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Abstract

In this study, smooth trajectory generation and the mathematical modeling of the inverse kinematics and dynamics of a
edundant robotic manipulator is considered. The path of the end-effector of the robotic manipulator is generated – along

particular set of via-points – in a system of spherical coordinates by combining the Hermite polar piecewise interpolants
hat approximate each intermediate radial distance on the reference plane using the azimuthal angle and each corresponding
oint height of the path computed in the rotating radial plane through the corresponding polar angle. The smoothness of the
nd-effector path is guaranteed by the use of quintic Hermite piecewise interpolants having functional continuity, while the
nverse kinematics and inverse dynamics used to compute the coordinates of the joints and the equations of motion of the
obotic manipulator are considered for optimum trajectory planning. Optimization solutions to minimize the joint velocities,
he end-effector positioning error, the traveling time and mechanical energy, or the consumed power, are presented. The direct
omputation of the joints trajectory and a optimal trajectory with minimization of the end-effector position error while preserving
rajectory smoothness of the joints are considered. To assess and verify the approach numerical examples – implemented in

atlab – are introduced, and the outcomes are examined.
2023 The Author(s). Published by Elsevier B.V. on behalf of International Association for Mathematics and Computers in

imulation (IMACS). This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

eywords: Mathematical modeling; Polar piecewise interpolation; Trajectory planning

1. Introduction

1.1. Background

Optimal trajectory planning, involving the generation of a smooth geometric path [12] along certain requirements
nd constraints play a crucial role in engineering design and robotics. The ability to generate a smooth motion
long a sequence of target points under some kinematic and dynamic constraints (input) can be addressed through
rajectory planning in the joint space, i.e., joint position, velocity, and acceleration (output) by inverse kinematics
f the geometric path. Considering joint trajectories optimization techniques – such as minimum execution time,
inimum jerk, or minimum energy [12], under by the assumed kinematic and dynamic constraints – is imperative

specially when induced vibrations, execution time, and wear should be diminished.
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Nomenclature

rPm The radial distance from the origin O to the projection of the point Pm on the plane Oxy
zPm The height from the via-point Pm to the azimuthal plane Oxy
θPm The azimuthal angle
i, j, k The unit vectors of the Cartesian reference frame Oxyz
ir , jr , kr The unit vectors of the moving reference frame Oxr yr zr

di The length of the rod (link) i
Φi The joint (relative) angles of the robotic manipulator (between the links i and i + 1)
Φ̇i The angular velocity of the joints of the robotic manipulator
Φ The absolute angle showing the end-effector direction
J (Φ) The Jacobian matrix of the robotic manipulator
z (ϕ) The height of the trajectory of motion computed in the rotating azimuthal plane
r (θ) The polar coordinates used to approximate the projected planar polar trajectory
r (θ), θ and z (ϕ) The cylindrical coordinates used to parameterize the geometric path of the end effector
ui

k The Hermite polynomial coefficients used to compute the projected planar path of motion
si

k The Hermite polynomial coefficients used to compute the height of the end-effector
trajectory of motion

r, v and a The position, velocity and acceleration vectors related to the geometric path of the end
effector

T (Φ, Φ̇) The kinetic energy of the manipulator.
U (Φ) The potential energy of the manipulator
L(Φ, Φ̇) The Lagrangian of the system
r0ci The position vector of the centroid of link i
vci The velocity vector of the centroid of link i
ωi The angular velocity vector of the centroid of link i
JL

i The centroidal linear velocity Jacobian matrix
JA

i The centroidal angular velocity Jacobian matrix
Ii The inertia matrix of the ith link
H The multibody inertia matrix
τi Joint torques of the manipulator links
M The matrix of inertia of the matrix equation
Ĉ and C̃ The centripetal and the Coriolis force matrices
G i The gravity vector
R The objective function related either to the DLS, to the end-effector position error

minimization, or to the minimum consumed power method
∥.∥ The associated euclidian norm of the DLS method
λ The damping factor of the DLS method
wi The weighting factors used on the end-effector position error minimization method
rg(θ ) and zg(φ) The generated end effector positions in the rotating azimuthal plane
D j The variable used to minimize joint displacement along the trajectory
Ve The velocity of the end effector
V j The angular joint displacement
τi The torque of the i th joint
ti The time intervals corresponding to the motion between the via-points of the trajectory
283
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1.2. Formulation of the problem

The main reason for the generation of this paper was the conceptualization of a new approach by which an optimal
rajectory planning for of redundant robotic manipulators, their forward and inverse kinematic and dynamic can be
ormulated and solved. In general, the robotic manipulators used in industrial applications are dynamical systems
hich could experience significant displacements and rotations, therefore their control could be challenging. Highly

ccurate and robust control of redundant robotic manipulators without knowing kinematic models of robots have
een addressed in [30] by zeroing neural networks activated by nonlinear functions. A functional control scheme
as considered in [31] to address the motion control problem of a mobile robot using screw theory. To decrease the

nteraction force acting on the robot arm a constant speed control [31] determined by an inverse kinematics approach
as explored. A recurrent neural network control framework of a redundant manipulator for concurrent obstacle

voidance and tracking control along a predefined reference path was presented in [16]. The forward and inverse
ynamics and control of a underactuated mechanical system subjected to a set of holonomic and/or nonholonomic
lgebraic constraint equations – showing that the designed state trajectories could be effectively imposed by the use
he inverse dynamic method – was considered in [23].

In addition, while the classical methods of kinematic or dynamic motion planning can be effectively used for
he trajectories modeling of multibody mechanical systems, the use of new, different, and more adequate analytical
echniques are needed. Since the motion along some desired via points can be described as a combination of rotations
bout a fixed point, the manipulator dynamics can be related to its geometry using the time dependent generalized
oordinates expressed as spherical or cylindrical coordinates. Such a mathematical modeling of a robotic manipulator
sing a zenithal gnomic trajectory located on a projective plane and the related azimuthal trajectory generated by
olar piecewise interpolation on the azimuthal plane was addressed in [7]. Possible trajectories generated by mix-
atching polar piecewise interpolation (used to devise the radial trajectory) and Cartesian piecewise polynomials

used to calculate the related height in a normal plane unfolded along the radial trajectory of the motion) has been
resented in [9]. However, the use of a new and better and more effective computational approach that approximate
he trajectory radial distance using the azimuthal angles and the corresponding height through the corresponding
olar angles computed in the rotating azimuthal plane is deemed necessary.

.3. Literature survey

An optimal inverse kinematic solution for mechanical manipulators calculated based on the end-effector initial
nd final position and relative angular orientation error was considered in [32]. Optimal path planning which
inimizes the end-effector position error of planar manipulators at every intermediate point along the path (Genetic
lgorithm) and track the prescribed trajectory accurately (Pattern Search) is presented in [2]. A trajectory planning
ybrid algorithm approach and Euclidean distance based on inverse kinematic solution and displacement error of a
anipulator is proposed in [5] to resolve motion rate control for a smooth motion of the end effector.
Efficient trajectories planning for cyclic point to point tasks have been considered in [11], and while the

inematics, path planning and curve generation – essential for design and manufacturing efficiency – have been
roposed in [10] the problem of inverse kinematics is yet to be considered. Inverse kinematic solutions for the most
requently seen industrial robots by direct manipulation of trigonometric equations have been discussed in [3].

A forward and inverse kinematic analysis has been proposed in [22] to compare the accuracy and repeatability
f the obtained solutions. A trajectory planning and inverse kinematics solution based on deterministic global
ptimization method of the piecewise motion of joint variables [24] or on a homogeneous matrix transformation [25]
as considered to determine [24] and respectively follow [34] the desired trajectory.
A trajectory planning and associated inverse kinematics having the acceleration form of the end-effector outlined

s polynomials of high degree have been addressed in [4]. Smooth point-to-point trajectory planned in the joint space
sing high-order polynomial curves is considered in [33]. A general algorithm for parametric curves generation using
nterpolation techniques have been considered in [17], classical piecewise interpolation and alternative methods for
onserving shapes and extensions of spline interpolation is discussed in [15], C2 smoothness is evaluated in [25,29],

and spherical interpolation and approximation is studied in [28]. A computational approach for shape-preserving
of irregular data using cubic L p spline interpolation is considered in [18]. Shape preserving characteristics of

splines [19] due to the large effect of L1 and L2 norm and curvature are considerable important especially when polar
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coordinates are used. A bicubic-spline interpolation representation on a spherical domain using a no-uniform grid
was presented in [14]. The dynamics of a multi-axis robot considered in [1] is addressed through the development of
the Lagrange–Euler equations of motion and by finding the optimal torque at each joint using analytical optimization
analysis for a given set of parameters.

1.4. Scope and contribution of this paper

In this paper, the smooth trajectory generation along a prescribed number of via-points, inverse kinematics, and
ptimal trajectory planning for a redundant robotic manipulator is considered. The approached developed in this
tudy is based on the combinations of adequate geometric considerations – such as manipulators geometry and
elated coordinate systems – and the use of spherical polar piecewise cubic interpolants in the modeling of the
orward and inverse kinematic and dynamics.

While previous approaches to the kinematics and dynamics of robotic manipulators allows to modeling by
ix-matching either
- a zenithal gnomic trajectory located on a projective plane and the related azimuthal trajectory generated by

olar piecewise interpolation on the azimuthal angles [7]
- radial trajectory generated by polar piecewise interpolation and the related height in a normal plane unfolded

long the radial trajectory of the motion [9]
the newly method presented in this paper generates a more efficient computational approach to mix-match the

adial distance (using the azimuthal angles) and the corresponding height (using the corresponding polar angles
omputed in the rotating azimuthal plane), that is, only the azimuthal and corresponding polar angles are considered.

Thus, the trajectory of the end effector along a prescribed number of via-points is generated in a system of
pherical coordinates by merging the Hermite-type polar interpolation functions computed in the rotating azimuthal
nd radial projective planes. The smoothness of the path is acquired by the use of quintic Hermite piecewise
nterpolation holding continuous derivatives. Optimization solutions to minimize the joint velocities, the end-effector
ositioning error, the traveling time and mechanical energy, or the consumed power, are surveyed.

The effectiveness of the method developed in this study is demonstrated by means of numerical simulations
pplied to the computation of the joints trajectory (and the optimal trajectory) of the manipulator end effector
ith end-effector position error minimization. To demonstrate the approach numerical computations and Matlab

imulations have been performed and the results verified.

.5. Organization of the paper

The mathematical modeling of the redundant robotic manipulator including the trajectory generations, the
arametric model, the forward kinematic equations, the inverse kinematics put forward in a rotating azimuthal plane,
nd the inverse dynamics, is presented in Section 2. Section 3 considers some possible optimization techniques such
s the damped least square (DLS) approach, the end-effector position error minimization, or the minimum consumed
ower. The results presented in Section 4 discuss the model-based performance of the redundant robotic manipulator
nd the calculated optimized trajectories, followed in Section 5 by the conclusion.

. Mathematical modeling

.1. Trajectory generation

The three dimensional position vector connecting the origin of the Cartesian reference frame Oxyz and the
ia-points Pm, m = 1, . . . , n of the trajectory of the end effector is expressed by

rPm = rPm cos θPm i + rPm sin θPm j + zPm k (1)

here rPm = d (O, Pm) is the radial distance from the origin O to the projection of the point Pm on the radial plane
Oxy, zPm is the height from the via-point Pm to the radial plane Oxy, and θPm is the azimuthal angle specified in
an anticlockwise direction.

To interpolate between the data specified by the via-points (Fig. 1.a), one can consider the combination between

a polar piecewise interpolation which approximates the projected planar polar trajectory (r (θ)) on the plane Oxy
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Fig. 1. Trajectory of the end effector expressed as a combination of piecewise polar Hermite-type function.
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(Fig. 1.c) and a polar piecewise interpolation which approximate the height of the trajectory (z (ϕ)) in the rotating
azimuthal plane (Fig. 1.b) using the associated polar angles ({ϕi }i=0,Ni

). The projected planar polar path on the
lane Oxy (Fig. 1.c) can be expressed as a quintic Hermite-type polynomial [2,6,8,10,32] defined by

r (θ) =

q∑
k=0

ui
k (θ − θi )

k (2)

where q is the polynomial order (order 5 has been considered here), ui
0 = r i is the distance length between origin O

and the via-point Pi , ui
1 = ṙ i , ui

2 = r̈ i , ui
3 =

1
2hui

[r̈i+1 − 3r̈i ]+
2

h2
ui

[5ri − 3ṙi − 2ṙi+1], ui
4 =

1
2h2

ui
[−2r̈ i+1 + 3r̈i ]+

1
h3

ui

[−15ri + 8ṙi + 7ṙi+1], ui
5 =

1
2h3

ui

[r̈i+1 − r̈i ]+
3

h4
ui

[2ri − ṙi − ṙi+1], ui+1
0 = r i+1 is the distance from the origin

O to the via-point Pi , ui+1
1 = ṙ i+1, hui = θi+1 − θi , and ri =

1
hui

[ri+1 − ri ].
Trajectory height of the trajectory of motion is computed in the rotating plane (Fig. 1.b). The computation is

performed using piecewise a piecewise polar interpolant expressed as a quintic Hermite polynomial [2,6,10,32]
defined by

z (ϕ) =

q∑
k=0

si
k (ϕ − ϕi )

k (3)

where si
5 =

1
2h3

si

[z̈i+1 − z̈i ] +
3

h4
si

[2zi − żi − żi+1], si
4 =

1
2h2

si
[−2z̈i+1 + 3z̈i ] +

1
h3

si

[−15zi + 8żi + 7żi+1],

i
3 =

1
2hsi

[r̈i+1 − 3z̈i ] +
2

h2
si

[5zi − 3żi − 2żi+1], si
2 = z̈i , si

1 = żi , si
0 = zi , hsi = ϕi+1 − ϕi , and zi =

1
hui

[zi+1

−zi ].

2.2. Parametric model

One can parameterize the geometric path of the end using the cylindrical coordinate

r = r (θ) cos (θ) i+r (θ) sin (θ) j + z (ϕ) k (4)

or equivalent

r =

(
5∑

k=0

ui
k (θ − θi )

k cos (θ)

)
i +

(
5∑

k=0

ui
k (θ − θi )

k sin (θ)

)
j +

5∑
k=0

si
k (ϕ − ϕi )

k k (5)

One can now calculate the velocity vector [10] as v=ṙ, that is

v =
(
−r θ̇ sin (θ) + ṙ cos (θ)

)
i +

(
r θ̇ cos (θ) + ṙ sin (θ)

)
j + ż (ϕ) k

=

[
θ̇

5∑
k=0

ui
kk (θ − θi )

k−1 cos (θ) −θ̇

5∑
k=0

ui
k (θ − θi )

k sin (θ)

]
i

+

[
θ̇

5∑
k=0

ui
kk (θ − θi )

k−1 sin (θ) +θ̇

5∑
k=0

ui
k (θ − θi )

k cos (θ)

]
j

+

[
ϕ̇

5∑
k=0

si
kk (ϕ − ϕi )

k−1

]
k (6)
287
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where ṙ (θ ) and ż(ϕ) are calculated from Eq. (2) and respectively Eq. (4) with ṙ (θ ) = θ̇
∑5

k=0 ui
kk (θ − θi )

k−1 and
ż(ϕ) = ϕ̇

∑5
k=0 si

kk (ϕ − ϕi )
k−1.

The acceleration vector [10] can be calculated as

a =

[(
θ̈

5∑
k=0

pi
kk (θ − θi )

k−1
+θ̇2

5∑
k=0

pi
k (k − 1) k (θ − θi )

k−2
−θ̇2

5∑
k=0

pi
k (θ − θi )

k

)
cos (θ)

]
i

−

[(
2θ̇2

5∑
k=0

pi
kk (θ − θi )

k−1
+θ̈

5∑
k=0

pi
k (θ − θi )

k

)
sin (θ)

]
i

+

[(
θ̈

5∑
k=0

pi
kk (θ − θi )

k−1
+θ̇2

5∑
k=0

pi
k (k − 1) k (θ − θi )

k−2
−θ̇2

5∑
k=0

pi
kk (θ − θi )

k

)
sin (θ)

]
j

+

[(
2θ̇2

5∑
k=0

pi
kk (θ − θi )

k−1
+θ̈

5∑
k=0

pi
k (θ − θi )

k

)
cos (θ)

]
j

+

[
ϕ̈

5∑
k=0

si
kk (ϕ − ϕi )

k−1
+ϕ̇2

5∑
k=0

si
kk (k − 1) (ϕ − ϕi )

k−2

]
k (7)

where the second derivatives r̈ (θ ) and z̈(ϕ) are calculated using

r̈ (θ ) = θ̈

5∑
k=0

ui
kk (θ − θi )

k−1
+ θ̇2

5∑
k=0

ui
k(k − 1)k (θ − θi )

k−2

z̈(ϕ) = ϕ̈

5∑
k=0

si
kk (ϕ − ϕi )

k−1
+ ϕ̇2

5∑
k=0

si
k(k − 1)k (ϕ − ϕi )

k−2. (8)

2.3. Forward kinematic equations and inverse kinematics in the rotating radial plane

To describe the forward kinematics in the rotating azimuthal plane, the geometrical parameters of the robotic
arm modeled using n rigid rods (links) are needed. Each rod i has the length di and is linked to the rod i + 1 with
a joint. The position of each link (center of the mass or the end of the link) can be calculated using the lengths di

of each link and the relative angles Φi between the links. The absolute angle Φ showing the end-effector direction
is the summation of all the relative angles Φi between the links, as shown in Fig. 2

To describe the orientation of the rotating azimuthal plane a moving (rotating about the Oz axis) reference frame
Oxr yr zr described by the unit vectors [ir , jr , kr ] is chosen. The unit vectors [ir , jr , kr ] of the moving reference frame
can be computed with the unit vectors [i, j, k] of the fixed frame Oxyz by the use the Euler angles⎡⎣ ir

jr

kr

⎤⎦ =

⎡⎣ cos (θ) − sin (θ) 0
sin (θ) cos (θ) 0

0 0 1

⎤⎦⎡⎣ i
j
k

⎤⎦
For the robotic arm with i links, the kinematic equations written in the rotating azimuthal plane described by the
unit vectors [ir , jr , kr ] can be expressed as

r (θ) =

i∑
j=1

di cos

( j∑
k=1

Φi

)
,

z (ϕ) =

i∑
j=1

di sin

( j∑
k=1

Φi

)
,

Φ =

i∑
Φi (9)
k=1
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p

I
a

Fig. 2. Robotic arm modeled using n rigid links in the rotating azimuthal plane. The trajectory of the end effector in the rotating azimuthal
lane is also shown.

n following the planar geometric path from one position to another the velocity of the end effector in the rotating
zimuthal plane can be written as

ṙ (θ) = −

i∑
j=1

di

( j∑
k−1

Φ̇i

)
sin

( j∑
k=1

Φi

)
,

ż (ϕ) =

i∑
j=1

di

( j∑
k−1

Φ̇i

)
cos

( j∑
k=1

Φi

)
,

Φ̇ =

i∑
k=1

Φ̇i (10)

For a robotic manipulator with i = 3 links of lengths d1, d2 and d3 the velocity and the acceleration between the
end effector and joints calculated in the rotating azimuthal plane can be written as⎡⎣ ṙ (θ)

ż (ϕ)

Φ̇

⎤⎦ = J (Φ)

⎡⎣ Φ̇1

Φ̇2

Φ̇3

⎤⎦ (11)

⎡⎣ r̈ (θ)

z̈ (ϕ)

Φ̈

⎤⎦ = J (Φ)

⎡⎣ Φ̈1

Φ̈2

Φ̈3

⎤⎦+ J̇ (Φ)

⎡⎣ Φ̇1

Φ̇2

Φ̇3

⎤⎦ (12)

The Jacobian matrix of the robotic manipulator J (Φ) in Eq. (11) is

J (Φ) =

⎡⎣ −S1 −S2 −S3
C1 C2 C3

⎤⎦ (13)

1 1 1
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where Sm and Cm are calculated with

Sm =

n=3∑
j=m

d j sin

( j∑
k=1

Φi

)

Cm =

n=3∑
j=m

d j cos

( j∑
k=1

Φi

)
(14)

for any m = 1, 2, 3.
Inverse kinematics is the method used to compute the coordinates of the joints of the robotic arm for a given set

of end effector coordinates. The calculation of the joint angles Φi, i=1,2,3, for a robotic manipulator with 3 links
in the rotating azimuthal plane described by the unit vectors [i1, j1, k1] frame is given by

Φ1 = tan−1
(

NΦ

DΦ

)
− cos−1

⎛⎝D2
Φ + N 2

Φ + d2
1 − d2

2

2d1

√
D2

Φ + N 2
Φ

⎞⎠
Φ2 = π −

(
d2

1 + d2
2 − (DΦ)2

− (NΦ)2

2d1d2

)
Φ3 = Φ − Φ1 − Φ2 (15)

where NΦ and DΦ are calculated by

NΦ = z(ϕ) − d3 sin (Φ) =

q∑
k=0

si
k (ϕ − ϕi )

k
− d3 sin (Φ)

DΦ = r (θ ) − d3 cos (Φ) =

q∑
k=0

ui
k (θ − θi )

k
− d3 cos (Φ)

From Eqs. (11) and (6) the velocity of the joints for a robotic manipulator with 3 links following the desired
trajectory in Eq. (1) can be calculated as⎡⎣ Φ̇1

Φ̇2

Φ̇3

⎤⎦ = [J (Φ)]−1

⎡⎣ θ̇
∑q

k=0 ui
kk (θ − θi )

k−1

ϕ̇
∑q

k=0 si
kk (ϕ − ϕi )

k−1

Φ̇

⎤⎦ . (16)

2.4. Inverse dynamics

Analogue to kinematics, one can find the solution to dynamics analysis problems by forward (or direct) dynamics
or by inverse dynamics. While forward dynamics determine the motion of robot manipulator using the specified
external forces and torques the inverse dynamics assess the joint torques considering the acceleration, velocity and
position of the end-effector.

The inverse dynamics of the robotic manipulator [21,26,27] can be written using

τi =
d
dt

(
∂L
∂Φ̇i

)
−

∂L
∂Φ̇i

(17)

where L(Φ, Φ̇) = T (Φ, Φ̇) − U(Φ) represents the Lagrangian quantified as the difference between total kinetic T

and potential U energy of the manipulator.
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The total kinetic and potential energy of the robotic manipulator [26] with n links is calculated with

T =

n∑
i=1

Ti

=

n∑
i=1

(
1
2

mi vT
ci

vci +
1
2

miω
T
i Iiωi

)
=

1
2
Φ̇THΦ̇

U =

n∑
i=1

−mi gT r0ci (18)

here r0ci represents the position vector of the centroid of link i, vci = JL
i Φ̇ is the velocity vector, ωi = JA

i Φ̇ is the
ngular velocity vector, JL

i is the centroidal linear velocity Jacobian matrix, JA
i is the centroidal angular velocity

acobian matrix, Ii is the inertia matrix of the ith link, H =
∑n

i=1

(
mi JLT

i JL
i + JAT

i Ii JA
i

)
is the inertia matrix.

Replacing Eq. (18), i.e., the values of the kinetic and potential energy, and the components of the multibody
nertia matrix H =

{
Hi j
}
, in Eq. (17) one can obtain

τi =

n∑
i=1

Hi j Φ̈ j +

n∑
i=1

∂ Hi j

∂Φk

(
Φ̇ j
)2

+
1
2

n∑
j=1

n∑
k=1

∂ H jk

∂Φi
Φ̇ j Φ̇k + G i (19)

r equivalent in a matrix form [27]

τi = M

⎡⎢⎣ Φ̈1
...

Φ̈n

⎤⎥⎦+ Ĉ

⎡⎢⎣ Φ̇1
...

Φ̇n

⎤⎥⎦+ C̃

⎡⎢⎣ Φ̇1Φ̇2
...

Φ̇n−1Φ̇n

⎤⎥⎦+

⎡⎢⎣ G1
...

Gn

⎤⎥⎦ (20)

here M is the matrix of inertia, Ĉ and C̃ are the centripetal and the Coriolis force matrices, and G i =
∂U
∂Φi

is the

ravity vector. The total kinetic energy and potential energy for a robotic manipulator with 3 links of lengths d1,
2 and d3 can be calculated as

T =

3∑
i=1

(
1
2

miv
2
i +

1
2

mi

i∑
k=1

Φ̇k

)

U = −

3∑
i=1

mi g
i∑

k=1

1
2

d
i
sin

(
i∑

k=1

Φi

)
(21)

where Φi was calculated in Eq. (15) and Φ̇k was calculated in Eq. (16), and the torque τi can be calculated similar
to [1].

3. Optimization techniques

Since the inverse kinematics of the robotic arm is undetermined, an infinite number of solutions exist depending
upon the orientation of the end effector described by the angle Φ which can be expressed as piecewise polynomial
with a zero angular velocity at the start and at the end of the task.

3.1. Damped least square (DLS) method

The DLS method generally used to solve non-linear least squares problems was considered in inverse kinematics
to minimize large values of joint velocities by diverging from the desired path [13].

The use of damping factor is relevant in assessing the viability and accuracy of joint velocities in order to avoid
large deviations of the trajectory by considering the function objective of the optimization problem formulated as

R = ∥v − JAΦ̇∥ + λ∥Φ̇∥
2 (22)
i
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where ∥.∥ is the associated euclidian norm and the damping factor λ is determined as a function of the smallest
singular value of JA

i used to optimize R. A value of 0.02 was considered along the study for the damping factor λ.

.2. End-effector position error minimization

Considering joint angle displacements between successive locations the end-effector positioning error could be
inimize [2] by considering the function objective of the optimization problem defined as

R = w1Ee + w2D j + w3Ve + w4V j (23)

here wi are weighting factors to satisfy
∑n

i=1 wi = 1. The variable Ee is calculated using Ee =
∑n

i=1√(
r (θ ) − rg(θ )

)2
+
(
z(φ) − zg(φ)

)2, where rg(θ ) and zg(φ) are the generated end effector positions in the rotating

azimuthal plane. The variable D j calculated as D j =
∑n−1

i=1

(
Φi+1

j − Φi
j

)2
is used to minimize joint displacement

long the trajectory, j is the related joint link, i and i+1 are two successive positions of the link j . The variable Ve is
the velocity of the end effector, and the variable V j =

∑n−1
i=1

⏐⏐⏐Φi+1
j − Φi

j

⏐⏐⏐ represents the angular joint displacement.

.3. Minimum consumed power

To advance the end-effector along the appropriate trajectory with minimum consumed power [27] the objective
f optimization problem could be presented as

R =

∑⏐⏐Φ̇2
i τ 2

i

⏐⏐ (24)

where τi and Φ̇i are the applied torque and the angular velocity of the i th joint.

.4. Optimal traveling time with minimization of the mechanical energy

Optimal traveling time [26] of a robotic manipulator is obtained by minimizing the associated time intervals t1,
2, . . . , tn corresponding to the motion between the via-points Pm, m = 1, . . . , n of the trajectory.

The total time computed along the trajectory [26] that maximize the working speed of the robotic manipulator
an by presented as an optimization problem defined for the time intervals ti as

R = δ1

n−1∑
i=1

ti + δ2

n−1∑
i=1

(
τ T

i Φ̇i
)2

ti (25)

ubject to velocity, acceleration and jerk constraints [26]. The variables δ1 and δ2 in Eq. (25) are the weighting
actors usually taken between 0 and 1, the variables τi are the applied torques, and the variables Φ̇i represent the
ngular velocities of the rotational joints.

. Results

The smooth end-effector trajectory and joints trajectory generation, as well as the optimization of joints trajectory,
re implemented in Matlab [20] using a numerical approach. For the numerical study the robotic manipulator is
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Fig. 3. Trajectory of the end effector (black) and trajectory of the 2nd joint (blue). (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

Table 1
Via-points i to be reached by the end-effector, for radial distance ri (decimeters) polar angles θi (degrees) and
heights zi ((decimeters)).

Var Value

i 1 2 3 4 5 6 7
θi 80 140 200 260 320 380 440
ri 2 6 2 6 6 6 2
zi 2 4 2 4 2 4 2

composed of 4 links, link 1 is as vertical rotating link of height d1 = 0.005 m and radius r1 = 0.025 m, link 2
f length d2 = 0.2 m and radius r2 = 0.0035 m, link 3 of length d3 = 0.3 m and radius r3 = 0.0035 m, and the
nd-effector link 4 of length d4 = 0.02 m and radius r4 = 0.0025 m, all of them made from steel with a density
f 7900 kg/m3. The moment of inertia about the central axis for link 2 and link 3 are Icentral−axis2 = 3.72 kg m2,
nd link 3 is having Icentral−axis3 = 5.58 kg m2. Using the polar angles θi , the radial distances ri and the heights

z associated to the azimuthal angles, a smooth end-effector trajectory of the robotic arm is generated along the
onsidered via-points denoted by i .

The trajectory is a merger of the coordinates of the radial distance in the plane Oxy derived by Hermite piecewise
olar interpolation in Eq. (1), and the coordinate of the height calculated in the rotating azimuthal plane by the
ermite piecewise polar interpolation shown Eq. (4). To illustrate end-effector trajectory and joints trajectory
eneration, as well as the optimization of joints trajectory, three numerical examples are considered.

xample 1
In this case all the via points could be potentially located on a tricuspid path (red dotted line) and the end effector

hould connect the via points by a smooth trajectory. For simplicity just 6 points have been considered, with three
f them being the vertices of the imaginary path. The radial distances ri (in decimeters) associated to the polar
ngles θi (in degrees) and the end effector heights zi (in decimeters) are presented in Table 1.

The algorithm connected the via points i (Table 1) by a 3D end-effector path (black curve) as shown in Fig. 3. The
nd joint trajectory (blue curve) is also shown in Fig. 3. Studying the resulting path of end-effector (black curve),
ne can see that the trajectory does not followed the imaginary tricuspid path when crossing the singularities at the
293
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Fig. 4. (a) trajectory of the end effector (black), joints (blue and green) and, optimized trajectory of the joint (red), (b) trajectories of end
ffector and joints, and manipulator arm configuration. (For interpretation of the references to color in this figure legend, the reader is
eferred to the web version of this article.)

Table 2
Via-points i to be reached by the end-effector, for radial distance ri (decimeters), polar angles θi (degrees), and
heights zi (decimeters).

Var Value

i 1 2 3 4 5 6 7 8 9 10
θi 20 50 90 120 160 220 260 300 340 360+20
ri 3 3 3 3 1.5 3 3 3 3 3
zi 4 4 4 4 4 4 4 4 4 4

vertices (cusp singular points where the motion of the end-effector is very slow) and instead created a semicircular
path (as expected) in order to produce smoothness.

Example 2
In this case all the via point are planar (on a plane parallel with the Oxy plane) and all but one are located on

a circular trajectory as shown in Fig. 4. The radial distances ri , associated polar angles θi and end effector heights
zi – linked to the related via-points the robotic manipulator should follow – are presented in Table 2.

The smooth 3D end-effector path (black curve), joints’ trajectories (green and blue curves) and optimized joint
trajectory (red curve) - for the robotic manipulator following the via-points positions in Table 2 - are shown in
Fig. 4.a. Fig. 4.b presenting the end effector and joints’ trajectories also presents the manipulator arm configuration
(links) along the motion.

Example 3
This is a general case showing random via points located in the 3D space (Fig. 5.a and Fig. 5.b). In this case

the radial distances ri which are correlated with the polar angles θi and the end effector heights zi are shown in
Table 3.

For this general case the base of the manipulator is located at the origin of the reference frame. As shown
in Fig. 5.a the algorithm connected the via points i (Table 3) by a 3D end-effector path (black curve). Fig. 5.a
also presents the joints’ trajectories (blue and green curve) and optimized 2nd joint trajectory (red curve). Fig. 5.b
presenting the end effector and joints’ trajectories also presents the manipulator arm configuration (links) along the
motion, while Fig. 5.c presents the relative angles (of the links) measured in the rotating azimuthal plane along the

azimuthal angle.
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m
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Fig. 5. (a) trajectory of the end effector (black), joints (blue and green) and optimized trajectory of the joint (red), (b) trajectories and
anipulator arm configuration, and (c) Relative angles (of the links 2 and 3) along the robotic arm trajectory in the rotating azimuthal plane.

For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 3
Via-points i to be reached by the end-effector, for radial distance ri (decimeters), polar angles θi (degrees), and
heights zi (decimeters).

Var Value

i 1 2 3 4 5 6 7 8 9 10
θi 20 50 90 120 160 220 260 300 340 360+20
ri 3 2.2 2.7 2.9 1.5 3 2.1 2.8 3 3
zi 4 3.7 3.4 4 3.6 3.1 3.1 3.5 4 4

The direct connection (distances) between the origin O of the associated Cartesian reference frame and some
random points along the end effector trajectory are shown in Fig. 6.a. For all the connected distances (some presented
in Fig. 6.a) the angle against the projected horizontal directions is shown in Fig. 6.b.
295
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Fig. 6. (a) Direction rays towards the end-effector trajectory (from the origin O), and (b) Angle of the end-effector trajectory relative to
the origin O in the rotating azimuthal plane.

Fig. 7. Velocity of the end effector along the obtained trajectory. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

The velocity projection on the Oxy, Oxz, and Oyz planes denoted by vxy (red curve), vxz (blue curve), and
vyz (green curve) is shown in Fig. 7. The simulation in Fig. 7 have shown a continuous velocity profile for each
velocity projection, that is, a strong evidence of a smooth trajectory.

5. Conclusion

In this study, the 3D path planning along with the inverse kinematics and dynamics of a redundant robotic
manipulator is examined. The developed approach consider manipulator geometry and a spherical coordinate system
for the initial smooth trajectory generation along the 3D via points by merging Hermite-type polar piecewise
interpolation curves computed in the fixed radial and rotating azimuthal planes. While previous approaches addressed
the modeling and simulation by combining (a) the zenithal gnomic trajectory (located on a projective plane) and
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the related azimuthal trajectory (generated by polar piecewise interpolation on the azimuthal angles)[9], or (b) the
radial trajectory (generated by polar piecewise interpolation) and the related height (calculated in a normal plane
unfolded along the radial trajectory of the motion)[6], the actual approach generates a more efficient computational
approach by combining the radial distance (obtained by using the azimuthal angles) and the corresponding height
(obtained by using the corresponding polar angles computed in the rotating azimuthal plane).

Trajectory smoothness achieved by quintic Hermite piecewise interpolation unveiling continuous derivatives and
enerated by inverse kinematics or dynamics are accurate and suitable to a numerical implementation. Optimization
olutions to minimize the joint velocities, the end-effector positioning error, the traveling time and mechanical
nergy, or the consumed power, are surveyed. Numerical examples are presented to assess the smooth trajectory
lanning of the end effector, computation of the joints trajectory and the optimal trajectory with end-effector position
rror minimization and illustrate the proposed approach. The presented examples convey that the trajectory planning,
nd inverse kinematics and dynamics used in the proposed approach could be successfully applied on the redundant
obotic manipulator, consequently confirming the efficacity of the approach presented in this study.
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