular in simulating dynamic 

systems due to its speed, robustness and 

simplicity. PBD was first proposed by Müller et 

al.10 It inherits the advantages of geometry-

based methods to omit the velocity and 

acceleration layer but directly works on the 

positions, with considering the solution to a 

quasi-static problem. These allow PBD to 

perform well in real-time simulation with 

visually plausible deformation and good 

controllability.  

The core algorithm of position-based 

approaches and some previous applications 

have been detailedly introduced in the papers by 

Jan et al.11,12 The position-based approaches 

were initially proposed for interactive 

environments to simulate solid objects. It was 

later demonstrated that they could also be 

involved in the simulation of fluids, articulated 

rigid bodies and other application scenarios.  

In this survey, we will review the improvements 

and applications of position-based methods for 

dynamic scenarios in recent years. Since the 



survey papers11,12  have thoroughly reviewed the 

previous works related to PBD before 2018, we 

will only mention some of them for better 

reading but focus more on the advanced 

progress since 2018. The review will first 

present the basic theory of PBD in Section 2. 

Section 3 and Section 4 will respectively 

introduce the recent improvements and 

applications with the position-based methods. 

In Section 5, some future research directions 

will be suggested to inspire the researchers in 

the field. 

2. Basic concept of PBD 

In this section, we will take particle-based 

dynamic objects as an example to introduce the 

basic algorithm of PBD according to the 

papers.10-12 

2.1 The Algorithm Overview 

In a particle-based system, a dynamics object 

could be represented by a set of 𝑁 vertices and 

𝑀 constraints. The 𝑖𝑡ℎ  (𝑖 ∈ [1,2, … , 𝑁]) vertex 

has the following attributes: mass 𝑚𝑖, position 

𝒙𝑖, and velocity 𝒗𝑖. The set of 𝑀 constraints is 

applied to modify the position and velocity 

attributes of the 𝑁 vertices at the next time step, 

computed by a group of functions 𝐶𝑗  ( 𝑗 ∈
[1,2, … , 𝑀]). 

The 𝑖𝑡ℎ  point of the dynamic object, with its 

mass 𝑚𝑖 and initial position 𝒙𝑖
0 and velocity 𝒗𝑖

0, 

is simulated at a timestep ∆𝑡 as follows: 
(1) for 𝑖 in [1, 𝑁] : 

(2)   initialise 𝒙𝑖 = 𝒙𝑖
0, 𝒗𝑖 = 𝒗𝑖

0, 𝑤𝑖 = 1/𝑚𝑖 

(3)   do  𝒗𝑖 = 𝒗𝑖 + ∆𝑡 𝑤𝑖  𝒇𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙(𝒙𝑖) 

(4)   do  𝑑𝑎𝑚𝑝𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑖𝑒𝑠(𝒗𝑖) 

(5)   do  𝒑𝑖 =  𝒙𝑖 + ∆𝑡 𝒗𝑖  

(6)   do  𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠(𝒙𝑖 → 𝒑𝑖)  for all 

vertices i 

(7)   for 𝑡𝑖𝑚𝑒𝑠 in [1, 𝑠𝑜𝑙𝑣𝑒𝑟𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠] : 

(8)      do  𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠(𝐶1, 𝐶2, … , 𝐶𝑀, … , 𝐶𝑀+𝑀𝑐𝑜𝑙𝑙
, 𝒑1,…,𝒑𝑁) 

(9)   do  𝒗𝑖 = (𝒑𝑖  − 𝒙𝑖)/∆𝑡 

(10)   do  𝒙𝑖 = 𝒑𝑖 

(11)   do  𝒗𝑖 = 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦𝑈𝑝𝑑𝑎𝑡𝑒(𝒗𝑖) 

(12)   do  𝒙𝑖
1 = 𝒙𝑖, 𝒗𝑖

1 = 𝒗𝑖 

Line (2) uses the current attributes of each 

vertex to initialise the state variables. Lines (3)-

(5) allow some external forces like gravity, 

which cannot be computed as positional 

constraints, to be allied to the system through a 

simple symplectic Euler integration step. Line 

(4) is an optional damping step for improving 

the simulation performance. Here 𝒑𝑖  are only 

used as predictions. In addition to the fixed 

constraints 𝐶𝑗 (𝑗 = 1, 2, 3, … , 𝑀) , line (6) 

generates 𝑀𝑐𝑜𝑙𝑙  non-permanent collision 

constraints at the beginning of each timestep. 

Lines (7)-(8) use a solver, which considers both 

the fixed constraints 𝐶1~𝐶𝑀  and collision 

constraints 𝐶𝑀+1~𝐶𝑀+𝑀𝑐𝑜𝑙𝑙
, to correct the 

predicted position 𝒑𝑖 . Line (11) computes 

friction and restitution coefficients to modify 

the velocities of colliding vertices. In the last 

line (12), the corrected position 𝒑𝑖 will be used 

to update the velocity and position attributes 𝒗𝑖 

and 𝒙𝑖 of the vertex at the next time step. 

2.2 Damping 

The quality of PBD simulations can be 

improved by incorporating a damping term 𝑪�̇� 

into Newton's second law where �̇� is a velocity 

vector and 𝑪 is a damping matrix. In line (4) of 

the simulation algorithm, the velocities are 

damped to improve the stability of the dynamic 

simulation through decreasing temporal 

oscillations of the point positions. Among all 

dampings, point damping,13 which improves the 

point stability, and spring damping,14 which 

conserves the linear and angular momentum, are 

most often used due to their appropriateness.  

2.3 Collision 

In line (6) of the simulation algorithm, extra 

collision constraints are generated for the 

following correction steps. The collision 

constraints can be divided into two groups: the 

first group is between dynamic and static 

objects, and the second group is between 

dynamic objects.  

The collision between dynamic and static 

objects could be handled as continuous and 

static collisions depending on whether the ray 

𝒙𝑖 → 𝒑𝑖 for 𝑖𝑡ℎ vertex crosses an object or is in 

the internal space of an object. 

If the ray crosses an object, the generated 

collision constraint is handled as a continuous 

collision: 

𝐶(𝒑𝑖) = (𝒑𝑖 − 𝒒𝑐) ∙ 𝒏𝑐 

where 𝒒𝑐 stands for the intersection point, and 

𝒏𝑐  denotes the surface normal at 𝒒𝑐.  

If the ray is entirely in the internal space of an 

object, it is handled as a static collision: 



𝐶(𝒑𝑖) = (𝒑𝑖 − 𝒒𝑠) ∙ 𝒏𝑠 

where 𝒒𝑠 stands for the closest surface point to 

𝒑𝑖, and 𝒏𝑠 denotes the surface normal at 𝒒𝑠. 

These separately generated constraints allow the 

simulation to reduce significant running time as 

they are not generated in the following solver 

iterations. 

The collision between two dynamic objects is 

more complex by simulating both objects. 

Taking a triangle face of one object with 

vertices 𝒒1, 𝒒2, 𝒒3  as a reference substance, 

when the 𝑖𝑡ℎ point of the other object 𝒑𝑖 moves 

through it,  the generated collision constraint is 

handled as: 

𝐶(𝒑𝑖, 𝒒1, 𝒒2, 𝒒3) =  ±(𝒑𝒊 − 𝒒1) ∙ [(𝒒2 − 𝒒1) × (𝒒3 − 𝒒1)] 

2.4 Solver 

In lines (7)-(8) of the simulation algorithm, a 

solver is used for correcting the estimated new 

position 𝒑1, 𝒑2, … , 𝒑𝑁  of the 𝑁  vertices to 

satisfy the 𝑀 + 𝑀𝑐𝑜𝑙𝑙  constraints. The 

constraints could be yielded as non-linear 

equations and inequalities. Thus, a non-linear 

Gauss-Seidel iteration is introduced, which 

provides the ability to handle each constraint 

separately one after the other. 

The equations and inequalities representing the 

constraints could be unified in the form 𝐶(𝒑) ≻

0, where the symbol ≻ denotes either = or ≥. 

Therefore, the aim changes to finding a 

correction ∆𝒑, which fulfils 𝐶(𝒑 + ∆𝒑) ≻ 0. The 

nonlinear constraints can be linearised through:  

𝐶(𝒑 + ∆𝒑) = 𝐶(𝒑) + ∇𝐶(𝒑) ∙ ∆𝒑 + 𝑂(|∆𝒑|2) ≻ 0 

Considering a second order accurate 

approximation, the above equation can be 

written as: 

𝐶(𝒑 + ∆𝒑) ≈ 𝐶(𝒑) + ∇𝐶(𝒑) ∙ ∆𝒑 ≻ 0 (2.1) 

For the conservation of linear and angular 

momentum, ∆𝒑 should be restricted to be in the 

direction of ∇𝐶, which means only one scalar 𝜆 

called a Lagrange multiplier should be found to 

get:   

Δ𝒑 =  𝜆 ∇𝐶(𝒑) (2.2) 

Substituting Eq. (2.2) into Eq. (2.1), the scalar 𝜆 

is determined. Substituting it back into Eq. 

(2.2), the correction of an individual vertex 𝒑𝑖 

can be formulated as: 

∆𝒑𝒊 = −𝜆 𝑤𝑖 ∇𝒑𝑖
𝐶(𝒑) (2.3) 

where 

𝜆 =
𝐶(𝒑)

∑ 𝑤𝑗 |∇𝒑𝒋
𝐶(𝒑)|

2

𝑗

(2.4) 

Finally, a stiffness parameter 𝑘 ∈ [0,1] will be 

introduced to define the strength of the 

constraints. To get a linear dependence on the 

stiffness parameter after 𝑛𝑠  solver iterations, 

𝑘′ = 1 − (1 − 𝑘)1/𝑛𝑠  is used to multiply the 

correction Δ𝒑. 

3. Recent Improvements of PBD 

The main limitations of PBD could be identified 

as: 1) It could not efficiently achieve a 

convergent solution during iterations. 2) The 

dependency of the results on the stiffness 

parameter 𝑘 , timestep ∆𝑡  and number of 

iterations 𝑛𝑖𝑡𝑒𝑟  could not be completely 

eliminated, which causes insufficient simulation 

accuracy. 3)  The handling order of different 

constraints could affect the simulation results. 

In this section, we will review recent 

improvements of PBD, including advanced 

algorithms tackling the main limitations and the 

progress of extensions for other objects like 

fluids and cloth. 

3.1 Improvements in Convergence Problem 

As described in Section 2, the iterative solver is 

the most crucial step in PBD simulation. It helps 

the system get better corrections after each 

iteration, leading to more realistic deformation 

results. However, PBD uses a nonlinear Gauss-

Seidel solver to iterate the projections, which 

makes the projection propagation slow and hard 

to achieve a convergent solution. Many methods 

have been proposed to improve the convergence 

efficiency of the solver, like Hierarchical 

Position Based Dynamics (HPBD),15 and the 

second-order accurate multistep method applied 

with a second-order backward differentiation 

formula (BDF2).16 HPBD defines a multi-grid 

based mesh to make the error corrections 

propagate faster while the tearing algorithm 

requires further improvement. By introducing 

BDF2 into PBD, only the previous timestep 

information is used, which makes projection 

convergence faster, but the method is probably 

uncompetitive for stretchy materials. Besides, 

other methods have been proposed to further  



 

Figure 1: A twisted rope simulation results from 

the XPBD-based rigid body 

simulation method.20 

speed up error propagation, like the method of 

Long Range Attachments (LRA),17 which is 

best suited for inextensible character clothing, 

but does not provide benefits for unattached 

environmental cloth such as flying papers. 

3.2 Improvements in Dependence Problem 

For evaporating the dependence of the 

simulation results on the stiffness parameter 𝑘, 

timestep ∆𝑡  and number of iterations 𝑛𝑖𝑡𝑒𝑟 , 

many methods have been proposed. Among 

them, extended position based dynamics 

(XPBD) and projective dynamics (PD) are 

highlighted since they not only make progress 

in this problem, but also significantly develop 

position-based approaches into separate 

research topics. This subsection will introduce 

these two methods, including their own 

developments. 

3.2.1 Extended Position Based Dynamics 

XPBD was first presented in the paper by Miles  

et al.18 One of its initial functions is to address 

the dependence problem of PBD. It is achieved 

by associating a compliance 𝛼 =
1

𝑘
  with each 

constraint. With this trivial modification to the 

PBD solver, a stiff solution could be reached 

regardless of the timestep size. Besides, XPBD 

could return a consistent solution to provide 

accurate constraint force predictions for force-

related effects.  

Based on XPBD, Macklin et al. proposed a 

method19 to split every timestep into 𝑛 isometric 

substeps and perform an iteration of XPBD in 

each substep. This method dramatically 

improves the achievable stiffness with a low 

computational cost. In addition, Müller et al. 

presented an XPBD-based method to precisely 

resolve small spatial and temporal details in the 

rigid body simulation.20  

Figure 1 shows its ability to simulate a twisted 

rope. In the paper by Romeo et al.21,73 a 

modification of XPBD was used to define the 

simulation of muscle dynamics through 

modifying the distance constraints between 

mesh vertices in the solver. Moreover, XPBD 

has been used to achieve differential parameter 

identification and shape control of linear objects 

by adding extra geometrical constraints for real-

to-sim robotic manipulation.22 

 

 

Figure 2: The comparison between the 

simulation results of a hippopotamus 

model with PD after 1, 10, and 20 

iterations, and Newton's physical 

method. It could be seen that after 10 

iterations, the simulation results are 

visually similar.23 

3.2.2 Projective Dynamics 

Projective Dynamics (PD) was proposed as a 

modification of PBD.23 It applies extra 

constraints on the solver to improve its 

robustness for non-uniform meshing with 

distinct resolutions since the improved solver 

allows it to handle object interactions implicitly. 

With the additional constraints, PD also 

decreases the dependence between the stiffness 

and the iteration number. Moreover, it is even 

faster convergent than Newton's method, so it 

costs significantly less computational time, as 

shown in Figure 2. 

While Bouaziz et al. have proved that PD could 

be applied to simulate many materials like 

cloths, shells and solids due to its robustness and 

simplicity,23 it has been further used to simulate 

cosserat rods.24 For accurately simulating the 

twisting and bending deformation of Cosserat 

rods, the angular momentum should also be 

preserved as the linear momentum. Thus, the 

system is modified to {𝒒𝑛, 𝒗𝑛, 𝝎𝑛}  where 𝝎𝑛 

denotes the angular velocities for vertices at 

timestep 𝑡𝑛 . The good quality of the visual 

result is shown in Figure 3. Furthermore, Solar 

et al. compared PD and PBD in terms of the 

computation time to convergence and 



concluded that PD converges faster to a mesh-

independent solution than PBD. 

 

 
Figure 3: The comparison between a real elastic 

rod and the simulated rod using PD 

with the same parameters.24 

 

Li et al.25 proved that PD could also be 

implemented to simulate deformable characters  

with the articulated skeleton. The deformable 

character models consist of rigid-body parts 

(bones) coupled with deformable parts (flesh). 

Thus, extra rigid-body constraints and joint 

constraints are added to the global step of the 

PD solver. They use affine constraints to group 

𝑛𝑓  flesh vertices and 𝑛𝑏  bone vertices and 

reorder them. Their proposed method could 

generate the simulation of articulated characters 

stably and efficiently with less joint error and 

similar quality to the state-of-the-art rigid body 

simulator. 

3.3 Improvements in Other Limitations 

Regarding the order problem in PBD, only a few 

improved methods have been proposed. For 

example, Gu et al.26 have proposed a sorting 

method for dealing with the order of the basic 

constraints mentioned above to improve the 

realism and efficiency of cloth simulation. In 

spite of the improvement,26 there is still a long 

way to go to get a systematic solution to the 

order problem. 

There are also other limitations with the PBD 

solver, like the lack of momentum constraints, 

which makes the material stiffness related to the 

timestep size and the number of iterations. 

Besides XPBD, which addresses this limitation, 

Dahl and Bargteil27 presented a simple approach 

to tackle the angular momentum loss problem, 

and Bender et al.12 explained the impossibility 

of efficiently parallelising the Gauss-Seidel 

version of PBD due to the constraint averaging 

problem. This limitation makes the number of 

iterations depend on the number of constraints. 

Eliminating this dependency is also a significant 

issue to concern. 

3.4 Improvements in Extensions 

As mentioned above, PBD was first developed 

to simulate particle-based dynamic objects. 

Then it has been extended to other scenarios, 

including cloth, fluid and rigid body simulation. 

This subsection will review these extensions 

and significant improvements made by these 

extensions. 

3.4.1 Cloth Simulation 

Besides the essential stretching constraint, i.e. 

distance constraint between neighbour 

vertices,28 bending constraint between adjacent 

triangles ( 𝒙1, 𝒙3, 𝒙2 ) and (𝒙1, 𝒙4, 𝒙2 ) is also 

required to be addressed in cloth simulation. 

Bender et al.29 introduced another isometric 

bending constraint for inextensible surfaces, 

which is suitable for garment simulation. By 

applying additional positional constraints to 

represent constant densities in the PBD solver, 

Ali et al.30 proposed a real-time cloth simulation 

method, which generates different wind effects 

of cloth, tackling the problem of dynamically 

preserving cloth overlays and wrinkles. Other 

collision constraints like self-collisions within 

cloth, cloth balloons and strain energy 

constraints are applied in different scenarios to 

simulate different cloth conditions.  

3.4.2 Fluid Simulation 

Fluids were first modelled as a system of 

particles,31 with special constraints maintaining 

a minimum distance from each other, called 

Smoothed particle hydrodynamics (SPH) 

method. Nevertheless, it could cause problems 

like failure to reach hydrostatic equilibrium 

when coming to rest. Macklin and Müller32 

integrated the position-based concepts and SPH, 

and proposed position based fluids (PBF), 

which adds density constraint into the solver. 

Shao et al.33 introduced the position constraint 

solved by PBD into SPH to achieve stable 

interactions between fluid and solid. They 

proved that the vorticity of the fluid particle 

system has been significantly smoothed due to 

PBD. In their work, PBD is applied to improve 

the visual results of SPH simulation.  

Based on PBF, Köster and Kruger34 presented a 

method to achieve remarkable improvements in  



 

 

Figure 4: Rigid body simulations. Top: a 

collision scene with 2000 rigid bodies 

colliding with each other and the 

ground.36 Bottom: a collision scene 

with 5000 rigid boxes falling on the 

ground.37 

performance in specific scenarios, which uses 

fine-grained level-of-detail (LOD)  information 

of each particle in the simulation system to alter 

their positions adaptively. Another modification 

to PBF has been proposed by Geyer.35 Their 

method allows fluid particles to fit the size of 

the fluid shape, which reduces particle numbers 

and computational costs. It tackles the 

interaction problem among fluid particles of 

different sizes in PBF. 

3.4.3 Rigid Body Simulation 

The basic PBD method is not only applied to the 

particle-based system but also extended to 

simulate rigid bodies as shown in Figure 4 (top 

image) by introducing joint and contact 

constraints.36 It is a truism that a particle has 

three translational degrees of freedom (DOF), 

whilst a rigid body has three extra rotational 

ones to represent its orientations. However, 

since Newton's second law is only applied to 

particles, it should be extended to Newton-Euler 

equations to contain rotational parts, with rigid 

bodies viewed as groups of infinite numbers of 

particles.  

In the paper by Frâncu and Moldoveanu37, a new 

formulation of PBD based on non-linear convex 

optimization was presented to integrate friction 

and contact into the projection solver for 

simulating rigid and elastic bodies among which 

the rigid body simulation result is shown in the 

bottom image of Figure 4. Adapting PBD as an 

alternative discrete algorithm for multi-agent 

crowd simulation, a set of positional constraints 

were formulated and integrated into PBD solver 

to offer a numerical framework for real-time 

crowd simulation that is robust, stable, and easy 

to implement.38 Through using separation 

planes for adding extra constraints into the PBD 

solver to allow flexible collision avoidance, 

multi-agent simulations are achieved.39  

Macklin et al.40 proposed a framework to 

integrate an off-the-shelf linear solver into PBD 

to add rigid and deformable contact. This 

method is based on a non-smooth Newton 

iteration, leading to good performance in 

robotics simulation scenarios with dexterous 

manipulation. Furthermore, a differentiable 

framework was developed to integrate optimal 

robot design, model-based motion control, and 

system identification into PBD, leading to 

higher design efficiency and better estimation 

accuracy.41 By utilising position variables only 

to reformulate articulated body dynamics 

simulation as an energy minimisation problem 

without involving calculations of high-order 

derivatives, position-based articulated 

dynamics (PBAD), which is another advanced 

solver, was proposed to simulate articulated 

body dynamics with full implicit integration, 

bringing in overall speedup over conventional 

methods under very large timestep sizes but 

with weaknesses of failing to avoid numerical 

dissipation totally and achieve as accurate 

results as Lie-Group integrators.42 

In deformable object simulation approaches 

with position-based concepts, real-time 

performance is always a significant criterion 

fulfilled by the majority of the above methods. 

However, large time steps and numerical 

approximations of the PBD solver will cause 

visual artefacts like numerical damping and 

"explosions". For correcting the artefacts, Dinev 

et al.43 presented a post-processing energy-

projection method to produce visually plausible 

and stable motion with real-time performance. 

3.5 Conclusion 

In this section, we mainly review the latest 

improvements in the PBD algorithm. They 

tackle the main limitations of PBD, 

convergence problem,15-17,23,26 and unavoidable 

dependency of stiffness between timestep size 

and iteration numbers,18 and handle order 

problem.27  

We survey the works on improved PBD 

algorithms and conclude their contributions, 

advantages, and drawbacks in Table 1. As 

shown in the table, there is no method to correct 



all the limitations, or even to provide a perfect 

solution to any drawbacks. This is because that 

position based approaches have some inherent 

deficiencies.  

However, these limitations are  recently being 

addressed as some of the improved algorithms 

have been extended to independent research 

fields, like PD23 and XPBD18. These extended 

XPBD and PD algorithms have been applied in 

more complex environments, which are 

surveyed in Table 2. 

 

Table 1: Contributions, pros and cons of improved PBD algorithms 

Reference Methods Contribution Pros Cons 

Müller et al.15 HPBD 

Change the nonlinear Gauss-

Seidel Solver of PBD into a 
nonlinear multigrid-based 

algorithm. 

Accelerate error correction to 
achieve convergence faster. 

1) Poor quality hierarchical meshes 

cause visual artifacts for very low 

iteration counts; 2) More difficult for 
the hierarchical solver to be 

parallelized; 3) Bending constraints 

in higher levels are not considered. 

English et al.16 BDF2 

Use a BDF2-based second 

order accurate multistep 

constrained scheme for 

position projection. 

1) Accelerate fast projection; 

2) Sharply decrease 

numerical damping. 

1) Not suit stretchy materials; 2) 

Insufficient smoothness; 3) Time 

splitting causes  perturbations. 

Kim et al17 LRA 

Efficiently enforce global 

inextensibility implemented 
into PBD. 

1) Speed up error propagation 

to suit inextensible character 

clothing; 2) Generate more 
vivid behaviour of cloth 

stretching. 

1) Poor quality for simulating 

unattached environmental cloth; 2) 
Not realistic with high resolution. 

Miles et al.18 XPBD 

1) Improve the PBD constraints 

representing physics; 2) 

Introduce a multiplier to 

address time step and iteration 

count stiffness dependence; 3) 

Provide a physical solver-based 

validation scheme. 

1) Decrease time step and 

iteration counting stiffness 

dependence; 2) Increase the 

accuracy of PBD but only 

with trivial modifications. 

1) Not suitable for applications 

requiring high accuracy; 2) Not 

ignorable convergence cost. 

Bouaziz et al.23 PD 

Introduce energy potentials to 
PBD by a local/global step to 

connect it with the physical 

system. 

1) Decrease the dependence 
problem of stiffness; 2) 

Achieve faster convergence; 

3) High accuracy. 

1) Implicit damping problem; 2) Not 
suit fluid simulation due to the 

alteration of the global system; 3) 

Hard materials are not considered. 

Gu et al.26 Order Sorting 

Propose an appropriate 

constraint adjustment 

sequence. 

Improve convergence, 

realism, and efficiency. 

Different triangulations affects 

simulation results. 

Dahl and 

Bargteil27 

Momentum 

Compensation 

Optimise the correction step 

during the timestep to preserve 

the global momentum. 

1) Require negligible 

computational cost; 2) 

Increase accuracy of PBD. 

Only apply in extreme cases with  

angular momentum preservation. 

 

Table 2: Contributions, pros and cons of extended XPBD and PD algorithms 

Reference 

Based 

Methods Contribution 

Pros Cons 

Macklin et al.19 XPBD 
Split timesteps into substeps 

and iterate once in each substep. 

1) Less stretching and higher 
stiffness; 2) Reduce constraint 

error and damping over implicit 

integrator; 3) More stable and 

robust over explicit integrator. 

1) Computational cost slightly 

increases; 2) Ineffective in 
reducing velocity error; 3) 

Residual depends on iteration 

order; 4) High iteration counts 

require double precision floating 

point. 

Müller et al.20 XPBD 

Precisely resolve small spatial 

and temporal details for 

simulating rigid bodies. 

1) Increase energy conservation 

and accuracy; 2) Easily 

manipulate the environment with 

large mass ratios and frequent 
rotation change. 

1) Unable to damp out high-

frequency vibrations; 2) High 

requirement of computing 

devices; 3) Unstable in complex 
scenarios. 

Romeo et 

al.21,73 
XPBD 

Add an anisotropic component 

to distance condtraints and 

modify distance constraints in 

XPBD to allow muscles and  

fascia to contract. 

1) Highly controllable; 2) 

Efficiently generate more realistic 

muscle dynamic results. 

Only apply in muscle and fascia 

related cases. 

Liu et al.22 XPBD 

1) Add extra geometrical 

constraints to simulate 

differential linear objects; 2) 

Introduce a differentiable 
framework for constraint 

solving; 3) Define the problem 

1) Accurate and robust simulation 

results; 2) Meet the real-time 

requirement. 

Not consider the coupling 

between the collision handing 

and rigid-deformable.  



of rope-like objects in the real-

to-sim context. 

Soler et al.24 PD 

1) Introduce angular velocities; 

2) Add extra constraints and 

potentials to PD; 3) Introduce 
potential weights for the rod. 

1) Improve the accuracy of rod 

simulation; 2) Numerically robust; 

3) Fast convergence with few 
iterations. 

1) Not faster than PBD in other 

scenarios except for the hanging 

rods simulation; 2) Adding 
attachment constraints causes 

legible computational cost. 

Li et al.25 PD 

1) Propose a PD-based 

monolithic method to simulate 

articulated soft characters; 2) 

Integrally formulate the 

vertices; 3)Enforce the rigid-

body and joint constraints 

exactly. 

Improve the performance  

Lack of support of joint limits, 

which causes the separate 

rotation of bones. 

Table 3: Contributions, pros and cons of improvements in specific scenarios  

Scenarios Reference Contribution Pros Cons 

Cloth 

Simulation 

Bender et al.29 

Integrate continuum mechanical 

formulation into PBD to 

simulate deformable solids and 

cloth. 

Able to handle complex physical 

effects like isotropy, anisotropy, 

elastoplasticity, and lateral 

contraction. 

1) Visual plausibility; 2) 

Stiffness also depends on 

iteration number and time step 

size; 3) Do not converge to the 

solution as simulation mesh. 

Ali et al.30 

1) Generate wind effects of 
cloth; 2) Tackle cloth overlay 

and wrinkle preservation 

problem. 

1) Improve incompressibility and 
convergence; 2) Realistic cloth 

simulation in a real-time 

environment. 

Not able to model solid objects 
due to lacking inclusion of 

physical constraints. 

Fluid 

Simulation 

Monaghan et 

al.31 

Initially propose a particle-based 

system SPH for fluid simulation. 

1) No grid requirements; 2) Set 

the physical equations as 

constraints; 3) Handle complex 

physics in a 3D environment. 

1) Low accuracy; 2) Hard to 

converge; 3) Computationally 

expensive. 

Macklin and 

Müller32 

Add density constraint into the 

PBD solver to simulate fluid 

(PBF) 

1) Fast computation; 2) Apply 

PBD in simulating fluids with 

promising results. 

1) Particle stacking problem; 2) 

Slow convergence in large 

number particles system; 3) 

Dependent parameters cannot be 
adjusted separately. 

Shao et al.33 

1) Combine the position 

constraints from PBD to release 

penetration issues; 2) Add a  

vorticity constraint to stabilise 

diffusion. 

1) More realistic results; 2) Make 

the solid boundary handling of 

SPH more stable; 3) Less time 

cost. 

Insufficient phenomena 

experiments. 

Köster and 

Kruger34 

Use fine-grained LOD to 

adaptively alter solver iterations. 

1) Improve the performance of 

PBF; 2) Maintain an average 

density while adaptively altering 

the particle positions. 

1) Insufficient adaption models 

are tested; 2) More constraints 

should be considered. 

Geyer35 Allow fluid particles to fit the 

fluid shape for improving PBF. 

1) Reduce computational cost; 2) 

Improve performance. 

1) Poor quality in complex 
particle systems; 2) The 

alternative criteria for the 

adaption should be improved. 

Rigid Body 

Simulation 

Deul et al.36 

Introduce joint and contact 

constraints into PBD to simulate 

rigid bodies. 

1) Controllable; 2) Fulfil 

scenarios with large-scale rigid 

bodies; 3) Support coupling 

between deformable and rigid 

bodies. 

Missing some components in 

PBD-based rigid body 

simulation, like motors. 

Frâncu et al.37 

1) Provide a contact and friction 

model to simultaneously 
simulate rigid and flexible 

bodies; 2) Integrate friction and 

contact into the projection solver 

1) Stable and realistic simulation 
results; 2) Faster computation. 

1) Some poor visual artifacts; 2) 
Need further smooth friction 

cone methods. 

Weiss et al38 

1) Simulate crowds within the 

PBD framework; 2) Generate 

several constraints to improve 

realism. 

1) Exploit efficiency and 

stability in crowd simulation; 2) 

Produce more flexible and 

emergent behaviour. 

1) not able to simulate real 

pedestrians; 2) Lack of 

parameter tuning. 

Sharma et al39 Use separation planes to achieve 

multi-agent simulation; 

1) Avlleviate the collision 

among agents; 2) High 

controllability; 3) High 
genericity to be integrated with 

other crowd techniques. 

More application fields should 

be considered. 

Macklin et al.40 

1) Introduce smooth friction; 2) 

Provide a new preconditioner; 3) 

Provide a compliance 

formulation to support hyper-

elastic materials; 4) 

Approximate geometric 

stiffness. 

1) Improve convergence; 2) 

More robust; 3) First time in 

introducing non-smooth 

formulations for interactive 

applications 

1) Do not deal with elastic 

collisions, or energy-preserving 

integrators; 2) Work well on 

particle-based objects but badly 

in rigid bodies; 3) The 

performance needs further 

improvement. 

Liu et al.41 

1) Propose a differentiable 
framework for rigid body 

simulation; 2) Formulate a 

1) Lead higher efficiency and 
accuracy; 2) Could be applied in 

Not enough comparison with 
other techniques. 



simulation workflow for the 

differentiable framework. 

more complex environments and 

objects. 

Pan and 

Manocha42 

Present a time integrator to 

simulate articulated bodies. 

1) Speedup conventional 

methods under very large 

timestep; 2) High stability; 3) 
Computation friendly for GPU. 

1) Cannot alleviate numerical 

dissipation; 2) Less accuracy; 

Dinev et al.43 

Propose a post-processing 

energy-projection method to 

simulate deformable objects. 

Generate realistic, stable, and 

real-time motion; 

1) Not numerically accurate; 2) 

Have some high-frequency 

oscillations 

    

    

 



For XPBD, although initial research studies 

focus on decoupling the dependence problem, 

some researchers have late proved its genericity 

to be applied in various scenarios, like rigid 

body20, muscle21,73, and rod simulation22. 

Compared with PBD, more realistic and 

controllable results obtained with XPBD have 

inspired further investigations. However, the 

dependence problem still exists. 

For PD, it introduces FEM into PBD to consider 

continuum mechanics and energy potentials, 

which accelerate convergence and improve 

accuracy. The extensions to PD are more 

focused on adding more physics-related 

elements to increase the realism of the 

simulation results, like extra constraints to 

represent more potentials24,25. However, 

integrating more physics will require more 

computations and cause more problems brought 

by physical limits, like joint limits25. 

The improvements in specific scenarios, 

including cloth, fluid, and rigid body simulation 

are surveyed in Table 3. Cloth simulation is the 

cradle of position based methods as the pioneer 

demonstrations are all applied on cloth. Its high-

quality performance on cloth29,30 has been well 

proven. However, it was later found that PBH33, 

integrating with SPH31, could also have visual 

plausibility in fluid simulation while inheriting 

the advantages of PBD33-35. Rigid body 

simulation is now being emphasized since it 

requires both deformations brought by particle 

systems and solid attributes. This is always a 

hard topic to balance, without losing robustness, 

simplicity, efficiency, and realism. 

These improvements in PBD algorithm could 

enlighten the following-up researchers about 

various ways to explore. 

4. Recent Applications of PBD 

The recent applications related to PBD have 

been extended to some other fields. In this 

section, we will review the recent applications 

in the following three application scenarios: 

deep learning, medical field, and architecture. 

4.1 Deep Learning-related Application 

As a hot spot in computer graphics, deep 

learning (DL) has been used in many different 

areas, such as 3D representation, image transfer, 

and autonomous vehicles, and significant 

developments have been achieved. Due to its 

simplicity, efficiency and robustness, PBD has 

recently been integrated with DL. As a class of 

DL methods, graph networks (GN) have been 

used to estimate the constraint projection in 

PBD44 and have been utilised as an accelerating 

method45 for simulating rod dynamics. 

Compared with the original PBD method, the 

one applying GN could improve runtime 

performance. Besides improving the 

performance of PBD, its high-quality  

simulation data have been used as the input of a 

data-driven method for efficiently 

approximating physical forces.46 Yang et al. 

embedded neural networks in the projection  

constraint step to learn and predict the physics 

rules for governing challenging scenarios47. 

Another neural network called anisotropic 

constrained-boundary convolutional neural 

networks (AnisoCBConvNet) was proposed by 

Kim et al.48, where PBD was used as a dynamics 

solver to obtain surfaces data for deep learning. 

In addition to PBD approaches, PBF, as a 

significant fluid simulation method, has also 

been used with DL methods. Schenck and Fox 

implemented PBF inside their Smooth Particle 

Networks (SPNets) to propose a method for 

computing the interaction between rigid bodies 

and liquids.49 Figure 5 shows the interaction 

between rigid bodies and liquids. 

4.2 Medical Application 

In addition to the above-reviewed applications 

of PBD in simulating cloth, deformable objects 

and fluids, PBD has also been used in surgical 

simulation. Compared with the previous force-

based and impulse-based approaches, PBD 

could avoid overshooting problems and easily 

manipulate collision constraints.  

Pan et al.50 introduced an interactive dissection 

method to simulate hybrid soft tissue models. 

This method applies energy-preserving and 

volume-preserving constraints on PBD to 

improve the visual performance in soft tissue 

simulation. After that, Berndt et al.51 presented 

an association approach, which uses PBD to 

model all the dynamic objects in surgery and 

simulate soft tissue cuts (Figure 6), bones and 

body fluids by associating PBD's ability with 

different  materials. The comparison with the 

previous FEM-based method proposed by Wu 

et al.52 and the approach proposed by Pan et al.50 



demonstrates that their proposed method is 

faster and scales better for simulating the 

scenarios with mixed objects.  

   

Figure 5: The interaction between rigid bodies 

and liquids using SPNets integrated 

with PBF.49 

 

 

Figure 6: Simulation results from a soft tissue 

cut with complex materials.51 

 

 

Figure 7: The simulation results with the 

proposed algorithm of PBD-based 

large-scale layout.60 

The simulations of mitral and aortic valves were  

addressed with a simple material model 

expressed in PBD as fluids by Walczak et al.53-

55, where PBD is used for an interactive 

parameterization to model missing information. 

Han et al.56 utilised PBD for simulating the 

tissue deformation in a 2D surgical framework. 

Xu et al.57 addressed the dependence problem 

between deformation effects and iteration 

variables by proposing a method integrating 

mass spring dampers (MSD) as constraints into 

PBD to simulate soft tissue deformation in a 

laparoscopic cholecystectomy. Moreover, PBD 

has been used for simulating soft tissues in 

virtual surgeries.58,59 

4.3 Architectural Application 

PBD has further been used for architectural 

layout tasks, like city design. Since the 

architectural criteria of building arrangement 

could be regarded as layout constraints, Cao and 

Ji60 proposed an automatic layout algorithm 

based on PBD to plan large-scale office parks. 

They modelled the layout problems as 

positioning and orienting 𝑛  buildings 𝐵 =
{𝑏1, 𝑏2, … , 𝑏𝑛} . For each building 𝑏𝑖 ∈ 𝐵(𝑖 =
1,2, … , 𝑛), attributes are attached, including a 

position 𝑝𝑖 , an orientation 𝜃𝑖 , an associated 

shape mesh, a group of agent models and an 

inverse mass 𝑤𝑖 =
1

𝑚𝑖
 where 𝑚𝑖  is the mass of 

the building. Then in the basic solver of the PBD 

algorithm, two additional steps are added for 

updating stiffness 𝑘  and agent model 𝐴𝑀 

before generating collision constraints. The 

overall density results obtained with the 

proposed method are shown in Figure 7.   

4.4 Conclusion 

So far, researchers have paid much attention to 

how to apply position based methods in various 

fields and utilise their irreplaceable capabilities. 

In this section, we mainly review the latest 

applications of PBD in different fields: deep 

learning, medical field, and architectural 

industry, which have been surveyed in Table 4. 

Especially in the medical field, PBD has been 

widely used as a simulation tool to get the 

deformation results of human tissues, including 

organs, blood, and bones.50-59 Though PBD is 

not accurate enough, its fast computation could 

help beginners become more familiar with the 

human structure and train them with basic 

surgeries. 

These applications demonstrate that PBD is 

robust and could be integrated with other 

techniques. Thus, how to further apply PBD in 

different industries remains a research topic for 

the following-up researchers. 

5. Future Research Directions 

In Sections 3 and 4, we have summarised the 

state-of-the-art improvements of PBD and their 

applications. In spite of these remarkable 

progress, there are still many open challenges 

that future work on PBD and their applications 



needs to address. In this section, we suggested 

main research directions in the future.  

Table 4: Survey of PBD applications in different fields  

Fields Reference Contribution 

Deep Learning 

Shao et al.44 Use GN to estimate the constraint projection in PBD 

Shao et al.45 Use GN to accelerate PBD-based rod dynamic simulation 

Holden et al.46 Use the deformation data from PBD as the input of the data-driven method 

Yang et al.47 Embed NN in projection constraint to predict positions 

Kim et al.48 Use the deformation data from PBD as input 

Schenck and Fox49 Implement PBF inside SPNets to compute the interaction between solid and fluid 

Medical 

Pan et al.50 Improve visual results; 
Add energy and volume-preserving constraints to PBD 

Berndt et al.51 Use PBD to model dynamic objects in surgery 

Wu et al.52 Compare the simulation results of PBD and FEM in surgery 

Walczak et al.53, 54, 55 Use PBD to express mitral and aortic valves simulation 

Han et al.56 Utilise PBD for simulating tissue deformation in a 2D surgical framework 

Xu et al.57 Solve the dependence problem between deformation and iteration variables; 

Integrate MSD as constraints into PBD 

Tagliabue et al.58,  

Liu et al.59 Use PBD to simulate soft tissues in virtual surgeries 

Architectural Cao et al.60 Use PBD to plan large-scale layout; 

Specify the mass of each particle in PBD 

5.1 Improvement Tackling Limitations 

In Section 3, we have identified the main 

drawbacks of PBD algorithm and introduced 

new improvements. However, none of them 

gave a complete solution to perfectly satisfy 

all the limitations. Particularly the main 

intrinsic limitation of PBD - the material 

stiffness depends on the number of iterations, 

the time step, and the ordering of the 

constraints - is still a significant direction to 

explore. In addition to the improvements like 

PD23 and XPBD18 reviewed in Subsection 3.2, 

some other methods were also being  explored 

to tackle these problems such as the method 

presented by Deul et al.65 who introduced an 

alternation algorithm of direct solver and non-

linear Gauss-Seidel solver called the KKT/GS 

solver into the PBD framework to avoid 

convergence problems when realistically 

simulating complex scenes with rods. It 

indicates that improving the algorithm of PBD 

to overcome the limitations is still a challenge 

of further improvement. 

5.2 Integration With Other Computational 

Methods 

Some research studies have integrated PBD 

with other computational methods such as 

finite element methods to improve PBD 

simulation quality, and how to balance 

accuracy and efficiency of PBD has not been 

well investigated. In the future, there will be 

more research studies in this direction.  

In existing work, nodal finite element methods 

and PBD have been integrated to develop 

PD,23 and a hybrid deformation model has 

been proposed to implement PBD and FEM on 

different meshes,61 the computations of 

exponential spring potential energy functions 

(ESPEFs) were added to the XPBD simulation 

to enrich the hyperelasticity and generate more 

dynamic motions,62 and a control volume 

method (CV) and continuous collision 

detection (CCD) were introduced into XPBD 

to establish a new method for simulating 

folded membrane structures.63 From these 

research studies, we see a significant potential 

and need for further research in combining 

PBD with other computational methods, since 



such combinations could achieve more visual-

plausible results.  

In the work by Löschner et al.64, the accuracy 

and efficiency of selected integration methods 

for computer graphics applications were 

evaluated. It raises another future topic - how 

to achieve the balance between quality and 

efficiency of PBD. Combining PBD with 

various integration methods could provide an 

effective approach to this topic.   

5.3 Integration With Software Packages 

Due to its advantages of efficiency, stability, 

and controbility, PBD has been integrated into 

some software packages. In spite of this, 

integrating PBD into more software packages 

is still a future direction.    

In the game industry, efficiency will always be 

a priority. Houdini, as one of the current 

mainstream software tools for modeling and 

visual effects, has integrated the PBD 

algorithm to create deformations. Besides, 

PBD has also been applied in Unity 3D. Lee et 

al.66 solved simulation problems of tetrahedral 

models in Unity 3D with their proposed 

Internal shape preserving constraint (ISPC) 

algorithm to integrate PBD with game 

techniques. Khan et al.67 used PBD to simulate 

the correct physical behaviour of deformable 

objects in Unity 3D environment. In the future, 

we expect to see more work in integrating 

PBD into other software packages including 

Maya, Unreal Engine, and Blender to help 

designers efficiently create visually plausible 

deformations for computer animation and 

games. 

5.4 Integration With Extended Reality 

The PBD’s advantages of efficiency, stability, 

and controbility also make it well applicable to 

extended reality (XR). Some researchers have 

started the research in this direction. 

Extended reality is an umbrella term that 

covers a spectrum of newer and immersive 

technologies, including virtual reality (VR), 

augmented reality (AR), and mixed reality 

(MR). It is intended to create an environment 

to make the digital virtual world interact with 

the physical world. XR has been more often 

used in medical fields recently since it could 

bring more sense of immediacy for beginners. 

As an efficiency method to simulate tissue 

deformations, PBD has shown its integration 

with VR and AR in medical applications. Wu 

et al.68 built a VR-based surgical system to 

train surgeons, which simulates the basic 

deformation behavior of soft tissue with a 

parallel position based dynamics framework. 

Huang et al.69 proposed an AR-based medical 

education system, where PBD provides a real-

time solver and stable time-integration scheme. 

Apart from its applications in the medical field, 

extended reality can be applied in many other 

fields such as emtertainment and video games 

industries and marketing. How to intergrate 

PBD into XR with applications in more fields 

could attract more research interests in the 

future. 

5.5 Cloud Computing for PBD 

While not the main focus of this survey, recent 

research studies have developed cloud 

computing for numerical simulation. Zuo et 

al.70 have proved that using cloud computing 

for numerical simulation can reduce the 

solution time to 1%. Thus, introducing cloud 

computing into PBD could also be a promising 

direction to further improve its efficiency. 

5.6 Improvements on Volumetric Models 

The first step of simulating deformations of 

3D surface models with PBD is to convert 

them into volumetric models such as 

tetrahedral meshes. A few researchers have 

initiated the work of improving volumetric 

models.  

The work by Lee et al.66 proposed and 

integrated an internal shape preserving 

constraint (ISPC) generation algorithm into 

the position based dynamics, which reduces 

the number of nodes filling the interior of 3D 

models and computation time of tetrahedral 

models while achieving similar volume 

maintenance and physical properties of 

tetrahedral models. In the work by Angles et 

al.71, a bundle of  cosserat rods was used as an 

alternative to tetrahedral meshes for modelling 

muscles and PBD simulation of volume 

invariant rods was coupled to a surface mesh 

to simulate soft-body deformation with high 

efficiency. Without using tetrahedral meshes,  

triangle meshes were deformed via a Verlet 

integration framework of PBD simulation to 



reduce the computational cost, which provides 

the simulation of deformable surfaces on the 

selected area of the 3D mesh with a desired 

range72.  

The above work has shown the advantage of  

raising computational efficiency of PBD 

simulation through improvements of 

volumetric models. More research studies in 

this direction could be expected in the future.   

5.7 Other directions 

Except for the future work discussed above, 

some other directions could also be considered, 

including representing smooth surface 

problematic, achieving parallel and robust 

collision of simplices, investigating 

hierarchical representation (multi-scale 

particles), and improving convergence for 

parallel solvers. All these directions are 

worthy of investigation by the researchers in 

the PBD field. 

6. Conclusion  

In this paper, we have provided a survey about 

recent developments and applications in 

position-based approaches. We first 

introduced the baseline algorithm of the 

original position based dynamics for particle 

systems. Then, we reviewed the improvements 

of position-based approaches since 2018, 

including some crucial extensions such as 

projective dynamics and XPBD. The 

simulation methods of other materials like 

rigid bodies, fluids and cloth based on PBD as 

well as the modification to adapt to different 

scenarios were also discussed. Next, we 

presented some recent applications of PBD in 

medical-related simulation, integration with 

deep learning, and architectural layout 

arrangement. At last, we suggested research 

directions for future work. Hope this review 

could help beginners develop a quick 

understanding of position based dynamics and 

give following-up researchers some hints 

about future studies. 
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