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Abstract: Data augmentation is an important procedure in deep learning. GAN-based data augmen-
tation can be utilized in many domains. For instance, in the credit card fraud domain, the imbalanced
dataset problem is a major one as the number of credit card fraud cases is in the minority compared to
legal payments. On the other hand, generative techniques are considered effective ways to rebalance
the imbalanced class issue, as these techniques balance both minority and majority classes before the
training. In a more recent period, Generative Adversarial Networks (GANs) are considered one of the
most popular data generative techniques as they are used in big data settings. This research aims to
present a survey on data augmentation using various GAN variants in the credit card fraud detection
domain. In this survey, we offer a comprehensive summary of several peer-reviewed research papers
on GAN synthetic generation techniques for fraud detection in the financial sector. In addition, this
survey includes various solutions proposed by different researchers to balance imbalanced classes. In
the end, this work concludes by pointing out the limitations of the most recent research articles and
future research issues, and proposes solutions to address these problems.

Keywords: Generative Adversarial Networks; fraud detection; imbalanced data; synthetic data;
deep learning

1. Introduction

Recently, credit card usage has been regarded as a more convenient mode of pay-
ment [1,2]. However, at the same time, new credit card fraud techniques have made it
difficult to detect fraud on time, thus leading to monetary losses for commercial banks and
individuals [3,4]. Credit card transactions display the highest degree of the class imbalance
problem [5]. Imbalanced datasets contain observations that consist of bad applications
(minority class) and good applications (majority class). The bad applications (fraudulent
transactions) occur rarely when compared to good applications (legal transactions) [6–8]. To
deal with this issue, researchers and banks have to make sure that the learning frameworks
are able to generalize learning from multifaceted patterns across the datasets and reduce
the incorrect positives affectively within the fraud detection systems [9]. Fraud can be
defined as any event that involves a criminal motive, which, most of the times, is hard to
identify. Nowadays, online fraud is a growing concern all over the world. Fraud involves
criminal intentions, which are generally difficult to detect.

Credit card fraud is a growing concern among researchers and financial institutions.
On the other hand, fraud detection is a rather hard task using standard methods. The
recent technological advancements have created further difficulties in detecting credit
card fraud. So, at present, the introduction of sound credit card detection methods has
great importance among businesses and academia. In more recent years, machine learning
methods, specifically deep learning, have been extensively used to detect credit card fraud.
These methods are able to analyze large streams of data, identify hidden patterns, and detect
abnormalities that may point out illegal activities. In addition, deep learning methods can
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learn and adapt from new data, improving the efficiency of identifying emerging fraud
instances. Additionally, the credit card fraud domain is a vital area of study, as it has
implications for other areas beyond financial fraud. For instance, the same methods can be
used to detect anomalies in insurance, healthcare and other areas. Researchers argue that
credit card fraud detection is a key area, as it can help prevent monetary loss.

Nevertheless, due to the issue of imbalanced classes in the real-world credit card
dataset, researchers use various types of data augmentation techniques prior to training
classifiers to enhance the efficiency of learning models [10]. It is imperative to mention that
many deep learning machine algorithms are introduced to handle imbalanced classification
problems [11–14]. Data augmentation is the process of generating new training data from
original data. It is an important technique to enhance the reliability and performance of
deep learning models, making them highly efficient in real-world applications. Using the
data augmentation method, we can enhance the size and diversity of the training data
instead of collecting more data. Data augmentation helps to reduce overfitting and enhance
the robustness of the model by making it highly adaptable to new data. Furthermore, the
data augmentation technique reduces the need for time-consuming and costly processes of
data collection and labeling protocols, specifically in the domain where data are limited or
hard to acquire. Data augmentation is used in machine learning to synthetically increase
the dataset size by creating modified versions of the original dataset. The modifications can
be done by applying transformations to the dataset—for instance, scaling, translation, or
flipping. By generating new instances, the algorithm is able to access more examples of the
same class, thus improving the performance and accuracy of the model [11]. In recent years,
data augmentation has become more common in the computer vision task. For instance,
image rotation by a few degrees or image flipping can generate new variations of the same
class, helping the model to improve its performance. Data augmentation is used to generate
additional training data by applying transformations to the real-world dataset. Similarly,
in the credit card fraud detection domain, data augmentation is used to generate synthetic
fraudulent transactions through transformations, such as changing the location and time of
the transactions, or adding noise or altering the amount of transactions. The generation of
additional examples of fraudulent transactions allows the deep learning model to identify
indicative fraud features and patterns, even in cases where the number of labeled examples
is limited. Data augmentation is highly useful in credit card fraud detection, as it helps
in improving the overall accuracy of the model and reducing false positives. The issue of
false positives arises when the model incorrectly classifies a legal transaction as fraudulent,
which can lead to monetary losses for the financial institution and customer dissatisfaction.
The model can learn to discriminate legal transactions from fraudulent transactions more
accurately by generating synthetic fraudulent data.

While working with machine learning, it is vital to have an appropriate and well-
represented dataset to train the algorithm [15,16]. This denotes that the dataset should be
large enough and cover as many cases as possible. At the same time, it should demonstrate
reality. A good dataset allows the programs to have an excellent model of the essential
traits of the data, and makes it possible to generalize these characteristics [17,18]. In this
case, the generation of artificial data can be helpful for multiple reasons, such as creating
new data to maintain the original dataset’s confidentiality and oversampling the minority
class [19,20].

One of the main reasons for generating artificial data is oversampling the minority
class [21]. Oversampling is performed to learn the unbalanced datasets. In many real-world
datasets, the problem of imbalance persists. In the credit card fraud domain, the number
of fraudulent activities is minimal when compared with legal activities, thus creating an
imbalanced class problem [22]. In this scenario, it becomes difficult for the classification
algorithms to identify the minority class (fraudulent transactions) [23]. Augmentation
of the minority class data is a way to deal with the imbalanced class problem. This is
possible by producing new instances with similar traits to the original data. Augmentation
helps to avoid the underrepresentation problem of the minority class, while simultaneously
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avoiding overfitting as well [24,25]. Another reason for generating artificial datasets is to
use synthetic data to avoid government regulations and the confidentiality of customers [26].
For example, financial data, such as credit card transaction data, contain sensitive details
about the customers, and training using them could risk customers’ privacy. One way to
deal with privacy concerns is to generate artificial datasets to train the model [27]. Among
the generative methods, one of the most popular is Generative Adversarial Networks
(GANs), developed by [28]. In this survey work, we are seeking to check the flexibility and
scalability of GANs to generate artificial samples for credit card fraud detection. Thus, this
study aims to make additions to the existing literature on GANs for data augmentation for
imbalanced class learning. Researchers [29–32] have argued that using GANs is the more
fitting and effective technique for handling imbalanced class problem compared to other
machine learning approaches. In addition, it is highly robust towards overlapping and
overfitting due to its ability to understand hidden structures of data and their flexibility. For
the said purpose, we reviewed past studies conducted by researchers in the fraud detection
domain using GANs to augment credit card data.

The main contributions of this study can be summarized as follows:

1. Comparison of GAN variants for data augmentation in credit card fraud detection
domain;

2. Detailed discussion of the most recent and relevant GAN variants for fraud detection;
3. The most common evaluation metrics are discussed and elucidated;
4. This report reviews the recent advancements in using GANs in data augmentation;
5. We also provide an analysis and comparison in terms of strengths and limitations

across the GAN variants discussed in this paper.

Organization of this Survey

This survey is structured as follows:

• Section 2 provides the background of the imbalanced class challenge, the definition
and structure of GAN, and the importance of data augmentation using GANs;

• Section 3 briefly describes different GAN approaches used in the credit card fraud
domain to handle imbalanced class challenges. In addition, this section also presents
the tabular evaluation of several GAN methodologies based on precision, recall and
F1-score;

• Section 4 concludes this research survey and provides future research recommendations.

2. Background
2.1. Class Imbalance Challenge

The imbalanced class challenge is the most commonly occurring issue in credit card
datasets, where the data distribution is highly skewed [33,34]. Several studies in the
literature based on data mining and machine learning algorithms have been dedicated to
addressing this problem. Machine learning techniques have made significant advancements
in recent times. However, these techniques rely heavily on large datasets representing the
whole population. Similarly, fraudulent payments rarely occur in credit card transactions
compared to legal payments [35]. The illegal transactions datasets need to contain more
samples to train machine learning methods effectively to generalize them to the population
set [13]. In other words, the number of cases of credit card fraud is in the minority when
we compare them with legal payments, creating a class imbalance problem. This creates an
under-representation of one class when compared with the other. Furthermore, the class
imbalance results in poor classification performance of the machine learning approach for
the least minority classes [36–39].

Scientists argue that synthetic data generative methods are one of the most effective
solutions to the imbalanced class challenge [37,40–42]. These methods not only rebalance
classes, but also reduce model overfitting. One of the most popular data generation methods
is Generative Adversarial Networks (GANs), which can be employed in big data settings.
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2.2. Generative Adversarial Networks (GANs)

Generative Adversarial Networks, or simply GANs, are generative ML approaches
first proposed by [28]. GANs gained popularity due to their easiness and efficiency [43,44].
In a short period, a significant development was made in the first GAN application in
generating synthetic images [45–47]. Other than that, multiple GAN variants have also
been proposed to enhance GANs’ applicability, from computer vision to credit card fraud
detection in commercial banks, hence the model introduced in 2014 represent a large
development, and GANs’ applicability is continuously expanding [48]. Moreover, the
applicability of GANs in finance, when compared with other domains, is still considered
novel, which makes it a fertile area of research. Since the research is in the development
stage, it is logical to consider that more applications of GANs are yet to be introduced and
elaborated upon. Currently, a lot of research is in the transitional phase. The intention of
this study is to show the recent work in the credit card fraud domain.

GAN is regarded as the most familiar machine learning model in unsupervised and
semi-supervised learning. In theory, GAN lets supervised learning advance to unsu-
pervised learning by creating synthetic/fake data [49]. Furthermore, Wang et al. [50]
discussed the significance of the detection and classification of malicious code, which is
highly important in the cybersecurity domain. The authors emphasized that conventional
signature-based techniques are no longer able to deal with the continuous evolution of
malware, and new methods are crucial to enhance the efficiency and accuracy of malware
detection. To deal with the associated challenges, the authors introduced a technique
combining GANs and Convolutional Neural Networks (CNNs) to classify malicious code
families. This novel framework converts code into images, which can then be fed into a
CNN for feature extraction and classification. The function of GAN is to generate images
of malicious code families to augment training dataset and enhance the capabilities of
CNN. Moreover, Wang et al. [50] used multiple datasets of malicious code families, and
compared their method with other models, such as Random Forest and a conventional
CNN classifier. The findings of their study show that their model outperforms the baseline
methods and achieves excellent performance on the datasets. The study by Jiang et al. [51]
proposed a dynamic ensemble algorithm to detect anomalies in imbalanced datasets from
IoT devices. Their framework is designed to deal with imbalanced data streams, such as
class imbalance and concept drift issues, by changing data distributions. Their proposed
algorithm combines various base classifiers and adjusts their weights based on each clas-
sifier’s performance. The empirical findings of their study on original datasets suggest
that their algorithm performs well when compared with state-of-the-art anomaly detection
techniques. In addition, the study conducted by Jiang et al. [51] is inventive in its dynamic
ensemble approach, which allows it to adapt to the changes in the distribution of the
data and attain high accuracy in anomaly detection. However, the only limitation of their
experiment is that they conducted experiments on limited datasets. Future experiments
should be on multiple ranges of datasets with different traits and complexities to attain
more insights into the robustness and generalizations of their algorithms. In addition, their
study does not offer a detailed discussion of the scalability and computational complexities
of the proposed algorithm, which is essential for applicability in large-scale IoT systems. In
recent years, since the development of blockchain technology, smart contracts have come
to high usage in IoT, healthcare, finance and other domains. Due to the high usage of smart
contracts, their security has also received immense attention as monetary losses cause by
vulnerabilities. The traditional analysis tools can detect these vulnerabilities. However,
these tools rely mainly on hard rules defined by experts while detecting vulnerabilities.
A study by Zhang et al. [52] proposed a deep learning model, CBGRU, to detect smart
contract vulnerabilities. CBGRU combines deep learning models and various word em-
beddings in order to extract features from the input source code of smart contracts. They
then used the extracted features for classifying the smart contract as either vulnerable or
non-vulnerable. For their study, the authors used a real-world smart contracts dataset.
The empirical findings of their study confirm that their method performed better when
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compared with other methods in terms of detection rate and accuracy, which indicate its
ability to enhance the security of blockchain systems.

In more recent years, researchers have shown great interest in GANs due to their
ability to leverage large unlabeled data. The study conducted by Creswell et al. [53] offers
a comprehensive overview of GANs for the signal processing community. Their study
highlights multiple applications of GANs in domains such as data generation, video and
image generation, data augmentation and style transfer. The paper also discusses var-
ious techniques used to improve the performance and stability of GANs, for instance,
employing regularization techniques, network frameworks and loss functions. According
to Creswell et al [53], GANs offer ways to learn deep representations without annotated
training data. GANs achieve this by deriving back-propagation signals using a method
with a pair of networks. They also pointed to the limitations of GANs, such as mode col-
lapse and training instability, and discussed possible solutions to deal with them. The study
conducted by Park et al. [54] presents a detailed review of GANs, with a focus on their
application in computer vision. The paper also discusses the basic framework of GANs,
such as architecture, loss functions and training phases. In addition, the paper reviews
different GAN variants such as conditional GANs, Wasserstein Generative Adversarial
Networks (WGANs), Wasserstein GAN-Gradient Penalty (WGAN-GP), and Self-Attention
Generative Adversarial Networks (SA-GAN), and discusses the advantages and disadvan-
tages of these GAN variants and their applications in various computer vision domains,
such as image translation, image editing and image generation. Furthermore, the study also
covers the limitations associated with GANs, such as training time, instability and mode
collapse. They also mention different methods that have been proposed to deal with these
limitations, for instance, optimization algorithms, network architecture and regularization
methods. In addition, the study also highlighted ethical concerns linked with GANs, for
instance, the use of deep fakes and other deceptive generations.

Shorten et al. [42] present a survey on several image data augmentation methods used
in deep learning for improving model performance. The study explicates the need for data
augmentation, its advantages and its restrictions. Additionally, the study presents a brief
review of conventional and novel data augmentation techniques. Other than that, their
study also discusses the impact of data augmentation on the generalization of the model
and its ability to reduce overfitting.

2.2.1. Definition and Structure

Generative Adversarial Networks (GANs) have made progress in machine learning
modeling [53,55]. This machine learning approach discriminates networks to discriminate
between synthetic and real data. Contrary to classical machine learning algorithms, GANs
act in such a way that they can learn the joint distribution of the whole dataset. GANs
utilize two neural networks: Generator (G) and the Discriminator (D) networks [56]. The
function of the G is to input a random noise vector into synthetic data that nearly reflect
the real data. At the same time, the objective of the D is to take real samples, and act as
a teacher who can evaluate the performance of the output and check if the data are fake
or real. Both G and D are trained in such a way—through the Min–Max game—that the
losses of G are minimized, and the losses of D get maximized. The function of GAN is
given below.

minGmaxDV(G, D) = E[log D(x)]x−p
data(x)

+E[ log(1 − D(G(z)))]z−p(z) (1)

Furthermore, Figure 1 shows the basic framework of the original GAN. In Figure 1,
the noise “z” is randomly generated, while “G(z)” indicates how “G” attempts to learn
a distribution PG from the distribution of noise “Pz”, and makes “PG” closer to the
distribution of real-world data, which is denoted by “P” data. In addition, the Discriminator
attempts to confirm whether the sample is fake or real. On the other hand, the input is
needed to adjust both the Discriminator and the Generator until the Discriminator fails to
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discriminate between real-world data and the generated data while training. Consequently,
we can reach the optimal point whereat P data are equal to PG.
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Figure 1. This figure presents the basic GAN structure. The two models learned during the GAN
training process are the Generator (G) and the Discriminator (D). Here, “z” is random noise, and
G(z) indicates how G attempts to learn the distribution PG from distribution Pz. Pdata denotes the
real-world dataset.

2.2.2. The Discriminator

The Discriminator is a network that serves as a classifier. It takes in both real data and
synthetic data generated by the Generator, and tries to differentiate between them [57]. The
architecture of the Discriminator can vary depending on the type of data it is handling.
It is connected to two loss functions that are used at different stages of training. When it
classifies real or synthetic data, it is penalized for incorrect classifications, and its weights
are updated through back-propagation from the loss [58].

2.2.3. The Generator

The Generator (G) network makes use of the feedback it receives from the Discrimina-
tor (D) in order to learn to generate artificial data that resemble the real-world data [59].
The goal of G is to create data that can be classified as original by the D. The network
receives random input, a sort of noise, from which it generates output. The generated
output is evaluated by the G and results in a G loss, which penalizes the G for not deceiving
the Discriminator [60]. A GAN is able to produce a variety of outputs through sampling
from multiple places.

2.2.4. Loss Functions

The training phase of GAN utilizes loss functions, which appraise the distance between
the real data and distributions of the generated data to evaluate their resemblance [61].
Before now, various methods have been introduced to deal with this challenge. In the
conventional GAN, a mini–max loss was proposed. The mini–max loss architecture mimics
the cross-entropy and Jensen–Shannon divergence between generated distributions and
real ones when the Discriminator is in its optimal state. Moreover, for the Generator,
minimizing the loss is equal to minimizing log [1D (G (Z))], as it cannot affect term log D(x)
directly in the function. Furthermore, in a traditional GAN design, the G and the D losses
are derived from a single measure of distance. Both the terms are updated in an alternating
fashion [62].

2.3. GANs in Credit Card Fraud Detection Domain

Recently, GANs have gained immense popularity in domains such as credit card
fraud detection for generating artificial samples. Researchers argue that GANs are the
more fitting and effective technique for handling imbalanced class problems compared to
other machine learning approaches [63–65]. In addition, they are highly robust towards
overlapping and overfitting due to their ability to understand hidden structures of data and
their flexibility [66]. As a result, a sufficient amount of research has been done on GANs.
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Recent studies on GANs compared their performances on imbalanced datasets against
other well-known methods.

In their empirical study, Ngwenduna and Mbuvha [67] explored multiple aspects of
GANs. They argued that GANs are more the appropriate and effective frameworks for
handling imbalanced class problems than other sampling models. They emphasized the
effectiveness of GANs, employing several facets such as architectural design, difficulties
associated with GAN, the multiple variants to address specific traits, application areas and
so on. In addition, they also conducted empirical studies to evaluate GANs with the help
of metrics. In addition, they also conducted a relative study on the performances of GANs
with other resampling methods, such as the Synthetic Minority Over-sampling Technique
(SMOTE) established by [58]. Their study reveals that GAN is more effective than other
resampling methods. Furthermore, the finding of this study reveals that GAN variants such
as Wasserstein Generative Adversarial Networks (WGAN) [59] and Wasserstein Generative
Adversarial Networks Gradient Penalty (WGAN GP) [60] are highly effective in mitigating
the imbalanced class problem. Additionally, Kim et al. [61] employed various GAN models
for synthetic data generation in credit card transactions. The results from the research
suggest using CTAB-GAN, a conditional GAN-based tabular data generator. By modelling
mixed variables, CTAB-GAN surpassed the preceding state-of-the-art approaches and
offered superior generating capabilities for imbalanced categorical variables and continuous
variables with complex distributions.

Furthermore, Saqlain et al. [62] used a Generative Adversarial Fusion Network to
detect fraud in imbalanced credit card transactions. The study used IGAFN, a model that
could be used repeatedly to predict a user’s creditworthiness based on the user’s profile
and past actions. In order to function, the model relied on the data imbalance issue in credit
scoring being addressed and the multi-source heterogeneous credit data being integrated.
The experimental outcomes proved the credit scoring approach’s viability by merging
features and class balance. IGAFN has been shown experimentally to be superior to other
methods for overcoming these restrictions, and it would play a crucial role in the forecasting
of credit risks for banks and other financial organizations. In addition, Ba [63] attempted
to solve the imbalanced class challenge. To do so, they chose the work of [5] as their base
paper for training GAN to generate synthetic samples of fraudulent credit card transactions
to handle imbalanced classes in the training set. The data used for this study were highly
imbalanced, so the augmentation of data on the minority class was performed to pick
up the classification results. Their findings demonstrate that GAN-based augmentation
does better than other approaches, as it improves generalization more notably than other
training methods. The study by Sethia et al. [64] aimed to review several aspects of GAN
architectures. First, the authors considered GAN architectures such as Conditional GAN
(cGAN) [65] and explored the pros and cons connected with these GAN variants. The study
by Charitou et al. [66] is unique compared to the above studies, as their study examined
GAN in a theoretical and mathematical way. This study has provided a deep insight
into the training complications associated with GAN variants. In addition, this study
has presented three different points of view to tackle the problems while training GAN.
These are skills, GAN structure and the objective of the framework. The authors of this
study assert that inception score, multi-scale structural similarity, model score, and freshet
inception distance are the most influential metrics in evaluating the capabilities of GAN.
Additionally, Ngwenduna and Mbuvha [67] focused on the limitations and suitability of
GAN in dealing with banking challenges. Their study used the WGAN GP variant to
augment the data. The findings of their study identify a major increase of 5% in the recall
value of the XG Boost classifier after training on augmented data rather than real-world
data. It is also noteworthy that they detected a decrease in F1 score and precision values.

2.4. Data Augmentation using GANs

Generative Adversarial Networks (GANs) are used to augment data effectively. GAN
is a class of generative models that can create new data based on actual training data. The
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applicability of GANs is diverse, and they can be used in multiple fields, including the
credit card fraud domain.

Data scarcity is a significant problem, since a large quantity of data is required in
fraud detection to train deep learning models. Data augmentation is one of the most
efficient ways to deal with this problem [13,68]. In recent years, researchers have conducted
various studies in this particular area. Below are a few reasons to employ GANs for data
augmentation.

2.4.1. Limited Training Data

One of the main issues that arise while training datasets is the limited training data
available in many application domains [68–70]. In some areas, data collection is not possible.
For instance, it is not possible to train the original dataset to detect fraudulent transactions
in the credit card fraud domain due to privacy concerns. Furthermore, data collection is a
time-consuming and sometimes costly task. In contrast, algorithms need extensive data for
training. An effective way to deal with the limited training data is data augmentation. This
is a method used to generate data from real-world data synthetically. Data augmentation
reduces both the time and costs associated with acquiring the required data. Furthermore,
it decreases the issue of sample inadequacy in deep learning models [13].

2.4.2. Lack of Relevant Data

In addition to the limited training data, the need for more relevant data is a big
challenge in training models. Large quantities of relevant data are required to improve
the accuracy of deep learning models. Data augmentation can provide solutions through
different methods to enhance the size and quality of training datasets to get a better
outcome [71].

2.4.3. Model Overfitting

Furthermore, model overfitting is also regarded as a big challenge. Deep learning
models require significant data to avoid the issue of overfitting. Overfitting is a modeling
error that arises when a model too closely fits the available dataset. In addition, when a
model is trained on an inadequate dataset, it will be difficult for the model to generalize
it perfectly for a new dataset. In addition, when these models are tested for any new
data, they will not provide accurate predictions, making the model useless. Therefore,
the model needs more datasets to deal with the challenge of overfitting [13]. However,
data augmentation lessens the issue of overfitting by training the model with a large set of
appropriate data [72]. Furthermore, data augmentation regularizes the model and enhances
its ability to generalize [73].

2.4.4. Imbalanced Data

Besides the above challenges, imbalanced data is a significant problem in real-world
applications. This problem is prevalent in financial institutions, specifically in terms of
credit card fraud detection, as there are too few fraud transactions compared to legal
transactions. In addition, deep learning models require a large quantity of data to classify
correctly. However, the available data could be more balanced, which creates a difficulty in
training deep models and affects the overall accuracy. Data can be rebalanced to solve this
challenge; however, data augmentation can help this issue, dealing with highly imbalanced
datasets by creating data for training machine learning models [57,74].

2.5. Challenges and Limitations of GAN Based Data Augmentation

It is important to mention that data augmentation encounters a few limitations when
training models with limited and low volume datasets [75]. The improvement achieved
with data augmentation is limited, as data augmentation, to some extent, transforms an
existing sample to a modified sample [76,77]. Thus, it can be said that data augmentation
does not generate entirely new data, which contain information not present in the data
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to be changed. For instance, in credit card fraud detection, data augmentation cannot
generate entirely new minority instances if the original dataset does not have minority
samples [13]. One of the challenges of using GANs for data augmentation in credit card
fraud detection is that they can be difficult to train and stabilize [78]. GANs are composed of
two neural networks (the Generator and the Discriminator) that are trained simultaneously
in a game-theoretic framework, and this process can be prone to instability and mode
collapse. Therefore, it is important to use appropriate architectures, training methods and
regularization techniques to stabilize the training process [79].

Another challenge when using GANs for data augmentation in credit card fraud
detection is that the generated synthetic samples may not be representative of real-world
fraudulent transactions [80]. Therefore, it is important to evaluate the quality of the
generated samples and compare them to real-world fraud data to ensure that they are
realistic and useful for training machine learning models [80,81]. Moreover, mode collapse
occurs when the generator produces synthetic data that are only a small subset of the
real data distribution [82]. This can be mitigated by using techniques such as mini-batch
discrimination, but it is still a limitation that needs to be considered [83,84].

In general, GANs have shown promising results in data augmentation in credit card
fraud detection tasks, by allowing the generation of synthetic samples of fraudulent trans-
actions that can be used to train machine learning models more effectively. However, it
is important to note that GANs are complex models and their training process can be
challenging, and there is ongoing research on improving their performance and stability.

2.6. Recent Advancements to Deal with the Challenges and Limitations

To deal with the key training issues, such as mode collapse and vanishing gradient,
studies have introduced two main frameworks: the application of different loss functions
and the introduction of new network designs. In this context, a study by Wang et al. [85]
demonstrated that the GAN’s performance is linked to the network and batch sizes, show-
ing that effectively implemented frameworks have a vital impact on the output quality.
In addition, the remodeling of loss functions also achieves better training stability. It is
imperative to mention that advancements are targeted at precise applications, thus there is
currently no single solution for all domain.

3. Literature on Architecture-Variant GANs

Since the introduction of GAN, various GAN variants have been proposed in the
literature. Researchers, in the literature, have proposed several GAN variants for the
fraud domain. Furthermore, the extensive implementation of GANs by scholars and
academicians encouraged the developments in network-optimization methods, such as
Wasserstein GANs [86], cGAN [87] and so on. To present a broader picture of recent GAN-
based research, we will review recent developments in this field. This section presents
various GAN models on the basis of their functions, strengths and limitations. By doing
so, this survey gives a brief description of the architectures of different GAN variants.
Furthermore, this section offers a review of the literature on GAN variants in terms of their
applications in the fraud domain.

3.1. Duo-GAN Approach

In their recent study, Ferreira et al. [88] introduced a novel generative framework called
Duo-GAN as demonstrated in Figure 2. This model employs two GANs: one to generate
fraudulent synthetic transactions and the second to generate synthetic legal samples. This
approach helps us to overcome the issue of highly imbalanced datasets. The synthetic data
generated via Duo-GAN can be used and shared with banks and other financial institutes
to deal with customers’ privacy concerns. This framework maintains privacy and ensures
a high success rate in detecting illegal credit card transactions. This approach aims to
generate artificial data that display the same traits, distributions, and patterns of real data
without affecting customers’ confidential information.
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The findings of this approach to fraud detection demonstrate that it can capture the
underlying distributions of the data. Furthermore, results show that the framework’s
reclassification model that is trained on artificial data surpasses classifiers trained on data
generated by a one-GAN model. In addition, this approach produces artificial data that
can be used to train classifiers and achieve outcomes comparable to models trained on
real data.

3.1.1. Process

1. This approach employs two GANs instead of one to create synthetic data.
2. This approach enables each Generator to learn the class-conditional distributions and

the correlation of each class so as to learn the distribution and relationship of the
actual data.

3.1.2. Strengths

1. This novel framework can generate artificial data for highly imbalanced datasets.
2. It can generate artificial data without overfitting the real data.
3. It outperforms classifiers trained on data generated by one-GAN models.

3.1.3. Limitations

1. This framework does not incorporate the computational resources and time required
to train the models.

2. The divergence metric encounters some problems when dealing with the continuous
characteristics.

3.2. Majority-Minority GAN Transfer

In addition, Langevin et al. [13] used GANs to solve the class imbalance issue. They
proposed a majority–minority GAN transfer framework as demonstrated in Figure 3. This
framework models the conditional distribution of the majority class first. After doing so,
the framework then uses some segment of the learned majority-GAN structure to train
another GAN on the minority class. The primary hypothesis is that the majority class can
be modeled more accurately.
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3.2.1. Process

1. This process investigates the use of synthetic data from not only the minority class,
but also the majority class. By doing so, the Generator captures more information
about p data.

2. The model retrains the fraud case model directly on actual transaction data.

3.2.2. Strengths

1. This framework used to generate synthetic samples can generate data streams with
one or multiple minority classes.

2. It trains the Generator first so as to model conditional distribution.

3.2.3. Limitations

1. This GAN variant performed well compared to other GAN generators, but struggled
in modeling log-transformed variables on some occasions, mainly where univariant
histograms are incredibly skewed.

2. This technique lacks feature transfer to control distributional differences.
3. Further investigations are needed as this framework is in the initial phase.

3.3. The Conditional Table GAN (CTAB-GAN)

Furthermore, Zhao et al. [89] proposed a novel conditional table generative adversarial
network (CTAB-GAN) as demonstrated in Figure 4. The objective of their study was to
utilize the potential of data sharing without affecting customer data privacy and complying
with governmental regulations. Furthermore, they aimed to design a model that can
address the weaknesses of previous GAN algorithms: (a) encoding mixed data, (b) excellent
modeling of long-tail continuous variables and (c) robust categorical variables with skewed
continuous variables.

The proposed algorithm was tested on five extensively used machine datasets: Credit,
Loan, Adult, Cover-type, and Intrusion. In addition, the proposed GAN variant was
also tested against four popular GAN-based algorithms: CWGAN [90], Med-GAN [91],
CTGAN [92] and Table-GAN [93]. The findings of this experimental study show that CTAB
GAN not only performs better than all these algorithms in terms of Accuracy, F1-score, and
AUC, but it also gives greater distance-based privacy guarantees than Table-GAN.
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3.3.1. Process

1. Encodes mixed data.
2. Efficient modeling of long-tailed continuous variables.
3. Deals with highly skewed distributions for continuous variables.

3.3.2. Strengths

1. Outperforms other state-of-the-art generative algorithms.
2. Provides better distance-based privacy guarantees than Table GAN.
3. Preserves data privacy.

3.3.3. Limitations

1. CTAB GAN functions well with complex datasets, but cannot converge to a better
optimum for small and straightforward datasets.

2. There is still room to enhance the performance of CTAB GAN. For example, it gener-
ates more zero values than in the original distribution, as it amplifies the dominance
of zero values in mixed data-type variables.

3.4. Synthetic Data Generation GAN (SDG-GAN)

In addition, Charitou et al. [66] introduced a novel GAN to generate synthetic data
to train a supervised classifier. This approach, Synthetic Data Generation GAN, can out-
perform density-based over-sampling methods and enhance the classification ability of
benchmark and real fraud datasets. Furthermore, this algorithm can be widely used to
handle highly unbalanced datasets in fields such as credit card fraud, as well as the Pima
Diabetes and Breast Cancer Wisconsin (Diagnostic) datasets.

After that, they applied the model to generate machine-made data to handle the
imbalanced class issue in the real-world fraud detection gambling dataset. The finding
shows that this technique’s accuracy is much better in credit card fraud datasets. In addition,
this technique outperformed the other oversampling techniques when compared.

3.4.1. Process

1. The “G” and “D” in SDG-GAN are feed-forward networks with an MLP architecture.
2. Feature matching loss was adopted in this technique instead of the regular loss.
3. The “G” attempts to learn the actual distribution of the data.
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4. This technique is based on conditional GAN.

3.4.2. Strengths

1. This technique can be used in multiple fields.
2. The feature matching technique was used in this novel GAN. This technique changes

the cost function for the “G” to lessen the statistical disparity between real and artificial
data traits.

3.4.3. Limitations

1. This proposed GAN outperformed the other four techniques in three out of four
observed imbalanced datasets. This indicates that there is room to enhance the ability
of SDG-GAN.

3.5. One-Class Adversarial Nets for Fraud Detection (OCAN)

Zheng et al. [94] argue that most online fraud detection techniques require training
datasets with both legitimate and fraudulent transactions. On the contrary, usually, there
are few or no records of fraudulent users in real datasets. To overcome this issue, [94]
developed a One-class Adversarial Net (OCAN) for online fraud detection. OCAN only
uses legitimate users to train the datasets.

Firstly, OCAN uses the LSTM autoencoder to learn the representation of legitimate
users from the patterns of their online actions. Secondly, OCAN detects fraudulent users
by training a discriminator of a GAN model, which is different from the Discriminator of
the traditional GAN model. The findings of this experimental study reveal that OCAN
dominates all other one-class classification models and can attain a comparable performance
similar to the novel multisource LSTM model, which needs the data of both fraudulent and
legitimate users.

3.5.1. Process

1. In the first training phase, the LSTM autoencoder is adopted to learn representations
of legitimate users from the sequences of their activities.

2. The encoder figures unseen representations of the inputs, and the decoder calculates
the reconstructed inputs.

3. In the second phase, containing training, a complementary GAN comprises a Discrim-
inator that distinguishes the legitimate and fraudulent users.

3.5.2. Strengths

1. OCAN outperforms other one-class classification GAN models.
2. Details about fraudulent users are not required in this technique. Thus, this framework

is more adaptive to fraudulent user identification tasks.
3. Unlike single-class classification GAN models, OCAN generates complimentary sam-

ples of fraudulent users.
4. It can capture the sequential details of the user’s actions.

3.5.3. Limitations

1. OCAN can detect fraudulent activities; however, more evaluation is needed to evalu-
ate the accuracy of this model.

2. The stability of OCAN is lower than the normal threshold.

As demonstrated in Figure 5 there are two training stages in the OCAN framework. In
the first stage, the LSTM-autoencoder is adopted to learn benign user representations from
benign user activity sequences. The LSTM-autoencoder is a model consisting of two LSTM
models—the decoder and encoder. The encoder computes the hidden representation of the
input, and the decoder computes reconstructed inputs. In the second stage, the training of
a complementary GAN with D takes place. The Discriminator discriminates benign users
from malicious users. On the other hand, the Generator of this model generates benign
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samples and the Discriminator works to distinguish between complementary and real
benign users.
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3.6. Conditional Wasserstein GAN (cWGAN)-Based Oversampling Method

Similarly, [90] introduced an oversampling model based on a Conditional Wasserstein-
GAN with the ability to model tabular data streams effectively with categorical and nu-
merical variables. Furthermore, the proposed model approaches the downstream clas-
sification tasks via an auxiliary classifier loss. In addition, they also benchmarked their
method against conventional oversampling methods and the imbalanced baseline on actual
datasets.

3.6.1. Process

1. This method has several elements not present in conventional methods, such as the
AC loss, the W-GAN GP, etc.

2. The authors employed the cGAN framework to estimate the distribution to sample
the minority class.

3.6.2. Strengths

1. This method efficiently models tabular datasets with categorical and numerical vari-
ables.

2. This novel method pays extraordinary attention to the downstream classification task
via an auxiliary classifier loss.

3. This method also works well for nonlinear datasets.

3.6.3. Limitations

1. Yet to test on heavily unbalanced datasets.
2. Model enhancement is imperative to identifying better default hyper-parameter

settings.
3. Improvement is needed in fine-tuning this model.

In the WGANGP framework as demonstrated in Figure 6a,b, the loss function is
augmented by adding AC loss to boost the generator. This figure indicates the AC output
predicting minority class membership for samples of the real-world dataset that belong to
the majority class and minority class. The dashed line shows the cut-off AC loss values.
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3.7. ScoreGAN

In their study, Shehnepoor et al. [95] proposed ScoreGAN to detect online shopping
fraud. This novel framework generates reviews with precise semantics to address fraud
detections’ lack of high-quality data. ScoreGAN uses both review ratings and review
text scores to detect and generate progression. The findings of this study show that
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customization of the machine-obtained reviews based on the score leads to considerable
progress in detecting fraud reviews by 5% on Tripadvisor and by 7% on the Yelp dataset
against the data obtained from the state-of-the-art systems.

3.7.1. Process

1. The Discriminator D differentiates between human fraud reviews from fraud bot
reviews, and calculates the probability of a score based on fraud reviews and corre-
sponding scores.

2. After that, the Discriminator can differentiate genuine reviews from fraud reviews.
3. On the other hand, the Generator takes the score and random noise, generating fake

bot reviews.

3.7.2. Strengths

1. This framework can convert the discrete form into a continuous one. This research
work used the Tripadvisor and Yelp datasets, which are more reliable than datasets
labeled by humans.

2. This proposed method outperforms other systems when applied to the used dataset,
according to the metrics.

3.7.3. Limitations

1. The Discriminator can only estimate the reward for generating complete sentences,
not partial ones.

3.8. Conditional Generative Adversarial Network (CGAN)

The Conditional Generative Adversarial Networks, or simply CGANs as demonstrated
in Figure 7, consider the classes to which the instances belong. Initially proposed by [87],
this GAN variant shows excellent results for datasets with a target class. Since their
introduction, Conditional GANs have been applied in multiple areas, including image
datasets [90]. Recently, Choi et al. [91] applied the Conditional GAN framework to the
credit card dataset to generate synthetic data. Conditional GANs generate a synthetic credit
card dataset, which can be used indistinguishably for training without revealing the actual
dataset. The findings of their study show that deep learning techniques can be used with
excellent outcomes to generate synthetic credit card data.
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3.9. GAN-RF

In another study, Lee and Park [40] argued that deep learning methods perform better
than machine learning techniques when dealing with large quantities of datasets, such as
credit card transaction datasets. They insist that more of the previous studies that deal
with the imbalance class challenge have limitations that are outcomes of overfitting and
data loss. For the said purpose, they used GAN and a proposed model to deal with the
imbalanced class issue. Their proposed method, as demonstrated in Figure 8, was then
classified as Random Forest to determine the detection ability after dealing with GAN-
based data augmentation. The findings of their study reveal that their proposed model
performed better than the model classified without dealing with the imbalanced class
issue. Furthermore, it was identified that their proposed model is superior to the models
proposed in previous studies.
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3.10. Tuned-GAN

Similarly, Fiore et al. [5] presented in their work a new way to deal with the imbalanced
class challenge in supervised classification to detect credit card fraud. They produced an
augmented tuned set, consisting of more samples of fraudulent transactions with respect to
the original dataset. They created artificial examples with a tuned GAN as demonstrated in
Figure 9, which means that the Discriminator network was unable to discriminate artificial
samples from the real samples. It is also noteworthy that the proposed framework is
inherently dependent on the accessibility of labeled instances of minority examples. To
check the validation of their method, the researchers performed an empirical study on a
real-world credit card dataset with imbalanced classes. Their method achieved superior
sensitivity at the cost of a marginal increase in false positives.
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Figure 9. The G* is fed with z (random noise) and the output is merged with xt. Other than that, the
classifier C is trained on original and augmented training sets (CO and Ca).

4. Tabular Comparison of Different GAN Variants

This part of our survey presents an overview of the various GAN-based methods used
to deal with the imbalanced class problem.

Detailed Discussion on the Above-Reviewed GAN Variants

In this study, we introduced the most considerable challenges faced by the conven-
tional GAN architecture, vanishing gradient and mode collapse, that arise while updating
the Generator. To deal with this challenge, we surveyed important variants of GAN that
have the potential to solve these issues. The GAN variants discussed in this study offer
more architectural alternatives for GANs. Furthermore, this study explained the main
causes of these issues in the conventional GAN. This study also shed light on the modified
loss functions presented by GAN variants to solve these issues. In addition, Table 1 offers
a performance summary of different GAN variants discussed in this paper. In [91], the
authors discussed synthetic data generation using the cGAN model. The study aimed to
employ a Conditional Generative Adversarial Network to generate new synthetic data from
the “Default of Credit Card Clients” datasets. To circumvent disclosing sensitive informa-
tion, the study presented a CGAN that created new synthetic data from training data that
may be applied interchangeably to the same tasks. Since the training data included a class
label that was taken into account during the production of new data, this network type was
employed instead of a standard Generative Adversarial Network (GAN). The outcomes
were measured in two ways: firstly, the correlation between the new and old data was
low, allowing for their usage in contentious industries such as medical and banking, where
great care must be taken with client data to avoid privacy concerns. Secondly, the same
algorithm, XGBoost, was evaluated on the two datasets with the same settings because
the datasets included a label that could be employed as the classifier. Based on the data,
both approaches achieved comparable categorization precision levels. In conclusion, the
study shows that deep learning techniques can be effectively deployed in synthetic data
production. Further studies will investigate potential new adversarial network versions for
this task, and experiment with different parameter settings to achieve optimal reliability.
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Table 1. Comparison table of GAN-based methods. This tabular representation presents different
studies conducted by researchers in more recent times to generate synthetic data. It provides a
detailed tabular presentation of different datasets and methods, their merits and demerits, as well as
the Accuracy, Precession, Recall and F-1 scores of multiple studies to provide a detailed description
of their key findings.

Model Accuracy Precision Recall F-Measure

Duo-GAN — — — —
C-GAN 0.826 — — 0.509

CT-GAN 21.51% — — CTGAN = 0.274
SDG GAN — 0.9863 0.8090 0.8889

OCAN 0.826 — — 0.509
cWGAN — — — —

ScoreGAN — — — —
GAN-RF 99.83 GAN-RF = 99.88 GAN-RF = 99.9 GAN-RF = 99.90

Tuned GAN 0.99963 GAN = 0.93204 — GAN = 0.82051
Majority–minority

GAN — — — Bank B = 0.552

In the above table “—“ refers to experiments that have not been done in previous studies.

Furthermore, Zhao et al. [89] employed various GAN models for synthetic data gen-
eration related to credit card transactions. The results from the research suggest using
CTAB-GAN, a conditional GAN-based tabular data generator. By modeling mixed vari-
ables, CTAB-GAN surpassed the previous state-of-the-art approaches and offered superior
generating capabilities for imbalanced categorical variables and continuous variables with
complex distributions. In relation to this, CTAB-GAN has three main features: First,
incorporating a classifier into the conditional GAN. Second, efficient data encoding for
mixed variables. The third is a novel construction of conditional vectors. They compared
CTAB-GAN to four other tabular data generators using various measures, including their
statistical similarity, ML utility, and ability to defend user privacy. The CTAB-synthetic
GAN’s data outperformed the current state-of-the-art privacy guarantee in terms of similar-
ity and utility methods. Compared to all other state-of-the-art algorithms, it enhanced the
accuracy by as much as 17% when applied to complicated datasets. The CTAB-impressive
GAN’s findings showed its potential use in various applications that could benefit tremen-
dously from data exchange, such as manufacturing, banking, and insurance.

Similarly, Lee and Park [40] employed the GAN model to detect fraud in credit
card transactions with imbalanced data. The study used the GAN model to resample
minority classes and accurately recreate them. The GAN was trained with ten times as
many data from the uncommon classes of Infiltration, Heartbleed, and Bot to evaluate its
classification efficacy. Compared to a standard Random Forest classification, the results
of the tests demonstrate that GAN resampling achieved better results. In particular, the
results demonstrate a superior categorization ability for the minority classes compared
to normal and control classes. It appears that the normal class classification performance
was enhanced through increased exposure to information concerning the minority class’
features, which differed markedly from those of other classes. Additionally, the results
prove that GAN-RF demonstrated superior performance by classifying the data resampled
with SMOTE, a technique employed in earlier studies to resolve unbalanced data. While
the basic idea behind both SMOTE and GAN is to generate new data, SMOTE had issues
with overlapping noise and classes. As a result, the GAN model, which replicated the
uncommon class and properly compared attributes, performed better in cases of data
asymmetry. Based on the research results, GAN also performed very well in detecting
intrusions in networks with skewed data. The deep learning model known as GAN is
frequently employed for image and language processing because it does not rely on human
oversight or labeling. The effectiveness of the training data before and after resampling was
measured, and the efficacy of various algorithms was measured in separate experiments.
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To resample the data, the study employed a GAN model, and the study used the Random
Forest technique to classify the samples.

Additionally, Fiore et al. [5] used the synthetic data generation GAN model to identify
irregularities in credit card transactions using imbalanced datasets. The study employed
the GAN and SMOTE models. They described an approach for addressing the challenge of
class imbalance that arises with the use of supervised classification in detecting fraud in the
credit card domain. When a training set was provided, an augmented set was generated
with more data from the minority class than the original set. In addition, a fine-tuned
GAN was used to produce synthetic instances. As a result, the GAN’s Discriminator could
not distinguish between fake and accurate data. Recent research work by [13] constitutes
the continuation of the research work by [5]. Langevin et al. [13] used GANs to generate
synthetic sampling. Their case study investigated two cooperating party scenarios yielding
four consumer distributions by credit quality. The authors selected GANs as a scalable
and flexible approach to generating synthetic data for fraud detection related to credit card
fraud. Furthermore, the authors got access to almost 80 million credit card transaction
datasets, with different data types, through collaborating with a financial institution. Their
findings show that organizations tilted more and more towards quality consumers are more
prone to benefit from augmentations with GANs. In Refs. [96–103], studies are discussed
addressing the different techniques used in generative adversarial networks to overcome
class imbalance. Among them, SMOTE (Synthetic Minority Over-sampling Technique) is
studied in [96], while Gulrajani et al. [97] proposed an improved training of Wasserstein
GANs, and [98] proposed a Generative Adversarial Fusion Network for class imbalance
credit scoring. Furthermore, Vijayaraghavan and Guan [99] discussed using GAN-based
data augmentation to resolve class imbalance. Creswell et al. [53] discussed an overview of
GANs, while Gui et al. [100] reviewed the algorithms, theories and applications of GANs.
Pandey et al. [101] discussed the limitations and applicability of GANs in the banking
domain, and Ramponi et al. [102] proposed using T-CGAN for data augmentation with
irregular sampling. Finally, Vega-Márquez et al. [103] studied the creation of synthetic data
with CGAN. These studies demonstrate that GANs can be effective in addressing class
imbalance by using techniques such as oversampling or data augmentation. However,
further research is necessary to evaluate the effectiveness of this approach in different
scenarios, and to improve the accuracy of GANs. Moreover, it is necessary to investigate
the effectiveness of combining GANs with other techniques to address class imbalance.
Furthermore, it is important to develop approaches that are able to generate more accurate
and diverse samples in order to improve the accuracy of classification models. Finally,
further research should be undertaken on how to effectively combine generative adversarial
networks and classifiers to tackle the class imbalance problem.

5. Conclusions and Future Recommendations

This report reviews the recent advancements made in GANs, starting from the basic
principles according to which GANs are presented as the most modern architectures.
Furthermore, the challenges that GANs can suffer from are addressed, and some of the
most common evaluation metrics are discussed and elucidated. In addition, this survey
reviewed the original GAN and introduced different GAN variants dealing with credit
card-based fraud. Furthermore, this study shows that GAN can facilitate multiple practical
approaches to credit card-based fraud detection. In addition, we have discussed multiple
studies that have proposed novel training techniques. Moreover, we have also highlighted
the merits and demerits of the generative techniques proposed by scholars to generate
realistic data. Our work has shown that data augmentation using GANs has the ability
to address the problems of imbalanced data in credit card-based fraud. To deal with this
challenge, multiple GAN-based solutions have been introduced in recent years. However,
there are many limitations that need to be considered in future work. To start with, recent
studies lack standardization in the evaluation metrics used to assess the performance
of synthetic data generated by GANs for credit card fraud detection. Other than that,
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recent studies have shown that while GANs can generate high-quality synthetic data,
the diversity of synthetic data can be improved. In general, there are many areas that
should be focused on in future research on data augmentation using GANs for credit card
fraud detection. Among these areas, addressing the limitations of GANs to improve their
effectiveness in the credit card fraud domain is essential to protect credit card holders from
monetary losses. The future research on GAN-based data augmentation should focus on
setting up a taxonomy of augmentation methods, enhancing the overall quality of GAN
samples, learning novel ways to build correlations between classifier frameworks and data
augmentation, and widening the scope of GANs to other data types. This research work is
focused on GAN-based data augmentation in credit card fraud detection. However, data
augmentation is limited to this domain, and can be employed for breast cancer detection,
imaging, insurance and so on. In future research, enhancing the quality of GAN samples
and the effectiveness of their testing on multiple datasets is also an important area to explore.
Researchers can also combine GAN samples with other data augmentation methods.

GANs have shown immense success in recent years in generating artificial data.
However, there are limitations in the conventional architecture. Future studies should look
into alternative GAN frameworks to generate high-quality and diverse artificial data to
detect credit card fraud. In addition, GANs have the capacity for improvements in terms of
the effectiveness of the synthetic data generated by GANs. Researchers can also focus on
enhancing the quantity and quality of GAN-generated data. For instance, researchers can
optimize the training phase or fine-tune GAN hyper-parameters. Moreover, future studies
can also combine data augmentation using GANs with other techniques, such as active
learning, to improve the performance of credit card fraud detection models. In addition,
it is essential to check the generalization of synthetic data generated by GAN to see if the
underlying data distribution represents the data or not. Potential future studies should
explore methods to evaluate the generalization of data generated by GANs to assess their
applicability in credit card fraud detection models. It is imperative to mention that GANs
ensure the privacy of the credit card holder while generating synthetic data with similar
traits to the original credit card data. However, researchers could examine other ethical
considerations linked with data augmentation using GANs, such as making sure that the
GAN-generated data are not discriminatory or biased.

The observations of this survey conclude that GANs are more effective and appropriate
for use in handling the class imbalance challenge. Moreover, this survey also finds GANs
are highly robust towards overfitting and overlapping, as GANs can understand the hidden
patterns of data thanks to deep networks. In addition, GANs’ characteristics, such as their
architectural design, multiple variants, and application areas, make this method superior
to other machine learning algorithms. Generative Adversarial Networks have achieved
significant progress in credit card fraud detection. GANs can address an imbalanced
class problem via data augmentation, as they approximate the distribution of real data
and generate synthetic data for the minority class (fraudulent transactions). Furthermore,
GANs have received much attention from researchers, and attained promising results in
credit card fraud detection.

However, despite the enormous progress made in GAN techniques, these models
still have shortcomings in dealing with credit card fraud. Therefore, future research
should focus more on elaborating powerful additional GANs for existing models in the
financial domain.
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