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Abstract— In more recent years, credit card fraudulent 

transactions became a major problem. These fraudulent 

transactions not only incur huge monetary losses to 

commercial banks and financial institutions, but also stress and 

trouble to the lives of customers. Furthermore, with the 

passage of time this issue is increasing and the monetary loss is 

expected to increase significantly. However, efficient fraud 

detecting and prevention measures can trim down the 

monetary loss due to financial fraud activities. Credit card 

fraud detection has gained much interest from academia. 

Generative Adversarial Networks (GANs) are an effective class 

of generative approaches that has been able to generate 

synthetic data to assist with the classification of credit card 

fraudulent activities. In this research study we’re going to 

compare architectures of various GAN models which 

demonstrate the evolution of these models. It was observed that 

GANs have received much attention from researchers and also 

attained promising results in the field of credit card fraud 

detection.  

Keywords—component, GANs, hyperparameter setting, 

Imbalanced data, fraud detection 

I. INTRODUCTION 

Credit card fraud is defined as use of someone else’s 
credit card to steal money or property. Credit card fraud is 
linked with identity theft and this fraud occur when someone 
use forged card to buy goods and services. The most 
occurring credit card frauds are application fraud, 
shoplifting/ stolen fraud, account takeover fraud, and card 
not present fraud. 

Several deep learning models were introduced by 
researchers to deal with credit card fraud. However, it is 
imperative to mention that there still may have deficiencies 
in these proposed models, specifically supervised algorithms 
as they need balanced datasets of both legal and illegal credit 
card transactions. In credit card fraudulent instances, the 
number of legitimate instances is much higher than the 
illegal transactions. This difference between the ratio of 
legitimate and fraudulent transactions create the issue of 
imbalance classification, in which one class is very smaller 
than the other class. The distribution of fraudulent and non-
fraudulent cases is highly skewed. Since, the distribution 
ratio of different classes in the dataset play a vital role in 
model precision and accuracy, pre-processing of the data is 
important. Machine learning algorithms, such as GANs 
generate synthetic credit card datasets in order to improve the 
statistical dispersion between both the fraudulent and non-

fraudulent transactions. As a result, financial institutions can 
easily understand the state of distribution of the data. It is 
noteworthy to mention that these models do not work 
efficiently to detect fraudulent transactions as the difference 
between the ratios of legal and illegal transactions is very 
high. However, many researchers have introduced 
Generative Adversarial Network (GAN) based frameworks 
for detecting fraud to address the above issues.  

The Generative Adversarial Networks (GANs) generate 
synthetic data to support the classification of credit card 
illegitimate instances. This neural based network is based on 
the concept of game theory. The two players are a 
Discriminative D model and a Generative G model. 
Generally, both the G and the D are Multi-layer Neural 
Networks (MNNs), where the role of G is to learn the 
distribution of instances. On the other hand, the role of the D 
model is the estimation of the probability that an instance 
occurs from the original generated data [1]. 

Fig. 1. GAN framework 

The figure 1 shows the basic framework of conventional 
GAN approach. In figure 1, the noise z is randomly 
generated, while G(z) indicates how G attempts to learn a 
distribution PG from the distribution of noise Pz and makes 
PG  closer to the distribution of real-world data, which is 
denoted by Pdata. On one hand, the Discriminator attempts to 
spot whether the sample is fake or real. On the other hand, 
input is needed to adjust both discriminator and generator till 
the stage where the discriminator fails to discriminate 
between the real-world data and the generated data while 
training. As a consequence, we can attain the optimal point 
where Pdata is equal to PG.  
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Researchers argue that GANs are a more fitting and 
effective technique for handling the imbalanced class issue 
compared to other machine learning approaches. In addition, 
it is highly robust towards overlapping and overfitting due to 
its ability to understand hidden structures of data and its 
flexibility. 

Fraud detection mechanism is crucial in various 
important and sensitive fields, such as financial institutions. 
Hence, fraud detection is a topic that receives much attention 
from researchers and policymakers. Several GAN based 
variants have been introduced in recent years to address this 
issue. Some of the most prominent methods are SDG GANs, 
LS GANs, NS GANs, and WS GANs, which are briefly 
explained in this paper.  

The financial sector is among the leading segment 
influenced by the recent advancements in Artificial 
Intelligence. More accurately, machine learning algorithms 
have been introduced to detect monetary frauds in financial 
institutions. Machine learning algorithms can be categorized 
into classification and resampling algorithms. The widely 
employed classification machine learning techniques in the 
credit card fraud detection domain are Naïve Bayes, Random 
forest, K-nearest neighbour, Support Vector Machine 
(SVM), decision tree and Artificial Neural Networks. These 
methods can be employed as computational effective tools 
for detecting credit card based fraud. On the other hand, the 
most widely used non-GAN based resampling techniques are 
SMOTE, ADASYN, Borderline-SMOTE, under-sampling, 
over-sampling and Borderline SMOTE SVM. 

 

II. SYNTHETIC DATA GENERATION GAN 

The discriminator and generator of the SDG-GAN both 

are convolutional networks with an MLP architecture in the 

SDG-GAN framework. A typical GAN generator seeks to 

produce false data that closely resembles the genuine 

distribution. A normal GAN's discriminator determines if a 

generator's input is genuine or not. It is essential to train the 

GAN to assess the scattering of data before creating new 

instances of the minority class. After the training phase has 

been finished, the generator's capabilities can be used to 

produce fresh training sets. 

In addition, SDG GAN framework is based on conditional 

GAN, where the G is a feed-forward Neural Network that 

attempts to learn the actual data distribution. This novel 

technique employed a feature matching technique to train the 

G. The feature matching technique transforms the cost 

function for the G to minimize the statistical dissimilarities 

between the features of the synthetic and real data. This step 

alters the scope of the network from tricking the opposite to 

matching features in the actual data.    

In the SDG-GAN structure, the discriminator and 

generator are both MLP-configured convolutional channels. 

A typical GAN generator seeks to generate fictitious data 

that closely resembles the true distribution. The discriminator 

in a standard GAN decides whether or not the input from a 

generator is genuine. The loss function of SDG GAN may be 

expressed as 

minGmaxD⃒⃒Ex~pdataf(x y⁄ )-Ez~pz(z y⁄ )
f(G(z)⃒⃒⏟                    

FM Loss

+2
2  

       Ex~pdata[ log (D(x y⁄ )) ] 

 

(1) 

 

The binary cross entropy between the true class label, y 
(0, 1), and the predicted class probability make up the 
remaining portion of the objective function, where FM is the 
feature matching loss. The conditional distribution is 
estimated using the cGAN architecture, where px|y is 
modified to produce samples from the minority class. The 
SDG-GAN adapts feature matching loss rather than ordinary 
loss. In order to reduce the statistical disparities between the 
characteristics of the actual data and the produced data, 
feature matching adjusts the objective functions for the 
generator [2]. As a result, the generative network's focus 
shifts from deceiving the adversary to matching features in 
the actual data. 

A. SDG GAN Hyper Paramter Settings 

With size dimensions set to 50, the noise parameter 
dispersion was configured as a Gaussian distribution. Both 
hidden units of the discriminator, as well as the generator, 
have a dropout ratio of 0.2. The batch size was adjusted to 
64, and the epoch number to 100. In respect of the input 
signal, rectified linear units were employed for the hidden 
nodes, with stochastic for the discriminator's output nodes 
and tanh for the generator's output nodes. It is argued that for 
the training datasets, the Adam optimizer was employed [3]. 

TABLE I.  HYPER PARAMETER SETTING FOR SDG GANS 

Hyper Parameter Setting 

 Parameter Value 

Learning Rate 0.0001 

Output Optimizer Adam 

Epochs 100 

Batch Size 64 

Generator Layers 
(Noise, 128), (128, 

64), (64, datasize) 

Discriminator Layers 

(datasize, 128), 

(128, 64), (64, 32), 

(32,1) 

Activation function ReLU 

Noise Distribution N (0,1) 

Noise 50 

 

III. LEAST SQUARE GAN 

Conventional GANs uses sigmoid cross-entropy loss 
function for the D, but the adoption of this loss function may 
face the issue of vanishing gradient while updating the G. 
Conversely, the LS-GAN uses the least square loss function 
for the D. This loss function has capability to move the fake 
instances to the decision boundary. On the basis of this LS-
GAN trait, this novel framework has ability to generate 
samples closer to real data. Furthermore, the learning process 
of LS-GAN is more stable than conventional GANs.  
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Furthermore, the issue of the vanishing gradient problem 
in traditional GANs will arise for data that are on the proper 
side of the decision function but are nonetheless removed 
from the actual data due to this loss function. Least-square 
GANs are used to solve this issue. Assume that the 
discriminator used by the Least - square GAN is coded using 
the a-b coding system, in which a and b represent the 
identifiers for false and actual data, accordingly [4]. The loss 
function for the "D" is different in the least squares, GAN, a 
variation of the standard approach. By employing the least 
square error as the loss, this approach demonstrates that the 
model trains more steadily and is better equipped to tackle 
the gradient vanishing problem than the vanilla technique. 

 minDV
LSGAN

(D)= 
1

2
Ex~pdata(x)[(D(x)-b)

2]+ 

                                                       
1

2
Ez~pz(Z)[(D(G(z))-a)

2
] 

(2) 

 

minGVLSGAN(G)=
1

2
Ez~pz(z)[(D(G(z))-c)

2
] 

(3) 

 where b is the label for real data, a for fake data, 
and c is used as a label for testing the discriminator with 
generator samples. i.e. b = 1, a = 0 and c = 1  

minDV
LSGAN

(D)= 
1

2
Ex~pdata(x)[(D(x)-1)

2]+ 

                                                       
1

2
Ez~pz(Z)[(D(G(z)))

2
] 

(4) 

 

minGVLSGAN(G)=
1

2
Ez~pz(Z)[(D(G(z))-1)

2
] 

(5) 

 The discriminator aims to reduce the overall shaped 
change between predicted and anticipated values to discern 
between legitimate transactions and malicious ones. 
Nevertheless, the generator makes an effort to minimize the 
total square discrepancy between predicted and actual 
numbers in order to make the generated credit card seem as 
realistic as feasible. 

A. Selection of Parameters  

In order to diminish the Pearson 𝜒2  divergence among 
pd+pg and 2pg, the following loss functions can be 
minimized by setting b-c=1 and b-a=2, respectively. Thus 
when Equation 2 is minimized, the Pearson 2 divergence 
among pd + pg and 2pg is minimized [4]. Setting a = 1, b = 
1, and c = 0, for instance, results in the following objective 
functions 

minDV
LSGAN

(D)= 
1

2
Ex~pdata(x)[(D(x)-1)

2]+ 

                                                    
1

2
Ez~pz(Z)[(D(G(z)) + 1)

2
] 

  (6) 

 

minGVLSGAN(G)=
1

2
Ez~pz(z)[(D(G(z)))

2
] 

(7) 

 

Setting c = b is another way to help G create samples that 
are as accurate as feasible. For instance, it may get the 
following goal functions by employing the 0-1 binary coding 
scheme: 

minDV
LSGAN

(D)= 
1

2
Ex~pdata(x)[(D(x)- 1)

2]+ 

                                                    
1

2
Ez~pz(Z)[(D(G(z)))

2
] 

(8) 

 

minGVLSGAN(G)=
1

2
Ez~pz(z)[(D(G(z)) − 1)

2
] 

(9) 

In practice, both models are employed. However, the 
equation is more common in the real world. 

IV. WS GAN 

This design modifies the default application's loss 
function and uses a weight clip to promote successful 
training. They suggest utilizing the earth mover distance to 
calculate the loss function rather than the Jensen Shanon 
divergence. This reserve measure remains constant and 
visible throughout, measuring how closely the data 
distributions from the exercise dataset and the produced 
dataset resemble each other. Because it just presents the 
distribution of the data that the generator (G) gathers and 
does not evaluate whether the data is correct or not, the "D" 
is also known as an opponent network [5]. To confirm that 
the loads in the generator adhere to Lipschitz restrictions, 
weight clipping is also employed. 

 

                               L=maxGEEx~pzD(z)) 
 

(10) 

 

 

               L=maxDEEx~prD(x)-EEx~p(z)D(G)(z))) 
(11) 

 Where, z stands for the input noise variable, D for 
the discriminator, G for the generator, and Pz for the 
Gaussian noise distribution. The real model distribution is 
represented by the sign pr. 

V. NON-SATURATING GAN 

Even though the aforesaid loss function exhibits amazing 
theoretical findings, it performs badly in real-world 
applications. The GAN struggles with convergence, 
maintaining stability throughout training, and providing a 
variety of samples. Instead of training the aforementioned 
loss function for G, it is preferable to use better gradients 
from earlier training. Non-saturating GAN is the kind of 
GAN that is most frequently utilized as a standard in 
academic studies and real-world applications (NS-GAN). 

 

                          J(G)(G)= - Ez∼pz  log D(G(z))  
(12) 

 G is a model of a probability distribution with the 
letter p. (x). A sample of this distribution is obtained by the 
generator network using a noise vector z sampled from Pz, 
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which equals x = G. (z). Although any distribution with 
sufficient variability is workable, z typically originates from 
a uniform or Gaussian distribution. The discriminator D(x) 
attempts to identify if input value x is genuine or fraudulent 
by comparing it to training data[6]. 

A. NS general Adversarial network system loss 

In order to solve the saturation issue, the generator loss 
was modified to become the non-saturating GAN Loss. 
Instead of decreasing the log of the reversed discriminator 
probability for created credit cards, the generator now 
maximizes the log of the discriminator probability for 
created credit cards. Since the Jensen-Shannon divergence-
based generator gradient works poorly in practice, a non-
saturating generator gradient is often employed in its place  

[1]. 

Fig. 2. Process of tuning hyperparameters 

Ef(p,qλ,d)=-Ez [af (d(gλ(z)))]+c (13) 

 The generator and data dispersion are frequently not 
well suited initially in training, having data from p being 
extremely improbable beneath q and vice versa. In areas 
where d has a big value, the probability mass of p and q is 
thereby concentrated. Jensen-Shannon effectively absorbs at 
its highest value in this regime, hence it is not unexpected 
that this can cause problems with efficiency. Additional f-
divergences such as KL and reverse KL do not have the 
same issues, although a different "non-saturating" generator 
gradient has nonetheless been proposed for f-GANs [7]. The 
particular adjustment is to swap out bf for af when 
computing the generator gradient in both f-GANs and GANs. 

VI. GAN TRAINING AND HYPERPARAMETER TUNING 

    A GAN comprises 2 feed-forward neural networks that 
compete with one another: a Generator G and a 
Discriminator D, with the former developing new candidates 
and the latter assessing their merit. Typically, the two 
networks' deep neural network [8] have many layers linked 
so that the inputs for units within the layer over each layer 
are the output of the units within the layer. Layers can 
optimally be related to degrees of conceptualization or 
compositional abilities by seeing what is learned at each 
level as a depiction of the original input. Different levels of 
abstraction can be achieved by altering the number and size 
of the layers [9]. The basic purpose of GANs is to improve 

generative models by forcing them to compete against 
discriminative models that aim to distinguish between 
produced instances and actual examples [10]. The 
discriminator learns to identify instances created by the 
generator or not by taking input of random noise z, 
transforming it through a function, and producing examples. 

The majority of hyperparameters are what are known as 
tuning parameters though their values need to be properly 
tuned because the best values depend on the dataset at hand 
[11]. Further, they argued that over-fitting is a key idea in 
parameter tuning; it occurs when parameter values for 
complicated rules seem to generalize the training data, 
producing forecasting rules that are overly specific to the 
training data. These rules perform extremely well on the 
training data but are likely to perform worse on independent 
data. By employing a test dataset or cross-validation 
techniques for tuning, it is possible to partially prevent the 
selection of such inappropriate parameter values. 

    A hyperparameter governs the process of learning, and 
as a result, the values of these parameters have a direct 
impact on some other training sets such as weights and 
biases, which in turn affects how well the model works [12]. 
By tweaking these hyperparameters, any machine learning 
model's accuracy is frequently increased. Therefore, a deep 
learning researcher must have a solid understanding of these 
hyperparameters. Further, the authors argued that 
hyperparameter affects training data performance in the 
following ways. 

When compared to stochastic gradient descent with the 
same learning rate, adaptive learning rate optimizers such as 
Adam, AdaMax, and RMSprop were found to be more 
successful at learning and achieving greater accuracy more 
quickly (0.001). 

VI.RESULTS AND DISCUSSION 

      In this digital era, it is essential for financial institutions 

to detect credit card frauds. On the other hand, researchers 

argue that machine learning techniques can be used to 

resolve this problem. However, many machine learning 

algorithms have multiple weaknesses and are unable to 

detect credit card based fraud effectively. For instance, 

many supervised techniques are unable to detect fraud 

patterns during credit card patterns as they need balanced 

datasets of both legal and illegal transactions. On the other 

hand, the difference between the ratios of legal and illegal 

transactions is very high. 

     Generative Adversarial Networks have achieved 

significant progress in credit card fraud detection. GANs are 

capable to address the class imbalance issue as they 

approximate the distribution of real data and generate 

synthetic data for the minority class (fraudulent 

transactions). The findings of this literature review suggest 

that the GAN framework is more flexible than other 

generative models, as GANs do not need too many 

statistical assumptions and other inferences for capturing 

distribution of data.  

     Moreover, the findings of this comparative study 

summarize that the GAN variants discussed in this paper are 

highly effective to detect credit card fraud instances as 

weaknesses persisted in the traditional GAN method were 

addressed in these novel methods, such as the vanishing 
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gradient problem. Furthermore, the Non Saturating GAN 

was introduced to in order to solve the saturation issue. For 

the said purpose, the generator loss was modified to become 

the non-saturating GAN Loss. Thus, novel GAN methods 

are more effective than other machine learning methods as 

they are flexible yet effective to detect anomalies in credit 

card fraud domain.   

 

VII. CONCLUSION 

This paper aims to present an impression of Generative 
Adversarial Networks in financial institutions. For that said 
purpose, this work was directed at describing various GANs 
architectures, recent developments, and their applicability in 
finance. 

To conclude, credit card fraud detection approaches 
utilize the notion of classification and they require balanced 
training data streams which should have negative as well as 
positive transactions. On the contrary, credit card datasets 
usually have highly skewed datasets with very few fraud 
cases, making it difficult for fraud detection approaches to 
training datasets.  

However, machine learning algorithms have proved to be 
capable frameworks for the prediction and prevention of 
fraud in credit card domain. In addition, an innovative 
technique, GAN, is capable to tackle the imbalanced class 
problem.   

It is imperative to mention that GANs are in the 
transactional phase but have made significant progress in the 
financial markets. Some of the features of GANs, such as 
generating synthetic data, are gaining solid footholds.  
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