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Abstract: In many industrialized and developing nations, credit cards are one of the most widely
used methods of payment for online transactions. Credit card invention has streamlined, facilitated,
and enhanced internet transactions. It has, however, also given criminals more opportunities to
commit fraud, which has raised the rate of fraud. Credit card fraud has a concerning global impact;
many businesses and ordinary users have lost millions of US dollars as a result. Since there is a
large number of transactions, many businesses and organizations rely heavily on applying machine
learning techniques to automatically classify or identify fraudulent transactions. As the performance
of machine learning techniques greatly depends on the quality of the training data, the imbalance
in the data is not a trivial issue. In general, only a small percentage of fraudulent transactions are
presented in the data. This greatly affects the performance ofmachine learning classifiers. In order to
deal with the rarity of fraudulent occurrences, this paper investigates a variety of data augmentation
techniques to address the imbalanced data problem and introduces a new data augmentationmodel,
K‑CGAN, for credit card fraud detection. A number of the main classification techniques are then
used to evaluate the performance of the augmentation techniques. These results show that B‑SMOTE,
K‑CGAN, and SMOTE have the highest Precision and Recall compared with other augmentation
methods. Among those, K‑CGAN has the highest F1 Score and Accuracy.

Keywords: GANs; SMOTE; B‑SMOTE; data augmentation; imbalanced data; credit cards; fraud
detection; fraud transactions; K‑CGAN

1. Introduction
The number of victims of cybercrime, which can takemany forms, has been on the rise.

Of the crimes committed on the Internet, such as identity theft, child pornography, and
user tracking, to name a few, credit card fraud is one of the most prominent cybercrimes.

In the modern era, most people use credit cards to pay for their necessities, and as
technology has advanced, so have instances of credit card fraud. As a form of payment,
credit cards are widely accepted today by businesses of all sizes. Credit card theft occurs
in every business, ranging from the home appliance sector to the automotive or banking
sector, and everywhere in between. Credit card fraud occurs when an unauthorized user
makes a purchase using another person’s credit card by obtaining either the card itself
or the cardholder’s personal identification number (PIN), password, or other credentials.
Unauthorized use of a person’s credit card number is an example of digital fraud [1]. Con‑
sidering the damages caused, stopping credit card fraud is one of the main reasons why
this research is so important. The card transaction itself is themain target of fraud. The use
of stolen credit card information is on the rise. Internet calls, instant messaging, and other
methods are being used in recent fraud cases. Many consumers can avoid losing money
to fraudsters and other types of online criminals due to the widespread use of credit card
fraud detection methods [2]. Protecting against cybercriminals and ensuring users’ safety
online are two of the many potential applications of automatic fraud detection. It is also
useful as a web‑based fraud deterrent against malicious actors [1]. Therefore, it is crucial
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to develop an accurate automatic fraud detection method to be applied to a large number
of credit card transactions. Many approaches have been developed to identify fraudulent
credit card transactions. Although some success has been found, it is not definitive. Given
its versatility, machine learning is quickly becoming the industry standard for different
applications. In machine learning, algorithms focus on the ability to learn and improve au‑
tonomously through exposure to relevant data. Many different fields benefit from the use
of machine learning. Different algorithms and, in some cases, statistical models are used
in machine learning to enable computers to perform tasks automatically by learning the
characteristics of the data. Machine learning methods have since played an important role
in automatic fraud detection. With the use of machine learning, researchers can determine
whether an incoming transaction is fraudulent [3]. However, the performance of machine
learning techniques greatly depends on the quality of the training data [4,5] and the imbal‑
ance in the data is not a trivial issue, especially when credit card frauds are considered. In
general, only a small percentage of fraudulent transactions are presented in the data. This
significantly affects how a trained machine learning algorithm can correctly detect fraud
cases. Machine learning techniques are framed for well‑balanced training data, thus im‑
balanced data pose a unique problem to classifier frameworks. According to [5], we can
attain greater classification Accuracy through the classification of all samples as the classi‑
fication with the majority of samples. Similarly, ref. [4] argue that resampling of the data
is an effective way to alter the distribution of datasets that are not balanced. This can be
performed to get better subsequent progress of the classifier. However, it is only possible
if we remove noise information, lessen the intensity of the imbalance degree, make sure
to reduce information loss, and keep sample points which are helpful for the learning of
the classifier.

To address this issue, there exist many data augmentation techniques, e.g., SMOTE,
ADASYN, B‑SMOTE, CGAN, Vanilla GAN, WS GAN, SDG GAN, NS GAN, and LS GAN,
to balance the data. They synthetically generate additional fraudulent data to balance the
majority of non‑fraudulent cases in the data.

Different data augmentation methods have various characteristics suitable for differ‑
ent applications. This paper presents an investigation into how different data augmenta‑
tion techniques affect the performance of classification algorithms in detecting credit card
fraudulent transactions when performed on imbalanced data. A new technique, K‑CGAN,
is also proposed. Some examples of well‑established classification algorithms, i.e., XG‑
Boost [6], Random forest [7], Nearest Neighbor [8], Multilayer Perceptron [1], and Logistic
regression [9] are then used to evaluate the performance of the data augmentation tech‑
niques. It was noted that the conventional classification techniques achieve higher Accu‑
racy over the positive class and poorAccuracy over the negative class. Hence, the classifica‑
tion ability of the binary classifiers typically decreases in unbalanced datasetswith the high
imbalance rate. Past details reveal that most of the classifiers would lose their efficiency
when the imbalance rate hits [5]. The SMOTE techniquewas introduced to reduce the short‑
comings faced by the random over samplingmethod. Similarly, GANswere introduced in
order to address the limitations of SMOTE. In addition, multiple GAN variants have been
introduced recently to improve the Accuracy of GANs. Our proposed K‑CGAN is also a
similar attempt to resolve the class imbalance issue and improve the overall efficiency of
ML techniques in the context of credit card fraud detection. The standard oversampling al‑
gorithm SMOTE’s results can often be too noisywhen themajority andminority classes are
hard to distinguish, as well as not being flexible enough to handle high‑dimensional data.
For this very reason, modifications such as Borderline SMOTE and ADASYN have been
developed in an effort to improve classification Accuracy by enhancing the distinction be‑
tween these two types of classes. Though oversampling techniques can help generate new
samples that appear similar to the Original Data on its surface, in detail these replicates
may differ from one another. This is especially true when it is hard to extract features in a
regularized manner from the imbalanced dataset. SMOTE’s method presents a certain de‑
gree of risk due to its lack of consideration for themajority classwhen aggregatingminority
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regions. This danger is especially pronounced in cases with imbalanced classes as, often‑
times, the minority group is minuscule compared with the larger one and thus more likely
to encounter crossover issues. Building on the success of generative models, GANs [10,11]
have gained momentum in recent years as a reliable and versatile way to approximate real
data distributions. These networks are highly adaptable and particularly easy to develop,
implement, analyze, and comprehend due to their general safety factor. Specific examples
that leverage this technology can be created with relative ease. For studies and surveys
that work with restricted budgeting, a precision technique grants specialists and analysts
a sense of control over the process. This can be especially beneficial when concentrating
on narrowly defined speculation since inspections can then be systematically curated to
suit certain restrictions. Thus, precise techniques supply researchers with an invaluable
degree of Accuracy while keeping costs low. Despite its adaptable and general nature,
with the careful fine‑tuning of GANs it is possible to eliminate any potential drawbacks.
Ultimately this could lead to the creation of an optimized architecture design which can
be implemented for various machine learning applications.

2. Related Work
Credit cards are used as a crucial paymentmethod inmodern society, andmore fraud‑

ulent transactions are increasingly being produced in instances of credit card usage. Fraud‑
ulent transactions affect not only the banks and merchants but also the end users because
even if they receive reimbursement, they could eventually pay more for a higher fee of
credit card services.

In this part, this study reviews some of thework conducted on this topic by a variety of
researchers. Several machine learning approaches have been proposed to improve classifi‑
cation in the fraud domain. Most of the techniques can be categorized into algorithm‑level
and data‑level methods. Algorithm‑level methods aim to improve the algorithms to be
able cope with imbalanced data.

On the other hand, data‑level methods use augmentation techniques to improve the
class distribution in the data producing more balanced data more suitable for classifiers.
According to [5], machine learning (ML) is used to train machines about how to manage
data better andmore effectively. ML can be used to deduce details from the extracted data.
In more recent times, due to the availability of data, the demand for ML has been very
high. There are two types of techniques inmachine learning: supervised andunsupervised
learning. Supervised learning trains a model on known input and output data to predict
future outputs while unsupervised learning finds intrinsic patterns in input data.

2.1. Algorithm‑Level Approaches
In another study, ref. [5] proposed a novel data miningmethod to explore the impacts

of factors on traffic accident indicators. They named it as the Gradient Boosting Decision
Tree (GBDT). The results show that the GBDT can identify and prioritize the influential fac‑
tors on traffic accident prediction. In addition, findings show that this model outperforms
all classical machine learning models featuring a ‘black‑box’ in Accuracy and Prediction.
The study conducted by [12] is a recent comprehensive survey of machine learning sys‑
tems. In their study, the authors provided an overview of techniques introduced for the
evaluation of machine learning explanations. Furthermore, they identified the traits of
explainability after reviewing the explanations of explainability. Their findings demon‑
strated that the qualitative metrics for both example‑based and model‑based explanations
are mainly used for the evaluation of interpretability. Furthermore, credit card fraud de‑
tection using auto encoder‑based clustering based on auto‑encoders was proposed by [13].
The system, which features three hidden layers and clusters data using k means, was eval‑
uated on a European dataset and was shown to perform favorably when compared with
other current systems. To handle the disparity dataset and avoid noise, ref. [14] suggested a
misrepresentation location framework with a non‑overlapped risk‑based bagging ensem‑
ble algorithm. Bagging models eliminate noise and outliers from datasets. The sacking



AI 2023, 4 175

model is a goal achieved by a group of students working together to take calculated risks.
Bag creation solves the problem of skewed data, and Naive Bayes eliminates the problem
of transactional noise. Using a NBRE, they were able to reduce the cost of detecting fraud
by 2–2.5 times while increasing the Accuracy by 5–10 percentage points. The NRBEmodel
was identified as the most suitable for fraud detection and the most suitable for a business
dynamic method.

In terms of algorithm‑levelmethods, ref. [7] utilized an approach that blendedBayesian‑
based hyper parameter optimization with tuning by eye. They achieved this by utilizing
two distinct public datasets, one including fraudulent transactions and the other contain‑
ing legitimate ones from the real world. Compared with other methods, their proposed
approach performed better in terms of Accuracy, Precision, and F1 Score. Since the ratio
of fraudulent to legitimate transactions is relatively high, ref. [15] developed an ensem‑
ble learning approach to detect credit card fraud. They found that compared with neural
networks, random forest is superior at detecting fraud incidents. Large credit card trans‑
actions were also used as an experimental variable. Ensemble learning combines differ‑
ent machine learning techniques, such as random forest and neural networks The findings
of [16] show that credit card theft has been on the rise over the past few years. Several tech‑
niques use machine‑learning algorithms to identify fraudulent transactions and prevent
them from being processed. Two novel data‑driven methods based on the most effective
anomaly approach for detecting credit card fraud were presented. Selecting kernel param‑
eters and utilizing a T2 control chart were the two approaches. In order to determine the
Precision of fraud detection, ref. [8] developed an application that makes use of machine
learning techniques such as the k‑nearest neighbor, decision tree, extreme learning ma‑
chine, support vector machine, and multilayer perceptron. Using a combination of kNN,
SVM, and DT, they made use of web‑based protocols such as simple object access protocol
and representational state transfer to transmit data effectively betweenmany incompatible
systems. The results of five different machine learning algorithms were evaluated using a
metric that measured how well they predicted the results. Although SVM outperformed
competing algorithms by a margin of 81.63%, the hybrid system they presented achieved
an even greater Accuracy of 82.58%. In their study, ref. [17] introduced a hybrid machine
learning technique to predict bus passenger flow. They named it Scaled Stacking Gradient
Boosting Decision Trees (SS‑GBDT). The findings of their study revealed that this novel
method outperformed conventional machine learning models and did well in handling
multicollinearity between influential factors.

Using random forest methods, ref. [18] developed a model to identify fraudulent
credit card purchases. For credit card transaction classification, the supervised machine
learning technique known as the random forest algorithm relies on a Decision Tree, with
performance measured by means of a confusion matrix. Assuming a 90% Accuracy, the
suggested technique is quite promising. While [19] argue that credit card usage has been
increasing day by day for online purchasing, the authors pointed out that online shop‑
ping has enhanced the number of credit card fraud cases as well. They emphasized the
need to stop these cases. Furthermore, they introduced a novel technique that integrates
Spark with a deep learning framework. They also implemented various methods to detect
fraudulent cases. These methods were SVM, RF, KNN, and Decision Tree. The findings of
the comparative study show that 96%Accuracy was attained for the training and testing of
data sets. In a study, ref. [20] pointed out that the classification of imbalanced class datasets
has gained much attention across many domains, including fraud detection. This is due
to the negative impact of overlapping on the achievements of imbalanced class learning.
The suggested method of this study was based on an augmented R‑value, which aimed to
pick features that obtained data with the least overlap degree, thus improving the classifi‑
cation performance. Moreover, their study presented three feature selection frameworks,
RONS, ROS, and ROA, designed via sparse feature selection to lessen the overlapping and
carry out binary classification. In addition, the findings of their study suggested that their
presented frameworks that feature selection techniques manage the variation of a false
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discovery rate at the time of the main features for the modelling process. Finally, their
empirical study used four credit card datasets to check the performance of their methods.
The findings confirmed that their methods are superior to classical feature selection tech‑
niques. In their study, ref. [5] argue that SMOTE is one of the most effective methods
for handling imbalanced class challenges. Their study chose the SMOTE technique and
its variants to address exigent issues, selecting parameter k and determining the neighbor
number of every sample. In their study, they proposed natural neighbors SMOTE (NaN‑
SMOTE). This method employs the random difference between a picked base sample and
its natural neighbors to produce artificial samples. The primary benefits of this method
are that it possesses an adaptive k value, it samples with more neighbors to enhance the
generalization of artificial samples, and it removes outliers.

The fraud detection system suggested by [21] uses a Kernel‑based supervised hash‑
ing algorithm. As its name suggests, the KSH system is based on the nearest neighbor
approximation. It functions best with huge datasets that have many dimensions. It is the
first time KSH has ever been utilized for prediction, and it outperforms all other methods
currently in use. To better understand the state of the art in MasterCard fraud detection
using machine learning algorithms, ref. [22] conducted a comprehensive literature review
of the methods currently in use. The field has been the subject of a great deal of study.
They argue that a more robust system that can adapt to any circumstance is required.

2.2. Data‑Level Approaches
Scholars have also used data‑level approaches to address the imbalanced class chal‑

lenge. These data‑level approaches used the sampling technique to deal with this chal‑
lenge. The sampling methods are generally based on oversampling, undersampling, or
the combination of both oversampling and undersampling techniques to deal with the im‑
balanced class challenge. Themajority class represents valid transactions and theminority
represents invalid or fraudulent transactions. In production environments, the majority of
transactions made are legitimate, while a small fraction consists of invalid or fraudulent
activity. Oversampling methods generate more balanced data by reproducing samples
from minority groups. The data‑level sampling techniques are used to adjust either by
decreasing the samples of the majority class or by increasing the samples of the minority
class. Generally, the outcomes of sampling techniques alter the distribution of datasets
till it becomes balanced. The literature has shown that the balanced datasets can enhance
the ability of the classifier. Furthermore, oversampling methods generate more balanced
data by reproducing samples from minority groups. For instance, the Synthetic Minor‑
ity Oversampling Technique, or SMOTE, introduced by [6] is an intelligent data‑level ap‑
proach which adds artificial data points in the minority instances. In SMOTE, the minority
class is oversampled by generating artificial examples instead of by using the replacement
approach. In this approach, the minority class is oversampled by taking each minority
sample as well as by introducing artificial examples besides line‑segments joining the k
minority class nearest neighbors, while the B‑SMOTE [12] technique is a modified version
of SMOTE [23,24]. It pin‑points the exact boundary between each class to improve the pre‑
dictions. In addition, ref. [13] introduced an adaptive learning technique, ADASYN, for
non‑balanced data classification challenges. The technique has the ability to adaptively
produce artificial data instances for the minority class to lessen the bias due to imbalanced
data distributions. Moreover, this algorithm shifts the classifier decision boundary to be
more focused on those difficult to learn samples, thus enhancing the learning ability.

In more recent years, many GAN‑based techniques have emerged to deal with the im‑
balanced literature, such as CGAN, Vanilla GAN, WS GAN, SDG GAN, NS GAN, and LS
GAN. Many way outs have been offered by these techniques at the data level and algorith‑
mic level. At the data level, many GAN‑based sampling frameworks are used to generate
synthetic data to rebalance the dataset. Furthermore, ref. [1] in their research work, in‑
troduced a Sparse Auto Encoder (SAE) and generative adversarial network (GAN)‑based
model to differentiate fraudulent credit card transactions from non‑fraudulent credit card



AI 2023, 4 177

transactions. This model is unique because it can be treated as a one class classification
technique since it does not need mixed‑type data sets comprised of negative and posi‑
tive instances. The authors argue that cardholders have varying behavioral patterns while
conducting monetary transactions via cards, so it may become hard to extract anti‑fraud
patterns. On the other hand, deep learning methods offer novel ways for detection. There‑
fore, in their empirical work, ref. [12] attempted to apply a sparse autoencoder for sepa‑
rating fraudulent and non‑fraudulent transactions. In their experimental study on finan‑
cial fraud “Generative adversarial network‑based telecom fraud detection at the receiving
bank”, ref. [23] presented optimal ways to identify financial frauds. The aim of their work
is to discuss telecom fraud. The reasons behind this fraud are a lack of private informa‑
tion privacy, sloppy banking regulations, shortcomings in telecom supervision, the low
rate of the detection of fraud cases, and identity theft. To address these challenges, the au‑
thors of this study have proposed a novel framework and named it an “Adversarial Deep
De‑noising Auto‑encoder” for detecting Telecom fraud at the receiving bank. It is note‑
worthy here that this novel approach is based on GAN. The proposed approach employs
a deep de‑noising autoencoder to control noisy inputs and incorporates two high‑end clas‑
sifiers (for classification and discrimination) to boost learning efficiency. The findings of
this empirical study reveal that this proposedmodel has significant rewards in terms of the
misclassification rate and the sound classification Accuracy than other state‑of‑the‑art ap‑
proaches. In addition, this anticipated framework was applied to two conventional banks
and effectively detected and beat 321 fraud cases. To conclude, this approach successfully
lessened customer losses and enhanced the repute of commercial banks.

While [24] developed a novel technique for detecting credit card fraud on the basis of
deep learning, the authors compared their model with several learning approaches includ‑
ing K‑nearest neighbor, SVM, and Decision Tree. The findings of this study have shown
that their ANN‑based model attained an Accuracy level of close to 100%. They argue that
their model’s Accuracy is more than that of unsupervised algorithms. Recently, ref. [25]
conducted a study on cyber‑attacks. The authors argue that fraudsters are using unique
and novel methods to conduct cyber‑attacks. They emphasize that deep machine learn‑
ing techniques have convinced researchers by detecting anomalies effectively. They argue
that neural networks are excellent substitutes for the detection of anomalies. In their study,
the authors introduced an anomaly‑based intrusionmethod for IoT networks. They imple‑
mented theirmodelwith the help of neural networks (NN) in 1D, 2D, and 3D. In their study
ondata‑level algorithms, ref. [26] argue that credit card‑based fraudhas become the biggest
cyber‑based fraud faced by cardholders. To curtail these frauds, deep machine learning‑
related detection systems are a better option. Nevertheless, designing machine learning
methods is challenging due to problems associated with credit card datasets, such as class
imbalance challenges. Their study provides a comparative research study on methods to
handle imbalanced classes. Their study aims to compare these methods and check their ef‑
ficiency and performance. The experimental study demonstrated that oversampling is the
most effective method to deal with this challenge, followed by under‑sampling methods,
which did better for ensemble classification methods such as Random Forest, AdaBoost,
and XG‑Boost. Data level augmentation techniques are effective in addressing the chal‑
lenges arising due to imbalanced data. They can reduce bias by generating new samples
of minority classes which can be used while training a classifier. However, they require
careful tuning and selection of parameters to ensure that the generated samples are appro‑
priate for training and to enable better performance on unseen data. Therefore, further
research is needed to explore the effectiveness of these techniques for different datasets
and applications.

In more recent times, GANs have gained immense success in domains such as the
credit card fraud detection domain to generate artificial minority samples. Many scholars
have contrasted GANs for imbalanced data scenarios against other well‑known methods.
It is imperative to mention that the detection of fraudulent transaction is an expensive and
time‑consuming task. In the past, unsupervised methods have been proposed to deal with
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this challenge. Data level augmentation approaches methods such as GANs have the abil‑
ity to simulate high dimensional and complex data distributions and can be employed to
learn the behavioral instances of normal data to detect anomalies. These developments in
GAN are making it the most effective method. However, more research work is needed in
the future in order to improve the predictability, efficacy, Accuracy, and applicability of
GANvariants. The traditional GANs hypothesize the D as a classifier with a Sigmoid cross
loss function. In [23], the authors detected that the loss function may result in vanishing
gradients issues at the time of learning. To alleviate this challenge, they introduced the
Least Squares GANs (LS GANs) which takes on the least‑square loss function for the D.
They verified that minimizing the objective function of Least Square GAN gives minimiz‑
ing the Pearson χ2 divergence. On the other hand, SDG GAN [5] comprises Generator G
and Discriminator D, where both are feed‑forward networks with MLP architecture. This
novel framework adapted feature matching loss instead of regular loss. In this paper, we
concentrate on data augmentation approaches.

3. Data Augmentation Techniques
In this study, we consider existing data augmentation techniques, i.e., SMOTE,

ADASYN, B‑SMOTE, CGAN, Vanilla GAN, WS GAN, SDG GAN, NS GAN, LS GAN, and
our proposed K‑CGAN. To conduct our experiments, we utilized the GPU K‑80 along with
Python, Jupiter notebook, and Tensorboard. We have utilized the following libraries, such
as Tensorflow, as our Machine Learning Framework, and required layers to define a neu‑
ral network such as Input, Embedding, Dense, Dropout, Flatten, Activation, Reshape, Con‑
catenate from tensorflow.keras.layers library, and further libraries such as numpy, pandas,
sklearn.processing, min.maxscaler, seaborn, sys, time, SMOTE, ADASYN, BorderlineSMOTE
from imblearn.over_sampling, roc_curve from sklearn.metrics, stats from scipy, LogisticRe‑
gression from sklearn.linear_model, GaussianNB from sklearn.naive_bayes, KNeighborsClas‑
sifier from sklearn.neighbors, RandomForestClassifier from sklearn.ensemble, xgb from xg‑
boost, os, norm fromnumpy.linalg, plt frommatplotlib.pyplot, PCA from sklearn.decomposi‑
tion, Axes3D from mpl_toolkits.mplot3d, ArgumentParser from argparse, and train_test_
split from sklearn.model_processing.

3.1. Sampling Based Techniques
3.1.1. SMOTE

Since its introduction in 2002, SMOTE [6] has been successfully used in awide range of
contexts and fields. The development of several distinctive supervised training paradigms,
such as incremental learning, multi‑label classification, multi‑instance learning, and semi‑
supervised learning, has been influenced by SMOTE, which seeks to overcome the issue
of class imbalance. The method is unequalled for learning from different data sources.
SMOTE performs exceptionally well when the dataset size is small. However, if the size
of the dataset is large, SMOTE takes time to create artificial data points, and SMOTE’s
efficiency drops significantly. Furthermore, while creating artificial data points, the chance
of overlapping data points for the minority class is high in SMOTE.

xnew, attr= xi, attr+rand (0, 1) × (x ij, attr − xi, attr) (1)

3.1.2. ADASYN
ADASYN [12] is used to create minority data samples with distributions that reflect

those of the underrepresented groups with the goal of generatingmore data to address the
data imbalance.

ADASYN has the ability to generate data samples for minority class samples which
are hard to learn. Furthermore, the generated data points usingADASYN [27] not only bal‑
ance the dataset well but also reduce the learning bias of the actual dataset. Additionally,
this method is also applicable for themultiple‑class imbalanced learning challenge. On the
other hand, the major drawback of this algorithm is that ADASYN’s Precision may suffer
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due to the nature of adaptability. In addition, each of the neighborhoods only contain one
minority example for minority samples which are sparsely distributed.

si= xi+(x zi − xi)λ (2)

3.1.3. B‑SMOTE
A Borderline‑SMOTE [11] only generates synthetic instances for the minority occur‑

rences that are close to the boundary of two categories. In the majority of classification
systems, researchers used B‑SMOTE [12,28] during training to pin‑point the exact bound‑
ary between each class to improve the predictions.

P =
{
P1, P2, . . . . . . , Ppnum}, N = {n 1, n2, . . . , nnnum} (3)

where, pnum and nnum are the quantity of minority and majority cases, respectively.

3.2. GAN‑Based Techniques
3.2.1. cGAN

GANs can be extended to conditional frameworks by conditioning both the G and D
on additional information. A type of GAN augmentation known as CGANs [23] takes into
account extra limitations. To satisfy this requirement, the discriminator and the generator
must both consider a third piece of information, denoted y. This third piece of information
might be anything from data from a different domain to a classifier.

minG maxDV(D,G) = Ex∼pdata(x)

[

log D
(
x
y

)]

+EZ∼Pz(z)[log

(

1 − D
(

G
(
x
y

)))

] (4)

Here, D represents the discriminator, G represents the generator, and y and Pz(z) as
input noise are combined in the G in joint hidden representation. On the other hand, x and
y are shown as inputs and to a discriminative function.

3.2.2. Vanilla GAN
In order to produce new data, the generator G first seeks to identify the distribution

within the training data. The discriminator has been trained to output the likelihood that
the input data is derived from noise from the generator or the training set. In order to trick
the discriminator into classifying the data it creates as the training set data, the generator
seeks to provide data that is slightly closer to the training dataset [10,29]

minG maxDV(D,G) = Ex∼pdata(x)[log D (x)] + Ez∼pz(z)[log(1 − D (G)(z))] (5)

3.2.3. WS GAN
To encourage effective training, this architecture alters the loss role of the default ap‑

plication and uses a weight clip [27]. They propose to compute the loss function using
the earth mover distance rather than the Jensen–Shannon divergence. This reserve metric,
which assesses the similarity of the data distributions from the exercise dataset and the
created dataset, is constant and observable throughout.

L = maxGEEx∼pzD(z) (6)

L = maxDEEx∼prD(x) − EEx∼p(z)D(G)(z) (7)

where z signifies the input noise variable and p(z) signifies the distribution of Gaussian
noise. The sign pr means the distribution of actual models.

3.2.4. SDG GAN
The generator and discriminator of the SDG GAN [5] are both convolutional chan‑

nels with anMLP design in the SDGGAN framework. A standard GAN’s generator seeks
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to produce fake data that closely resemble the true distribution [30]. Synthetic Data Gen‑
eration GAN has the capacity to outperform density‑based oversampling methods and
enhances the classification ability of benchmark datasets and real fraud datasets.

minGmaxD ||Ex∼pdataf(x/y) − Ez∼pz(z/y)f(G (z)||22
︸ ︷︷ ︸

FM Loss

+Ex∼pdata[log (D(x/y))] (8)

The residual objective function is the binary cross entropy between the true class label,
y (0, 1), and the expected class possibility, where FM stands for feature identical loss.

3.2.5. NS GAN
The form of GAN that is most widely used as a benchmark in research and practi‑

cal applications is non‑saturating GAN (NS GAN). However, the NS GAN algorithm [30]
lacked theoretical justifications, like other GANs such as W GAN. The loss function per‑
forms poorly in practice, despite being outstanding for theoretical results. The GAN has
difficulty converging, stabilizing its training, and offering a range of samples. The afore‑
mentioned loss function for G should not be trained, but rather improved gradients from
prior training should be utilized [30].

J(G)(G) = −Ez∼pz log D(G(z)) (9)

3.2.6. LS GAN
The foremost benefit of LS GANs is that unlike conventional GANs, where there is

nearly no loss for samples that lie on the correct side of the decision boundary, LS GANs
can penalize samples although they are rightly classified. The other benefit is that the
decision boundary can produce more and more gradients when updating the G, this then
lessens the issue of the vanishing gradient [29]. This design shows that the model trains
more steadily and is better able to handle the gradient vanishing problem than the vanilla
method by using the least square error as the loss.

minDVLSGAN (D) = 1
2Ex∼pdata(x)[(D(x) − b)2] + 1

2Ez∼pz(Z)[(D (G(z)) − a)2] (10)

minGVLSGAN(G) =
1

2
Ez∼pz(Z)[(D (G(z)) − c)2] (11)

3.3. Classifiers
Five popular classification techniques—XG‑Boost, Random Forest, Nearest Neighbor,

MLP, and Logistic Regression are used to evaluate the performance of the data augmenta‑
tion methods in this study.

3.3.1. XG BOOST
This technique improves the initial gradient‑boosting technique. By using ensemble

techniques, it improves functionality in general. To solve the issue of a non‑uniform ma‑
jority class, researchers modify traditional classification algorithms utilizing ensemble ap‑
proaches. To complete a categorization exercise as an “ensemble”, a group of students
is gathered. The performance of a classifier is increased by combining numerous weak
learners into a small number of robust ones [6].

(TOSi) =
AUCi

∑
k
i,j=1

∣
∣
∣p(TOS i, TOSj)

∣
∣
∣

(12)

where TOSi and TOSj signify the Pearson association coefficient among a pair of TOS and
AUCi is the AUC effectiveness of the i‑th outlier detection technique.
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3.3.2. Random Forest
Random Forest is a supervised machine learning technique that can be used to solve

regression and classification issues [21]. It builds several Decision Trees during training
and employs a majority vote to decide the outcome in order to improve Accuracy and
produce more reliable forecasts. To increase Precision, Bootstrap aggregation and entropy
criteria are applied.

IG
(
Np, a

)
= Gini

(
Np

)
−

c

∑
i−1

|Ni|
∣
∣Np

∣
∣
Gini (N i) (13)

Gini
(
Np

)
= 1 −

m

∑
j−1

P2
j (14)

where Np means the quantity of data at node Np, and |Ni| means the quantity of data at
node Ni, 0 ≤ I ≤ c. means the quantity of diverse labels of data at node Np and Pj is the
ratio of the number of data with the jth label over the total number of data at node Np. The
“j” indicates the number of the label.

3.3.3. K‑Nearest Neighbor
The K‑Nearest Neighbor is a supervised method with which any data analyst should

be familiar. KNN methods choose an integer k that separates the data from the closest
neighbors again [8]. Its principal usage is the classifying process. The similarity of a new
data point to previously classified data affects its classification. Integer k is selected by
KNN algorithms to once more split the data from its nearest neighbors.

d(p,q) =

√
n

∑
i=1

(p i − qi
)2 (15)

The distance between points is calculated using a certain norm. The class with the
vast majority of the K closest points is given to the new observation.

3.3.4. MLP
Amulti‑layer perceptron is a synthetic system with at least three layers of nodes (hid‑

den, input, and output). Each node makes use of an encoder. The activated function adds
bias after computing theweighted sumof its inputs. This allows researchers to selectwhich
transistors have to be removed and ignored while making outside networks [1].

x2
F =

12N
K(K+ 1)

[

∑
j
R2
j −

K(K+ 1)2

4

]

(16)

where K stands for the total set of algorithms, N stands for the number of data sets, and Rj
represents the algorithm j’s average rank.

3.3.5. Logistic Regression
Logistic regression, as its name suggests, is a kind of regression model that makes

use of a categorical dependent variable. Using logistic regression, one or more indepen‑
dent variables can be used to estimate the probability of a binary response. Forecasts are
transformed into probabilities using the sigmoid function [9].

Y = w1 × x1+w2 × x2+ . . . +wn × xn+b (17)

where Y is the predicted value of logistic regression, w1 to wn are the weight vectors,
x1, . . . ,xn is the feature vector, and b is the bias.
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4. Proposed Data Augmentation Method: K‑CGAN
Motivated from the recent progress in GAN‑based synthetic generative frameworks,

we introduced a novel GAN‑based method, K‑CGAN, to deal with the imbalanced class
challenge. This proposed method is based on a conditional GAN (cGAN) framework with
the custom loss function of a generator where the Kilberg divergence is introduced, hence
the name is K‑CGAN.

In the K‑CGAN framework, the generator G and discriminator D are constantly in
conflict with one another. The generator’s purpose is to perplex the discriminator. The
discriminator’s job is to distinguish events produced by the generator from those in the
provided dataset. If the discriminator has no issue identifying which instances came from
the generator, the generator’s data will be of low quality. It is reasonable to think of the
K‑CGAN setup as the generator’s training ground, with the discriminator giving the gen‑
erator input on the instances it generates and guiding its evolution.

The proposed algorithm of our proposed method is described in the below Figure 1
K‑CGAN discriminator and generator architectures.

  ൈ   ൈ     ൈ   Y wଵ w୬xଵ x୬ b

𝐺 𝐷

  

(a) (b) 

Figure 1. The architecture of K‑CGAN: (a) K‑CGAN Discriminator Architecture; (b) K‑CGAN Gen‑
erator Architecture with Novelty Loss.

The generator G and discriminator D in the K‑CGAN are continually at oddswith one
another. The discriminator is meant to be confused with the generator. It is the responsi‑
bility of the discriminator to separate the events generated by the generator from those
in the supplied dataset. The generator’s data will be of low quality if the discriminator
has no trouble determining which instances came from it. Consider the K‑CGAN setup as
the generator’s training ground. The discriminator instructs the generator’s evolution and
provides feedback on the instances it generates. The objective function of our proposed
K‑CGAN is defined as follows:

JD = −
1

2m

m

∑
i=1

= logD(x i,yi)+
m

∑
i=1

log(1 − D(G(z i, yi),yi)) (18)
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The CGAN training procedure is remarkably similar to that of the original GAN. The
logistic cost function for the gradient is obtained by feeding a mini batch of m training
samples

(
xi,yi

)
mi = 1 and m noise random samples zi mi = 1. In order to trick the dis‑

criminator into categorizing the data set and create it as the training dataset, the generator
seeks to provide data that are relatively close to the training set.

4.1. Generator Loss
The role of the generator in K‑CGAN is to produce synthetic samples to fool the dis‑

criminator and make the discriminator think the samples are real or fake. The proposed
K‑CGANmethod has a new loss element which is based on KL divergence. In this method,
the generator loss has two main tasks. First, to fool the discriminator and for that this
study used binary cross entropy. The second task of the generator loss is to ensure that the
synthetic data distribution is similar to that of the Original Data distribution and for that
this study used KL divergence. This equation presents the tasks of generator loss (trained
binary cross entropy and KL divergence). The task of KL divergence is to measure the
expected number of bits needed to code samples from p(x) when using a code on the ba‑
sis of q(x). Generally, p(x) denotes the true distribution of data. On the other hand, q(x)
typically signifies a description, model, theory, or approximation of p(x). Here, p(x) and
q(x) are probability distributions of a random variable x. The sum of both these random
variables is 1. Furthermore, p(x) and q(x) are greater than 0 while the function of binary
cross entropy is to compare predicted probabilities to an actual class output that can be
0 or 1. Binary cross entropy then calculates the score that penalizes the probabilities on
the basis of the distance from the expected value, thus, calculating how far or close it is
from the actual value. The binary cross entropy loss function estimates the average cross
entropy of all examples, where y denotes the class label, and “ŷi” denotes the predicted
probability of the data for all N data points.

Loss = −
1

output size ∑
output size
i=1

Yi× logŷi+ (1−ŷi)× log (1−ŷi)+∑pi(x)log(
pi(x)
qi(x)

) (19)

The characteristics of our custom generator loss and specific best performing hyper‑
parameter settings have produced an improved performance which is evident in the clas‑
sifiers performance results and data samples produced by the model which resemble the
original credit card fraud dataset.

4.2. Discriminator Loss
The responsibility of the discriminator is to increase the possibility that the sample

exhibits accurate data traits and decreases the possibility of falsified data. The binary cross
entropy loss function estimates the average cross entropy of all examples. The equation
below represents the discriminator loss. Where y denotes the class label, and “ŷi” denotes
the predicted probability of the data for all N data points.

Loss = −
1

output size

output size

∑
i=1

Yi× logŷi+(1 − ŷi)× log (1 − ŷi) (20)

5. Experiments
This section of the current study provides a high‑level overview of the methodologies

employed in the course of this investigation. Further, the procedure itself is described here.

5.1. Dataset
Researchers in the field of credit card transactions face a number of challenges, one of

the most significant being the lack of real‑world data due to data privacy and sensitivity
considerations. Therefore, the publicly available Credit Card Fraud detection database
downloaded from Kaggle [6,31] as used for this investigation. Further details about the
dataset are presented in Tables 1–3.
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Table 1. Credit card dataset (sourced from Kaggle.com).

Dataset No. of Attributes No. of Instances No. of Fraud
Instances

No. of Legal
Instances

Kaggle 30 31 492 284,315

Table 2. Credit card dataset features (highlighted in bold) (first samples of rows).

Time V1 V2 V3 V4 V5 V6 V7 V8

0 −1.35981 −0.07278 2.536347 1.378155 −0.33832 0.462388 0.239599 0.098698
0 1.191857 0.266151 0.16648 0.448154 0.060018 −0.08236 −0.0788 0.085102
1 −1.35835 −1.34016 1.773209 0.37978 −0.5032 1.800499 0.791461 0.247676
1 −0.96627 −0.18523 1.792993 −0.86329 −0.01031 1.247203 0.237609 0.377436
2 −1.15823 0.877737 1.548718 0.403034 −0.40719 0.095921 0.592941 −0.27053
2 −0.42597 0.960523 1.141109 −0.16825 0.420987 −0.02973 0.476201 0.260314
4 1.229658 0.141004 0.045371 1.202613 0.191881 0.272708 −0.00516 0.081213
7 −0.64427 1.417964 1.07438 −0.4922 0.948934 0.428118 1.120631 −3.80786
7 −0.89429 0.286157 −0.11319 −0.27153 2.669599 3.721818 0.370145 0.851084

V9 V10 V11 V12 V13 V14 V15 V16 V17

0.363787 0.090794 −0.5516 −0.6178 −0.99139 −0.31117 1.468177 −0.4704 0.207971
−0.25543 −0.16697 1.612727 1.065235 0.489095 −0.14377 0.635558 0.463917 −0.1148
−1.51465 0.207643 0.624501 0.066084 0.717293 −0.16595 2.345865 −2.89008 1.109969
−1.38702 −0.05495 −0.22649 0.178228 0.507757 −0.28792 −0.63142 −1.05965 −0.68409
0.817739 0.753074 −0.82284 0.538196 1.345852 −1.11967 0.175121 −0.45145 −0.23703
−0.56867 −0.37141 1.341262 0.359894 −0.35809 −0.13713 0.517617 0.401726 −0.05813
0.46496 −0.09925 −1.41691 −0.15383 −0.75106 0.167372 0.050144 −0.44359 0.002821
0.615375 1.249376 −0.61947 0.291474 1.757964 −1.32387 0.686133 −0.07613 −1.22213
−0.39205 −0.41043 −0.70512 −0.11045 −0.28625 0.074355 −0.32878 −0.21008 −0.49977

V18 V19 V20 V21 V22 V23 V24 V25 V26

0.025791 0.403993 0.251412 −0.01831 0.277838 −0.11047 0.066928 0.128539 −0.18911
−0.18336 −0.14578 −0.06908 −0.22578 −0.63867 0.101288 −0.33985 0.16717 0.125895
−0.12136 −2.26186 0.52498 0.247998 0.771679 0.909412 −0.68928 −0.32764 −0.1391
1.965775 −1.23262 −0.20804 −0.1083 0.005274 −0.19032 −1.17558 0.647376 −0.22193
−0.03819 0.803487 0.408542 −0.00943 0.798278 −0.13746 0.141267 −0.20601 0.502292
0.068653 −0.03319 0.084968 −0.20825 −0.55982 −0.0264 −0.37143 −0.23279 0.105915
−0.61199 −0.04558 −0.21963 −0.16772 −0.27071 −0.1541 −0.78006 0.750137 −0.25724
−0.35822 0.324505 −0.15674 1.943465 −1.01545 0.057504 −0.64971 −0.41527 −0.05163
0.118765 0.570328 0.052736 −0.07343 −0.26809 −0.20423 1.011592 0.373205 −0.38416

V27 V28 Amount

0.133558 −0.02105 149.62
−0.00898 0.014724 2.69
−0.05535 −0.05975 378.66
0.062723 0.061458 123.5
0.219422 0.215153 69.99
0.253844 0.08108 3.67
0.034507 0.005168 4.99
−1.20692 −1.08534 40.8
0.011747 0.142404 93.2

The dataset includes credit card transactions made in September 2013 throughout Eu‑
rope. Within this dataset, a two‑day period contains 492 fraudulent transactions out of a
total of 284,315 transactions with 30 attributes. The dataset is severely unbalanced, with
only 0.172% of all transactions representing true positives (frauds).

In addition, these data have 31 numerical features. Furthermore, the input variables
had financial details, so the PCA transformation was made for the input variables to main‑
tain anonymity of the data. Out of the total features, only three were kept original. The

Kaggle.com
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non‑numerical feature ‘Time’ indicates the time between the initial activity via credit card
and all other activities. The feature ‘Amount’ represents the transaction amount made us‑
ing credit card, and the feature ‘Class’ shows the label, and there are only two values: 0 for
legal transactions and 1 for fraud transactions. Variance inflation factor (VIF) are presented
in Table 3.

Table 3. Variance inflation factor (VIF).

Feature VIF

Time 1.104214
V1 1.003973
V2 1.000397
V3 1.038927
V4 1.002805
V5 1.007125
V6 1.000983
V7 1.002670
V8 1.001018
V9 1.000367
V10 1.001049
V11 1.013779
V12 1.003927
V13 1.000932
V14 1.002786
V15 1.007373
V16 1.000528
V17 1.002051
V18 1.002158
V19 1.000196
V20 1.000669
V21 1.001252
V22 1.004694
V23 1.000729
V24 1.000058
V25 1.012106
V26 1.000409
V27 1.000941
V28 1.000440

Amount 11.650240

5.2. Division of Dataset
The research study provides the classification of credit card fraud using all of the

available oversampling techniques and classification algorithms after 100 epochs. Using
the data collected, a different training set and test set were produced. Eighty percent of
the data from each class were included in the training set, whereas only twenty percent
were included in the test set.

5.3. Hyperparameters
K‑CGAN

In GAN‑based architectures, the discriminator is trained to differentiate between real
and generated samples. On the other hand, the generator competes with the discrimi‑
nator or produces artificial data samples. Tables 4 and 5 present the discriminator and
the generator hyper parameters for a K‑CGAN neural network. Further supplementary
Tables 6 and 7 represent Vanilla GAN hyperparameter settings.
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Table 4. K‑CGAN Generator Neural Network Hyperparameter Settings.

Parameter Value

Learning Rate 0.0001
Hidden Layer Optimizer Relu

Output Optimizer Adam
Loss Function Trained Discriminator Loss+ KL Divergence
Hidden Layers 2, −128, 64

Dropout 0.1
Random Noise Vector 100
Kernel Initializer glorot_uniform
Kernel Regularizer L2 method

Total Learning Parameters 36,837

Table 5. K‑CGAN Discriminator Neural Network Hyperparameter Settings.

Parameter Value

Learning Rate 0.0001
Hidden Layer Optimizer LeakyRelu

Output Optimizer Adam
Loss Function Binary Cross Entropy
Hidden Layers 2, −20, 10

Dropout 0.1
Kernel Regularizer L2 method

Table 6. GAN Generator Neural Network Hyperparameter Settings.

Parameter Value

Learning Rate 0.0001
Hidden Layer Optimizer Relu

Output Optimizer RMSprop
Loss Function Trained Discriminator Loss
Hidden Layers 64, 32

Dropout 0.5
Random Noise Vector 100

Table 7. GAN Discriminator Neural Network Hyperparameter Settings.

Parameter Value

Learning Rate 0.0001
Hidden Layer Optimizer LeakyRelu

Output Optimizer RMSprop
Loss Function Binary Cross Entropy
Hidden Layers 128, 64, 32

Dropout 0.1

6. Results Analysis
This section presents a detailed comparison of the experiments conducted to address

the imbalanced class challenge in the credit card‑based fraud detection dataset. This part
of the paper also offers a comparative study on techniques on the classifiers, such as XG‑
Boost, Random Forest, Nearest Neighbor, MLP, and Logistic Regression. Furthermore,
we have also discussed and explained the results of our experimental study in the form of
various graphs and tables.

Evaluation of Classification Models
This section presents a detailed comparison of different classificationmethods in terms

of performance indicators. The performance indicators are Precision, Recall, F1 Score, and
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Accuracy. In this section, we have presented an evaluation of the classification models in
tabular representation. The results in Tables 8–12 illustrate the classification performance
of a balanceddataset that includes synthesizedminority class samples fromeach technique:
K‑CGAN, SMOTE, ADASYN, B‑SMOTE, Vanilla GAN, WS GAN, SDG GAN, NS GAN,
and LS GAN. When these samples are merged with an imbalanced dataset it creates bal‑
ance overall. We are also including classifiers’ performance against the ‘Original Dataset’
which represents a classifier’s performance against an original imbalanced dataset. The
augmented sample size has a strong influence on the performance of the classifiers used
in this research. As shown in Table 10, when increasing the augmented sample size from
492 to synthetizing an additional 283,823 fraud transactions which creates an equal ratio
of minority and majority classes (284,315 valid and 284,315 fraud transactions), there is
an increase in the F1 Score from 0.87 to 0.99 for XG‑Boost, from 0.86 to 0.99 for Random
Forest and MLP, 0.78 to 0.99 for Nearest Neighbor, and 0.72 to 0.99 for Logistic Regres‑
sion. There was also an increase in Precision, Accuracy, and Recall, which is presented
in Tables 8–11. We have also tested classifiers’ performance against K‑CGAN synthetic
data only and Table 12 demonstrates the results (sample of 30,000 valid and 30,000 fraud
transactions generated by K‑CGANmodel) demonstrating that increasing the augmented
sample size also leads to an increase in F1 Score, Precision, Recall, and Accuracy scores for
each classifier used in this research. All five classifiers saw increases in scores when their
corresponding augmented sample sizes increased. This further underlines the importance
of having a larger sample size when creating a classification model.

Table 8. Precision values for classification methods for balanced dataset.

Precision Value for Balanced Dataset

K‑CGAN Original
Dataset SMOTE ADASYN B‑SMOTE Vanilla

GAN
WS
GAN

SDG
GAN

NS
GAN

LS
GAN

XG‑Boost 0.999762 0.924370 0.999467 0.999182 0.999816 0.997085 0.988636 0.986072 0.980831 0.982405
Random Forest 0.999776 0.931035 0.999762 0.999760 0.999958 0.994135 0.980170 0.986111 0.977564 0.982249
Nearest Neighbor 0.999608 0.864865 0.982366 0.973762 0.997603 0.960606 0.954416 0.966197 0.954545 0.961194

MLP 0.999692 0.881890 0.997690 0.997970 0.998082 0.982456 0.974504 0.957219 0.962145 0.959885
Logistic

Regression 0.999566 0.890110 0.974443 0.909084 0.994725 0.965732 0.958457 0.970149 0.949495 0.968051

Table 9. Recall values for classification methods for balanced dataset.

Recall Value for Balanced Dataset

K‑CGAN Original
Dataset SMOTE ADASYN B‑SMOTE Vanilla

GAN
WS
GAN

SDG
GAN

NS
GAN

LS
GAN

XG‑Boost 0.999706 0.827068 1.000000 0.999986 0.999703 0.955307 0.932976 0.917098 0.962382 0.941011
Random Forest 0.999706 0.812030 1.000000 1.000000 0.999661 0.946927 0.927614 0.919689 0.956113 0.932584
Nearest Neighbor 0.999706 0.721804 0.999804 1.000000 0.999746 0.885475 0.898123 0.888601 0.921630 0.904494

MLP 0.999594 0.842105 1.000000 0.999929 0.999746 0.938547 0.922252 0.927461 0.956113 0.941011
Logistic

Regression 0.999608 0.609023 0.919681 0.860942 0.996383 0.865922 0.865952 0.841969 0.884013 0.851124

Table 10. F1 Score values for classification methods.

F1 Score Value for Balanced Dataset

K‑CGAN Original
Dataset SMOTE ADASYN B‑SMOTE Vanilla

GAN
WS
GAN

SDG
GAN

NS
GAN LS GAN

XG‑Boost 0.999734 0.873016 0.999733 0.999584 0.999760 0.975749 0.960000 0.950336 0.971519 0.961263
Random Forest 0.999741 0.867470 0.999881 0.999880 0.999809 0.969957 0.953168 0.951743 0.966720 0.956772
Nearest Neighbor 0.999657 0.786885 0.991008 0.986707 0.998673 0.921512 0.925414 0.925776 0.937799 0.931983

MLP 0.999643 0.861538 0.998844 0.998949 0.998913 0.960000 0.947658 0.942105 0.959119 0.950355
Logistic

Regression 0.999587 0.723214 0.946270 0.884358 0.995553 0.913108 0.909859 0.901526 0.915584 0.905830
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Table 11. Accuracy values for classification methods.

Accuracy Value for Balanced Dataset

K‑CGAN Original
Dataset SMOTE ADASYN B‑SMOTE Vanilla

GAN
WS
GAN

SDG
GAN

NS
GAN

LS
GAN

XG‑Boost 0.999733 0.999551 0.999733 0.999585 0.999761 0.999762 0.999594 0.999482 0.999748 0.999622
Random Forest 0.999740 0.999537 0.999880 0.999880 0.999810 0.999706 0.999524 0.999496 0.999706 0.999580
Nearest Neighbor 0.999655 0.999270 0.990905 0.986578 0.998678 0.999244 0.999244 0.999230 0.999454 0.999342

MLP 0.999641 0.999494 0.998839 0.998952 0.998917 0.999608 0.999468 0.999384 0.999636 0.999510
Logistic

Regression 0.999585 0.999129 0.947643 0.887842 0.995568 0.999174 0.999104 0.999006 0.999272 0.999118

Table 12. Comparison of classification models using the K‑CGAN synthetic data only (sample of
30,000 valid and 30,000 fraud transactions generated by K‑CGAN model).

Algorithm Precision Recall F1 Score Accuracy

XG‑Boost 1.0 1.000000 1.000000 1.00000
Random Forest 1.0 0.982301 0.991071 0.99996
Nearest Neighbor 1.0 0.929204 0.963303 0.99984

MLP 1.0 1.000000 1.000000 1.00000
Logistic Regression 1.0 0.946903 0.972727 0.99988

In Table 8 below, this paper presents the Precision of classifiers for imbalance class
methods. Among the classificationmethods, K‑CGAN, SMOTE, and B‑SMOTE performed
better when compared with other methods. Among the classifiers, XG‑Boost and Random
Forest achieved better results.

In Table 9 below, this paper presents the Precision of classifiers for imbalance class
methods. Among the classificationmethods, K‑CGAN, SMOTE, and ADASYN performed
better when compared with other methods. Among the classifiers, XG‑Boost and Random
Forest achieved better results.

In Table 10 below, this paper presents the F1 Score values of classification methods.
Among the classification methods K‑CGAN, B‑SMOTE performed better when compared
with other methods. Among classifiers XG‑Boost, MLP and Random Forest achieved bet‑
ter results.

In the below Table 11, this paper presents the Accuracy of classifiers for imbalance
class methods. Among the classification methods K‑CGAN, NS GAN, Vanilla GAN per‑
formed better when compared with other methods. Among classifiers XG‑Boost and Ran‑
dom Forest achieved better results.

Among all the classification methods KC‑GAN performed very well on all classifiers.
Apart from that, SMOTE, ADASYN, B‑SMOTE, Vanilla GANperformed effectively aswell.

Furthermore, Table 12 presents the results of K‑CGAN based synthetic data only. The
result shows that XG‑Boost has Precision (1.0), Recall (1.000000), F1 Score (1.000000), and
Accuracy (1.00000) values. However, Random Forest has Precision (1.0), Recall (0.982301),
F1 Score (0.991071), and Accuracy (0.99996) values. Further, the result shows that Nearest
Neighbor has Precision (1.0), Recall (0.929204), F1 Score (0.963303), and Accuracy (0.99984)
values. However, MLP has Precision (1.0), Recall (1.000000), F1 Score (1.000000), and
Accuracy (1.00000) values. Furthermore, Logistic Regression has Precision (1.0), Recall
(0.946903), F1 Score (0.972727), and Accuracy (0.99988) values. Among the classifiers XG‑
Boost and MLP achieved maximum scores in terms of Precision, Recall, F1 Score, and Ac‑
curacy, while Random Forest also achieved good scores.

The F1 Score, Recall, Accuracy, and Precision measures are metrics which are used in
classificationmodels [26]. Accuracymeasures the number of predictions which are correct
as a percentage of the total number of predictions that aremade. For instance, if 80% of our
predictions are correct, then our Accuracy will be 80%. It is effective only when the distri‑
bution of classes is equal in our classification. The Precision metric counts the percentage
that is correct. This metric does not always find all the positives, but whenever it finds a
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positive, they are likely to be correct. Furthermore, amodelwith a highRecall rate succeeds
well in finding positive cases in the dataset. Conversely, a model with a low Recall rate is
unable to find all of the positive cases present in the data. Furthermore, the other common
metrics are Recall and Precision which takes imbalanced class into account. On the other
hand, in F1 Score we calculate the average of Recall and Precision. In other words, the F1
Score combines both the Recall and Precision into a single metric. Figures 2–12 exhibit the
ROC curves for each classification method along with the imbalance class techniques used
in this study. For each method, the performance of the classifier is demonstrated. The be‑
low graphs are self‑explanatory and we can easily judge the performance of each classifier
for all machine learning algorithms used in this paper. ROC curve visualizations are com‑
monly used when assessing model performance in binary classification problems, as it can
provide insight into how well a given classification system is able to distinguish between
two classes. ROC curves are also used to compare different models and determine which
one offers the best classification Accuracy.

 

Figure 2. ROC curve of K‑CGAN.

 

Figure 3. ROC curve of Original Dataset.
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Figure 4. ROC curve using SMOTE.

 

Figure 5. ROC curve using ADASYN.

 

Figure 6. ROC curve using B‑SMOTE.
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Figure 7. ROC curve using Vanilla GAN.

 

Figure 8. ROC curve using WS GAN.

 

Figure 9. ROC curve using SDG GAN.
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Figure 10. ROC curve using NS GAN.

 

Figure 11. ROC curve using LS GAN.

 

Figure 12. ROC curve using K‑CGAN.
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An ROC curve (receiver operating characteristic curve) is a graphical representation
of the false positive rate (FPR) of a given classification system. The FPR is calculated by
dividing the number of false positives by the total number of results returned in a test set.
The x‑axis on an ROC plot typically represents the false positive rate (FPR), while the y‑
axis represents the true positive rate (TPR). An ROC curve is a useful tool for assessing
model performance as it can help to determine whether a given classification system has
high Accuracy and low bias. The farther away from the diagonal line on an ROC plot, the
higher the Accuracy of the model. A perfect classifier would have a TPR of 1 and an FPR
of 0, which is represented in the top‑left corner of the plot.

Correlation comparison is an important part of data analysis. Using correlation com‑
parison, we can compare the relationship between the groups of variables. Correlation
comparison allows us to determine whether there is a positive or negative relationship
between these variables and to identify any patterns or trends in the data. By understand‑
ing these relationships, we are able to develop more effective data augmentation and pre‑
processing techniques for improving machine learning performance.

As shown in Figure 13, the relationships between different variables show that Nov‑
elty K‑CGAN, SMOTE, ADASYN, and B‑SMOTE are more similar to the Original Dataset
than other methods. On the other hand, Vanilla GAN,WSGAN, SDGGAN, NS GAN, and
LS GAN are less similar to the Original Dataset, which suggests that these models may not
be suitable for this dataset. Furthermore, we can observe that K‑CGAN has a higher cor‑
relation than other methods as it does not introduce any bias or noise in the data. This
confirms our method is suitable for the respective Credit Card Fraud Dataset and demon‑
strates the effectiveness of K‑CGAN at preserving the structure of the Original Dataset.

 

Figure 13. Correlation comparison of Original Data, SMOTE, ADASYN, B‑SMOTE, Novelty K‑
CGAN, Vanilla GAN, WS GAN, SDG GAN, NS GAN, and LS GAN methods.

Wehave adoptedunivariate distribution for summarizing the data andunderstanding
their distribution across different groups or categories. It is useful for gaining data insights
and in identifying any outliers or unusual features within the data. As per Figures 14–16,
the univariate distribution demonstrates that K‑CGAN resembles theOriginal Data closely.
The distance between the actual and generated samples is less in the case of K‑CGAN
compared with other GAN‑based algorithms.
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Figure 14. Univariate V1 Feature Distribution comparison of Original Data, Smote, ADASYN, B‑
SMOTE, Novelty K‑CGAN, Vanilla GAN, WS GAN, SDG GAN, NS GAN, and LS GAN methods.

 

Figure 15. Univariate V5 Feature Distribution comparison of Original Data, SMOTE, ADAYSN, B‑
SMOTE, Novelty K‑CGAN, Vanilla GAN, WS GAN, SDG GAN, NS GAN, and LS GAN methods.
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Figure 16. Univariate V15 Feature Distribution comparison of Original Data, SMOTE, ADAYSN,
B‑SMOTE, Novelty K‑CGAN, Vanilla GAN, WS GAN, SDG GAN, NS GAN, and LS GANmethods.

Bivariate visualization is a type of data analysis that can be used to evaluate relation‑
ships between two variables. It is a powerful tool to understand the correlation between
two different sets of data. The visualization helps in identifying patterns and correla‑
tions quickly, which can be used for further analysis or for making decisions. Bivariate
visualization can be used to compare two different variables. The data points generated
by the K‑CGAN resemble the original data samples, as can be seen from the visualiza‑
tions (Figures 17–19). Bivariate visualization charts of data points generated by K‑CGAN
showed high agreement with the original dataset.

 

Figure 17. Bivariate V1 vs V3 Feature Distribution comparison of Original Data, SMOTE, ADAYSN,
B‑SMOTE, Novelty K‑CGAN, Vanilla GAN, WS GAN, SDG GAN, NS GAN, and LS GANmethods.
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Figure 18. Bivariate V1 vs V4 Feature Distribution comparison of Original Data, SMOTE, ADAYSN,
B‑SMOTE, Novelty K‑CGAN, Vanilla GAN, WS GAN, SDG GAN, NS GAN, and LS GANmethods.

 

Figure 19. Bivariate V1 vs. V5 Feature Distribution comparison of Original Data, SMOTE, ADASYN,
B‑SMOTE, Novelty K‑CGAN, Vanilla GAN, WS GAN, SDG GAN, NS GAN, and LS GANmethods.

7. Conclusions
Due to recent technical advancements, credit cards have become more widely used

as a practical payment mechanism. Businesses lose millions of dollars each year to an ex‑
panding fraud phase as a result of inadequate security measures. An extensive strategy
that includes both detection and prevention actions is required to lower the prevalence
of credit card theft. The main goal of this research is to contrast and compare the classi‑
fiers’ skills and results in differentiating between fraudulent and lawful transactions. The
current study also aims to examine the effectiveness of various resampling approaches in
improving the classification outputs of the classification models and to assess the models’
ability to discriminate between fraudulent and legitimate transactions. It is important to
note that the results of all the classifiers varied. The Precision, Recall, F1 Score, and Ac‑
curacy are used to assess effectiveness. The result shows that B‑SMOTE, K‑CGANs, and
SMOTEhave the highest Precision andRecallwhen comparedwith other resamplingmeth‑
ods. Further, the result shows that our novelmethodK‑CGANhas the highest F1 Score and
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Accuracy when compared with other resampling methods. Furthermore, the data points
generated by the K‑CGAN resemble the original data samples, as can be seen from the vi‑
sualizations. This reveals the potential of K‑CGAN to effectively learn from real data, and
accurately generate new samples that are indistinguishable from the original ones. The re‑
sults also demonstrate K‑CGAN’s ability to capture the underlying structure and features
of the data in a high‑dimensional space. This is an important step towards creating realistic
data samples.
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