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Abstract  The bleak Alburnus alburnus is a medium 
body-size leuciscid fish that is naturally distrib-
uted across central European and western Asian 
fresh waters. However, during the last two dec-
ades A. alburnus has been widely introduced else-
where in Europe and in northern Africa, mostly as 
a forage species for game fishes. Given its relatively 
recent history of invasion in non-native Eurasian 
waters, where it can become highly abundant, A. 
alburnus poses a serious risk to native communities 
where introduced. This study provides a review and 

meta-analysis of the biological traits of A. alburnus 
coupled with insights into its invasiveness. In its 
native range, A. alburnus has a moderate lifespan, 
inhabiting lakes or still waters in medium-to-large 
rivers, where it feeds mainly on zooplankton. How-
ever, non-native A. alburnus populations display 
high phenotypic plasticity in their biological attrib-
utes. Thus, growth, reproductive and/or dietary traits 
have adapted to local environmental conditions, with 
the species also invading lotic (stream) ecosystems. 
Feeding changes to benthic invertebrates, plant mate-
rial and detritus when zooplankton is scarce. Such 
plasticity, including broad physiological tolerance, is 

Dani Latorre and Guillem Masó have contributed equally.

D. Latorre · G. Masó · C. Cano‑Barbacil · 
F. Rubio‑Gracia · A. Vila‑Gispert 
Institute of Aquatic Ecology, GRECO, University 
of Girona, Girona, Spain

G. Masó 
Faculty of Sciences and Technology, University of Vic—
Central University of Catalonia, Vic, Spain

J. M. Zamora‑Marin · M. Torralva 
Departamento de Zoología y Antropología Física, Facultad 
de Biología, Universidad de Murcia, Murcia, Spain

J. M. Zamora‑Marin 
Department of Applied Biology, Centro de Investigación 
e Innovación Agroalimentaria (CIAGRO‑UMH), Miguel 
Hernández University of Elche, Elche, Spain

D. Almeida · A. Cruz · A. G. González‑Rojas 
Department of Basic Medical Sciences, School 
of Medicine, Universidad San Pablo-CEU, Madrid, Spain

L. Vilizzi (*) · A. S. Tarkan · G. H. Copp 
Department of Ecology and Vertebrate Zoology, Faculty 
of Biology and Environmental Protection, University 
of Lodz, Lodz, Poland
e-mail: lorenzo.vilizzi@gmail.com

J. R. Britton · A. S. Tarkan · G. H. Copp 
Department of Life and Environmental Sciences, Faculty 
of Science and Technology, Bournemouth University, 
Poole, Dorset, UK

C. Fernández‑Delgado 
Department of Zoology, University of Cordoba, Cordoba, 
Spain

R. Miranda 
Biodiversity and Environment Institute, Biodiversity 
Data Analytics and Environmental Quality Research 
Group, Department of Environmental Biology, University 
of Navarra, Pamplona, Spain

http://crossmark.crossref.org/dialog/?doi=10.1007/s11160-023-09767-6&domain=pdf
https://orcid.org/0000-0001-5775-7029
https://orcid.org/0000-0002-4058-0690
https://orcid.org/0000-0002-6482-5103
https://orcid.org/0000-0002-7021-267X
https://orcid.org/0000-0003-0592-7174
http://orcid.org/0000-0001-8103-885X
https://orcid.org/0000-0003-1853-3086
https://orcid.org/0000-0002-5128-7035
https://orcid.org/0000-0002-1359-435X
https://orcid.org/0000-0003-4547-3656
https://orcid.org/0000-0003-4798-314X
https://orcid.org/0000-0002-0991-5341
https://orcid.org/0000-0001-8628-0514
https://orcid.org/0000-0003-1517-3337
https://orcid.org/0000-0001-6430-0262
https://orcid.org/0000-0002-4112-3440
https://orcid.org/0000-0003-3531-5072


932	 Rev Fish Biol Fisheries (2023) 33:931–975

1 3
Vol:. (1234567890)

likely to facilitate the species’ adaptation and invasion 
of new habitats in the near future.

Keywords  Distribution · Impacts · Habitat use · 
Population dynamics · Reproduction · Diet

Introduction

Biological invasions are considered one of the main 
threats to global biodiversity, with freshwater ecosys-
tems being particularly sensitive to introduced invasive 
species (Clavero 2011). Invasive fishes can alter aquatic 
communities by causing changes in food webs and/
or the decline, displacement and disappearance of native 
species (Cucherousset and Olden 2011), although not all 
introduced species become invasive (Copp et al. 2005a, 
2005b; Gozlan 2008). The establishment and spread of 
non-native fish can be facilitated by degradation of water 
quality and hydro-morphological alterations (Moyle 
and Light 1996; Bunn and Arthington 2002; Kennard 
et  al. 2005; Leprieur et  al. 2008), which explains why 
some fish species, such as the bleak Alburnus alburnus, 
become widespread and exert impacts when introduced 
outside their native range intentionally and/or uninten-
tionally by humans (Gehrke and Harris 2001; Marchetti 
and Moyle 2001; Filipe et al. 2004).

The genus Alburnus belongs to the Family Leucis-
cidae, comprising small minnow species of which ≈45 
are recognised for and distributed across a vast geo-
graphic range, extending from western Europe to the 
northern parts of southwest Asia. Alburnus species are 
commonly known as ‘bleaks’ (Buj et al. 2010), though 
a group of them is known as ‘shemayas’ (Özuluğ and 

Freyhof 2007). The name ‘bleak’ originates from 
the late Middle English name “bleke”, which means 
‘pale’. Historically, the scales of A. alburnus were 
used to produce the “Essence d’Orient”—a coating for 
artificial pearls (von Wagner et al. 1903; Hugh 1911). 
Turkey is the centre of the genus’ radiation, extending 
throughout the Palearctic Ecozone (Özuluğ and Frey-
hof 2007). Alburnus alburnus is naturally distributed 
across Europe and Asia, but during the last decades 
this species has been introduced to several regions in 
the south and east of its native range (Froese and Pauly 
2021). Although A. alburnus is of no interest to the 
aquarium trade, it is considered a valuable species in 
recreational fishing for which it is used mainly as bait 
or as a forage fish that is  stocked into waters to pro-
mote piscivorous fish populations. For this reason, A. 
alburnus has been introduced widely as a forage fish 
for piscivores such as the northern pike Esox lucius, 
largemouth (a.k.a. black) bass Micropterus salmoides, 
and pikeperch Sander lucioperca (Elvira and Almodó-
var 2001). These are the main target species (trophy 
fishes) of recreational anglers and have consequently 
led to the rapid invasion by A. alburnus of Iberian 
river catchments (Vinyoles et al. 2007).

The aim of the present study is to review the avail-
able literature on the biological traits of A. alburnus 
in its native and introduced distribution ranges, high-
lighting differences thereof in particular. This review 
encompasses all aspects of A. alburnus’ environmen-
tal biology, including morphology, distribution, habi-
tat use, population structure and dynamics, ontogeny 
and growth, reproduction, trophic ecology, physiology, 
behaviour, pathogens and parasites, and genetic traits. 
Moreover, a comprehensive overview is provided on 
the species’ potential invasiveness and its adverse 
impacts on native species and ecosystems in invaded 
regions, ranging from hybridisation, parasite transmis-
sion, resource competition to foodweb changes. Man-
agement recommendations are also provided.

Review

Morphology

Alburnus alburnus has a fusiform body that is laterally 
compressed. Mean size is 150  mm total length (TL), 
with maximum length and weight of 250 mm TL and 
60  g, respectively (Billard 1997). Body pigmentation 
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is green- or blue-tinted with silvery flanks, and yellow-
ish paired anal fins (Keith and Allardi 2001). Sexual 
dimorphism is said not to occur in A. alburnus (Interes-
ova and Chakimov 2015), however, males in a popula-
tion of the River Ob basin (Siberia, Russia) have been 
found to have significantly longer anal-fin base, ventral 
rays and anal fin rays (Interesova and Chakimov 2015). 
In the Rybinsk Reservoir (Russia), sexual differences 
were observed in trunk-muscle lipid composition dur-
ing the pre-spawning period (Khalko 2018). In aggre-
gated samples, lipid content was found to be higher 
in females than in males, the former demonstrating a 
bimodal distribution in trunk muscles and the latter a 
modal distribution (Khalko 2018).

Previous studies have suggested that A. alburnus 
exhibits some phenotypical plasticity due to both eco-
logical and geographical influences (Gąsowska 1974; 
Baruš et al. 1998; Masó et al. 2016). For instance, A. 
alburnus morphology is influenced by waterbody 
type whereby riverine A. alburnus show a deeper 
body, larger head, shorter caudal peduncle length and 
a smaller number of lateral line scales than lacustrine 
A. alburnus populations (Gąsowska 1974; Golub et al. 
2019). , riverine A. alburnus populations have longer 
pelvic and pectoral fins than A. alburnus in lakes, prob-
ably due to water current. Variability observed in A. 
alburnus meristic characters (e.g. number of scales in 
the lateral line or number of vertebrae) has also been 
attributed to habitat type, geography and climatic condi-
tions (Gąsowska 1974; Rafikov and Boznak 2021). For 
instance, lake-dwelling A. alburnus were found to have 
a higher mean number of lateral line scales (n = 50.7) 
than riverine A. alburnus (n = 49.3) and estuarine/firth 
A. alburnus (n = 48.8) (Gąsowska 1974). However, 
despite several descriptive studies that evaluated A. 
alburnus morphological characteristics at a regional 
scale (.g. Gąsowska 1974; Baruš et al. 1998; Interesova 
and Chakimov 2015; Rafikov and Boznak 2021), no 
studies have systematically compared morphological 
traits among native and introduced populations.

Geographical distribution

Native range

The oldest Leuciscid fossils have been recovered 
in central Anatolia and date from around the Oligo-
cene–Miocene boundary (Özuluğ and Freyhof 2007; 
Perea et  al. 2010). The first colonisation of Central 

Europe by leuciscids was possible after the connec-
tion of Eurasia and Afro-Arabia (20 mya) through the 
Gomphotherium landbridge (Perea et  al. 2010). The 
first fossils of Alburnus sp. in central Europe, which 
date from about 18–19 mya, were found in Czechia. 
These paleontological records fit well with the begin-
ning of diversification of Alburnus lineages, 19.7 mya 
(Perea et  al. 2010). Alpine orogeny may have also 
played an important role in isolating Iberian and Ital-
ian ichthyofaunas, thereby preventing the arrival of 
A. alburnus to these regions (Zardoya and Doadrio 
1999; Levy et al. 2009; Perea et al. 2010).

The native range of A. alburnus (Fig.  1) extends 
from the Ural Mountains in Russia and the River 
Emba in Kazakhstan in the East (Balzani et al. 2020) 
to the eastern side of England (Great Britain) in the 
West (Dodd et al. 2019). The latitudinal distribution 
of A. alburnus extends from 36°N to 65°N (Blanc 
and Lamoroux 2007), ranging in the north from 
southern Scandinavia (Rask et  al. 2000), southward 
to the northern slopes of the Pyrénées, across to the 
Swiss side of the Alps, and continuing uninterrupted 
to Austria (Gerdeaux et  al. 2006).  The extent of A. 
alburnus southernmost distribution appears to be the 
tributary rivers of the southern Caspian Sea in eastern 
Iran (Kiabi et al. 1999), though translocated popula-
tions of A. alburnus exist in other parts of Iran (Coad 
2006).

Non‑native range

From its original distribution range, A. alburnus has 
been introduced in the last decades to several areas in 
both Europe and Africa, with records of non-native A. 
alburnus extending from Russia (Siberia) to Cyprus 
(Welcomme 1988; Zogaris et  al. 2012) as well as 
in Portugal and Spain (Vinyoles et  al. 2007; Sousa-
Santos et al. 2018), Italy (Nocita 2007; Balzani et al. 
2020), Algeria (Kara 2012; Attou and Arab 2019) and 
Morocco (Clavero et al. 2015) (Fig. 1). In Great Brit-
ain, A. alburnus have been translocated to all other 
River Basin Districts (sensu European Union 2000) 
from the species’ native distribution in England, 
which ranges from the River Thames to the Humber 
Estuary (Wheeler 1977; Dodd et al. 2019).

The non-native distributional range of A. albur‑
nus has recently expanded by natural dispersal 
through the River Ob basin in Russia (Interesova 
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2016; Reshetnikov et  al. 2017), where the species 
was first reported in 1933 (Berg 1933), but whose 
presence was subsequently questioned (Ioganzen 
1947). In the early 1990s, A. alburnus was recorded 
in the River Tobol (Terent’eva and Mukhachev 
2006), spreading in the following years throughout 
rivers of Siberia, mainly the River Tom—a tribu-
tary of the Upper Ob basin- by the end of the 1990s 
(Yurakova and Petlina 2001), the River Ishim by 
2000 (Kolomin 2006), and the rivers Om and Miass 
by 2007 (Zinov’ev and Baklanov 2007). Currently, 
A. alburnus inhabits Novosibirsk Reservoir and 
most of the rivers and lakes in the upper and mid-
dle sections of the River Ob, where the species is 
highly abundant and still increasing in number and 
distribution (Yadrenkina 2012; Babkina et al. 2013; 
Interesova and Chakimov 2015; Romanov et  al. 
2017; Yevseyeva et al. 2019).

In the Iberian Peninsula, A. alburnus have been 
accidentally or intentionally introduced into reser-
voirs due to their use as bait by anglers targeting 

non-native piscivorous fishes, spreading rapidly to 
other water bodies by natural dispersal (Elvira and 
Almodóvar 2001; Amat-Trigo et  al. 2019). The first 
record of A. alburnus was in June 1992, for the River 
Noguera-Ribagorzana (a tributary of the River Ebro) 
(Elvira 1995), after which the species quickly spread 
to other river basins in Spain and Portugal (Vinyoles 
et al. 2007; Maceda-Veiga et al. 2010; Martelo et al. 
2021). Alburnus alburnus was detected in basins 
of the Eastern Pyrénées in 1997, in the River Muga 
in 1999 (Cardona et  al. 2002), in the River Tormes 
(River Duero basin) and in the Campo Maior Reser-
voir (River Guadiana basin) in 2003 (Pérez-Bote et al. 
2004; Velasco et  al. 2005), as well as in the basins 
of the rivers Segura (Andreu-Soler et  al. 2004) and 
Tagus in 2004 (Vinyoles et  al. 2007). Expansion of 
the species’ range in the Ebro basin and other Medi-
terranean rivers (i.e. Jucar, Mijares and Turia) has 
also been documented (Doadrio 2001). Currently, A. 
alburnus is very abundant and present in all the main 
river systems of the Iberian Peninsula, particularly 

Fig. 1   Native and introduced distributional range of the bleak Alburnus alburnus 
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those with nearby reservoirs (Masó et  al. 2016; 
Latorre et al. 2018; Matono et al. 2018; Martelo et al. 
2021).

Although A. alburnus has been reported for Italy 
(Nocita 2007; Balzani et  al. 2020), the congeneric 
arborella Alburnus arborella, which is endemic to 
the Padano-Venetian district, has been alternatively 
considered a sub-species of A. alburnus (e.g. Tirelli 
et al. 2012). In this regard, the scientific name of the 
congeneric A. arborella has been formally validated 
(Ketmaier et al. 2009). Overall, owing to the similar-
ity between these two congeners and their morpho-
logical features, further research is needed to assess 
whether or not available A. alburnus records confirm 
the species’ presence in Italy.

In the African continent, the first official record of 
A. alburnus was in 2003 for the River Kebir, Alge-
ria (Oum Toub, Skikda Province)—a tributary of the 
Guenitra Dam and the River Guebil (Tandjir and Dje-
bar 2010). However, A. alburnus bones were found 
in the spraints of Eurasian otter Lutra lutra in east 
Algeria (El-Kala National Park) in 1997 (Libois et al. 
2015). Alburnus alburnus was subsequently recorded 
in the Hamiz Reservoir in 2006 following the species’ 
introduction as a contaminant of carp species (i.e. 
common carp Cyprinus carpio, bighead carp Aris‑
tichthys nobilis, silver carp Hypophthalmichthys moli‑
trix) consignments imported from Hungary (Attou 
and Arab 2013). Speciments of  Alburnus alburnus 
were also collected in Keddara Reservoir in May 
2008, which is connected to Hamiz Reservoir by a 
water transfer canal (Attou and Arab 2013, 2019), in 
the Sebaou Basin (Great Kabylia) from 2012 to 2013. 
More recently, A. alburnus has been found in Taksebt 
Reservoir, probably as part of a 2005–2006 introduc-
tion of common carp (Lounaci-Daoudi et  al. 2016). 
In Morocco, A. alburnus was first recorded in 2013 
in the River Ghir basin, probably originating from the 
Djorf Torba Reservoir, Algeria (Clavero et al. 2015).

Habitat use

In both their native and non-native distribution 
ranges, A. alburnus populations are found mainly 
in lotic and semi-lotic environments (Mann 1996; 
Wolter and Bischoff 2001; Mehner et  al. 2005; 
Latorre et al. 2016). In its native range, A. alburnus 
inhabits eutrophic and mesotrophic water bodies 
(Říha et al. 2013)  at altitudes of up to 1800 m above 

sea level (Stefanov 2007); this reflects the species’ 
wide oxygen tolerance, i.e. ability to inhabit waters 
in which oxygen concentration can drop periodically 
down to 1.5–3.0 mg L−1 (Blanck et al. 2007).

In the native range, established populations of A. 
alburnus can be found in riverine systems, gener-
ally adjacent to annexes of the main channel, char-
acterised mainly by semi-lotic habitats that range 
from artificial (Williams 1965), rehabilitated (Grift 
et  al. 2003) and near-natural side-channels (Copp 
and Peňáz 1988; Copp 1992; Roux and Copp 1996). 
In this respect, A. alburnus has been identified as 
a ‘functional describer’ (in terms of ecological suc-
cession) of natural and regulated riverine ecosys-
tems (Copp 1989; Copp et  al. 1991). In riverine 
environments, A. alburnus appears to use connected 
waterways that are subject to periodic inunda-
tion for spawning (Hohausová et al. 2003; Penczak 
et  al. 2004; Scharbert and Borcherding 2013). For 
example, a field study of fish movements between 
the main channel of the River Morava (Czechia) 
and a reconnected, rehabilitated former meander 
reported older A. alburnus (≥ 1 + years, i.e. stand-
ard lengths (SL) of 100–150 mm), moving in May 
between dusk and dawn, and exclusively from the 
former meander to the main channel (Hohausová 
et  al. 2003). The larvae of A. alburnus have been 
found in shallow, still waters, whereas juveniles in 
shallow, low-velocity habitats (Copp 1992; Grift 
et al. 2003), such as river side-channels, where lat-
eral movements of young-of-the-year (0 +) juve-
niles have been observed  to take place as an anti-
predator behavioural response to predator threats 
(Copp 1992). Alburnus alburnus eggs and larvae 
are carried downstream by river currents (Copp 
et al. 2002), and from flood plains to their shallow 
nurseries at the channel banks (Černý et  al. 2003; 
Scharbert and Borcherding 2013). Riverine habi-
tats that contain refuge habitats (i.e. and crevices or 
submerged roots) are also inhabited by A. alburnus, 
as revealed in a study of a heavily-modified stream 
tributary of the River Danube that had undergone 
rehabilitation (Pander and Geist 2010). Specifically, 
artificial dead-wood fascines (i.e. bank reinforce-
ment with overhanging riparian wood) were found 
to provide an excellent winter habitat for smaller-
bodied fishes, including A. alburnus (Pander and 
Geist 2010). Moreover, in a recently-constructed 
artificial fishway on the River Segura (southeast 
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of Iberian Peninsula), A. alburnus was the domi-
nant species both in frequency of occurrence and 
abundance, which exemplifies its ability to adapt to 
establish in heavily modified waters (Sánchez-Pérez 
et al. 2022).

In lacustrine habitats, including reservoirs, A. 
alburnus has been found to spawn preferentially 
in the faster-flowing waters of tributaries before 
returning to the main water body for foraging (Říha 
et  al. 2013). Still-water populations are found in 
lakes, reservoirs, river floodplain channels and 
adjacent water bodies (e.g. oxbow lakes and aban-
doned side-channels) and marshlands (Bohl 1979; 
Copp 1989, 1992; Gozlan et  al. 1998; Černý et  al. 
2003; Blanc and Lamoroux 2007; Navodaru et  al. 
2002; Pehlivanov et  al. 2011; Balzani et  al. 2020; 
Martelo et  al. 2021). However, A. alburnus popu-
lations in ponds (sensu Biggs et al. 2005: i.e. from 
1  m2 to 2 ha area) are uncommon, so references to 
small water bodies generally relate to shallow lakes 
or small reservoirs that have been mis-labelled as 
‘ponds’ (e.g. Baruš et al. 1998).

In Mediterranean rivers, non-native A. alburnus 
populations inhabit high-velocity microhabitats such 
as run-type sections (Masó et  al 2016; Muñoz-Mas 
et al. 2019), where the species is able to sustain rela-
tively high swimming speeds (Cano-Barbacil et  al. 
2020). During summer, A. alburnus shoals perform 
daily horizontal migrations and become abundant in 
the shallow littoral zone during the day and in the 
pelagic zone at night where they feed (Bohl 1982; 
Kratochvíl et  al. 2014). In Mediterranean rivers and 
reservoirs (e.g. River Guadiana, southwestern Ibe-
rian Peninsula), ontogenetic shifts in habitat use that 
partition/segregate A. alburnus populations spatially 
are difficult to identify due to greater variability in 
the transition amongst mesohabitat types across sea-
sons in rivers relative to reservoirs (Almeida et  al. 
2017). Nevertheless, young and small A. alburnus 
(cf. juveniles) in Iberian reservoirs appear to be more 
restricted to the littoral zone than reported for lakes 
in the species’ native range (Almeida et  al. 2017); 
whereas, older/larger individuals (cf. adults) tend 
to occupy both littoral and pelagic zones (Bíró and 
Muskó 1995; Bogack-Kapusta and Kapusta 2007).

Population structure and dynamics

Information on A. alburnus population structure is 
relatively scarce for both native (Bíró and Muskó 
1995) and non-native (Almeida et  al. 2014; Amat-
Trigo et al. 2019) areas, thus precluding a comprehen-
sive comparison of its population traits. In the native 
distribution range, size, age structure and population 
dynamics of A. alburnus populations were found to 
change in response to both biotic and abiotic fac-
tors, such as in the shallow waters of Lake Balaton, 
Hungary (Bíró and Muskó 1995), where the species’ 
growth, mortality and production rates were particu-
larly influenced by food availability (i.e. zooplankton 
and benthos) along the littoral zone. Previous stud-
ies revealed substantial differences in stock densities 
especially during the spawning period, where some 
populations had slower growth rates (Entz and Lukac-
sovics 1957; Bíró 1980, 1990). These differences 
probably resulted from density-dependent regulat-
ing mechanisms in fish (Elliott 1987) as well as from 
interspecific competition and predation within the A. 
alburnus populations (Latorre and Almeida 2019).

In terms of sex ratio, A. alburnus populations in 
Iberian waters generally contain a greater proportion 
of males than native-range populations (Masó et  al. 
2016; Latorre et al. 2018) (Table 1). A seasonal effect 
on sex ratio, with a strong bias toward males, both in 
lotic and lentic environments, was observed in the 
rivers Segura and Guadiana during spring, although 
females were found to be more abundant in lotic habi-
tats during autumn (Almeida et al. 2014; Amat-Trigo 
et al. 2019). This pattern may be due to elevated pre-
dation pressure on females in spring, mediated by 
their higher ambulation rate (Almeida et  al. 2014) 
when searching for spawning sites (Latorre et  al. 
2018), thus affecting sex ratio in favour of males. Sex 
ratio of non-native A. alburnus in the Keddara Reser-
voir (Algeria) was reported to be strongly influenced 
by environmental factors (Fouzia and Abdeslem 
2012), whereby oxygen and conductivity favoured 
females, with males favoured by pH and conductivity.

Seasonal differences in A. alburnus size structure 
have been reported in lacustrine populations of the 
native range (Bíró and Muskó 1995) as well as in non-
native populations between rivers and reservoirs from 
the southwest of the Iberian Peninsula (Almeida et al. 
2017). Size structure in Iberian reservoirs showed a 
bimodal pattern in autumn and winter, whereas only 
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one cohort was observed in spring, probably because 
of a high winter mortality of larger individuals due to 
low food resources availability (Almeida et al. 2017). 
These two cohorts were also observed in the river 
population in winter although they were less appar-
ent, suggesting an effect of severe environmental con-
ditions (e.g. lower temperatures and higher discharge 
rates) on the size structure of A. alburnus popula-
tions (Almeida et al. 2014). In the relatively uniform 
stream discharges of the River Stour, native A. albur‑
nus demonstrated the typical temperate-zone growth 
pattern, which consists of rapid length and weight 
increases during summer with virtually no growth 
in winter, and this is apparent in ages 0 + , 1 + and 
2 + (Mann 1991).

The dynamics of fish populations in their early 
stage of invasiveness rely on different life strate-
gies compared with long-established populations 
(Ribeiro et  al. 2008). In south-eastern Iberian popu-
lations, greater longevity and larger mature cohorts 
were found in sites with longer residence time, but 
still subject to a longitudinal gradient effect, with 
upstream populations showing higher growth rates 
and reproductive investment than in downstream 
populations (Amat-Trigo et  al. 2019). Moreover, in 
the aforementioned study, A. alburnus abundance and 
growth were significantly dependent on ecological 
variables related to water discharge, such as discharge 
variability influenced A. alburnus abundance  in a 
positive manner. Fast growth rates and high reproduc-
tive investment promote a rapid spread along highly 

regulated rivers, as reported for the River Segura, 
where A. alburnus colonised about 170  km of the 
river since its introduction in 2004 (Andreu-Soler 
et al. 2004; Amat-Trigo et al. 2019). Overall, a suite 
of factors mediate A. alburnus invasions of south-
ern Iberian rivers, including habitat conditions and 
river discharge regulation  along the rivers  longitu-
dinal  course. This is apparent from variations in A. 
alburnus population structure among invaded rivers 
of the Iberian Peninsula (Masó et  al. 2016; Latorre 
et al. 2018).

Ontogeny and growth

The SL of A. alburnus at the end of the free embryo 
stage (i.e. absorption of the yolk sac) is reported to 
be ≈6.5–7.0  mm (Pinder 2001), with larvae being 
13  mm (TL ≈16  mm) at ≈20  days after fin forma-
tion, whereas the SL of 0 + A. alburnus towards the 
end of summer was ≈40  mm, but with some indi-
viduals only measuring 20  mm in the Międzyodrze 
wetland, Poland (Kompowski 2000). Young-of-the-
year A. alburnus can represent nearly half of biomass 
increase (46.2%) in A. alburnus populations, such 
as reported for the River Thames in England (Mann 
1991).

In Iberian populations, somatic growth is faster in 
the first two years of life than after maturity has been 
achieved, whichis characterised by decreased somatic 
growth, with annual growth increments becoming 
minimal after 6–7 years (Latorre et  al. 2018). There 

Table 1   Sex ratio (male/
female) of bleak Alburnus 
alburnus populations in 
their native and non-native 
distribution ranges

Water body Country Sex ratio Sampling date Reference

Native range
River Danube Serbia 2.27 August–October Lujic et al. (2013)
Çaygören Reservoir Turkey 0.96 (Not indicated) Erdoğan and Koç (2017)
River Saône France 1.53 June Latorre et al. (2018)
Non-native range
River Cardener Spain 1.64 May–June Masó et al. (2016)
River Fluvia Spain 1.36 May–June Masó et al. (2016)
River Foix Spain 1.97 May–June Masó et al. (2016)
River Muga Spain 2.86 May–June Masó et al. (2016)
River Ebro Spain 2.08 May Latorre et al. (2018)
River Guadalquivir Spain 3.00 May Latorre et al. (2018)
River Guadiana Spain 3.35 May–June Latorre et al. (2018)
River Segura Spain 0.75 November Amat-Trigo et al (2019)
River Tagus Spain 3.17 May Latorre et al. (2018)
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are no reported differences in growth rate between 
males and females (Masó et  al. 2016; Latorre et  al. 
2018). As for other cyprinids, ageing of A. albur‑
nus specimens is typically based on scale analysis. 
Although highly variable, growth in A. alburnus is 
generally considered to be slow (e.g. Williams 1967; 
Bíró and Muskó 1995; Kompowski 2000; Britton 
2007). Mean growth increment is around 30 mm SL 
in the first year, ≈18 mm between the first and second 
year, then decreasing to 6 mm between ages eight and 
nine years, which is the maximum recorded age for 
this species (Bíró and Muskó 1995). Based on length-
at-age data from the native and introduced ranges 
(Tables 6 and 7; see also Appendix: Age and growth 
modelling), global growth in body length is asymp-
totic with an estimated SL∞ = 130.4  mm (Table  2) 
and is characterised by large variation within year 
classes (Fig.  2a). Alburnus alburnus populations in 
lotic environments were found to achieve larger sizes 
that those in lentic environments (Fig. 2b), and a sim-
ilar pattern was apparent in continental populations 
compared with those located in temperate climate 
zones (Fig.  2c). No apparent relation is observed in 
the length–weight relationships for A. alburnus pop-
ulations along a latitudinal gradient neither between 
native or non-native populations (Table 3).   

Reproduction

Alburnus alburnus is a dioecious species, with exter-
nal fertilisation. In its native range, size at maturity 
ranges 85–100 mm TL in males and 120 mm TL in 
females, with age at maturity being 2–3 years (Politou 
1993). Spawning takes place at water temperatures of 
14–28 °C (Alabaster and Lloyd 1980), though a lower 
limit of 17 °C has been reported (Mann 1996). Albur‑
nus alburnus is a phyto-lithophilous species, scatter-
ing its eggs on submerged aquatic plants, alluvia and 
ligneous debris (Balon 1975). In A. alburnus eggs, 
yolk mass represents 30% of oocyte volume, with the 
remainder being perivitelline space (Winnicki and 
Korzelecka 1997). During egg development, a lateral 
position is taken pre-hatch by the blastodisc and the 
subsequent embryo and larva, and A. alburnus distin-
guishes itself from many teleost fishes by the absence 
of lipid droplets in the yolk mass. Despite their mod-
erate embryonic respiratory organs, A. alburnus 
embryos hatch out late, are photophobic and possess 
cement glands with which to attach to the spawning 
substratum to avoid descent to the bottom (Balon 
1975, 1990).

Reproductive traits show large variability both in 
the species’ native (Rinchard and Kestemont 1996; 

Table 2   Growth of A. alburnus as modeled by the von Bertalanffy growth function (VBGF) based on length-at-age data

For each ‘best-fit’ model, the corresponding VBGF parameter estimates are provided including SE (standard errors), 95% lower 
and upper confidence intervals (LCI and UCI, respectively), t value and probability P (statistically significant at α = 0.05 in bold). 
n = number of means of LAA (see Table); N = number of populations; SL∞ = asymptotic standard length (mm); K = Brody’s growth 
coefficient (years−1); t0 = age of fish at 0 mm SL. Climate class: C = Temperate; D = Continental. See also Fig. 2a–c

Parameter Estimate SE LCI UCI t P

Global (n = 235, N = 51)
SL∞ 130.4 5.5 121.2 143.8 23.80  < 0.001
K 0.54 0.10 0.38 0.79 5.36  < 0.001
t0 0.01 0.19  − 0.47 0.31 0.01 0.999
Habitat (Lentic: n = 141, N = 27; Lotic: n = 194, N = 24)
SL∞Lentic 125.8 5.3 117.1 137.5 23.7  < 0.001
SL∞Lotic 155.8 16.6 131.3 208.2 9.4  < 0.001
KLentic 0.58 0.11 0.39 0.82 5.03  < 0.001
KLotic 0.36 0.10 0.19 0.57 3.73  < 0.001
t0  − 0.10 0.21  − 0.60 0.23  − 0.46 0.649
Climate class (C: n = 171, N = 37; D: n = 54, N = 11)
SL∞C 127.9 5.6 118.9 140.4 22.9 127.9
SL∞D 137.2 6.8 125.5 152.1 20.1 137.2
K 0.55 0.11 0.38 0.76 5.18 0.55
t0  − 0.01 0.20  − 0.47 0.29 −0.05  − 0.01
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Bonisławska et  al. 2001) and non-native ranges and 
both in small and large rivers (Masó et  al. 2016; 
Latorre et  al. 2018). This reproductive variabil-
ity is expressed mainly in terms of fecundity (Mac-
kay and Mann 1969), oocyte diameter (Bonisławska 
et  al. 2001) and energy investment in reproduction 
(Rinchard and Kestemont 1996; Amat-Trigo et  al. 
2019). In small Mediterranean rivers in the northeast 
of the Iberian Peninsula (Catalonia), a high variabil-
ity was also observed in traits such as reproductive 
investment, length at maturity and age at maturity in 
different A. alburnus populations (Masó et al. 2016).

Greater breeding performance has been observed 
in the non-native range (Latorre et  al. 2018), with 
reproduction rates changing in response to the pre-
vailing environmental conditions. In a comparison 
of A. alburnus in the River Gévora and the Sierra 
Brava Reservoir (southwestern Spain), the proportion 
of smaller mature A. alburnus individuals was lower 
in the river than in the reservoir, and both males 
and females were larger and presented higher body 
condition and reproductive investment in the river 
(Almeida et  al. 2014). Alburnus alburnus fecundity 
is highly variable in both its native (Politou 1993; 
Baruš and Prokeš 1993; Raikova-Petrova et al. 2009) 
and non-native ranges (Latorre et  al. 2018), ranging 
from 1,707 to 12,284 spawned eggs in native popu-
lations (Raikova-Petrova et al. 2009) and from 1,829 
to 8,069 eggs in non-native populations (Latorre et al. 
2018). Relative fecundity by size class is equally vari-
able elsewhere in the native range, ranging in Bul-
garia from 104 to 788 in Lake Chepintsi, which is 
almost 2.1 × higher than in the Batak Dam (Table  6). 
The greatest variability across the species’ native 
range has been reported for the Věstonice Reser-
voir, Czechia, where seasonal fecundity ranged from 
3383 to 15,438 eggs, and relative fecundity reached 
102.2–220.4  eggs  g−1 of body weight (Baruš and 
Prokeš 1993). Fecundity rate in the River Thames 
(UK) was estimated at ≈6400  eggs in 5-year-old 
females (Mackay and Mann 1969), which is almost 

Fig. 2   Growth in length of A. alburnus, as described by the 
von Bertalanffy growth function fitted to: (a) global dataset, 
(b) habitat, (c) Köppen-Geiger climate class (C = temperate; 
D = continental). In the scatterplots, each point represents a 
single mean length-at-age value (see Table 7) and the shaded 
area for each curve indicates 95% bootstrapped confidence 
intervals. Points in the scatterplots (except for the global fit) 
are slightly jittered to improve visibility. Parameters in Table 2

▸
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double the mean of ≈3800 eggs estimated in 4-year-
old females from the River Sâone in France (Latorre 
et  al. 2018). Egg diameter in the species’ native 
range also varies, with a mean diameter of 1.48 mm 
from various water courses in Poland (Bonisławska 

et al. 2001) being greater than the mean (≈1.20 mm) 
observed in the River Sâone (Latorre et  al. 2018). 
Outside the species’ native range, high variability 
in fecundity (1829–8069 eggs) and egg diameter 
(0.95–1.14 mm) was observed across large rivers of 

Table 3   Length–weight relationship (W = aLb) parameters for A. alburnus at various locations

Length: SL = standard length; FL = fork length; TL = total length. For parameter a and b, values are provided with the original digits 
from the reference source
* Non-native populations

Water body Country Length Measurements a b Reference

Lake Kirkkojärvi Finland TL cm, g 0.006 3.013 Gama and Nyberg (2017)
River Inya Russia SL mm, g 0.0118 3.0548 Interesova and Chakimov 

(2015)
River Pilica Poland SL cm, g 0.0126 3.0387 Mann and Penczak (1984)
Międzyodrze Wetland Poland SL mm, g 0.0134 2.947 Kompowski (2000)
[Water bodies of Flanders] Belgium TL cm, g 0.0071 3.013 Verreycken et al. (2011)
Lake Balaton (Palóznak 

bay)
Hungary SL cm, g 0.0063 3.0851 Bíró and Muskó (1995)

Lake Balaton (Bozsai bay) Hungary SL cm, g 0.0047 3.2593 Bíró and Muskó (1995)
Lake Balaton (Szigliget 

bay)
Hungary SL cm, g 0.0063 3.1019 Bíró and Muskó (1995)

Lake Balaton (Bala-
tongyörök bay)

Hungary SL cm, g 0.0052 3.1966 Bíró and Muskó (1995)

Lake Balaton (Keszthely 
bay)

Hungary SL cm, g 0.0081 2.9725 Bíró and Muskó (1995)

River Timiş Romania SL cm, g 0.0087 3.215 Stavrescu-Bedivan et al. 
(2017)

Lake Chepintsi Bulgaria SL cm, g 0.1499 1.8499 Raikova-Petrova et al. 
(2009)

Lake Mikri Prespa (males) Greece FL mm, g 0.0000004823 3.641 Crivelli and Dupont (1987)
Lake Mikri Prespa 

(females)
Greece FL mm, g 0.0000003510 3.641 Crivelli and Dupont (1987)

Lake Koronia Greece TL cm, g 0.0038 3.33 Politou (1993)
River Strymon estuary Greece TL cm, g 0.0098 2.790 Koutrakis and Tsikliras 

(2003)
River Rihios estuary Greece TL cm, g 0.0064 3.098 Koutrakis and Tsikliras 

(2003)
[Several water bodies] Slovenia TL cm, g 0.0053 3.1366 Marčeta (2014)
River Bosna Bosnia and Herzegovina TL mm, g 0.0001 2.8865 Golub et al. (2019)
[Several water bodies] Croatia TL cm, g 0.0092 2.932 Treer et al. (2008)
Lake Kuş Turkey SL cm, g 0.0145 3.069 Balaban (2010)
Enne Reservoir Turkey TL cm, g 0.0122 3.0552 Koyun and Karadavut 

(2010)
Çaygören Reservoir Turkey TL cm, g 0.0087 3.26 Erdoğan and Koç (2017)
Lake Estany d’Ivars i 

Vila-sana*
Spain FL cm, g 0.00000601 3.360 Sánchez-González et al. 

(2020)
River Ebro* Spain TL cm, g 0.0062 3.051 Leunda et al. (2006)
[Water bodies of the Ibe-

rian Peninsula]*
Portugal, Spain TL cm, g 0.012 2.787 Miranda et al. (2006)
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the Iberian Peninsula (Latorre et al. 2018). The high 
reproductive plasticity reported by Latorre et  al. 
(2018) may be a mechanism for adapting successfully 
to newly invaded habitats, which can differ greatly in 
local conditions (e.g. water quality, available habitat) 
and in landscape character (e.g. topography, rainfall). 
These patterns suggest that A. alburnus in non-native 
Iberian populations may display greater reproductive 
capacity (i.e. ovary mass, fecundity and egg size) than 
in the species’ native range; however, this requires 
further investigation due to the limited data from 
studies on non-native populations and to differences 
in the methodological approaches employed therein.

Trophic ecology

Prey

Alburnus alburnus feed on a wide range of food 
items, and for this reason it should be regarded as 
an omnivorous, opportunistic forager (Chappaz et al. 
1987). In its native range, A. alburnus forages at the 
surface of open inland waters (preferably lentic habi-
tats), and its diet is based primarily on zooplankton 
(Herzig 1994; Vinni et al. 2000; Vašek and Kubečka 
2004), crustaceans and chironomids (Bíró and Muskó 
1995; Latorre et al. 2016) and nektonic invertebrates, 
but it can include other drifting and terrestrial prey 
(e.g. flying and terrestrial arthropods that fall onto 
the water’s surface). As with many omnivores, A. 
alburnus are known to adapt their diet in response to 
food availability (Chappaz et al. 1987; Almeida et al. 
2017; Latorre et  al. 2018) in both native (Chappaz 
et al. 1987) and non-native (Latorre et al. 2016, 2018, 
2020b; Almeida et al. 2017) populations.

In  shallow river stretches, the diet of A. alburnus 
consists of benthic invertebrates including insect 
nymphs, larvae and snails (Haberlehner 1988; Latorre 
et  al. 2016; Almeida et  al. 2017), with detritus and 
plant material being a frequent component (Vøll-
estad 1985; Bíró and Muskó 1995). The eggs of other 
fish species have also been reported in the diet of A. 
alburnus in the Želivka Reservoir (Czechia), where 
the species may become the dominant egg predator 
(Šmejkal et  al. 2017)–though the effect of A. albur‑
nus predation on native threatened or endemic species 
requires further investigation.

In reservoirs and lakes, A. alburnus forage more 
intensively during the first half of the day, preying on 

zooplankton in deeper waters (Politou et  al. 1993), 
whereas night-time diet consists of terrestrial inverte-
brates that have fallen on the water’s surface (Chappaz 
et al. 1987). The presence of predators can modify the 
species’ feeding strategies, so A. alburnus foraging 
follows a nocturnal pattern when predators are abun-
dant and a diurnal pattern when predators do not rep-
resent a threat (Politou et al. 1993). This may explain 
the mainly diurnal pattern observed for A. alburnus 
larvae in a side-channel of the River Rhine (Schröder 
1979; see also Fig.  5 in Copp et  al. 2005c) and for 
0 + juvenile A. alburnus in a lentic side-channel of 
the River Danube. In the latter case, 0 + juvenile A. 
alburnus densities were negatively correlated with 
zooplankton densities, which increased in abundance 
overnight (Copp et al. 2005c). Additionally, changes 
in foraging strategy have been observed in relation to 
water transparency (Ivlev 1960). Similarly, foraging 
activity depends directly on water temperature, being 
related to the species’ general mobility and seasonal 
dynamics (Politou et al. 1993). Depending on density, 
stocking of A. alburnus may play an important role 
for the food web (Bíró and Muskó 1995).

Diet composition  in A. alburnus is not likely 
to be influenced by its body size, though there are 
slight shifts during early ontogeny (Politou et  al. 
1993; Bíró and Muskó 1995; Almeida et al. 2017), 
and the diet is primarily zooplankton (e.g. Nunn 
et  al. 2007), with Bosmina sp. being the most fre-
quent prey (Garner 1996). The variety of dietary 
items increases substantially with growth (Bogacka-
Kapusta and Kapusta 2007), so adult diet includes 
insect nymphs, worms and algae. Although A. 
alburnus select higher energy prey items when 
occurring in habitats with little or scarce compe-
tition (Latli et  al. 2019), in conditions of higher 
interspecific competition and lower trophic avail-
ability, juvenile individuals can diversify their diet 
and ingest lower energy resources (i.e. plants or 
algae). Consumption of algae seems to be second-
ary and depends on the availability of other food 
resources, but the energy content of algae is low 
(Latorre et al. 2016); similar to roach Rutilus rutilus 
(Mann 1997)—this could explain why A. alburnus 
with abundant algal remains in their gut have been 
observed to demonstrate reduced growth and fecun-
dity (Chappaz et al. 1987).

In lakes and reservoirs, A. alburnus forage inten-
sively during summer and at the beginning of 
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autumn, and foraging activity declines in winter upon 
a temperature decrease (Politou et  al. 1993). Forag-
ing intensity increases from early February, although 
a decrease occurs in April, coinciding with gonad 
development (Politou et al. 1993). The relative posi-
tion of A. alburnus in the water column also varies 
among seasons in response to food availability (Chap-
paz et  al. 1987). Regarding diet composition, there 
are seasonal changes that follow zooplankton compo-
sition and structure during spring and summer, being 
substituted by chironomids during autumn (Bíró and 
Muskó 1995; Bogacka-Kapusta and Kapusta 2007), 
with food diversity increasing in summer in response 
to available food resources (Politou et  al. 1993; 
Almeida et al. 2017).

Predators

Alburnus alburnus is a common prey for most fresh-
water piscivorous species throughout its distribution 
range. Predation of A. alburnus begins at an early 
age, with eggs preyed upon by European eel Anguilla 
anguilla (Mills 1991). Older A. alburnus are predated 
by piscivorous fishes, including Esox lucius (Vøllestad 
et al. 1986; Kangur and Kangur 1998; Mérő 2014) and 
Sander lucioperca (Bíró and Muskó 1995; Peltonen 
et  al. 1996; Kangur and Kangur 1998), but also by 
Lutra lutra (Prigioni et al. 2006) and piscivorous birds 
such as European kingfisher Alcedo atthis (e.g. Reyn-
olds and Hinge 1996; Vilches et al. 2012), grey heron 
Ardea cinerea (e.g. Jakubas and Mioduszewska 2005; 
Stolbunov et  al. 2017) and great cormorant Phalac‑
rocorax carbo (e.g. Gagliardi et al. 2007; Čech et al. 
2008; Čech and Vejřík 2011; Russell et al. 2022). Use 
of A. alburnus as a prey (forage) species for piscivo-
rous fishes has been the vector for introductions in the 
Mediterranean region (Vinyoles et  al. 2007), such as 
Spain (Ruiz-Olmo and Jiménez 2009; Vilches et  al. 
2012; Ribeiro et  al. 2021) and Italy (Prigioni et  al. 
2006; Gagliardi et  al. 2007), where A. alburnus has 
been used by recreational anglers as bait.

Physiology

Ontogeny of swimming performance and metabolism

In fish and other aquatic organisms, swimming per-
formance is considered to be a principal attribute for 

individual survival, reproductive success, and even 
invasiveness (Cano-Barbacil et  al. 2020). Follow-
ing an initial 8–10  days post-hatch in the substra-
tum’s interstices, when the small yolk sac has been 
absorbed and the swim bladder is functional, the A. 
alburnus larvae initiate swim-up behaviour (El-Fiky 
et  al. 1987). Larval swimming behaviour is domi-
nated by attempts to hold position in the water by 
undulating their body and fin folds. During this early 
period of development, young A. alburnus larvae 
demonstrate a relatively high propensity to drift, both 
in smaller (Copp et al. 2002) and larger water courses 
(Copp and Cellot 1988; Oesmann 2003; Zitek et  al. 
2004a, 2004b). The rate (density) of larval drift, and 
not size, was found to be negatively correlated with 
light intensity, the mean drift density of A. albur‑
nus in the River Morava (Czechia) being more than 
6 × greater at night than at twilight; this suggests that 
A. alburnus drift is not a passive displacement due to 
visual disorientation but instead a behavioural deci-
sion that is triggered by light levels (Reichard et  al. 
2002).

Swimming is almost entirely aerobic, being 
powered by the deep layers of muscle fibres, which 
exhibit strong activity of aerobic enzymes such 
as cytochrome oxidase (El-Fiky et  al. 1987; El-
Fiky and Wieser 1988). The superficial layer of 
red muscle fibres is the main respiratory organ for 
newly hatched A. alburnus, though gills are not 
yet functional (El-Fiky and Wieser 1988). Follow-
ing the onset of exogenous feeding, A. alburnus 
larvae grow, the red layer of muscle fibres dimin-
ishes gradually in mass by contracting towards the 
lateral region of the body, while at the same time 
gill filaments and secondary lamellae increase rap-
idly in number (El-Fiky et al. 1987). In A. alburnus, 
the red layer represents about 20% of the total mus-
cle mass after hatching and it is not until 20  days 
later that it begins to decrease in size (El-Fiky and 
Wieser 1988). Compared with other cyprinid spe-
cies (e.g.   Rutilus rutilus), which begin to swim 
freely 2–3  days after hatching, completion of the 
gill structure in A. alburnus is delayed due to the 
longer period of attachment of the larvae to the sub-
stratum (El-Fiky et al. 1987). In addition, the activi-
ties of the isoenzymes of lactate dehydrogenase, 
which are characteristic of fast glycolytic muscle 
fibres, increase more slowly in developing larvae 
of A. alburnus (El-Fiky et  al. 1987; El-Fiky and 
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Wieser 1988). Notably, this delay in development of 
the enzymes of anaerobic energy metabolism may 
compromise the ability of fish to sustain ultrafast 
movements (Wieser 1991).

Critical swimming speed (Ucrit), which repre-
sents the maximum aerobic swimming speed that a 
fish can attain, has been found to increase positively 
with body length in A. alburnus larvae (Abramiuk 
and Afanasyev 2017) and adults (Rubio-Gracia et al. 
2020a). In the former study, however, velocity was 
gradually increased until larvae were no longer able 
to withstand the current, whereas the latter study 
relied on stepwise increases in water velocity (i.e. one 
body length s−1) with a 20 min time interval. In deter-
mining swimming speed, the duration of the step-test 
interval is important because shorter time steps will 
result in a higher critical swimming speed (Cano-
Barbacil et al. 2020). As such, methodological differ-
ences between the above two studies would explain 
why some larvae exhibited higher critical swimming 
speed than small-bodied adults. Also, comparative 
studies have shown that not only can A. alburnus 
larvae and adults swim faster than other fish species 
of similar size, like Eurasian perch Perca fluviatilis 
(Abramiuk and Afanasyev 2017; Cano-Barbacil et al. 
2020), but they can also exhibit lower mass-specific 
cost of transport (Rubio-Gracia et  al. 2020a). This 
improved swimming performance and efficiency is 
consistent with the species’ active exploratory behav-
iour throughout the water column during early ontog-
eny (da Silva et al. 2019).

Like swimming capacity, maximum metabolic 
rate (i.e. the highest rate of oxygen consumption) 
and standard metabolic rate (i.e. the basal metabo-
lism of an animal to sustain basic life functions) are 
positively related with body size (measured as fresh 
weight) in A. alburnus. It has been shown that A. 
alburnus adults have lower standard metabolic rate 
at a comparable temperature than do other freshwater 
fish species, including some other cyprinids, centrar-
chids (e.g. pumpkinseed Lepomis gibbosus) and sal-
monids (e.g. Arctic char Salvelinus alpinus) (Rubio-
Gracia et al. 2020a; Voutilainen et al. 2011).

The critical swimming speed of A. alburnus 
adults is enhanced by their more streamlined body, 
including a head shape adapted to reduce friction 
when swimming against the current (Gąsowska 
1974), relatively low drag coefficient (Sagnes 
and Sfgtatzner 2009), estimated as fineness ratio 

(measured as SL/maximum body depth) and by 
the thickness of the caudal peduncle (estimated as 
caudal peduncle depth factor)–the latter being con-
sidered a key morphological trait to generate thrust 
(e.g. Fisher and Hogan 2007; Rubio-Gracia et  al. 
2020b). Moreover, the species’  standard metabolic 
rate is also influenced by body shape (Table  4). 
Similarly, deep-bodied fish have been found to 
attain lower standard metabolic rate than shallow-
bodied fish (Pettersson and Brönmark 1999; Latorre 
et al. 2020a). Propulsive ratio (measured as propul-
sive body area/total body area), which represents 
the proportion of the fish’s body able to be used 
for swimming (Fisher and Hogan 2007), can also 
increase markedly the variation in standard meta-
bolic rate (Table  4). Therefore, elevated standard 
metabolic rate in A. alburnus can be largely based 
on the development of muscles and other features 
related to locomotion, as reported for other fishes 
(e.g. Nanami 2007).

Energy acquisition and allocation

The energy acquisition and allocation is particularly 
relevant to understand fish survival when facing novel 
environments, such as newly invaded areas, but also 

Table 4   Simple and multiple regression models to predict 
critical swimming speed (Ucrit: cm  s−1), maximum metabolic 
rate (MMR: mgO2  h−1), and standard metabolic rate (SMR, 
mgO2 h−1) in A. alburnus using body size and some morpho-
logical ratios

N refers to the number of unique variables included in the 
model, and k refers to the total number of parameters (includ-
ing intercept and error term). SL = standard length (cm); 
W = body mass (g; measured as fresh weight); FR = fineness 
ratio (SL/maximum body depth); CPDf, caudal peduncle depth 
factor. Data extracted from Rubio-Gracia et al. (2020a)
Statistical procedures were conducted following Fisher and 
Hogan (2007). Because body shape is not necessarily linearly 
related to swimming performance, the squares of morphologi-
cal variables were also used. The Bayesian information crite-
rion was used to select the’best’ models

Model N k R2
adj

log Ucrit = 1.76 log(SL) + 0.46 1 3 0.50
log Ucrit = 1.20 log(SL) + 0.23FR − 42.15CP

Df + 41.49CPDf2 + 10.90
3 6 0.65

log MMR = 1.27 log(W) − 1.08 1 3 0.51
log MMR = 1.47 log(W) − 0.025FR2 − 0.73 2 4 0.52
log SMR = 0.92 log(W) − 2.41 1 3 0.29
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when coping with environmental change, e.g.  result-
ing from global warming. Preferential allocation of 
energy to somatic growth is an essential feature of 
larvae since rapid growth rates favour survival and 
predator avoidance (Wieser 1991). However, only 
a few studies have attempted to determine the parti-
tioning of ingested energy during the development 
of A. alburnus by measuring rates of food consump-
tion, routine metabolism and growth (Keckeis and 
Schiemer 1990, 1992). Overall, consistent with 
the  foraging patterns described here above, the pat-
tern of energy partitioning depends on food availabil-
ity. During the early ontogeny of A. alburnus, when 
food is unlimited, daily food consumption increases 
with age, e.g. at 22  days daily consumption was 
0.60 mg day–1 and at 61 days 3.85 mg day–1 (Keckeis 
and Schiemer 1990). The relationship between daily 
food consumption rates (C, J day–1  ind–1) and body 
size (W, mg dry weight) in A. alburnus also varies, 
being dependent on the amount of food ingested. 
At high and low food levels, the allometric rela-
tionships were C = 18.32  (± 1.28) W0.81  (±0.02) and 
C = 5.07  (± 1.32) W1.04  (±0.03), respectively (Keckeis 
and Schiemer 1992). The slope of the allometric rela-
tionship between respiration (R), i.e. without incor-
porating the slope due to food searching and specific 
dynamic action, and body weight (R = 0.11  [± 1.86] 
W0.87  (±  0.02)) was found to be higher at high-food 
availability than that of the above-mentioned rela-
tionship between food consumption and body weight. 
This indicates that metabolic expenditure increases 
faster with body size than energy uptake rates, caus-
ing a decrease in the growth rate of A. alburnus with 
increasing size at higher food availability. Growth 
rates ranged from 5 to 8% day−1 at higher food levels, 
but at lower food availability they ranged from 3 to 
5% day−1, which can occur independent of body size 
(Keckeis and Schiemer 1992).

In a comparison of growth rates over 90  days 
in recently hatched A. alburnus and Rutilus ruti‑
lus larvae at different levels of food supply (Keckeis 
and Schiemer 1990), production efficiency [PE = P 
(P + R)−1 × 100] was found to decrease with increas-
ing weight in the two species. However, despite the 
similar energy intake and routine metabolism of the 
two species, A. alburnus grew slower than R. ruti‑
lus at the same age and under high food availability 
(Keckeis and Schiemer 1990, 1992). This interspe-
cific difference in growth patterns can be directly 

attributed to differences in assimilation efficiency 
[AE = (P + R) × C−1 × 100], which correlates with 
the relative gut length of the species (Keckeis and 
Schiemer 1990). Because of its shorter gut length, A. 
alburnus is much less efficient in the conversion of 
consumed energy into body mass, likely due to lower 
power of digestion (Hofer and Nasir Uddin 1985). 
However, both species had similar growth when food 
was more restricted (Keckeis and Schiemer 1992). 
This finding, together with higher prey detection 
capacities (Wanzenböck and Schiemer 1989), indi-
cates that A. alburnus may be well adapted to low-
nutrition environments. These differences in energetic 
performance between the two species point to mecha-
nisms leading to trophic-niche differentiation in their 
early-life history. In addition to food availability, tem-
perature is also known to affect A. alburnus growth 
(Wieser et al. 1988b). Thus, the relative growth rate 
(% fresh weight d−1) of A. alburnus increases propor-
tionally with temperature and decreases with increas-
ing fish size, using R. rutilus as a model species 
(Wieser et  al. 1988a). Understanding these energy 
allocation metrics is essential specially to understand 
A. alburnus adapting capacity given that most of the 
invaded range is located in southern latitudes, gener-
ally with warmer environments.

Behaviour

Activities and social patterns

Categorised as a ‘compulsory schooling’ species 
(Karst 1968) and an ‘obligate schooler’ (Haberleh-
ner 1988), A. alburnus occurs almost exclusively in 
shoals, which commonly consist of 30–50 individu-
als (Holubová et  al. 2020) and move through the 
surface layer of the water column, usually at a depth 
not exceeding 1.5  m (Vašek et  al. 2009). Underwa-
ter observations demonstrated that adult A. alburnus 
shoals move rapidly (Karst 1968), positioned near the 
water’s surface (Karst 1968; Vinyoles et  al. 2008), 
and that high swimming speeds preclude other spe-
cies (e.g. Rutilus rutilus) from joining A. alburnus 
shoals (Haberlehner 1988). However, A. alburnus 
larvae and 0 + juveniles have been observed as part 
of mixed shoals in various river systems within the 
native range, consisting of other 0 + cyprinids such as 
R. rutilus, chub Squalius cephalus, rudd Scardinius 
erythrophthalmus (Copp 1992, 1993; Gozlan et  al. 
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1998) and Perca fluviatilis (Copp et al. 1994), with a 
preference for locations close to littoral areas (Černý 
et al. 2003).

Shoal formation acts as a predation-avoidance 
strategy of a small-bodied species, so A. alburnus 
demonstrates a preference to forming dense shoals, 
as observed in natural lakes (Tischler et  al. 2000) 
but also in reservoirs (Říha 2012). The effect of fish 
density on shoaling formation has been investigated 
in the epipelagic habitat of the Římov Reservoir, 
Czechia (Holubová et al. 2019), where the most abun-
dant species of the pelagic habitat corresponded to 
those species with the strongest shoaling behaviour 
(Říha 2012). The origin of these aggregations, which 
were mainly composed of species such as A. albur‑
nus, may be driven by the absence of refuges in the 
pelagic habitat (Magurran and Pitcher 1983). Moreo-
ver, the formation of shoals has been observed to be a 
function of fish density in the habitat (Holubová et al. 
2019). Fish aggregations tend to attract more individ-
uals, especially when they are feeding, thus shoal size 
increases in a linear relationship with fish density, 
supporting that shoaling behaviour is partly driven by 
fish density in open water habitats (see experimental 
data in da Silva et al. 2019). Such shoaling behaviour 
was found to emerge at a ‘critical density’ of 20–30 
individuals within 10 m distance (Makris et al. 2009; 
Maury 2017).

In both the native and introduced ranges, A. albur‑
nus shoal movements are generally similar, with 
shoals consisting of medium- to large-sized indi-
viduals, which move in a wedge-shaped configura-
tion to improve hydrodynamics under more slightly 
lotic conditions (Haberlehner 1988). Shoals were 
observed to swim in one direction in the centre of the 
river channel, whereas along the river banks circles 
or loop-shaped patterns of several meters in diameter 
were formed (Haberlehner 1988; da Silva et al. 2019). 
Within a shoal, A. alburnus position was highly vari-
able, with inter-individual distances ranging from a 
single body length at the front of the shoal to ≈2 m 
separation towards the back of the shoal. Moreover, 
solitary adult individuals may be occasionally found 
together with juveniles (Hohausová et al. 2003). Nev-
ertheless, solitary individuals can increase swimming 
activity to join new schools rapidly, including  other 
species’ aggregations, such as those of chubs (Genus 
Leuciscus), until a group of A. alburnus is found 
(Haberlehner 1988).

In the open and shallow waters of Rybinsk Res-
ervoir (Russia), the highest number of 0 + juvenile 
A. alburnus was recorded during the day, whereas 
the number of older larvae recorded during darkness 
was much lower (Stolbunov and Kuzmina 2018). Fur-
ther, the weights of older larvae at different stages 
of development differed significantly throughout the 
day, decreasing as darkness approached, thus indi-
cating diurnal migrations and redistribution of older 
larvae along the reservoir. A similar diel pattern was 
reported for A. alburnus juveniles in a side-channel of 
the River Danube (Copp et al. 2005c), where relative 
densities of A. alburnus decreased at night but size 
(mean SL ± SE) increased at night (60.4 mm ± 12.17) 
compared with day-time size (20.8 mm ± 0.73). Pre-
sumably, a circadian cycle may also be involved in 
the movement of individuals that migrate between 
pelagic and littoral habitats. Thus, in a stratified 
European reservoir, larger individuals were caught in 
greater proportion during the day, whereas the pro-
portion of smaller fish increased during the afternoon 
and night (Vašek et al. 2009).

In experiments to assess the effect of predator 
(Esox lucius) presence  on A. alburnus behaviour, 
feeding and growth under two treatments, A. alburnus 
feeding rates were reduced by 35% and 20% when 
exposed to the scent of freshly-fed and starved pike, 
respectively (Jachner 1997). This reduction resulted 
from a decrease in time spent feeding, which was fol-
lowed by a decrease in individual growth rates, thus 
supporting the hypothesis that an alarm substance, 
and not simply the predator’s odour, is the trigger 
for predator-avoidance responses (Jachner 1997). 
In the absence of the ‘recently-fed’ scent, A. albur‑
nus moved calmly, either in groups or individually, 
and without any preference between open water and 
vegetation, but in its presence A. alburnus preferred 
to move in groups and quickly towards vegetation in 
search of refuge and remained hidden until it needed 
to feed (Jachner 1996).

Migrations and movements

Although A. alburnus has been classified as non-
migratory (Wheeler 1977), perhaps because more 
sedentary populations have been reported in some 
lakes and reservoirs, this potamodromous fish is 
known to migrate from reservoirs and medium-to-
large rivers upstream into small tributaries to spawn 
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(e.g. Lelek and Libosvárskí 1960; Peterka et  al. 
2004; Meulenbroek et  al. 2018), such as reported in 
the native range for the Rímov Reservoir (Czechia) 
into its main tributary (Hladík and Kubečka 2003). 
Migrations up tributaries of several reservoirs have 
also been reported to occur in the species’ non-native 
range, where reservoirs act as a stepping-stone from 
which A. alburnus invade upstream areas (Matono 
et al. 2018). In African rivers, such upstream migra-
tions by A. alburnus occur in desert streams close to 
reservoirs and in lentic and stable habitats generated 
by dams (Attou and Arab 2013; Clavero et al. 2015).

Changes in A. alburnus migration rates are gener-
ally related to fluctuations in water quality (e.g. physi-
cal and chemical variables: Santos et  al. 2002; Lilja 
et al. 2003; Kotusz et al. 2006; Brodersen et al. 2008; 
Taylor and Cooke 2012; Benitez et  al. 2015). In the 
case of Rímov Reservoir (Czechia), the frequency of 
A. alburnus moving upstream into the tributary was 
related to an increase in water temperature, which is 
an important regulatory factor in A. alburnus spawn-
ing migrations (Hladík and Kubečka 2003). During 
upstream migrations in the River Tundzha (Bulgaria) 
during April and May (spawning period), A. albur‑
nus migration intensity was highest in mid-after-
noon (14:00) at temperatures of 11–14  °C (Angelov 
et  al. 2020). A telemetry study of four radio-tagged 
A. alburnus in the River Elbe during July–Sep-
tember 2007 documented a mean home-range area 
of 0.197 ± 0.125  km2, with diurnal movements of 
827 ± 580 m, which was seemingly influenced by abi-
otic factors, mainly turbidity, water temperature and 
discharge (Josefovičová 2019).

During winter, many fish species move down-
stream to find refuge and avoid being displaced by 
high water velocities (Lucas et  al. 1998), such as 
reported for the use of pools by A. alburnus in a fish 
pass on the River Danube (Meulenbroek et al. 2018). 
By using automated, passive-integrated-transponder 
tags, fish behaviour was examined over a wide range 
of sizes and species in a narrow fish pass located in 
Northeast England. Tagged A. alburnus were detected 
in the fish pass by the downstream end of the anten-
nae, indicating a much higher level of activity from 
fish entering and trying to use the pass than from 
those successfully ascending it (Lucas et  al. 1999). 
Most of the records compiled by downstream anten-
nae were by the antenna closest to the downstream 
end of the pass, suggesting that most fish were more 

active where velocity (and effort) was lowest in the 
water column. However, the efficiencies of coarse 
fish passage were low, possibly because cyprinids 
were impeded by the high levels of turbulence and 
the complex spatial environment (Lucas et al. 1999). 
Extensive use of fish passes by A. alburnus has also 
been reported elsewhere, such as in the rivers Meuse 
in Belgium (Baras et al. 1994), Elbe in Czechia (Prch-
alová et al. 2011), Odra in Poland (Kotusz et al. 2006) 
and Danube in Austria (Schmutz et al. 1998). Albur‑
nus alburnus have been reported to use the lower 
extent of the Danube fish pass as a winter refuge hab-
itat (Meulenbroek et al. 2018). More recently, high A. 
alburnus abundances were reported in different fish 
passages in the River Segura in southeastern Spain, 
where A. alburnus moved along the river but also 
used these passages as seasonal refugia (Sánchez-
Pérez et al. 2022).

Migrations of juvenile A. alburnus against the 
water current can be related to either foraging (Prch-
alová et  al. 2004) or the search  for winter refuges 
(Prignon et al. 1998; Lucas and Baras 2000; Prchal-
ová et  al. 2004, 2006), such as observed from Sep-
tember to November in the delta of the River Volga 
(Tryapitsyna 1965; Podolyako et al. 2017). Alburnus 
alburnus migrations upstream, dominated by 1 + and 
2 + juveniles, occur in a broadly-dispersed pattern 
(between 10–15  m) along the left and right mar-
gins of the river sections, beginning around 06:00, 
peaking between 12:00–15:00 and continuing until 
20:00–21:00 (Pavlov et al. 2019).

The invasion by  A. alburnus  of the Iberian Pen-
insula has been facilitated by human-induced altera-
tions to river channel morphology and hydrology, 
such as river impoundment for water retention. As a 
result, A. alburnus displays seasonal migrations along 
the tributaries of various reservoirs. A study of A. 
alburnus in  the River Guadiana (Portugal) reported 
size-related seasonal migrations (Matono et  al. 
2018). In summer, A. alburnus of up to 60  mm TL 
were found mostly upstream, whereas those between 
120–150 mm were found downstream, and individu-
als between 60–120 mm were equally dispersed along 
the entire river (Matono et al. 2018). These findings 
suggest an upstream recruitment of juvenile individu-
als during summer and autumn, and a higher propor-
tion of reproductive individuals downstream in spring 
and summer.
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Pathogens and parasites

Alburnus alburnus has been found to host more than 
40  species of pathogens and parasites that belong 
to the groups Acanthocephala, Cestoda, Crustacea, 
Hirudinea, Monogenea, Myxosporea, Nematoda and 
Protista (Borowik 1968; Baska and Molnár 1988; 
Koyun and Altunel 2007; Molnár et al. 2009; Koyun 
2011). Bacterial (e.g. Bacillus spp.) and fungal (e.g. 
Branchiomyces spp.) diseases in A. alburnus have 
been also detected (Table 8). Whilst viral diseases in 
A. alburnus have received relatively little attention 
compared with its parasites, experimental trials have 
revealed that A. alburnus is a potential healthy host of 
the carp edema virus (CEV), i.e. no clinical signs or 
mortality have yet to be reported (Matras et al. 2019). 
Shorter periods (only 12 h) of exposure to A. albur‑
nus in cohabitation studies were sufficient for CEV 
to be transmitted to other host species, thus confirm-
ing the species’ potential role in virus dispersal (Way 
et al. 2017).

Myxosporean parasites can also infect A. alburnus, 
and they have been recorded in the internal organs of 
A. alburnus in Hungary, where plasmodia of Myxo‑
bolus shaharomae were apparent in blood vessels of 
the kidney, liver, testes and intestinal wall—though in 
most cases the plasmodia did not elicit a host reaction 
(Molnár et al. 2009). A three-year study carried out in 
Hungary on A. alburnus from Lake Balaton and from 
the River Danube revealed the species to be a host of 
four Myxobolus species, with a prevalence up to 16% 
(Molnár 2000).

Based on 165 specimens of A. alburnus in a 
broader eco-parasitological study (Chunchukova et al. 
2019a), helminth community structure in A. albur‑
nus from the River Danube comprised seven spe-
cies of parasites (see Table  8), including Trematoda 
(four species: n = 971), Nematoda (n = 7), Cestoda 
(n = 4), and Acanthocephala (n = 2). In Lake Kor-
towskie (Poland), 14 parasite species were found in A. 
alburnus, including seven monogeneans (Dzika et al. 
2008). Infections by helminth parasites are common 
in A. alburnus populations, with Ligula intestinalis 
and Pomphorhynchus laevis considered as important 
intestinal parasites and found in several populations 
at relatively high prevalence levels (e.g. Kirin 2001; 
Chunchukova et  al. 2019a, 2019b). Thus, P. laevis 
was a core parasite species of A. alburnus in the Bul-
garian section of the River Danube, where prevalence 

levels were highest in summer and autumn (Chunchu-
kova et  al. 2019a). In the River Marista (Bulgaria), 
helminth parasites were recorded in 83% of the A. 
alburnus individuals examined and included both L. 
intestinalis and P. laevis (Chunchukova et al. 2019b). 
Five helminth parasites were recorded in A. alburnus 
from two other rivers in Bulgaria, with the nematode 
Rhabdochoata having the highest prevalence, but 
no record of either L. intestinalis or P. laevis (Kirin 
2001). Conversely, in Great Britain, L. intestinalis 
was the only helminth detected in a review of hel-
minth parasites of freshwater fishes in Great Britain 
(Price and Clancy 1983), with helminth prevalence 
in the River Thames varying seasonally and peaking 
in summer (Harris and Wheeler 1974). A similar pat-
tern was observed in Lake Enne, Turkey (Koyun et al. 
2007).

A feature of cestode parasites is their accumulation 
of heavy metals relative to their host species and envi-
ronment (Sures and Siddall 1999; Sures et al. 1999). 
Accumulations in A. alburnus infected with Pom‑
phorynchus spp. (P. laevis, P. tereticollis) has been 
found to be significantly higher, with regard to arse-
nic, nickel and lead, in the parasite than in the host 
tissues and organs (Chunchukova et al. 2017; Chun-
chukova 2018; Chunchukova and Kuzmanova 2017).

Amongst the monogenean parasites that infect A. 
alburnus populations, Dactylogyrus spp. are com-
mon, with two species recorded as infecting two 
lacustrine populations in two Adriatic river basins 
(lakes Prespa and Ohrid, Macedonia), together 
with two monogenean parasites, and with overall 
prevalence levels at 45% (see Table  8, Stojanovski 
et  al. 2009). A previous study of A. alburnus from 
Lake Prespa revealed a similar monogenean fauna, 
with 41% of A. alburnus infected with at least one 
of these parasites and with the highest prevalence 
(22%) for Dactylogyrus alatus (Stojanovski et  al. 
2003), whereas in Lake Dojran (Macedonia) preva-
lence was lower, with 2% of A. alburnus infected 
with Ligophorus sp. (Stojanovski et  al. 2008). In 
the River Porsuk (Turkey), monthly A. alburnus 
samples indicated infection by three Dactylogyrus 
species (see Table 8), with prevalence levels, abun-
dance, and mean intensity always highest for D. 
fraternus, with a prevalence of 50%, 5.2% and 2.6%, 
respectively (Koyun 2011). Studies on the molecular 
phylogeny of Dactylogyrus parasites have revealed 
the presence of three lineages, with A. alburnus 
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populations infected by a single lineage that also 
infects other leuciscids (European minnows) as well 
as the European common barbel Barbus barbus 
(Šimková et al. 2004). Finally, two species of Gyro‑
dactylus parasites have been recorded for A. albur‑
nus: G. bliccensis (Matejusová et  al. 2001) and G. 
gracilihamatus (Zietara and Lumme 2002).

Regarding digenean parasites, the majority of 
A. alburnus examined from Lake Dabie (Poland) 
were parasitised in muscle tissues by the meta-
cercariae of either Paracoenogonimus ovatus or 
Posthodiplostomum cuticola, but with a low pro-
portion, and with an intensity of infection up to 
34 metacercariae (Ostrowska et  al. 2019). In 22 
host fish species from Lake Modrac (Bosnia), the 
metacercaria of P. cuticula was commonly encoun-
tered, but with the lowest prevalence recorded in 
A. alburnus (Adrović et  al. 2011). Among others, 
the Opisthorchiidae and Heterophyidae Families 
include genera that cause fish zoonoses; however, 
owing to the small size of their metacercaria, these 
parasites cannot be visually detected in fishes. 
Through the application of multiple PCR methods, 
the Genus Metagonimus (Heterophyidae), which 
is one of the main potentially zoonotic trematodes 
present in Europe, was identified in A. alburnus 
specimens (Caffara et  al. 2020). In addition, the 
most important species of zoonotic flukes transmit-
ted in fresh waters is Opisthorchis felineus (Cech 
et  al. 2021), which has been observed at a preva-
lence of 74% in A. alburnus from German fresh 
waters (Hering-Hagenbeck and Schuster 1996).

Ergasilid parasites tend to infect the gills of their 
fish hosts, with Paraergasilus longidigitus recorded 
in the branchial filaments of A. alburnus in Lake 
Enne (Turkey) at an overall prevalence of 57%, 
but with a peak in autumn at 74%, and with preva-
lence increasing with fish size (Koyun and Altunel 
2007). Lernaea cyprinacea (also known as ‘anchor 
worm’) feeds on the host’s blood and tissue was 
recorded in A. alburnus from Iran, where 68% of 
the fish examined were infected, but with the extent 
of the pathological damage not reported (Raissy 
et al. 2013).

Genetic traits

The genetic character of A. alburnus is charac-
terised by a diploid karyotype that consists of 50 

chromosomes: 14 metacentric, 14 sub-metacentric, 
14 sub-telocentric and 8 telocentric (Ziegler et  al. 
2003). In addition, there are two giant super-numer-
ary chromosomes of two different sizes, which can 
extend the possible karyotypes to 2n = 51 and 2n = 52, 
respectively. This remarkable genetic trait has been 
reported for 11% of individuals possessing one or two 
giant supernumerary B chromosomes of different size 
(Ziegler et  al. 2003; Schmid et  al. 2006). Detailed 
DNA sequencing of the B chromosomes determined 
this trait to be of retro-transposable origin, as a 
strong homology was found with the long-terminal-
repeat retro-transposon from the medaka fish Oryzias 
latipes. Overall, these findings suggest a possible 
interspecific origin for the A. alburnus supernumer-
ary chromosomes (Camacho et al. 2000; Ziegler et al. 
2003).

As in other species, an important factor that influ-
ences genetic diversity in A. alburnus is its elevated 
capacity for hybridisation. The introduction of closely 
related fish species, along with habitat disturbance, 
has increased the incidence of interspecific hybridi-
zation and establishment of hybrid zones (Costedoat 
et  al. 2005). Alburnus alburnus can hybridise with 
other cyprinid genera, including Abramis, Blicca, 
Leuciscus, Rutilus and Squalius (Wheeler 1978; 
Blachuta and Witkowski 1984; Crivelli and Dupont 
1987; Berrebi et al. 1989; Maceda-Veiga et al. 2010; 
García-Berthou et  al. 2015; Witkowski et  al. 2015). 
However, detailed information on long-term viability 
and reproductive performance of hybrid individuals is 
still lacking.

To improve knowledge on the extent of hybridisa-
tion impact in Iberian freshwaters, the genetic profile 
of A. alburnus was identified for cyt b and beta-actin 
genes, together with Iberian endemic leuciscids, 
namely Spanish minnowcarp Anaecypris hispanica, 
Iberian roach Squalius alburnoides and Southern 
Iberian chub Squalius pyrenaicus (Almodóvar et  al. 
2012; Sousa-Santos et  al. 2018). Sequencing of the 
mitochondrial cyt b gene yielded four haplotypes 
that differed by 1–5 mutations, accounting for 0.10 
to 0.50% of pairwise divergence among sequences. A 
phylogenetic tree based on these analysed sequences 
revealed A. alburnus to be more closely related to A. 
hispanica than to the sympatric Squalius species. One 
A. alburnus haplotype from the River Guadiana was 
shared with specimens from the River Jarama (a tribu-
tary of the River Tagus in central Spain) and, together 
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with one haplotype from Czechia, formed a well-sup-
ported clade different from the clade conformed by 
individuals from Croatia, Greece and Russia. On the 
other hand, sequencing of the nuclear beta-actin gene 
revealed the presence of 12 haplotypes among speci-
mens from the River Guadiana and Croatia, with only 
three of them being found in homozygosity. Mito-
chondrial and nuclear molecular analyses were also 
conducted in A. alburnus specimens from the River 
Jarama to establish the pattern of introgression of A. 
alburnus with the genus Squalius (Almodóvar et  al. 
2012). Mitochondrial DNA analyses (cyt b and 16S) 
in hybrids were of A. alburnus maternal origin. Since 
the Internal Transcribed Spacer 1 sequences showed 
the same results, these regions were deemed to be of 
maternal type as well (Slynko and Stolbunova 2010). 
Regarding the beta-actin gene, the results showed that 
all hybrid sequences had a double peak generated by 
two different parental sequences, namely A. alburnus 
and Squalius. However, the hybrids were different in 
terms of the direction of gene introgression, with one 
hybrid proving to be of A. alburnus paternal origin 
and the other two hybrids proving to be of maternal 
A. alburnus origin (Sousa-Santos et  al. 2018). More 
recently, a single direction on hybridisation from 
male A. alburnus towards females of northern Iberian 
chub Squalius carolitertii has been identified (Curto 
et  al. 2022). Because there is increasing evidence 
supporting the theory that hybridisation can lead to 
adaptation through the establishment of new and opti-
mised genotypes and morphologies (Rieseberg et al. 
1999), the findings described here above indicate 
that introduced A. alburnus, which are widespread in 
the Iberia Peninsula (see Curto et al. 2022), have the 
potential to produce irreversible genetic swamping of 
rare endemic species.

Invasiveness and ecological impacts

Introduced populations of A. alburnus exhibit large 
and sudden increases in abundance, which is char-
acteristic of invasive fishes (Copp et  al. 2005a; Fox 
et al. 2011; Britton and Gozlan 2013), and this is one 
reason that introduced A. alburnus populations have 
dispersed widely in the Iberian Peninsula. The life-
history traits that enabled A. alburnus to invade drain-
age basins of the Iberian Peninsula will vary depend-
ing on invasion stage (Ribeiro et  al. 2008). In fact, 

small body size, an elevated capacity to adapt to local 
conditions and high fecundity rates have all been 
demonstrated to be important in population estab-
lishment (Ribeiro et al. 2008). The species dispersal 
between and within drainages is mostly related with 
its interest for recreational fisheries (Ribeiro et  al. 
2008), with propagule pressure (i.e.  frequency and 
quantity of fish releases) being a key factor in the rate 
of spread. Alburnus alburnus is listed amongst the 
most frequently introduced species in both Spain and 
Portugal due to its common use as live bait by anglers 
(Banha et al. 2017). These bait bucket releases gener-
ally involve small numbers of fish (< 30 specimens), 
but the frequency of these releases is high (25% of 
anglers), representing a considerable propagule pres-
sure (Banha et  al. 2017). This elevated propagule 
pressure is exacerbated by demonstrated plasticity in 
life-history traits (Table  5) (e.g. high reproduction, 
see below), which may increase the establishment and 
spread success (Lockwood et  al. 2005). The ability 
of  A. alburnus to cope with long term environmental 
variability on Iberian waters (invasion stage: integra-
tion) appears to be associated with the species’ die-
tary traits as well as the similarity in environmental 
conditions of the A. alburnus’ native and non-native 
ranges and their proximity (Ribeiro et al. 2008).

Not surprisingly, A. alburnus was the second 
most captured fish species in basins of the Catalonia 
Region (northeastern Spain), where native fish popu-
lations were reduced on average by 60% relative to the 
period prior to invasion by A. alburnus. Local extinc-
tions of the endemic ‘bermejuela’ Achondrostoma 
arcasii have coincided with the arrival of A. albur‑
nus (Maceda-Veiga et  al. 2010). Alburnus alburnus 
is also known to threaten species of the genus Para‑
chondrostoma, such as P. arrigonis and P. turiense, 
through competition for food and habitat resources 
(Doadrio et al. 2011; Latorre and Almeida 2019). In 
the Keddara Dam (Algeria), the accidental introduc-
tion of A. alburnus has been linked to the decline of 
native Algerian barb Barbus setivimensis (Attou and 
Arab 2013). Introduced A. alburnus populations have 
also been linked to the decline of other endemic fishes 
in Spain, including the Ebro nase Parachondrostoma 
miegii (Almeida and Grossman 2012), and to cause 
a substantial shift in the behavioural patterns of this 
Iberian nase species (Vinyoles et  al. 2009; Almeida 
and Grossman 2012) as well as on the endangered 
minnow Anaecypris hispanica (da Silva et al. 2019). 
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Table 5   Biological traits of A. alburnus in populations both in 
the native and in the non-native range  pertaining to potential 
invasiveness. Description of main findings for each trait with 

respective reference. Note that information for some traits in 
non-native regions is still scarce or absent

Native range Non-native range

Morphology
High morphological plasticity related to ecology and geography High morphological plasticity related to habitat

No studies comparing morphological traits between native and 
introduced populations

Habitat use
Present in natural riverine and lacustrine ecosystems (e.g. river 

side-channels, marshlands) and in altered riverine ecosystems 
(e.g. artificial dead-wood fascines, artificial fishways, reser-
voirs)

Present in both natural riverine and lacustrine system including 
high-velocity microhabitats and reservoirs (lentic habitats)

Population structure and dynamics
Size, age structure and population dynamics respond to abiotic 

factors, food availability and competition
Larger proportion of males documented in Spain compared to the 

native range
Greater longevity and larger mature cohorts found in reservoirs 

with longer residence time
Upstream populations showing higher growth rates than down-

stream populations
Ontogeny and growth
Standard length at the end of the free embryo stage ≈6.5–

7.0 mm, with larvae ≈13 mm
Somatic growth faster in the first two years of life
No reported differences in growth rate between males and 

females
No apparent patterns observed along a latitudinal gradient

No studies available

Reproduction
Variability in reproductive traits such as fecundity, egg size and 

energy investment
High plasticity in reproductive traits
Greater breeding performance and reproductive investment
Comparative studies between native and non-native needed to 

evaluate putative differences
Trophic ecology
Omnivorous, opportunistic forager (forages at the surface of open 

waters and its diet is mainly based on zooplankton, macroinver-
tebrates, fish eggs and plant material)

Adapts diet according to food availability and presence of other 
predators

Common prey for majority of piscivorous species

High plasticity, adapts diet according to food availability and 
habitat type

Physiology
Greater swimming performance but lower standard metabolic 

rate than in other freshwater fish species
No study comparing physiological traits between native and 

introduced populations
Behaviour
Schooling species (30–50 fish), at larval and 0 + juvenile stage 

observed as part of mixed shoals
Shoals formed by medium- to large-sized individuals moving in 

a wedge-shaped configuration
Despite having more sedentary populations that inhabit lakes and 

reservoirs, it is known to migrate from reservoirs and medium-
to-large rivers upstream into small tributaries to spawn

Shoal movements generally similar to those of native populations
Seasonal movements along tributaries of various reservoirs

Pathogens and parasites
Populations can develop diseases caused by more than 40 species 

of pathogens and parasites
The species is a disease vector by acting as a host of the cestode 

Ligula intestinalis
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Specifically, the change in behaviour has led to higher 
metabolic expense, reduced shelter use, and increased 
predation risk in A. hispanica (da Silva et al. 2019).

The role of hydrological disturbances as a facilita-
tor of invasions by A. alburnus of temporary Medi-
terranean streams has examined the species’ dispersal 
process within the River Guadiana basin (Portugal) 
at three different levels (Matono et  al. 2018): (i) 
upstream and downstream movements along river 
sections, (ii) invasion of interconnected river sec-
tions from passive movements through upstream 
dams, and (iii) dispersal related to human interven-
tion or deliberate introductions–the only factor that 
explains movement through large dams. Accord-
ingly, the expansion of A. alburnus was found to be 
clearly associated with dam-regulated river systems 
(Matono et  al. 2018), where A. alburnus spread 
appears to be related to hydrological alterations 
(Vinyoles et  al. 2007). The lentic conditions created 
by water retention structures have likely facilitated 
the establishment of A. alburnus and its dispersal 
both by active movement and through passive larval 
dispersal (Reichard et  al. 2002). Alburnus alburnus 
is considered by many to be an eurytopic fish spe-
cies (Copp 1989, 1992; Wolter and Vilcinskas 1997; 
Aarts and Nienhuis 2003; Fladung et al. 2003; Zitek 
et al. 2004a; Lasne et al. 2007) and a good swimmer 
due to its low drag coefficient (Sagnes and Statzner 
2009), thus enabling the species to sustain prolonged 
swimming performance and efficiency (Rubio-Gracia 
et al. 2020a). Consequently, A. alburnus can achieve 
high densities in a variety of freshwater environ-
ments (Masó et  al. 2016), including the highly vari-
able hydrological regimes of natural Mediterranean 
temporary streams (Almeida et al. 2014; Amat-Trigo 
et  al. 2019). Alburnus alburnus have demonstrated 
their ability to move large distances from the rivers 
and reservoirs where the species was first introduced 
(Almeida et al. 2014). This mobility is complemented 
by plasticity of several biological traits that facilitate 

adaptation and invasion to new environments, such 
as high fecundity, an omnivorous diet, and a broad 
temperature tolerance (Fig. 3) (Chappaz et  al. 1987; 
Latorre et al. 2016, 2018, 2020a). Indeed, temperature 
tolerances of A. alburnus (Kuttel et al. 2002) indicate 
that eggs are able to withstand water temperatures of 
14–31  °C (Alabaster and Lloyd 1980), with optimal 
embryonic development at 21–27  °C (Alabaster and 
Lloyd 1980). For adults, temperatures > 20  °C are 
critical, with a CTMax of 38 °C reported for A. albur‑
nus in a heated lake (Alabaster and Lloyd 1980).

As an omnivorous planktivore, A. alburnus occu-
pies a relatively-low trophic position (Almeida et al. 
2014; Latorre et  al. 2016, 2018, 2020a), which an 
afford a fish species greater efficiency in obtaining 
energy from basal trophic groups (Gido and Franssen 
2007). During the early stages of A. alburnus inva-
sions, different life traits are important along the inva-
sion stage, from recently introduced   to well-estab-
lished populations (Ribeiro et al. 2008). For example, 
faster growth rates have been found during the initial 
stages of invasion compared with sites where fish 
populations are in the establishment phase (e.g. Bøhn 
et al. 2004; Fobert et al. 2013; Copp et al. 2017). A 
similar pattern has been suggested for reproductive 
effort (Copp and Fox 2007). Overall, phenotypic and 
habitat plasticity of A. alburnus in both the native and 
introduced populations appears to be an important 
factor in its invasiveness, such as throughout highly 
regulated, Mediterranean-type rivers (Almeida et  al. 
2014; Masó et  al. 2016; Matono et  al. 2018; Amat-
Trigo et al. 2019).

Elevated abundances of A. alburnus in reservoirs 
and rivers do not seem to be controlled by the region’s 
predators, such as Lutra lutra, which is known to be 
an opportunistic predator. However, despite the high 
abundance of introduced fish  species, the  diet of L. 
lutra  has been found to contain limited occurence 
(Miranda et  al. 2006) or no evidence (Bedmar et  al. 
2022) of the invading species. With specific reference 

Table 5   (continued)

Native range Non-native range

Genetic traits
Diploid karyotype consisting of 50 chromosomes: 14 metacen-

tric, 14 sub-metacentric, 14 sub-telocentric and 8 telocentric
High capacity for hybridisation

Hybridisation with native Iberian species such as Squalius spp.
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to A. alburnus in Iberia, no evidence was found of 
otter predation on A. alburnus at a large reservoir in 
the River Guadiana from spraint samples collected 
before 2001 and in 2003 as well as in 2018, despite 
the high A. alburnus abundance in this last period 
(Bedmar et  al. 2022). Similarly, the efficient non-
native piscivorous Sander lucioperca was not found 
to reduce high abundance of A. alburnus in a study of 
14 different populations across Portuguese drainage 
basins (Ribeiro et al. 2021).

Whenever native and non-native fishes display 
similar ecological traits and life histories, the risk of 
developing ‘strong interactions’ (sensu Schumann 
et al. 2015) with native species increases, as demon-
strated by the European cyprinid sunbleak Leucaspius 
delineatus in England, where it is not native (Beyer 
et al. 2010). Thus, in the absence of an evolutionary 
history of coexistence, which promotes segregation 
of ecological niches, interactions between A. albur‑
nus and Anaecypris hispanica may be expected  due 
to their close phylogenetic relationship (Sousa-Santos 
et al. 2018). However, these two species currently do 
not live in sympatry, despite there being evidence of a 
high overlap in their ecological niches (da Silva et al. 
2019). Behavioural interference and aggression seems 

to be one of the main causes of native fish exclusion 
due to the dominance of an invasive species (Blanco-
Garrido et  al. 2009; Leunda 2010; Almeida et  al. 
2014). Some of these mechanisms may be related to 
indirect competition for space and food as well as 
changes in feeding behaviour (i.e. prey preference or 
feeding rate) and activity (Keller and Brown 2008; 
Schumann et al. 2015). Under laboratory conditions, 
A. alburnus presence was found to be responsible for 
changes in the behavioural patterns of A. hispanica, 
these being related mainly to an increase in the activ-
ity rate of individual fish and a decrease in their time 
spent within a refuge; this suggests a potential domi-
nance of A. alburnus when coexisting in the wild with 
its highly endangered congener (da Silva et al. 2019). 
Although no direct competition was observed in the 
above study between these two species, their possible 
coexistence in the future may have a negative effect 
on the general behaviour pattern of A. hispanica.

Additional risk factors associated with A. alburnus 
include disease transmission, habitat and foodweb 
alteration and genetic contamination. Alburnus albur‑
nus is a host of Ligula intestinalis in many European 
countries (see Section “Pathogens and parasites”). In 
the Iberian Peninsula, this cestode was detected in A. 

Fig. 3   Schematic representation of demonstrated and potential major ecological impacts reported for A. alburnus in invaded regions. 
YOY: young-of-the-year
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alburnus collected from the River Guadiana basin, 
including both tributaries and reservoirs (Sánchez 
and Alarcón-Elbal 2014), indicating that A. albur‑
nus can carry this parasite throughout Iberian waters 
and affect other native fishes (Latorre and Almeida 
2019). Regarding habitat alteration, A. alburnus can 
affect food web structure, and thus water quality, by 
feeding on cladocerans, copepods, and other small 
invertebrates (see Section “Trophic ecology”) that 
play an important role in freshwater ecosystems as 
zooplankton (Maceda-Veiga et  al. 2010; Adamc-
zuk 2016). This aspect consequently increases pro-
ductivity and biomass of algae, thereby promoting 
eutrophication events (Horppila and Kairesalo 1992). 
In terms of genetic ‘contamination’, A. alburnus has 
been able to affect native leuciscid species through 
hybridisation (Blachuta and Wikowski 1984; Criv-
elli and Dupont 1987; Maceda-Veiga et  al. 2010; 
see also Section “Genetic traits”). For instance, in 
the River Jarama an event of hybridisation has been 
documented with Squalius alburnoides complex and 
S. pyrenaicus, resulting in a certain degree of intro-
gression (Almodóvar et  al. 2012). More recently, A. 
alburnus hybridisation was observed with S. caroli‑
tertii in northern Portugal, expanding the hybridisa-
tion concerns to other local Squalius endemics (e.g. 
Malaga chub Squalius malacitanus or Torgal chub 
Squalius torgalensis), which present very restricted 
distributions (Curto et al. 2022). The aforementioned 
study also described wide hybridisation across sev-
eral Portuguese river basins, encompassing different 
Squalius species, but the authors acknowledged that 
this impact has been poorly studied and largely over-
looked (Curto et al. 2022).

In summary, the ‘broad plasticity and capacity of 
A. alburnus to adapt to different environmental condi-
tions when invading new habitats makes this species 
a potentially successful global invader (Masó et  al. 
2016; Latorre et  al. 2018; Attou and Arab 2019). 
Using the Fish Invasiveness Screening Kit (Copp 
et al. 2009) in Iberia, A. alburnus was found to pose 
a medium risk of being invasive in Catalonia (Andreu 
et  al. 2011), but a high risk in the Iberian Penin-
sula as a whole (Almeida et  al. 2013). More recent 
screenings that used the Aquatic Species Invasive-
ness Screening Kit (Copp et  al. 2016, 2021), which 

includes predictions of how future climate conditions 
could affect a species’ invasiveness, A. alburnus was 
classified as posing a high-risk of being invasive in 
Turkey (Tarkan et  al. 2017b), in non-native parts of 
Great Britain (Dodd et al. 2019), and in both Croatia 
and Slovenia (Radočaj et al. 2021) under current and 
future climate conditions. Whereas, a medium-risk 
ranking was attributed to A. alburnus for the River 
Ob basin in Russia (Interesova et  al. 2020), and a 
low risk ranking for Lake Marmara in Turkey (Tar-
kan et al. 2017a), and in both cases the risk rank was 
the same under current and future climate conditions. 
However, future climate conditions are expected to 
facilitate expansion of the A. alburnus’ invasive range 
(Lehtonen 1996). Indeed, the available data suggest 
that the high phenotypic plasticity shown by A. albur‑
nus outside its native range (Masó et al. 2016; Latorre 
et al. 2018) could favour its invasion process, coloni-
sation, and establishment outside its natural distribu-
tion area, and in particular Iberia.

Management

Management options to control A. alburnus are 
highly dependent on the extent of its invaded range. 
In the Iberian Peninsula, it is unfeasible to eradicate 
A. alburnus from large water bodies, particularly 
given its life-history traits described here above. 
In areas where the species is spatially restricted 
to  smaller, isolated reservoirs, containment options 
could be feasible, such as the installation of physi-
cal barriers that would reduce dispersal rates from 
reservoirs to lotic systems (e.g. Rischbieter 2000). 
However, barrier construction is not only context 
dependent but also runs contrary to European efforts 
to reconnect rivers. Currently, the legal framework 
in Portugal and Spain aims for local and national 
administrations to develop specific management 
plans to control and eradicate A. alburnus in those 
areas where it has been introduced. Alburnus albur‑
nus is included in both Spanish (RD 630/2013) and 
Portuguese (DL 92/2019) catalogues (i.e. regula-
tion lists) of invasive species. Under both legislative 
acts, the introduction of A. alburnus to the natural 
environment (usually as ‘forage’ fish) for culture, 
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transport or trade is completely forbidden. In fact, 
Spanish legislation also provides management strat-
egies for this species. However, for more than five 
years since its implementation, these management 
plans have clearly failed to control the spread of 
A. alburnus in Iberia (Latorre and Almeida 2019; 
Martelo et  al. 2021). As illegal A. alburnus intro-
ductions (and possibly translocations) are likely to 
continue, this propagule pressure will most likely 
lead to further spread of the species. Since no viable 
eradication or control measures are known for A. 
alburnus, management must focus on campaigns to 
educate anglers about the risks posed by A. alburnus 
and other non-native fishes in order to prevent their 
translocation, enhance compliance of the existing 
regulations, and to increase their enforcement. These 
are the only preventive actions that could reduce the 
species spread. Moreover, monitoring programmes 
for invasive alien species should be conducted 
across the Iberia to permit evaluation of A. alburnus 
population trends. At the local level, particularly for 
riverine systems high ecological value or threatened 
native fish species, where A. alburnus impacts could 
potentially be greater, culling campaigns should be 
considered (Salvador Vilariño 2015).

Future research on non-native A. alburnus popu-
lations could best focus on the species’ ontogeny, 
growth, trophic impacts,  behaviour and physiol-
ogy to inform impact assessments and to implement 
more efficient control measures. For instance, a bet-
ter understanding of A. alburnus’ adverse impacts 
on food webs using stable isotope analysis (SIA) 
can be particularly useful as an integrative tool to 
assess long-term dietary traits (e.g. Cucherousset 
et  al. 2007, 2012). Assessing hybridisation impacts, 
particularly looking at genetic introgression, is a pri-
ority because of the strong evidence of A. alburnus 
hybridisation with native fish species. The role of A. 
alburnus on disease transmission to other fish spe-
cies is also an important area for future research due 
to the severe impacts that some novel parasites and 
diseases can impose on naïve native species. Finally, 
for population control, research is needed to under-
stand A. alburnus reproductive behaviour in order 
to determine whether or not there are chemical cues 
that could be used in bait traps, similar to what has 
been developed for invasive sea lampreys in the Great 
Lakes region (Miehls et al. 2020).
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Appendix

Age and growth modelling

Data on A. alburnus growth were retrieved from both 
primary and secondary (cf. fide) literature sources. 
A necessary condition for inclusion of a literature 
source was that it provided mean length-at-age (LAA) 
values for the population under study. Whenever 
mean LAA values were provided for only one or a 
few age classes (e.g. as representative of the popula-
tion from which fish were sampled), these were still 
included into the global database for the sake of com-
pleteness (cf. Vilizzi and Copp 2017). For these anal-
yses (and in other relevant parts of the present study), 
LAA data originally given as total length (TL, mm) 
were converted to standard length (SL, mm) using the 
formula SL = 0.875 × TL (www.​fishb​ase.​org).

http://creativecommons.org/licenses/by/4.0/
http://www.fishbase.org
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The latitude and longitude of the water body 
where each A. alburnus population was sampled were 
recorded, except for those ‘large’ rivers for which 
no specific indication was provided of the sampling 
location(s). Sections of rivers or sampling locations 
therein were considered as separate water bodies (cf. 
A. alburnus populations). For each water body, the 
corresponding habitat was labelled as either ‘lentic’ 
(i.e. natural lakes and man-made reservoirs) or ‘lotic’ 
(water courses). Based on the waterbody latitude and 
longitude, the corresponding Köppen-Geiger climate 
class and type (Peel et al. 2007) were identified with 
reference to a regular 0.5 degree latitude/longitude 
grid for the period 1951–2000 (Kottek et  al. 2006: 
http://​koepp​en-​geiger.​vu-​wien.​ac.​at/​data/​Koepp​en-​
Geiger-​ASCII.​zip).

Growth models were based on the Beverton-Holt 
parameterisation of the von Bertalanffy growth func-
tion (VBGF: Ricker 1975):

where SL∞ is the asymptotic SL, K the instantaneous 
growth rate or Brody’s growth coefficient (years−1), 
and t0 the age of the fish at 0  mm SL. Following 
Vilizzi and Copp (2017), VBGF-based comparisons 
in growth of ide populations between ranges, habitats, 

SL = SL∞
(

1− e(−K(age−t0))
)

climates classes and climate D types (see Table) 
were made by fitting eight models in total: i) a gen-
eral model with separate parameter estimates for each 
population; ii) three models with one parameter in 
common amongst populations; iii) three models with 
two parameters in common amongst populations; 
and iv) one common model with the same param-
eter estimates for all populations. Both the Akaike 
Information Criterion (AIC) and the Bayesian Infor-
mation Criterion (BIC) were computed to select the 
best-fitting model, with preference given to BIC in 
case of major disparity of outcomes for reasons of 
model parsimony (i.e. fewer parameters), otherwise 
to AIC for ‘biological meaningfulness’ (Burnham 
and Anderson 2003). Fitting of growth models was 
in R × 64 v3.6.3 (R Development Core Team 2021) 
using packages FSA and nlstools (Ogle 2016) with 
1000 bootstrap confidence interval estimates of the 
parameters (and with additional code written by LV). 
Note that growth models based on the A. alburnus’ 
range of distribution (i.e. native vs non-native) could 
not be fitted because of the low number of popula-
tions (hence, LAA data points) from the non-native 
range (see Table).

See Tables 6, 7, 8

Table 6   Water bodies for 
which length-at-age data for 
A. alburnus were retrieved

Water body Country Lat Lon Range Habitat Class

20 lakes (North Germany) Germany 52°69’N 09°57’E Native Lentic C
Batak Reservoir Bulgaria 41°58’N 24°11’E Native Lentic D
Brno Reservoir Czechia 49°14’N 16°30’E Native Lentic C
Danube Delta (Somova) Romania 45°11’N 28°40’E Native Lentic C
Gorni Dubnik Reservoir Bulgaria 43°21’N 24°18’E Native Lentic C
Lake Bacău Romania 46°35’N 26°55’E Native Lentic D
Lake Balaton Hungary 46°51’N 17°43’E Native Lentic C
Lake Balaton (B. györök) Hungary 46°51’N 17°43’E Native Lentic C
Lake Balaton (Bozsai) Hungary 46°51’N 17°43’E Native Lentic C
Lake Balaton (Keszthely) Hungary 46°51’N 17°43’E Native Lentic C
Lake Balaton (Palóznak) Hungary 46°51’N 17°43’E Native Lentic C
Lake Balaton (Szigliget) Hungary 46°51’N 17°43’E Native Lentic C
Lake Bicaz Romania 47°02’N 26°05’E Native Lentic D
Lake Chepintsi Bulgaria 42°44’N 23°25’E Native Lentic D
Lake Ilmen Russia 58°16’N 31°17’E Native Lentic D
Lake Legińskie Poland 53°58’N 21°08’E Native Lentic D
Lake of Sainte-Croix France 43°45’N 06°11’E Native Lentic C
Lake Øyeren Norway 59°51’N 11°09’E Native Lentic D

http://koeppen-geiger.vu-wien.ac.at/data/Koeppen-Geiger-ASCII.zip
http://koeppen-geiger.vu-wien.ac.at/data/Koeppen-Geiger-ASCII.zip
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For each water body, the country, latitude, longitude, species’ distributional range, habitat 
and Köppen-Geiger climate class and type are provided (after Peel et  al. 2007). Climate class: 
C = Temperate; D = Continental

Table 6   (continued) Water body Country Lat Lon Range Habitat Class

Lake Pângărați Romania 48°56’N 26°09’E Native Lentic D
Lake Tuusula Finland 60°26’N 25°03’E Native Lentic D
Lipno Reservoir Czechia 48°42’N 14°04’E Native Lentic C
Międzyodrze Wetland Poland 53°40’N 14°57’E Native Lentic C
Piasuchnik Reservoir Bulgaria 42°40’N 24°56’E Native Lentic C
River Beek Germany 53°13’N 08°52’E Native Lotic C
River Danube Slovakia – – Native Lotic –
River Danube (Rusovce) Slovakia 48°08’N 17°07’E Native Lotic C
River Danube (Vlčie hrdlo) Slovakia 48°07’N 17°10’E Native Lotic C
River Danube (Žofín) Czechia 50°88’N 14°56’E Native Lotic C
River Daugava Belarus – – Native Lotic –
River Ebro Spain 41°47’N 01°05’W Non-native Lotic C
River Guadalquivir Spain 37°37’N 05°35’W Non-native Lotic C
River Guadiana Spain 38°59’N 05°51’W Non-native Lotic C
River Laben (Déčin) Czechia 50°46’N 14°11’E Native Lotic C
River Ohře (Karlovy-Vary) Czechia 50°13’N 12°52’E Native Lotic C
River Pilica Poland 51°51’N 21°16’E Native Lotic C
River Prokhladnaya Russia 54°61’N 20°24’E Native Lotic C
River Saône France 45°43’N 04°49’E Native Lotic C
River Segura Spain 38°06’N 01°17’W Non-native Lotic B
River Tagus Spain 39°49’N 04°20’W Non-native Lotic C
River Thames (Reading) United Kingdom 51°27’N 00°58’W Native Lotic C
River Vltava (Méchenice) Czechia 49°54’N 14°23’E Native Lotic C
River Vltava (Podbaba) Belarus 54°46’N 27°30’E Native Lotic D
Slapi Reservoir Czechia 49°49’N 14°26’E Native Lentic C
River Cardener Spain 42°10’N 01°35’E Non-native Lotic C
River Fluvià Spain 42°12’N 03°06’E Non-native Lotic C
River Foix Spain 41°25’N 01°33’E Non-native Lotic C
River Muga Spain 42°18’N 02°55’E Non-native Lotic C
River Stropnice Czechia 48°68’N 14°71’E Native Lotic C
Vranov Reservoir Czechia 48°91’N 15°81’E Native Lentic C
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Table 7   Mean length-at-
age (standard length: SL, 
mm) values for A. alburnus. 
Source references in 
footnote

Population Estimated age (years)

1 2 3 4 5 6 7 8 9 Reference

20 lakes (North Germany) 42 66 90 116 125 133 149 – – (7)
Batak Reservoir (1974) 82 101 110 119 132 – – – – (27)
Batak Reservoir (1971/1972) 78 107 120 – – – – – – (27)
Brno Reservoir 70 122 149 165 171 – – – – (25)
Danube Delta (Somova) 68 78 91 105 – – – – – (22)
Gorni Dubnik Reservoir 95 102 – – – – – – – (13)
Lake Bacău 44 72 90 103 111 – – – – (3)
Lake Balaton 43 60 71 81 98 106 – – – (4)
Lake Balaton (B. györök) 54 70 82 90 – – – – – (5)
Lake Balaton (Bozsai) 42 55 67 76 85 – – – – (5)
Lake Balaton (Keszthely) 40 51 61 71 80 88 96 103 109 (5)
Lake Balaton (Palóznak) 40 53 63 71 78 83 88 – – (5)
Lake Balaton (Szigliget) 40 50 60 69 77 84 90 96 101 (5)
Lake Bicaz 41 87 115 132 142 149 – – – (2)
Lake Chepintsi 53 80 98 – – – – – – (23)
Lake Ilmen 62 93 125 132 143 – – – – (12)
Lake Legińskie – 76 79 99 101 116 117 – – (20)
Lake of Sainte-Croix 46 75 104 120 131 143 153 – – (9)
Lake Øyeren 38 68 87 100 108 115 123 129 – (1)
Lake Pângărați 50 114 154 177 193 202 – – – (2)
Lake Tuusula 40 82 115 125 – – – – – (8)
Lipno Reservoir 93 132 148 – – – – – – (21)
Międzyodrze wetland 59 89 116 132 – – – – – (14)
Piasuchnik Reservoir 61 87 98 – – – – – – (6)
River Beek 48 92 124 138 – – – – – (16)
River Danube 60 83 – – – – – – – (21)
River Danube (Rusovce) 49 74 – – – – – – – (15)
River Danube (Vlčie hrdlo) 62 87 108 129 144 – – – – (15)
River Danube (Žofín) 60 81 99 111 125 136 – – – (11)
River Daugava 40 82 115 125 – – – – – (26)
River Ebro 55 83 97 99 – – – – – (17)
River Guadalquivir 49 80 94 104 – – – – – (17)
River Guadiana 61 87 104 106 – – – – – (17)
River Laben (Déčin) 48 75 96 115 128 142 151 – – (10)
River Ohře (Karlovy-Vary) 50 83 – – – – – – – (10)
River Pilica 55 92 120 139 150 – – – – (18)
River Prokhladnaya 47 92 123 134 – – – – – (16)
River Saône 58 88 98 99 – – – – – (17)
River Segura 43 65 89 102 – – – – – (17)
River Tagus 76 112 130 149 – – – – – (17)
River Thames (Reading) 39 70 92 111 121 130 138 – – (24)
River Vltava (Méchenice) 52 78 94 105 135 161 – – – (10)
River Vltava (Podbaba) 54 87 110 – – – – – – (10)
Slapi Reservoir (1957) 75 121 148 163 154 168 – – – (21)
Slapi Reservoir (1959) 91 125 152 172 187 – – – – (21)
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References: 1Backe-Hansen (1982) fide Kompowski (2000); 2Battes (1974) fide Battes and 
Palaghiţă (1999); 3Battes and Palaghiţă (1999); 4Bíró (1975) fide Kompowski (2000); 5Bíró and 
Muskó (1995); 6Boiadjiev (1969) fide Raikova-Petrova et  al. (2009); 7Buch (1955) fide Battes 
and Palaghiţă (1999); 8Carnefeld (1936) fide Battes and Palaghiţă (1999); 9Chappaz et al. (1987); 
10Chitravadivelu (1971) fide Kompowski (2000); 11Chitravadivelu (1974); 12Damracev (1926) fide 
Battes and Palaghiţă (1999); 13Ivanov (1991) fide Raikova-Petrova et  al. (2009); 14Kompowski 
(2000); 15Krupka (1972) fide Chitravadivelu (1974); 16Kugel (1942) fide Kompowski (2000); 
17Latorre et al. (2018); 18Mann and Penczak (1984); 19Masó et al. (2016); 20Młyniec (1986) fide 
Kompowski (2000); 21Oliva et al. (1968) fide Raikova-Petrova et al. (2009); 22Papadopol (1970) 
fide Chitravadivelu (1974); 23Raikova-Petrova et  al. (2009); 24Williams (1967); 25Wohlgemuth 
(1979) fide Kompowski (2000); 26Zhukov (1965) fide Raikova-Petrova et  al. (2009); 27Zivkov 
(1974)

Table 7   (continued) Population Estimated age (years)

1 2 3 4 5 6 7 8 9 Reference

River Cardener 66 88 – – – – – – – (19)
River Fluvià 51 86 110 – – – – – – (19)
River Foix 53 69 76 – – – – – – (19)
River Muga 42 75 – – – – – – – (19)
River Stropnice 49 68 74 – – – – – – (10)
Vranov Reservoir 70 118 140 147 – – – – – (21)



959Rev Fish Biol Fisheries (2023) 33:931–975	

1 3
Vol.: (0123456789)

Table 8   Bacterial and eukaryotic pathogens/parasites of A. alburnus 

Taxonomic group/species Family Geographical distribution Reference(s)

Bacteria

Phylum: Actinobacteria

Class: Actinobacteria

 Gordonia sp. Gordoniaceae Lake Mogan (Turkey) (33)

 Kocuria sp. Micrococcaceae Lake Mogan (Turkey) (33)

 Microbacterium sp. Microbacteriaceae Lake Mogan (Turkey) (33)

 Rhodococcus sp. Corinebacteriaceae Lake Mogan (Turkey) (33)

Phylum: Firmicutes

Class: Bacilli

 Bacillus sp. Bacillaceae Lake Mogan (Turkey) (33)

 Staphylococcus sp. Staphylococcaceae Lake Mogan (Turkey) (33)

Phylum: Proteobacteria

Class: Alphaproteobacteria

 Brevundimonas sp. Caulobacteriaceae Lake Mogan (Turkey) (33)

Class: Gammaproteobacteria

 Acinetobacter sp. Moraxellaceae Lake Mogan (Turkey) (33)

 Aeromonas sp. Aeromonadaceae Lake Mogan (Turkey) (33)

 Pseudomonas sp. Pseudomonaceae Lake Mogan (Turkey) (33)

Protista

Phylum: Apicomplexa

Class: Conoidasida

 Eimeria cylindrospora Eimeriidae Lake Balaton (Hungary) (35)

 Eimeria nemethi Eimeriidae Rivers and lakes (Hungary) (35, 38)

 Eimeria sp. Eimeriidae Rivers and lakes (Bulgaria) (10, 12)

 Goussia alburni Barrouxiidae Lake Dospat (Bulgaria) (10, 12)

Phylum: Ciliophora

Class: Oligohymenophorea

Ichthyophthirius multifiliis Ichthyophthiriidae River Sava (Bosnia and Herzegovina) (31)

 Trichodina sp. Trichodinidae Lake Prespa (Macedonia) (14, 15)

Class: Phyllopharyngea

 Chilodonella cyprini Chilodonellidae River Sava (Bosnia and Herzegovina) (31)

Fungi

Phylum: Oomycota

Class: Peronosporea

 Branchiomyces sp. Saprolegniaceae Rivers and lakes (Italy) (11)

Metazoa

Phylum: Cnidaria

Class: Myxosporea

 Henneguya cutanea Myxobolidae Lake Syamozero (Russia) (32)

 Myxobolus alburni Myxobolidae River Danube and Lake Balaton (Hungary) (28)

 Myxobolus improvisus Myxobolidae Lake Syamozero (Russia) (32)

 Myxobolus margitae Myxobolidae River Danube and Lake Balaton (Hungary) (28)

 Myxobolus obesus Myxobolidae River Danube and Lake Balaton (Hungary) (28)

 Myxobolus pseudodispar Myxobolidae Lake Mogan (Turkey) (9, 29)

 Myxobolus shaharomae Myxobolidae Rivers and lakes (Hungary) (30)

Phylum: Platyhelminthes

Class: Cestoda

 Caryophyllaeides fennica Lytocestidae River Tundzha (Bulgaria) (17)

 Ligula intestinalis Diphyllobothriidae Rivers and lakes (Czechia, France, Serbia, Spain, Ukraine) (3, 36, 8)

 Schyzocotyle acheilognathi Bothriocephalidae Outdoor pond (Norway) (13)

Class: Monogenea

 Dactylogyrus alatus Dactylogyridae River Tundzha (Bulgaria) and River Porsuk (Turkey) (17, 22)
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Taxonomy follows the World Register of Marine Species (WoRMS: https://​www.​marin​espec​ies.​org/) database, except for Crustacea 
taxonomy, which follows the World of Copepods database (www.​marin​espec​ies.​org/​copep​oda/). Some taxa have been revised, so 
valid and verified species names are used in the list that may be different from the original record. Subgenera are not given. Source 
references in footnote
1 Barzegar and Jalali (2009); 2Borowik (1968); 3Bouzid et  al. (2008); 4Bozorgnia et  al. (2018); 5Chunchukova and Kirin (2020); 
6Chunchukova et al. (2017); 7Chunchukova et al. (2019a); 8Djikanovic et al. (2012); 9Forró and Eszterbauer (2016); 10Golemansky 
(2017); 11Grimaldi (1971); 12Grupcheva et  al. (2006); 13Hansen and Alarcón (2019); 14Hristovski et  al. (2006); 15Hristovski et  al. 
(2012); 16Jalali (1998); 17Kakacheva-Avramova (1972); 18Kirin (2001); 19Kirin (2003); 20Kirin et al. (2002); 21Koval (1950); 22Koyun 
(2011); 23Koyun and Altunel (2007); 24Koyun et  al. (1997); 25Koyun et  al. (2007); 26Kuchta et  al. (2020); 27Kudlai et  al. (2017); 
28Molnár (2000); 29Molnár et al. (2002); 30Molnár et al. (2009); 31Nedić et al. (2018); 32Novokhatskaya and Ieshko (2010); 33Ozaktas 
et al. (2012); 34Pazooki and Masoumian (2012); 35Rosenthal et al. (2016); 36Sánchez and Alarcón-Elbal (2014); 37Shukerova et al. 
(2010); 38Xavier et al. (2018)

Table 8   (continued)

Taxonomic group/species Family Geographical distribution Reference(s)

 Dactylogyrus fraternus Dactylogyridae River Tundzha (Bulgaria) and River Porsuk (Turkey) (17, 22)

 Dactylogyrus minor Dactylogyridae River Tundzha (Bulgaria) (17)

 Dactylogyrus minutus Dactylogyridae River Porsuk (Turkey) (22)

 Dactylogyrus tissensis Dactylogyridae River Tundzha (Bulgaria) (17)

 Dactylogyrus vistulae Dactylogyridae River Tundzha (Bulgaria) (17)

 Gyrodactylus gracilihamatus Gyrodactylidae River Tundzha (Bulgaria) (17)

 Gyrodactylus hronosus Gyrodactylidae River Tundzha (Bulgaria) (17)

 Gyrodactylus laevis Gyrodactylidae River Tundzha (Bulgaria) (17)

 Paradiplozoon homoion Diplozoidae River Tundzha (Bulgaria) and River Porsuk (Turkey) (17, 23)

 Octomacrum europaeum Octomacridae Rivers and lakes (Europe) (26)

Class: Trematoda

 Allocreadium album Allocreadiidae Rivers and lakes (Ukraine) (21)

 Allocreadium dogieli Allocreadiidae Rivers and lakes (Russia and Ukraine) (21)

 Diplostomum mergi Diplostomidae River Danube (Czechia) (27)

 Nicolla skrjabini Opecoelidae River Danube (Bulgaria) (7)

Phylum: Nematoda

Class: Chromadorea

 Rhabdochona denudata Rhabdochonidae Rivers Arda, Marista and Tundzha, and Lake Kardzhali (Bulgaria) (17, 18, 19, 20)

 Rhaphidascaris acus Raphidascarididae River Danube and Lake Srebarna (Bulgaria) (6, 37)

 Class: Secernentea

 Contracaecum microcephalum Anisakidae River Danube (Bulgaria) (7)

 Phylum: Acanthocephala

 Class: Palaeacanthocephala

 Acanthocephalus anguillae Echinorhynchidae River Tundzha (Bulgaria) (5)

 Acanthocephalus lucii Echinorhynchidae River Danube (Bulgaria) (7)

 Pomphorhynchus laevis Pomphorhynchidae River Tundzha (Bulgaria) (17)

 Phylum: Annelida

 Class: Clitellata

 SubClass: Hirudinea

 Piscicola geometra Piscicolidae Lake Zegrzyński (Poland) (2)

 Phylum: Arthropoda

 SubPhylum: Crustacea

 Class: Hexanauplia

 Lernaea cyprinacea Lernaeidae Rivers and lakes (Iran) (1, 4, 16, 34)

 Paraergasilus longidigitus Ergasilidae Lake Enne (Turkey) (25)

 Class: Maxillopoda

 Argulus foliaceus Argulidae Lake Porsuk (Turkey) (24)

https://www.marinespecies.org/
http://www.marinespecies.org/copepoda/
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