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Abstract: The storage of medical images is one of the challenges in the medical imaging field. There
are variable works that use implicit neural representation (INR) to compress volumetric medical
images. However, there is room to improve the compression rate for volumetric medical images.
Most of the INR techniques need a huge amount of GPU memory and a long training time for high-
quality medical volume rendering. In this paper, we present a novel implicit neural representation to
compress volume data using our proposed architecture, that is, the Lanczos downsampling scheme,
SIREN deep network, and SRDenseNet high-resolution scheme. Our architecture can effectively
reduce training time, and gain a high compression rate while retaining the final rendering quality.
Moreover, it can save GPU memory in comparison with the existing works. The experiments show
that the quality of reconstructed images and training speed using our architecture is higher than
current works which use the SIREN only. Besides, the GPU memory cost is evidently decreased.

Keywords: implicit neural representation; volumetric medical image; super-resolution; SIREN

1. Introduction

Contemporary microscopy technology is widely applied to biology, neuroscience,
and medical imaging fields, which bring about large-scale multidimensional datasets and
require terabytes or petabytes of data storage. Besides, recent developments in radiological
hardware have increased the capabilities of medical imaging to produce high-resolution and
3D images that require high storage capacity. It is desired to manipulate multidimensional
datasets for visualization and predictions from multi-channel image intensity values in a 2D
or 3D scan. Such datasets pose significant challenges related to storage, manipulation, and
rendering. In this paper, we suggest a novel implicit neural representation to compress high-
resolution medical volume data using the implicit neural representation (INR) network
with high speed and quality in comparison with current works.

There are some works using INR with periodic activation functions (SIREN) [1] to
compress the medical images [2,3]. In order to compress the images, these techniques train
a neural network using the voxel coordinates. The resulting trained networks represent the
individual image stacks. A distinct advantage is that the size of the trained deep network
is always less than that of the image stack. However, they also suffer some considerable
issues. They usually depend on a huge GPU memory, specifically for high-resolution
volume data. Thus, it is impossible for clinicians to access medical volume data based on
usual workstations and laptops. On the other hand, in order to deal with high-resolution
(HR) image stacks, it is natural to use large-scale neural networks with multiple layers,
which results in a long training time and a low rate of compression. Obviously, the main
challenge is to both keep a high rate of compression to decrease deep network size and
keep the quality of reconstructed images.

To tackle this challenge, we present an architecture combining the SIREN to compress
the volume data effectively and a super-resolution module to keep the quality of the recon-
struction. Our architecture includes a downsampling module to decrease the resolution
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of high-resolution (HR) and low-resolution (LR) images, which can fit the downsampled
volume data in usual GPUs with low graphical memory. As a result, the SIREN’s layers
can be reduced. Training can be accelerated accordingly. The following super-resolution
(SR) reconstruction network can recover images up to the quality of the original HR.

In summary, our contributions include:

• Our architecture consists of the Lanczos downsampling scheme, SIREN deep net-
work, and SRDenseNet upsampling scheme, which increase the speed of training
and decrease the demand for GPU memory in comparison with existing INR-based
compression techniques;

• Our architecture can reach both a high compression rate and high quality of the final
volume data rendering.

The following part of this paper is organized as follows. Section 2 presents the related
work. Section 3 illustrates the methodology. Section 4 shows the experiments and results
from the analysis. Section 5 draws our conclusions and presents future works.

2. Related Work

Recently, implicit neural representation (INR) is considered by variable works to
represent medical imaging. Three-dimensional medical imaging is usually considered
as a discrete grid of voxels. Although voxel-based techniques are simple and regular to
use, they are used for small voxel grids. Some works try to overcome this limitation and
increase the size of voxel grids, using shallow networks with a small batch size [4] which
increases the time of the training.

2.1. Implicit Neural Representation

As the memory consumption of discrete voxel grids increases cubically, the Ref. [5]
suggests an implicit organ segmentation network, using continuous implicit neural repre-
sentations. As the IOSNET is a continuous function, it is completely independent of spatial
resolution. Because of its continuity, high-resolution medical images can be processed
quickly using IOSNET. The Ref. [6] suggests DeepSDF as a fully continuous and implicit
representation for generative 3D modelling. DeepSDF is based on Sign Distance Function,
but it uses a generative model to produce 3D continuous interfaces. DeepSDF reduces
memory consumption in comparison with its counterparts. The suggested auto-encoder in
DeepSDF needs explicit optimization which consumes more time during inference. In the
Ref. [7] they introduced an encoder–decoder neural architecture to losslessly compress trun-
cated signs in distance fields (TSDF) in a 3D voxel grid. Their deep network architecture is
block-based that is trained end-to-end. The main limitation of their model architecture is
that the blocks are independent and identically distributed. Ignoring this limitation may
help to increase the rate of compression. A lossless compression technique (MedZip) using
Long Short-Term Memory (LSTM) was introduced by the Ref. [8]. Their work predicts the
next intensity value using LSTM in a set of the voxels’ neighbourhood concept. MedZip is
the first lossless compression technique that uses LSTM for volumetric MRI and CT.

In the Ref. [9] the authors suggested a technique to synthesize new views of a volu-
metric scene using implicit neural representation as a continuous function. Their technique
represents a volume using a deep fully connected network with five inputs and four out-
puts. The network encodes the spatial location and direction to RGB and opacity. NeRF
is time-consuming and its capability in complex images is not considerable. Following
this work, the Ref. [1] demonstrates that using periodic activation functions outperforms
ReLU-MLPs. They also suggest sinusoidal representation networks (SIRENs) that use
periodic activation functions in implicit neural representation. This technique fits complex
signals and natural images. In the Ref. [10] a 3D representation technique is presented to
reduce the memory footprint. In their design, they use a neural network to predict the
occupancy function to obtain a continuous volume. The Ref. [11] presents a compression
technique using an implicit neural network (COIN) to compress natural images. It uses
multi-layer perceptron (MLP) to encode geometric inputs. COIN’s results are weaker than
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state-of-the-art compression techniques. The Ref. [12] suggests an adversarial generation of
continuous images using INRs. Their model is constituted of two techniques, multi-scale
INRs and factorized multiplicative modulation (INR-GAN). With this architecture, it is pos-
sible to represent high-resolution images. Because high sensitivity of INR-based techniques
to high-frequency features, it leads to cause artefacts. The Ref. [13] introduces an implicit
neural representation technique with prior embedding to reconstruct sampled medical
images [14] suggests a generative network based on implicit neural network representation
to reconstruct new viewpoints by learning from different viewpoints from input images
taken. The Ref. [15] suggests using Fourier features in MLP. As a standard MLP is slow
in convergence, they suggest passing the inputs of the network through a simple Fourier
feature mapping. By this technique, the network can learn high-frequency functions and
improve the MLPs’ performance.

2.2. Deep Neural Network in Medical Image Restoration

In the Ref. [16] the authors suggest a technique to use transfer learning to reconstruct
the accelerated MR images. This work shows the capability of transfer learning for sparse
training data. To accelerate dynamic MRI, the authors in the Ref. [17] used a convolu-
tional recurrent neural network (CRNN-MRI). Through this method they reconstructed
high-resolution MR image sequences. To accelerate MR image acquisition, the Ref. [18]
introduced a self-attention CNN architecture to reconstruct MRI. Image quality can be
easily degraded by noises and artefacts in low-dose computed tomography (LDCT). To
address this issue, the Ref. [19] proposes a deep iterative reconstruction estimation (DIRE)
with a 3D residual convolutional network (ResNet) architecture to improve the quality
of images. Researchers in the Ref. [20] proposed a simultaneous algebraic reconstruction
technique (SART) to reconstruct images for translational CT. Then they used a pre-trained
CNN to remove artefacts and noise. To reduce the radiation dose, the Ref. [21] suggests
a deep encoder–decoder adversarial reconstruction (DEAR) network to reconstruct 3D
CT images directly from real clinical cone beam image data. To extract 3D details from
generated slices with an adversarial network, they use DEAR-3D which is based on 3D
convolutional layers. In low-dose CT imaging, noise and artefacts are inevitable. To address
that issue, the Ref. [22] proposes an improved version of GoogLeNet to remove artefacts
that are caused by missing projection during image reconstruction. To reconstruct an
X-ray super-resolution image, the Ref. [23] suggests a GANs-based approach. It proposes
spectral normalization super-resolution medical images (SNSR-GAN) to reconstruct high-
resolution X-ray images. To reconstruct an ultra-fast CT image, the Ref. [24] suggests a
multi-receptive field densely connected CNN (MRDC-CNN). They also use dense skip
modules instead of simple skip modules to flow the information between the encoder and
decoder. To decrease the memory footprint they ignore batch normalization. The Ref. [25]
presents a deep regularization method to overcome the reconstruction of photo-acoustic
computed tomography (PACT) with sparse view measurements. A non-local deep image
before reconstructing the Positron Emission Tomography (PET) images is proposed by the
Ref. [26]. They use a prior image of the patients as the input of the network. They suggest
the 3D U-Net [27] as the backbone of their network structure. DeepPET is introduced by
the Ref. [28] to reconstruct PET images from sinograms. They use a deep encoder–decoder
network to reconstruct high-quality images. DeepPET is 108 times faster than its coun-
terparts. DUG-RECON [29] is an Unet-based deep learning pipeline to reconstruct PET
and CT images directly. It uses a convolutional generative network with three stages,
denoising, image reconstruction and super-resolution segments. To reconstruct dynamic
PET images, the Ref. [30] suggests non-negative matrix factorization (NMF) with a deep
image prior. They also show the capabilities of DIP for PET image reconstruction. The
Ref. [31] suggests a Deep Residual Error Iterative Minimization Network to reconstruct
sparse-view CT. They optimize a hand-crafted function to reconstruct high-quality images.
In CNN, the size of the convolutional kernel is smaller than the image size. In this case, they
cannot understand the whole of the image. The Ref. [32] suggests using vision transformers
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to remove restrictions of CNNs in image reconstruction. The slice-by-slice transformer
network (SSTrans-3D) is a transformer-based technique that reconstructs 3D single-photon
emission computed tomography (SPECT) images. In image reconstruction, incomplete
projection data can cause considerable artefacts. Researchers in the Ref. [33] suggest Deep
Iterative Optimization-based Residual-learning (DIOR) to reconstruct limited-angle CT. To
improve generalization ability, DIOR combines deep learning and iterative optimization.

2.3. Deep Learning and Super-Resolution (SR) Techniques

Generally, super-resolution (SR) techniques can be clustered into traditional and deep
learning methods. In SRCNN [34], an SR model is trained based on CNN to reconstruct
HR from a given LR image. However, in terms of image quality, there are some limitations
in SRCNN models. A huge amount of stacked layers causes gradient-vanishing issues. To
solve those problems, researchers in the Ref. [35] suggested using a very deep convolutional
network base on VGG-net. For some of the deep learning techniques in SR, overfitting
is highly likely and models can be so big to be stored. To address these issues, a deeply
recursive convolutional network (DRCN) [36] is suggested. In DRCN, a convolutional
layer is repeated many times and the number of parameters depends on the number of
applied recursions. As DRCN uses stochastic gradient descent widely, it cannot converge
easily. To overcome the difficulties of the training, they use recursive supervision and
skip connection. In the Ref. [37], authors suggest an end-to-end deep neural network
that is constituted of an encoder, a fusion module and a decoder. The encoder takes the
features of the LR image. Then they apply a Gated Recurrent Unit (GRU)-based module
to combine the features. The super-resolution image is reconstructed by the decoder. The
Ref. [38] suggests coupled-discriminate GAN (CDGAN). In CDGAN, HR and SR images
are taken by a discriminator. The network can learn to discriminate low-frequency images.
An unsupervised Image Super-Resolution is suggested in the Ref. [39]. They propose
a framework that is based on two parts, unsupervised translation from the original LR
image to the reconstructed LR image and supervised SR between reconstructed LR and HR
images. In the Ref. [40] the authors present Meta-Transfer Learning for Zero-Shot Super-
Resolution (MZSR). As CNNs are mostly limited to the trained supervised data, they are
applicable to specific images. On the other hand, with CNNs it is not applicable to extract
internal details of the images. To solve the problems they suggest using zero-shot super-
resolution to train internal information. To overcome several gradient updates, they apply
meta-learning for zero-shot super-resolution. In remote sensing, There are some issues in
super-resolution reconstruction using deep learning, such as model training difficulties
and blurred image edges. The Ref. [41] proposes a technique with the combination of
residual channel attention (CA) to extract deep features. They combine shallow and deep
futures, using skip connections to improve the model training. After training, the super-
resolution images have sharper edges. In the Ref. [42] authors suggest using a Residual
Back-Projection network (RBPNet) to reconstruct SR from extremely low-resolution face
images. To generate the low-resolution feature map, RBPNet projects the high-resolution
feature map to the low-resolution feature space. Then to make a residual feature map for
the low-resolution feature map, they subtract the low-resolution feature map from the
original feature map. Finally, to generate high-resolution feature space, the low-resolution
feature map is projected into high-resolution feature space. RBPNet produces more precise
high-resolution images using residual learning. During the application of SR techniques in
low-resolution face images, face structure details cannot be recovered well. Thus, a novel
SPatial Attention Residual Network (SPARNet) is suggested by the Ref. [43]. SPARNET
uses a spatial attention mechanism to enable convolutional layers to focus on key face
structures and pay less attention to less important details. The results show that their
technique can detect key face structures well for extremely low-resolution (16 × 16) face
images. They also extend SPARNet to SPARNetHD which can generate super-resolution
face images (512 × 512). In the Ref. [44], the authors address the heavy computation
and the high number of parameters of current SR techniques. They suggest the feedback
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ghost residual dense network (FGRDN). Instead of the residual dense blocks (RDB) they
use ghost modules (GM) which can prevent the rise of the parameters by increasing the
network depth. FGRDN can converge faster than other corresponding algorithms. The
Ref. [45] suggests a texture enhancement and generative adversarial network (TE-SAGAN),
to generate super-resolution remote sensing images. They suggest an improved generator
which is based on a residual network with self-attention and weight normalization. By
improving training model stability, the generator can generate images with higher quality.
The Ref. [46] proposes a fused recurrent network via channel attention (CA-FRN). Their
main concerns are addressed regarding overfitting and the number of parameters. In SR
techniques, by increasing the number of layers, the risk of overfitting increases too. CA-FRN
uses a recursive channel attention block to pay attention to high-frequency information. In
their model, high- and low-resolution information is fused to generate better results.

2.4. Volume Data Compression

Dealing with volumetric datasets may cause slow representation and huge file sizes.
The Ref. [47] suggests that a quadtree encoding-based model compresses the volumetric
medical images. Their technique is constituted of three stages, initialization, processing,
and variable length encoding. In comparison to the octree technique, it shows better re-
sults in the image compression rate. In the Ref. [48], authors suggest a 3D hierarchical
listless block (3D-HLCK). They utilize a 3D listless technique to compress the volumetric
medical images. Their results illustrate that 3D-HLCK outperforms the 3D-SPIHT method.
Researchers in the Ref. [49] present a GPU-based compression technique for volumetric
medical images. In their work, they propose a caching strategy to render high-resolution
volumetric medical images. In the Ref. [50] authors suggest a compression technique based
on the wavelet transform domain. Their results show that the reconstruction quality of
the volumetric medical images is not considered high. The Ref. [51] presents a volume
data compression technique using the regression function. Their technique is based on a
multi-layer perceptron (MLP) neural network to compress the volumetric medical images.
In the Ref. [52] they used a stacked autoencoder to compress the malaria-infected blood
cells. Authors in the Ref. [2] used neural networks with periodic activation functions
(SIREN) to compress multidimensional medical images. Their results show that SIREN
outperforms other INR-based compression techniques with ReLU or tanh activation func-
tions. The Ref. [53] suggests CNN-based image compression to compress malaria cell
images using a compressor–decompressor framework. According to their technique, there
are two autoencoders, where one learns low-frequency components and another learns
high-frequency components. As they use Huffman coding and decoding, it is necessary to
have a large-sized training dataset to obtain better results.

3. Methodology

In the following section, we present our architecture and explain its stages in detail.

3.1. Our Architecture

We aim at the medical volume data compression technique to work on usual worksta-
tions and laptops instead of the overdependency on high-end GPUs. In order to increase
the compression rate and the quality of the reconstruction, we present an architecture
that can be applied in many scenarios, as shown in Figure 1. Our architecture consists
of three modules, where the first module can downsample the original high-resolution
images using Lanczos to decrease the volume data size. The second module can work
on the LR volume data for the implicit neural representation. The third module can take
the LR volume data back to the original size using SRDenseNet. As a result, the original
volume data can be represented by the neural network to achieve compression purposes.
The first module may result in information loss. The third module can recover it. There is
no guarantee that it is lossless. However, the experiments show our architecture can reach
high PSNR.
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Figure 1. Our suggested architecture using INR (in this work, SIREN) to compress high-resolution
(HR) medical images.

3.2. Lanczos Resampling

The Lanczos resampling technique [54] is an interpolation technique which is used to
resample (downsample/upsample) the volumetric medical images. Here, we use Lanczos
resampling to downsample our HR images. In the Lanczos resampling technique, each
selected sample is replaced with a translated copy of the Lanczos kernel, which is a limited
Sinc function. Equation (1) shows the Lanczos kernel formula.

L(x) =

{
sinc(πx)sinc(πx/a) i f |x| < a
0 otherwise.

(1)

3.3. Sinusoidal Representation Networks (SIREN)

We apply the SIREN deep network to medical image stacks. It may be regarded
as a function that accepts the 3D coordinate of a voxel x = (x, y, z) and outputs the
corresponding intensity value σ. In this case, the neural network becomes a continuous
implicit function FΘ : x → σ and can represent a continuous scene of medical image
stacks. The training is to optimize its weights Θ for accurate representation. Recently, INRs
have been one of the considerable areas of research focus. Most of the methods adopt a
MLP structure using ReLU [9] as the activation function. ReLU-based MLPs are suffering
from the lack of capacity to represent fine details. ReLU networks are linear and their
second derivative is zero. As a result, it is impossible to model high-order signals. In the
various versions of SIREN, the Sine function is used as the activation function to model
fine details [1]. We applied a small version to training, and the resulting deep network was
so small. As a new representation of the original volume data, it effectively compresses the
volume data and saves training time.

3.4. SRDenseNet

In order to obtain the original resolution image, we use SRDenseNet [55] as a super-
resolution module, which is a deep network. We selected SRDenseNet because of its
generalization. We note that it can work well on a large class of medical images. For
example, we use a small training image set from a large class and then perform it on
unseen images of the same class. There are three types of SRDenseNets, SRDenseNet-
H, SRDenseNet-HL, and SRDenseNet-All. SRDenseNet-H uses high-level features to
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reconstruct HR images. SRDenseNet-HL uses a combination of low-level and high-level
features to reconstruct HR images. SRDenseNet-All, which is used in our implementation,
uses a combination of all levels of features with densely skipped connections to reconstruct
HR images. SRDenseNet-All is constituted of four stages, low-level features, high-level
features, deconvolution layers, and a reconstruction layer.

In the low-level feature stage, the network receives a low-resolution (LR) image as
input. A convolution layer learns low-level features. There are eight dense blocks that
learn high-level features. Each dense block is constituted of eight convolution layers and
each layer produces 16 feature maps. Thus, each block produces 128 feature maps. In the
bottleneck layer, the number of feature maps is decreased to a compact model. Then, image
resolution is up-scaled from 128 × 128 to 512 × 512 using a deconvolution layer. Finally,
with another convolutional layer with a 3 × 3 kernel, the output channels are reduced
to a single channel. Figure 2 shows the SRDenseNet-All structure which is used in this
paper. In this work, we use the pre-trained model of SRDenseNet in [55]. We trained the
SRDenseNet network with LR and HR pairs of slices of our volumetric medical images
dataset. Then a pre-trained model of our training is used in our architecture. According to
this, SRDenseNet in our architecture can reconstruct HR images of downsampled images
of our dataset.

Figure 2. SRDensenet—all architecture with eight blocks.

3.5. Peak Signal-to-Noise Ratio

To compare the quality of the reconstructed image with the original one, we use
the Peak Signal-to-Noise Ratio (PSNR) measurement technique. It is given for grey-scale
images by the equation:

PSNR = 10.log10

[
I2

MSE

]
(2)

where MSE is the mean square error which is given by the equation below:

MSE =
1

N.M

N

∑
i=1

M

∑
j=1

(yij − yij) (3)

I is the maximum intensity value of the image, which is 255 in this work. N is the
number of rows and M is the number of columns. y is the original image and y is the
reconstructed image.

4. Results and Discussion

In this section, we compare the numerical results of the applications of INR-based
compression techniques with and without our architecture in terms of reconstruction
quality, training speed, and GPU adaptivity. In this work, we examine an INR-based
method, SIREN with two, three, and four MLP layers. Tables 1–3 show the size of the MLPs
with two, three, and four layers, respectively, in detail.



Appl. Sci. 2023, 13, 3242 8 of 19

Table 1. The estimation of SIREN network size with two layers.

Layer (Type) Output Shape Number of Parameters

Linear-1 [−1, 1, 128] 512
Linear-2 [−1, 1, 128] 16,512
Linear-3 [−1, 1, 1] 129

Total params: 17,153
Trainable params: 17,153
Non-trainable params: 0

Input size (MB): 0.00
Forward/backward pass size

(MB): 0.00
Params size (MB): 0.07

Estimated total size (MB): 0.07

Table 2. The estimation of SIREN network size with three layers.

Layer (Type) Output Shape Number of Parameters

Linear-1 [−1, 1, 128] 512
Linear-2 [−1, 1, 128] 16,512
Linear-3 [−1, 1, 128] 16,512
Linear-4 [−1, 1, 1] 129

Total params: 33,665
Trainable params: 33,665
Non-trainable params: 0

Input size (MB): 0.00
Forward/backward pass size

(MB): 0.00
Params size (MB): 0.13

Estimated total size (MB): 0.13

Table 3. The estimation of SIREN network size with four layers.

Layer (Type) Output Shape Number of Parameters

Linear-1 [−1, 1, 128] 512
Linear-2 [−1, 1, 128] 16,512
Linear-3 [−1, 1, 128] 16,512
Linear-4 [−1, 1, 128] 16,512
Linear-5 [−1, 1, 1] 129

Total params: 50,177
Trainable params: 50,177
Non-trainable params: 0

Input size (MB): 0.00
Forward/backward pass size

(MB): 0.00
Params size (MB): 0.19

Estimated total size (MB): 0.20

4.1. Dataset

In this paper, we are concerned with both 2D and 3D images. We use a volumetric
dataset, containing Human CT scan slices obtained from the Visible Human project dataset
(https://www.nlm.nih.gov, (accessed on 1 April 2022)). The database constitutes 463 DI-
COM axial CT scan slices of a human head with a resolution of 512 × 512 pixels and each
pixel is made up of 12 bits of grey tone. The thickness of each slice is 0.5 mm.

https://www.nlm.nih.gov
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4.2. Using SIREN with Our Architecture

Based on our architecture, we use the LANCZOS resampling technique to downsample
our high-resolution volumetric medical images (512 × 512 × 463) to (128 × 128 × 115).
This technique decreases the number of voxels from 121,372,672 to just 1,884,160. For
simplicity, we show the results on a selected 2D slice, but it should be considered that it
can be expanded to 3D data. Figure 3 shows a selected slice that is downsampled from
512 × 512 × 1 to 128 × 128 × 1 using LANCZOS, which decreases the number of voxels
from 262,144 to just 16,384.

Figure 3. Left column shows the high-resolution slices with a size of 512 × 512 and the right is the
low-resolution slices with a size of 128 × 128. Low-resolution slices were obtained by applying
Lanczos resampling on the high-resolution slices.

After the downsampling stage, our architecture uses SIREN with 2, 3, and 4 layers
and 128 neurons for each layer. Figures 4–6 show the results, respectively. The Adam was
selected as the optimizer with a learning rate of 0.0015 and batch size of 216. MSE was used
as the loss function of the MLP. In order to reconstruct the HR slice, we used SRDenseNet
and applied it to reconstructed LR images. We also trained it on this kind of CT data in
advance so that the trained SRDenseNe is suitable for the targeted class. The final results of
using SIREN with our architecture are shown in Figures 7–9, respectively. Table 4 compares
the results of the SIREN application with 2, 3 and 4 layers, using our architecture.
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Figure 4. From left, the first image shows the original down-sampled image. The second image
illustrates the reconstructed counterpart of the down-sampled image using SIREN. The next image
shows the plot of the PSNR while training the network (best PSNR: 45.38) and the last image shows
the plot of the loss values during the SIREN training (loss: 1.4805471× 10−5).

Figure 5. From the left, the first image shows the original down-sampled image. The second image
illustrates the reconstructed counterpart of the down-sampled image using SIREN. The next image
shows the plot of the PSNR while training the network (best PSNR: 48.29) and the last image shows
the plot of the loss values during the SIREN training (loss: 1.0805471 × 10−5).

Table 4. Shows comparison results of the implementation of SIREN with our architecture in terms of
quality, speed, GPU memory allocation, and compression rate with 2, 3, and 4 layers of SIREN.

Number of
Layers Best PSNR Training Time(s)/50,000 Iters Compression

Rate

GPU
Memory

(KB)

Two Layer 34.670 55.76 3.65 1038
Three Layer 34.865 74.80 1.96 1296
Four Layer 35.140 99.61 1.28 1554
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Figure 6. From the left, the first image shows the original down-sampled image. The second
image illustrates the reconstructed counterpart of the down-sampled image using a four-layer
SIREN. The next image shows the plot of the PSNR during training of the network (best PSNR:
70.63) and the last image shows the plot of the loss values during the four-layer SIREN training
(loss: 8.6481705 × 10−8).

Figure 7. Results of the whole procedure of our architecture. From the left, the first image shows
the original high-resolution (HR) image. The second image shows the original low resolution
(LR). The third image shows the reconstructed low resolution (LR) and the last shows the
reconstructed high resolution (HR). The best PSNR of reconstructed HR in comparison with the
original HR is 34.670.

4.3. Using SIREN without Our Architecture [2]

In this section, we show the results of SIREN implementation without our architecture
which was implemented in the Ref. [2]. Figures 10–12 show the results of high-resolution
(HR) reconstruction of 2, 3 and 4 layers of SIREN without our architecture, respectively.
Table 5 illustrates the results of using SIREN without our architecture with 2, 3, and 4 layers.
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Figure 8. Results of the whole procedure of our architecture. From the left, the first image shows
the original high-resolution (HR) image. The second shows the original low resolution (LR). The
third image shows the reconstructed low resolution (LR) and the last shows the reconstructed high
resolution (HR). The best PSNR of reconstructed HR in comparison with original HR is 34.865.

Figure 9. Results of the whole procedure of our architecture. From the left, the first image shows
the original high-resolution (HR) image. The second shows the original low resolution (LR). The
third image shows the reconstructed low resolution (LR) and the last shows the reconstructed high
resolution (HR). The best PSNR of reconstructed HR in comparison with the original HR is 35.140.

Table 5. Shows comparison results of the implementation of SIREN without our architecture in terms
of quality, speed, GPU memory allocation, and compression rate with 2, 3, and 4 layers with SIREN.

Number of
Layers Best PSNR Training Time(s)/

50,000 Iters
Compression

Rate
GPU Memory

(KB)

Two Layer 25.269 664.92 3.65 10,254
Three Layer 28.800 1004.21 1.96 10,512
Four Layer 30.689 1336.53 1.28 10,770
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Figure 10. Shows the reconstruction of HR images using a two-layer SIREN without our architecture.
The best PSNR is 25.26.

Figure 11. Shows the reconstruction of HR images using a three-layer SIREN without our architecture.
The best PSNR is 28.80.

Figure 12. Shows the reconstruction of HR images using a four-layer SIREN without our architecture.
The best PSNR is 30.68.
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4.4. Comparison with Existing Methods

In this section, we compare the performance of SIREN with our architecture and
SIREN without our architecture which is used in the Ref. [2] with 2, 3 and 4 layers and
128 neurons for each layer. From the general perspective, both methods use SIREN to
compress volumetric medical images. In the Ref. [2] they applied SIREN without any
downsampling and upsampling techniques which led to high GPU memory consumption
and low training speed. In Figure 13 there are three bar charts, showing that SIREN with
our architecture outperforms SIREN without our architecture in the Ref. [2] in terms of
quality, speed, and GPU memory consumption with 2, 3, and 4 MLP layers. As can be seen,
there are considerable gaps between our technique and SIREN in the Ref. [2] in terms of
training speed and GPU memory consumption. The PSNR gap is decreased by increasing
the number of layers, but our architecture still outperforms the SIREN in the Ref. [2]. Table 6
compares the results of using SIREN to compress volumetric medical images in the Ref. [2]
with using SIREN with our architecture in three factors of PSNR, training speed and GPU
memory consumption. Figure 14 compares the final results of using SIREN in the Ref. [2]
and using SIREN with our architecture with 2, 3 and 4 layers. Table 7 shows the comparison
of the results of Shen’s [52], Mishra’s [53], SIREN [2] and ours in terms of PSNR.

Table 6. Display and comparison of the final results that were obtained using SIREN in the Ref. [2] and
using SIREN with our architecture. As it can be seen, using SIREN with our architecture outperforms
using SIREN in the Ref. [2] in three terms of quality, speed, and GPU memory allocation with 2, 3
and 4 MLP layers.

Number of Layers SIREN without Our
Architecture [2] SIREN with Our Architecture

Best PSNR (dB)
2 layers 25.269 34.670
3 layers 28.800 34.865
4 layers 30.689 35.140

Training time(s) (for 15000 iters)
2 layers 664.92 55.76
3 layers 1004.21 74.80
4 layers 1336.53 99.61

GPU memory consumption (KB)
2 layers 10,254 1,038
3 layers 10,512 1,296
4 layers 10,770 1,554

Table 7. Comparison of results of our technique with SIREN [2], Mishra’s [53] and Shen’s [52] in
terms of PSNR.

Methods Best PSNR

Shen’s [52] 27.50
Mishra’s [53] 29.33

SIREN [2] (2 layers) 25.269
SIREN [2] (3 layers) 28.800
SIREN [2] (4 layers) 30.689

Ours (2 layers) 34.670
Ours (3 layers) 34.865
Ours (4 layers) 35.140
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Figure 13. Bar charts compare the results of using SIREN without our architecture [2] and with our
architecture. As can be seen, SIREN implementation with our architecture outperforms using SIREN
without our architecture [2] in terms of quality, speed, and GPU memory allocation with 2, 3, and 4
MLP layers.
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Figure 14. Comparison of the quality of reconstructed HR using SIREN in the Ref. [2] and using
SIREN with our architecture with 2, 3 and 4 MLP layers.
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5. Conclusions

Our architecture significantly outperforms other INR-based techniques without our
architecture, which are regular in medical image compression. The experiments show that
our proposed architecture is a novel implicit neural representation of medical volume data,
reaching both a high compression rate and high quality of reconstruction. The architecture
is simple and re-configurable. It may replace volume data and be regarded as a new
representation form. Moreover, the three modules can be replaced by others according
to different applications. For example, manual annotation may work on low-resolution
volume to save time, while rendering may work on high-resolution volume for accuracy.

The quality of our reconstructed high-resolution images with a small version of
SIREN is considerably higher than direct SIREN with the same size. We also note that the
compression rate depends on the deep network structure. To reach a high compression rate
and low loss for volume data, the SR module is crucial. Moreover, the generalization of the
SR module is another concern. These are worth our effort in the future.
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