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Abstract

Low altitude platform (LAP) unmanned aerial vehicles (UAVs), also called

drones, are currently being exploited by Edge computing (EC) systems to exe-

cute complex resource-hungry use cases, such as virtual reality, smart cities, au-

tonomous vehicles, etc., by attaching portable edge devices on them. However,

a typical drone has limited flight time, coupled with the resource-constrained

attached edge device, which can jeopardize aerial computing missions if they are

not holistically taking into consideration. Moreover, the fundamental challenge

is how to co-schedule multi-drone among multi-location where EC services are

needed, such that drones are scheduled to maximize the utility from the activi-

ties while meeting computing resource and flight time constraints. Therefore, for

a given fleet of drones and tasks across disjointed target locations in a city, we de-

rive a machine learning (ML) linear regression model that estimates these tasks
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resource requirement and execution time. Leveraging this estimation values, we

jointly consider each drone’s flight time availability and its attached edge device

resource capacity, and formulate a novel Multi-Location Capacitated Mission

Scheduling Problem (MLCMSP) that selects suitable drones and co-schedules

their flight routes with the least total distance to visit and execute tasks at the

target locations. Then, we show that faster scheduling and execution of complex

tasks at each location, while considering the inter-task dependencies is important

to achieve effective solution for our MLCMSP. Hence, we further propose Edge-

Drones, a variant bin-packing optimization approach through gang-scheduling

of inter-dependent tasks that co-schedules and co-locates tasks tightly so as

to achieve faster execution time, as well as to fully utilize available resources.

Extensive experiments on Alibaba cluster trace with information on task de-

pendencies (about 12,207,703 dependencies) show that EdgeDrones achieves up

to 73% higher resource utilization, up to 17.6 times faster executions, and up

to 2.87 times faster flight travel time compared to the baseline approaches.

Keywords: Edge computing, Aerial computing, Vehicle routing, Linear

regression, Execution time, Resource efficiency, Co-location

1. Introduction

Edge computing (EC) is a distributed computing model which places cloud

computing [1, 2] services closer to data sources so as to achieve faster response

times and real-time insights. Many latency-sensitive applications that process

data from IoT devices and sensors, rely on heterogeneous edge resources in5

close proximity for faster response times and to promote rapid development.

To this end, several EC devices of various sizes and capacities have emerged.

For example, AWS Snowcone1, Azure Stack Edge mini2, etc., are portable EC

devices that weighs about 2 ∼ 3 kg but are inherently resource-constrained

1https://aws.amazon.com/snowcone/
2https://azure.microsoft.com/en-us/products/azure-stack/edge/#overview
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relative to their on-premise counterparts, i.e., AWS Snowball3, etc. Nonetheless,10

EC systems are currently exploiting attaching these portable edge devices on

low altitude platform (LAP) unmanned aerial vehicles (UAVs) or drones to

execute complex resource-hungry use cases, such as cyber-physical systems [3],

virtual reality [4], smart vehicles [5], face recognition [6], smart cities [7], etc. In

addition, an autonomous drone technology called Drone-in-a-box 4, is currently15

being exploited for aerial EC missions [8, 5, 9]. A drone-in-a-box system can be

deployed autonomously from a box that serves as a landing pad and charging

base (i.e., depot) to perform on-demand computation activities in a city. An

activity involves visiting points of interest (i.e., target locations), hovering and

interacting with end devices to execute tasks on its attached edge device(s).20

After completing the tasks, the results are immediately and deterministically

communicated back to the end device, then it returns to its box or depot.

However, a typical drone has a limited flight time due to power factor which

can jeopardize the entire mission if it is not taking into consideration [10, 11, 12].

Hence, the critical issue is how to assign missions and optimal routes for multiple25

drones to visit a set of locations, so that they can complete their tasks, subject

to the flight time and attached edge resource constraints of each drone, without

jeopardizing application performance.

Therefore, for a given fleet of drones and multi-task across disjointed loca-

tions in a city, we propose a novel Multi-Location Capacitated Mission Schedul-30

ing Problem (MLCMSP) that co-schedules their optimal flight routing among

the locations, such that the drones can visit the locations and complete the tasks,

within their flight times and computing resource constraints, while maximizing

the total utilization. Specifically, our MLCMSP combines elements of Vehicle

Routing Problem (VRP), which is a variant of the well known Traveling Sales-35

man Problem (TSP) to find optimal routes for a set of vehicles and customers

[13, 14]. Existing works have proposed routing strategies for UAV-enabled task

3https://aws.amazon.com/snowball/
4https://en.wikipedia.org/wiki/Drone_in_a_Box
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offloading in edge-cloud computing systems [15, 16]. However, they have either

focused on co-scheduling a fleet of drones or task offloading to meet some spe-

cific objectives. It is important to note that a drone routing strategy for EC40

which do not consider the drones’ flight time and resource capacity or charac-

teristics of target tasks, such as dependencies, resource requirement, etc., can

lead to loss of job or an incomplete mission [10, 11, 12]. Effective co-scheduling

of a given fleet of drones for EC missions across multi-location, requires jointly

optimization of the following; (i) update information of each drones’ flight time45

availability and its attached edge device(s)5 resource capacity or availability,

(ii) locations of end devices requesting EC services in terms of flight distance,

flight travel time, etc., and (iii) their tasks resource requirement and execution

time estimations, so as to select drones which can maximize the utility from the

activities. A disjointed approach which interacts individually with each drone,50

would exhibit high computation complexity and is far from trivial to realize

[11, 12]. For this reason, we wish to consider an approach which seamlessly

integrate all end devices, service entities and edge resources running across mul-

tiple drones in a single pool, such that these information can be holistically

obtained and monitored from a single control plane (CP), where it can be used55

for decision making on efficient mission planning and assignment. This approach

is called Edge Federation (EF) [17, 18]. For example, recently introduced edge

computing frameworks, i.e., KubeEdge, MicroK8s, etc, have the capabilities of

integrating service entities and edge resources running across multiple drones,

run containerized tasks and eliminate provider lock-in situations. EF can enable60

effective co-scheduling of multiple drones, by selecting a minimum number of

drones which can maximize the utility for any given activities. Hence, a drone

can be assigned multiple disjointed locations as part of its mission.

An important challenge is developing an efficient scheduling strategy that

can place and execute complex applications on the attached edge devices in65

5A typical drone-based edge deployment can attach one or more or different combination

of portable edge devices, depending on the drones’ load capacity.

4
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Figure 1: DAG of representative applications.

a timely manner, while efficiently managing available resources as drones visit

their assigned locations. For example, modern applications (i.e., face recognition

[6], image classification [19], crowd counting [20], etc.,), as shown in Fig (1) are

becoming more complex in nature, structured on micro-services architectural

style, consisting of a large number of inter-dependent applications and often70

latency-sensitive [21, 22, 23]. It is naturally important to intelligently sched-

ule such inter-dependent applications in a best possible way, such that they

are quickly executed and immediately sent back to the IoT and end devices.

Existing scheduling approaches which do not consider such task dependencies,

co-location strategy or which randomly deploy tasks to any available resources75

can easily result in delay, fragmentation and over-allocation of resources, hence

jeopardizing the application performance, given the drones’ flight time and re-

source constraints. To address this challenge, we first estimate tasks resource

requirement and execution time at target locations, using linear regression ma-

chine learning (ML) model. These estimation values, as well as the drones’ flight80

time, flight distance to target locations, and attached edge resource availability

are used as inputs to plan missions for a captive set of drones to accomplish any

given activities. One drawback of this concept is that inaccurate estimations of

tasks resource requirement and execution time at target locations, could also

jeopardize the entire missions for selected drones. Similarly, if the tasks are85

5
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scheduled naively, e.g., in an edge deployment which can only execute one task

or job at any time and where each task is scheduled individually [24, 25], the sys-

tem might not yield an optimal performance. Therefore, we first investigate the

accuracy of our trained linear regression ML model for estimating multi-task

resource requirement and execution time, using the normalized absolute esti-90

mate error (NAEE) method. This serves as the estimation accuracy measure

for the trained linear regression ML model. We further propose EdgeDrones,

which extends the state-of-the-arts by providing an intelligent dependency-aware

multi-task scheduling and co-location scheme to achieve high resource utilization

and faster execution of tasks.95

In particular, we show that EF [17, 18] and ML techniques [26, 27] can

help aerial edge systems to achieve effective co-scheduling and optimal route

planning for a fleet of autonomous drones to accomplish stochastic service re-

quests from end devices across target locations in a city. With limited edge

resources and drones’ flight time, it is necessary to consider task dependencies100

in drone-based EC task offloading, by jointly optimizing the drones’ flight time

and resource availability, such that all the tasks can be intelligently scheduled

and fast executed with minimum resources before the drone returns for recharg-

ing or departs for another assigned location. Hence, our aim is to plan optimal

flight routes for drones to execute all the tasks by considering dependencies and105

resource demands, such that the actual scheduling and execution time is min-

imized, and is much less than the drones’ flight time. In summary, to achieve

our EdgeDrones implementation, we address the following critical areas:

• We propose an integrated system with global information, through the

joint optimization of all service entities, and formally define the novel110

Multi-Location Capacitated Mission Scheduling Problem (MLCMSP) that

selects and co-schedules optimal flight routes for a fleet of drones for any

given aerial computing missions in a city.

• Specifically, we derive a multi-task machine learning (ML) execution time

and resource requirement estimation, to aid MLCMSP to select drones115

6
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with requisite resource availability which can maximize the utility from

the aerial activities.

• To guarantee optimal usage of cluster resources and faster execution of

tasks, we further propose a variant bin-packing optimization approach

through gang-scheduling of multi-dependent tasks, which co-schedules and120

co-locate tasks firmly on available nodes, so as to avoid resource wastage.

• We show that EdgeDrones is capable of minimizing the actual completion

time of multi-dependent tasks using minimum resources, and we conduct

extensive experiments to compare the performance of our EdgeDrones

with several existing approaches using real-world data-trace from Alibaba125

cluster trace6, which provides information on task dependencies.

The rest of the paper is organized as follows. In Section 2, we discuss the

related work. In Section 3, we present some preliminaries on task dependency-

awareness and discuss our motivation. In Section 4, we detail our proposed

EdgeDrones for achieving high resource utilization and minimizing the execution130

times of applications deployed on federated aerial edge resources. In Section 5,

we compare the performance of our proposed EdgeDrones against that of several

state-of-the-art approaches through extensive experiments. Finally, we conclude

the paper in Section 6.

2. Related Works135

UAV or drone-based edge computing deployments are gaining increasingly

popularity due to their autonomous navigation, low cost, mobility, flexibility

and adaptive altitude to deliver faster execution closer to data sources. They

are currently being exploited for several use cases, i.e., task offloading, data

caching, data streaming, etc. For example, the authors of [28] proposed a UAV-140

enabled edge network to minimize the system-wide computation cost by efficient

6https://github.com/alibaba/clusterdata

7
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task offloading and deployment. They have formulated and solved this problem

as a stochastic game. The work [3] proposed a joint trajectory, task offloading

and caching optimization in a UAV-enabled edge for Cyber-Physical System.

They have proposed this to realize energy-efficient performance of the UAV.145

In [4], the authors explored the UAV-assisted edge and streaming for virtual

reality. They formulated this problem as a joint joint UAV placement, edge

resource allocation, and 360-degree video content layer assignment. They aim

to select the allocation of computing and communications resources, such that

the delivered quality of experience (QoE) is maximized.150

UAV or drone-enabled multi-task offloading schemes in edge systems can

benefit from joint optimization of drones’ flight time, resource availability status,

multi-task’s resource requirement and execution time, such that drone with

sufficient resource availability can be deployed to conduct efficient execution

request. A-priori information about task execution time is mostly important155

for drone-based edge deployments [11, 12]. This is because a typical drone has

limited flight time, and could possibly lead to a delayed task execution if it is not

taken into consideration [10]. In particular, optimal route can be planned and

assigned to ensure that drones can complete their tasks, given their flight time

constraints. There exist works that explore routing and trajectory scheduling160

for drone-enable edge systems. For example, the work [15] proposed a mission

scheduling problem (MSP) that co-schedules the flight routes of drones to visit

target locations and record videos. Similarly, the work [16] proposed an online

algorithm for UAV swarms to jointly optimize the task offloading and multi-

hop routing scheduling. In [3], the authors proposed a joint optimization of165

drone’s 3D trajectory scheduling and the task-cache strategies to minimize its

total energy consumption. The work [29] formulated an optimization problem

to minimize the total energy consumption of a UAV through joint partitioning

and UAV trajectory scheduling. In [30], the authors presented a distributed

task offloading and path planning algorithm to provide computational support170

to large-scale IoT nodes. However, these schemes do not consider drones’ flight

time and assume a drone can fly for unlimited amount of time, which can lead

8
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to delay or loss of job due to drones’ limited flight time [10, 11, 12].

For multi-task at target locations, an accurate execution time and resource

demand estimation is mostly needed to schedule routes for drone(s) and a-priori175

to conduct efficient multi-task scheduling. Consequently, existing researches

have proposed a huge number of learning methods to estimate task’s resource re-

quirements and execution time, based on collaborative learning (CL) [11, 18, 31],

machine learning (ML) [12, 26, 27, 32], incremental learning (IL) [33], scheduling

[34, 35, 36] and statistical models [37]. Our previous works [11, 12] focused on180

of multi-dependent tasks orchestration in autonomous drone-enabled edge com-

puting system, while considering the drones’ flight time, so as to avoid loss of

jobs [10]. Specifically, in [11], we have proposed a multi-output linear regression

model based on CL to estimate multi-dependent task’s resource requirement and

execution time, to select the closest drone deployment having matching resource185

availability and flight time to execute ready tasks at a given time. In [12], we

have proposed a ML based multi-dependent tasks dispatching over a federated

autonomous drone-enabled edge computing platform, using the total estimated

value of the multi-dependent tasks’ execution time to select a suitable drone.

With limited edge resources, is it also important to avoid any form of resource190

wastage, i.e., resource under utilization. Efficiently managing edge resources di-

rectly dictates service quality and performance [38]. As a result, task co-location

has gained attention both in academia and industry as an optimal solution for

improving resource utilization and system throughput in distributed systems.

However, effective task co-location is a non-trivial task, as it requires an un-195

derstanding of the computing resource requirement of the co-running tasks, in

order to determine how many of them can be co-located. To this end, a tasks

co-location mechanism was proposed in [39], where it was showed that by accu-

rately estimating the resource level needed, a co-location scheme can effectively

determine how many tasks can be co-located on the same host to improve the200

system throughput, by taking into consideration the memory and CPU require-

ments of co-running tasks. With the aim to maximize the resource utilization,

the authors of [40] utilized reinforcement learning to co-locate interactive ser-

9
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vices with batched ML workloads. Our previous works [41, 42] focused on

workload co-location in cloud environment, rather than edge systems. To fur-205

ther improve edge resource management, a resource management scheme was

proposed in [17, 18] which unifies distributed edge resources, such that they are

holistically managed. Our previous work [17] proposed a dependency-aware task

scheduling in such unified system. Modern applications are usually structured

with inter-task dependencies, whereby a task depends on an input from other210

task(s). A huge number of existing works, i.e., [21, 22, 23, 43] have tackled

the problem scheduling such inter-dependent tasks or multi-dependent tasks,

and their common goal is to formulate a scheduling decision that minimizes the

average completion time of such tasks.

Existing works on UAV-enabled approaches for task offloading and execu-215

tion in multi-edge deployments do not jointly consider tasks dependencies, do

not unify service entities and distributed edge resources, such that they are

holistically managed and monitored from a single control plan (CP), where

such information can be utilized to co-schedules multi-drone, co-locate multi-

task effectively . This motivates our research to extend existing schemes by220

proposing EdgeDrones. Specifically, we propose a learning-based multi-drone

route scheduling through a unified system, which include all service entities

and resources running across the multi-drone, location of end devices and their

applications. We further propose a variant bin-packing optimization approach

through gang-scheduling of multi-dependent tasks, which quickly co-schedules225

and co-locate tasks firmly on available nodes, so as to avoid delay and resource

wastage. We finally show that EdgeDrones is capable of minimizing the actual

completion time of multi-dependent tasks using minimum resources through

extensive experiments and comparison.

3. A Case Study on a Smart City230

We consider a smart city scenario, where multiple IoT and other end devices

are deployed across the city to improve life standards of its citizens. For example,

10
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Figure 2: (a)Locations of end devices needing EC services, (b) drones assignment together

with their optimal routes.

Table 1: Scheduling orders and units of various schemes

Scheme Scheduling Order Scheduling Units

EdgeDrones {T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12} 1

PDNP T3 → T2 → {T1, T4} → {T6, T8} → {T5, T7} → {T10, T11} → {T12, T9} 7

PDFP T1 → T2 → T3 → {T4, T5} → {T6, T7, T8, T9} → {T10, T11, T12} 6

NDFP {T1, T2, T3, T4, T5, T6} → {T7, T8, T9, T10, T11, T12} 2

Random T1 → T2 → T3 → T4 → T5 → T6 → T7 → T8 → T9 → T10 → T11 → T12 12

11
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Toyota Motor Corporation has recently embarked on a new smart city project

called Woven City7, where new technologies such as smart construction and

manufacturing, smart homes, robotics, connectivity through AI, autonomy, etc235

are being deployed. EC provides a promising way of enabling these technologies

by offering computing resources with low latency. Smart city solutions are

increasingly integrating UAVs or drone-enabled EC for enhanced performance

[7]. Suppose at time t, there are updates from devices at multiple locations in

the city, as shown in Fig. 2(a), drones equipped with EC devices can fly to these240

locations to render needed services in a timely manner. However, how to select,

assign and route flight paths for drones to accomplish these tasks effectively is

a major challenge. To address this, each task’s resource requirement in terms

of CPU and memory at each location Li is estimated, i.e., 〈c̃i, m̃i〉, as well as

its execution time Ẽexi . These values, as well as the location coordinates are245

utilized to select suitable drones (i.e., drones with sufficient flight time fi and

resource capacity 〈c,m〉), such that their optimal routes to visit the locations

are scheduled, as shown in Fig. 2(b). Nevertheless, a routing problem with

many locations can take a long time to solve. Therefore, for such problems, it

is better to set a search limit which terminates the search after a specific length250

of time or number of solutions is returned.

Most importantly, as the drones embark on their missions, efficient schedul-

ing strategy for complex applications at each location Li is absolutely necessary

to guarantee high application performance and successful completion of each

drone’s mission. For example, in Fig. 2(b), Drone 1 is assigned 4 locations (L1,255

L2, L3 and L4). Suppose at these locations, we have complex applications in

the form of directed acyclic graphs (DAGs), as shown in Figs. 2(a), (b), (c)

and (d), respectively, where each job typically consists of several tasks whose

dependencies are expressed by DAG, i.e., the job in Fig. 1(a) consists of inter-

task dependency depth γ of 12, i.e., (T1, T2,. . . ,T12). Such complex inter-task260

dependencies with multi-dimensional resource demands, i.e., various amounts of

7https://www.woven-city.global/

12
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CPU and memory resources, and communication requirements, make resource

management in such a drone-enabled EC system very challenging. Knowledge

about these tasks characteristics, i.e., resource demands and dependencies, is

necessary to pack or co-locate them effectively in available resources, ultimately265

to minimize their collective response times and improve the resource utilization

[11, 12]. Clearly, tasks T1, T2 and T3 are independent task, i.e., no dependency,

and they can be started without waiting for any other task(s), while tasks T4

and T5 depend on the completion of task T1. Similarly, task T10 depends on

the completion of tasks T6, T7 and T8. Hence a key objective of our Edge-270

Drones is to reduce the collective execution time of such tasks and improve

resource utilization by considering the inter-task dependency and resource de-

mands. Therefore, given the n multi-dependent tasks T1, T2, · · · , Tn, as shown

in Fig. 2, EdgeDrones adopts the gang-scheduling [11, 12, 44] strategy and a

variant bin-packing optimization to efficiently co-schedule and co-locate them275

in the attached edge nodes. We consider EdgeDrones as a Full Dependency and

Full Packing (FDFP) scheduling approach. Thus, the scheduling time can be

expressed as:

m∑

z=1

kz∑

i=1

Schzi /kz, (1)

where m is the number of scheduling units, kz is the number of tasks within the

z-th scheduling unit having the tasks
{
Tz1 , Tz2 , · · · , Tzkz

}
.280

We illustrate the advantage of the scheduling approach in EdgeDrones over

three other existing schemes as follows; (i) a scheduling approach which does not

consider tasks’ dependencies, but schedules 50% of any given multi-dependent

tasks by mainly focusing on task co-location, we refer to this scheduling approach

as No Dependency and Full Packing (NDFP), and it is similar to the approach285

in [45]; (ii) a scheduling approach which schedules up to 15% of any given multi-

dependent tasks at a time, but does not consider task co-location, we refer to

this scheduling approach as Partial Dependency and No Packing (PDNP), and it

is similar to to the approach in [46]; (iii) a scheduling approach which schedules

13
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Figure 3: Orchestration overview of EdgeDrones.

up to 40% of any given multi-dependent tasks with task co-location, we consider290

this scheduling approach as a Partial Dependency and Full Packing (PDFP),

and it is similar to to the approach in [47]; and (iv) the Random approach,

which does not consider both tasks’ dependencies and task co-location, we refer

to this scheduling approach as No Dependency and No Packing (NDNP). It

is important to note that delay in scheduling inter-dependent tasks directly295

impacts their collective execution time. For the multi-dependent tasks of Fig. 1

with n = 12 tasks, Table 1 lists the scheduling orders and scheduling units

for the schemes compared. EdgeDrones only needs one scheduling unit (m =

1) which has k1 = 12 tasks, and it also achieves the lowest execution time of
1
12

∑12
i=1Eexi . By contrast, Random has m= 12 scheduling units, each having300

a single task. Hence it has the highest execution time of
∑12
i=1Eexi . Thus,

EdgeDrones achieves the lowest scheduling and execution time. PDNP, PDFP

and NDFP deploy individual or subsets of the tasks at a time. Generally,

delay in scheduling dependent tasks directly impacts job completion time, and

utilizing gang scheduling is beneficial for overall performance.305
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4. System Model, Problem Formulation and Algorithm Framework

In this section, we detail our proposed EdgeDrones for achieving optimal

routing scheduling for drones aerial missions, high resource utilization and min-

imizing the execution times of applications deployed on an integrated edge com-

puting system. The system model is shown in Fig. 3.310

4.1. System Model

At the city center, we have a depot L0 with coordinate {x0, y0}, where a fleet

of drones DR = {DR1, · · · ,DRN} are stationed and ready for aerial computing

missions. Each drone has flight time availability favali and resource capacity

RC〈c,m〉i , in terms of CPU and memory resources. Then, at time t > 0, we315

have a set of end devices D = {D1, · · · ,DM} requesting EC services across

multi-location L = {L1, · · · , LM} with their coordinates L1 = {x1, y1}, · · · ,
LM = {xM , yM} within the city. The edge federated system EF consists of

all service entities in the N drones DRi, 1 ≤ i ≤ N , and M end devices Di,
1 ≤ i ≤M , i.e.,320

EF = DR
⋃

D. (2)

A set of multi-task T = {T1, · · · , TN} from the end device(s) at each location

Li ∈ L require an amount of CPU and memory resources RR〈c,m〉i for execution.

These resource requirements along with execution times are first estimated using

linear regression ML model. The multi-task features fmt(ω, ε, γ), where ω is the

number of instances, ε is type of tasks , γ is dependency depth, are fed into

the model Θ? to estimate the values of the resource requirement and execution

times according to

fmt ·Θ? =
[
Ẽex1

T̃
〈c,m〉
1 Ẽex2

T̃
〈c,m〉
2 · · · ẼexN T̃ 〈c,m〉N

]
, (3)

where T̃
〈c,m〉
i and Ẽexi are the estimated resource requirement (in terms of

CPU and memory 〈c,m〉) and estimated execution time for task i, respectively.

We show that with these estimated values, suitable drones can be assigned and

15
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multi-dependent tasks can be intelligently scheduled with the aim of minimizing

their actual completion time, while maximizing available resources. Assuming

that fmt∈R1×d is a d-dimensional vector (tensor), then Θ is a (d×ε)-dimensional

parameter matrix. To build this predictor Θ, we train it using historical data

from previously executed tasks/jobs based on Keras8. Keras is a library which

wraps TensorFlow9 complexity into simple and user-friendly API. The dataset

DS={(xi,yi)}ni=1 contain d-dimensional tensors of data features xi∈R1×d and

ε-dimensional tensors of labels (actual execution times) yi∈R1×ε. The learning

problem is to solve the following optimization:

Θ? = arg min
Θ∈Rd×ε

1

2n

n∑

i=1

‖xiΘ− yi‖22 +
λ

2
‖Θ‖2F , (4)

where λ is the regularization parameter and ‖ · ‖F denotes the Frobenius norm.

The optimization (4) is solved using gradient-descent, where the model is up-

dated iteratively until convergence, i.e., Θt+1 =Θt−η
(

1
ng(Θt)+λΘl

)
, in which

η is the learning rate, g(Θ) = 1
nX

T
(
XΘ−Y

)
denotes the gradient of the loss

function, X =
[
xT

1 · · ·xT
n

]T and Y =
[
yT

1 · · ·yT
n

]T are the feature set and label325

set, respectively. These estimation values T̃ 〈c,m〉 and Ẽex are important infor-

mation for selecting suitable drones from the depot for the missions. The target

location coordinates Li = {xi, yi} and depot coordinates L0 = {x0, y0} are used
to compute the distance matrix to also aid with the selection of suitable drones.

The distance matrix is an array of distances between these locations. These dis-330

tances can be obtained using the Manhattan Distance10, in which the distance

between two locations Li = {xi, yi} and Lj = {xj , yj} is given as:

dLi,j = |xi − xj |+ |yi − yj |. (5)

8https://keras.io/
9https://www.tensorflow.org/

10https://en.wikipedia.org/wiki/Taxicab_geometry
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These distances can also be obtained using Google Distance Matrix API11.

Hence, the distance matrix is given as;

DM =




dL0,0 dL0,1 dL0,2 . . . dL0,n

dL1,0 dL1,1 dL1,2 . . . dL1,n

...
...

...
. . .

...

dLm,0 dLm,1 dLm,2 . . . dLm,n



. (6)

The number of rows of the DM indicates the number of target locations and the335

depot inclusive. Autonomous drone systems have tools to help them estimate

flight travel time for distances between locations [11, 12]. A drone’s power

has a capacity P, which is used for the flights (i.e., traveling and hovering)

at a constant energy-efficient speed s. Note that the attached edge device(s)

does not depend on the drone’s power, instead, it is powered by its on-board340

power supply. For example, AWS Snowcone can be powered by any standard

USB-C power bank and can deliver up to 14 trillion operations per seconds

(TOPs) with as little as 10W of power. Therefore, the flight travel time for

dLi,j is given as fLi,j , and the flight hovering time at Li is given as fhover. As

the actual execution time is unknown at this point, we assume that the flight345

hovering time is equivalent to the multi-task execution time estimation, i.e.,

fhover ≈∑N
i=1 Ẽexi . Suppose that a drone travels from Li to Lj in one step of

its route, and that:

• The drone’s cumulative flight travel time upon arrival at Li, given as fLi

is 60s.350

• The drone’s cumulative flight travel time upon arrival at Lj , given as fLj

is 130s.

• The drone’s flight travel time fLi,j is 50s.

Obviously, the drone can not depart location Li immediately upon arrival, oth-

erwise its cumulative flight travel time fLj upon arrival at Lj would be 110s.355

11https://cloud.google.com/blog/products/maps-platform/how-use-distance-matrix-api
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Instead, the drone must hover and execute the tasks at Li for 20s before de-

parting for Lj . In other words, the execution time also constitutes a drone’s

flight travel time. On the other hand, note that the a drone’s resource capacity

RC〈c,m〉 does not accumulate as it travels along its route. This is because, af-

ter executing its tasks at Li, the results are immediately and deterministically360

communicated back to the end device at Li, and its resources becomes avail-

able for its next task execution at location Lj . Also, a drone can be assigned

multiple disjointed locations as part of its mission, giving that it has sufficient

resource availability, i.e., compute resources and flight time. Hence, a drone’s

total distance and flight travel time for its entire mission is given as;365

dtotal =
n∑

i=0

m+1∑

j=i+1

dLi,j (7)

and

f total =
n∑

i=0

m+1∑

j=i+1

fLi,j + fhoverj , (8)

respectively. Since, a drone can be assigned multiple disjointed m locations, it

must start and end its missions at the depot L0. For uniformity, we denote the

starting and the ending depot location in its route as L0 and Lm+1, respectively.

Therefore, given a federated system EF consisting of drone-enabled EC deploy-370

ments DR, where each participating drone DRi is attached with container-

optimized nodes, and a set end devices D requesting EC services across multiple

locations in a city, an update state information from the CP which include each

drones’ fight time availability favali , its total resource capacity RC〈c,m〉i , each

end device Di inter-dependent tasks execution and resource demand estima-375

tion Ẽexi T̃
〈c,m〉
i , location coordinates Li = {xi, yi} and distance matrix DM, is

needed to select, assign and schedule optimal routes DRroutei for drones to visit

these locations and execute the tasks, such that

DRroutei =arg min
DRi∈DR

{
dtotali : f totali <favali ,RC〈c,m〉i sufficient

}
. (9)
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A drone must execute a set of inter-dependent tasks T at each of its assinged

location before it returns to its depot. EdgeDrones utilizes the gang scheduling380

[44] strategy to co-schedule all tasks Ti ∈ T at a time, i.e.,

T⇒ DRi. (10)

For a task Ti ∈ T, its actual starting time and completion time are denoted as

Est and Ecp, respectively. Thus, its actual execution time is given as:

Eex = Ecp − Est. (11)

Hence the collective actual execution time of a multi (n)-task T is given as
∑n
i=1

Eexi
n . Given a cluster of container-instances or nodes Ip in the edge385

device(s) attached to DRi, let I〈c,m〉p denote the p-th node’s resource capac-

ity. The estimated resource demands of k-dependent tasks to be orchestrated
∑k
q=1 T̃

〈c,m〉
q and the resource capacity of each node is important information

needed in order to make an efficient scheduling and co-location decision on Ip at

time t. Our system extends to handle bulk requests from multiple end devices390

at the same location. Suppose at t, there are n service requests from multiple

end devices at the same location Li, where each device Di is offloading T. The

collective n requests from the end devices can be scheduled as a multi-Job J,

where J =
∑n
i=1 Ti, with collective resource demand estimation of each job de-

noted as
∑k
q=1T̃

〈c,m〉
q = T̃ 〈c,m〉′, and the aggregate execution time estimation of395

each job as
∑k
q=1Ẽexq = Ẽex′. We can gang-schedule and co-locate J effectively

on DRi:

J⇒ DRi, (12)

by considering the estimated total resource demand of J:

∑
J∈J

T̃ 〈c,m〉′ = T̃
〈c,m〉′
total , (13)
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and DRi resource capabilityRC〈c,m〉i . Hence, the total estimated execution time

of J at Li is given as:
∑

J∈J
Ẽex′ = Ẽtotal

ex′ . (14)

Therefore, estimated resource utilization of DRi for multi-job J at Li is given

by

ρ̃
〈c,m〉
DRi =

T̃
〈c,m〉′
total

RC〈c,m〉i

. (15)

For a drone DRi, let the aggregate of the actual execution time of multi-job J

at Li be ∑
J∈J

∑k

q=1

Eexq
k

=
∑

J∈J
Eex′ = Etotal

ex′ , (16)

and the total resources actually assigned for multi-job J at Li be RA〈c,m〉DRiU .

Under the condition that estimated total resource demand T̃ 〈c,m〉′total is accurate,400

i.e., T̃ 〈c,m〉′total ≈RA
〈c,m〉
DRiU , then RA

〈c,m〉
DRiU will not exceed RC〈c,m〉i . Similarly, under

the condition that estimated total estimated execution time Ẽtotal
ex′ is accurate,

i.e., Ẽtotal
ex′ ≈Etotal

ex′ , then the droneDRi will have sufficient flight time availability

favali for its entire mission.

Our learning-based approach has significant advantages over non-learning

based counterparts. By accurately estimating the resource requirement and

execution times of multi-tasks/multi-jobs, our scheme can intelligently select

suitable drones having requisite resource and flight time availability for the mis-

sions, and co-locate multi-dependent tasks in their attached edge nodes, such

that the dependent tasks can communicate and execute faster, ultimately to

minimize the response times and improve resource utilization, hence guaran-

tees the entire mission completion. The accuracy of the estimated resource

requirement and execution times can be ensured by constructing multiple train-

ing datasets for different classes of multi-tasks/multi-jobs from historical data

to learn multiple models, one for a class of multi-tasks/multi-jobs. Given the

multi-tasks/multi-jobs to be deployed, the model that is most similar to them is

employed to estimate the resource requirement and execution times. Since the

estimated total resource demand T̃ 〈c,m〉′total and execution time Ẽtotal
ex′ are accurate

estimates of the actual total resource need to be allocated RA〈c,m〉DRiU and actual
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Table 2: Common notations

Notation Description

EF Federated edge deployments

DR A fleet of autonomous drones

D A set of end devices

L A set of disjointed locations

T A set of containerized inter-dependent applications

DM Distance matrix among the depot and target locations

T Individual application or task

T̃ 〈c,m〉 Task resource requirements estimation

T̃
〈c,m〉′
total Estimated total resource requirements for jobs

Ii Container-instance or node attached to a drone

I
〈c,m〉
i Resource capacity or availability of a node

DRi Individual drone-enabled EC deployment

RC〈c,m〉i Resource capacity in a drone attached edge devices

RA〈c,m〉DRiU The total resources actually assigned for jobs

DRassigni A drone’s set of assigned locations

DRroutei The route for a drone’s mission

DR〈c,m〉iU Actual resources used for execution of jobs

DR〈c,m〉iARU The actual resource usage of a cluster

ρ
〈c,m〉
DRi Actual resource utilization of jobs

ρ̃
〈c,m〉
DRi Estimated resource utilization of jobs

ρ
〈c〉
DRi , ρ

〈m〉
DRi Actual cluster CPU, memory resource utilization

Est, Ecp Application/task starting, completion time

Eex Application or task execution time

Etotal
ex′ Actual total execution time for jobs

Ẽex Application or task execution time estimation

Ẽtotal
ex′ Estimated total execution time for jobs

L0, Li Drone’s depot and destination location

favali Drone’s flight time availability

21
fhoveri Drone’s hovering time at location

dtotali Total distance of a drone’s mission/trip

f totali Total flight travel time of a drone’s mission/trip

dLi,j Travel distance of a drone from location i to j

fLi,j Flight travel time of a drone from location i to j

ωJ Number of instances of a Job

εJ The type of job

γJ Dependency depth of a job

fmt Set of multi-task runtime parameters

Θ Multi-output linear regression model

J , J A Job, A set of Jobs
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execution time Etotal
ex′ , it is unlikely that the selected drone edge DRi will not

have sufficient resources. In other words, it is very unlikely that

f total
i > favali and/or RA〈c,m〉DRiU > RC〈c,m〉i , (17)

which would lead to loss of job and jeopadize the entire mission. By contrast,405

standard non-learning based schemes have no means to intelligently select ap-

propriate drones for ensuring that they will have sufficient resources, and the

probability of (17) occurring can be much higher than our intelligent learning

approach. There also exists simple and effective measure to guard against esti-

mation error. It is obvious that loss of job may only occur in under estimation410

scenario. Instead of using the estimates of resource demand and execution time

for selecting drones, we can add the two standard deviations of the estimation

to the corresponding estimates and use these ‘modified’ or ‘overly’ estimated

values to select the drones. This will reduce the probability of (17) occurring to

almost zero. It is straightforward to provide both the estimate and estimation415

standard deviation by dividing the training data into multiple subsets and run-

ning the estimation procedure multiple times to provide the average estimate

and estimation standard deviation.

4.2. Problem Formulation

The notations adopted are listed in Table 2. Our Multi-Location Capacitated420

Mission Scheduling Problem (MLCMSP) is summarized as: Given a federated

system EF consisting of a fleet of autonomous drones DRi, 1 ≤ i ≤ N , and a

set of end devices Di, 1 ≤ i ≤M with their computing activities to be performed

across multi-location L = {L1, · · · , LM} within a city, the objectives are to co-

schedule suitable drones, i.e., drones with sufficient flight time and computing425

resource availability, onto optimal mission routes among the locations, then co-

locate the corresponding inter-dependent tasks on each drone’s attached edge

nodes at each location, such that all the activities are successful. Particularly,

we present EdgeDrones, which intelligently co-schedules and co-locates multi-

dependent tasks firmly on nodes, while considering task dependencies in order430
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to minimize the overall actual execution time and maximize the actual resource

utilization, subject to certain constraints.

4.2.1. Constraints

At time t > 0, a set of end devices at different locations in the city require

EC services, then a set of suitable drones are selected and co-schedule for EC

missions. A drone can be assigned multiple disjointed locations as part of its

mission, i.e., DRassigni = {L1, · · · , Ln} ⊆ L. For a drone DRi, its trip route is

given as:

DRroutei =
(
L0 → L1 →, · · · ,→ Ln,→ L0

)
, (18)

and no location is assigned twice within a mission, i.e.,

ϑ
[
DRassigni , Li

]
=





1, if Li is assigned to DRi,
0, otherwise,

(19)

such that;

DRassigni ∩ DRassignk = ∅,∀i, k. (20)

This is to ensure that a location is mapped to just one drone, and that no loca-435

tion is assigned twice within the missions, where the indicator ϑ
[
DRassigni , Li

]
=

1 indicates that location Li is assigned to the droneDRi; otherwise ϑ
[
DRassigni , Li

]
=

0, all selected drones must start and end their missions at the depot L0, i.e.,

n∑

i=0

m+1∑

j=i+1

dLi,j −
m∑

j=0

n+1∑

i=j+1

dLj,i = 0,∀DRi ∈ DR, (21)

and they must complete all their tasks at any location Li before departing for

another location Lj , i.e.,440

∀DRi ∈ DR, ϕ
(
DRLi→Lji

)
=





1, if J ∈ [Ecp],

0, if J /∈ [Ecp],
(22)

where the indicator ϕ
(
DRLi→Lji

)
= 1 indicates that the drone DRi has com-

pleted the execution of J, and sent the results back to the devices at Li. Hence
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it can depart Li for Lj; otherwise ϕ
(
DRLi→Lji

)
= 0. The collective resource

demand estimation of J at any of the locations assigned to each drone, cannot

exceed its resource capacity. Recall that a drone’s resource capacity RC〈c,m〉

does not accumulate as it travels along its route. This is because, after execut-

ing its tasks at any location Li, the results are sent back to the device(s) at Li,

and its resources becomes available again for the jobs at its next location Lj .

Since the actual total resources that needs to be assigned to the multi-job at Li

is unknown at the scheduling stage, we use the estimated total resource demand

T̃
〈c,m〉′
total to replace it:

T̃
〈c,m〉′
total ≤ RC

〈c,m〉
i , ∀DRi ∈ DR. (23)

Durng the multi-task scheduling, unused or inactive attached nodes Ii∈DRi in
a selected drone would be shut down. All the nodes can be expressed in one of

these two states: Active and Inactive. An Active node is a node that is running

and is currently considered for allocation or has at least a job being started,

executing or completing. An Inactive node is a node that is not running and

and is not currently considered for allocation and not having at least a job that

is being started, executing or completing. These two states can be expressed as

follows:

∀c,m β (Ii) =





1, Active if Ji ∈ [Est, Ecp, Eex],

0, Inactive if Ji /∈ [Est, Ecp, Eex],
(24)

where the indicator β (Ii) = 1 indicates that the node Ii is ready to accept

new jobs, and at least a job Ji is being started, executing or completing, i.e.,

Ji∈ [Est, Ecp, Eex], on Ii; otherwise β (Ii)=0.

The aggregate actual execution time of J at all locations assinged to each drone
∑n
L=iE

total
exi′ and the total flight travel time

∑n
i=0

∑m+1
j=i+1f

Li,j cannot exceed445

its flight time availability favali . Since the aggregate actual execution time
∑n
L=iE

total
exi′ is unavailable at the scheduling stage, we replace it with the esti-
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mate
∑n
L=i Ẽ

total
exi′ ≈ fhover′:

f totali =

n∑

i=0

m+1∑

j=i+1

fLi,j + fhover′j , (25)

therefore,

f totali ≤ favali , ∀favali ∈ DR. (26)

4.2.2. Optimization formulation

Suitable drones are selected and co-schedule with the least total distance to

visit and execute tasks at target locations:

Minimize dtotali ∀DRi ∈ DR, (27)

subject to ϑ
[
DRassigni , Li

]
∈ {0, 1}, ∃, (28)

DRassigni ∩ DRassignk = ∅,∀i, k, (29)
n∑

i=0

m+1∑

j=i+1

dLi,j −
m∑

j=0

n+1∑

i=j+1

dLj,i = 0, (30)

ϕ
(
DRLi→Lji

)
∈ {0, 1},∀DRi ∈ DR, ∃, (31)

T̃
〈c,m〉′
total ≤ RC

〈c,m〉
i , ∀DRi ∈ DR, (32)

f total
i ≤ favali , ∀favali ∈ DR. (33)

The objective function (27) is to minimize the total distance dtotal =
∑n
i=0

∑m+1
j=i+1d

Li,j450

of each drone’s route to visit its assigned locations. Constraints (28) to (30) and

condition (31) ensure that no location is assigned twice within the missions, all

drones must start and finish their trip at the depot, and each drone must execute

all its task at any location before it departs for another location. Constraint

(32) guarantees that T̃ 〈c,m〉′total of J at any assigned location for DRi would not455

exceed its resource capacity RC〈c,m〉i . Constraint (33) also guarantees that each

drones’ total flight travel time f total
i for any mission would not exceed its flight

time availability favali . The details of our optimal mission and route planning

is given in Section 4.3 and in Algorithm 2.
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As the actual resource utilization of a cluster/edge is unknown, we maximize

the estimated resource utilization:

Maximize ρ̃
〈c,m〉
DRi , (34)

subject to J⇒ DRi, ∃, (35)

T̃
〈c,m〉′
total ≤ RC

〈c,m〉
i , ∀DRi ∈ DR, (36)

f total
i ≤ favali , ∀favali ∈ DR, (37)

ϕ
(
DRLi→Lji

)
∈ {0, 1},∀DRi ∈ DR, ∃, (38)

β (Ii)∈ {0, 1}, ∀c,m, ∃. (39)

Provided that the estimated resource utilization ρ̃
〈c,m〉
DRi is accurate, little op-460

timality will be lost. The constraints (35) to (37) indicate the dispatching

of multi-job J at each assigned location to DRi, given that its resources and

flight time availability is sufficient. More specifically, (35) is the multi-job J de-

ployment constraint, guaranteeing that J is gang-scheduled onto DRi attached
resources, such that dependent tasks within each J ∈ J can communicate and465

execute faster. The constraint (36) guarantees that T̃ 〈c,m〉′total of J would not

exceed RC〈c,m〉i of DRi, and constraint (37) guarantees that f total
i would not

exceed favali of any DRi ∈ DR. The condition (38) guarantees that active nodes

(β (Ii)=1) would be used for execution, and inactive nodes (β (Ii)=0) would be

shut down. Hence, our aim is to minimize the number of active nodes used for470

execution by co-locating jobs tightly on each node in order to maximize resource

utilization. We shall discuss the details of our multi-job co-location principle in

Section 4.3 and Algorithm 3.

Then again, Ẽtotal
ex′ of J can be minimized depending on scheduling:

Minimize Ẽtotal
ex′ , (40)

subject to J⇒ DRi? , ∃, (41)

T̃
〈c,m〉′
total ≤ RC

〈c,m〉
i , ∀DRi ∈ DR, (42)

f total
i ≤ favali , ∀favali ∈ DR, (43)

ϕ
(
DRLi→Lji

)
∈ {0, 1},∀DRi ∈ DR, ∃. (44)
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Note that the actual overall execution time Etotal
ex′ is unknown at this stage, and

we use the estimated overall execution Ẽtotal
ex′ to replace it in the optimization.475

Again, provided that the estimate Ẽtotal
ex′ is accurate, little optimality will be lost.

The constraint (41) guarantees that J at any location is dispatched to DRi, such
that dependent tasks within each J ∈ J can communicate and execute faster.

The constraint (42) guarantees that T̃ 〈c,m〉′total of J would not exceed RC〈c,m〉i of

DRi, and constraint (43) guarantees that f total
i would not exceed favali of any480

DRi ∈ DR. The condition (44) ensures that each drone must execute all its

task at any location before it departs for another location.

4.3. EdgeDrones Algorithm Framework

Our EdgeDrones approach consists of linear regression estimation, optimal

route planning for multi-drone, and gang scheduling of tasks. These three com-485

ponents aim at providing optimal solution for our Multi-Location Capacitated

Mission Scheduling Problem (MLCMSP). Particularly, the optimization (27),

(34) and (40) aim at ensuring least travel distance for drones to visit their

assigned locations, and every task at each location is fast executed given the

available resources, such that the missions are accomplished. The values of490

the linear regression estimations are required by the router, as well as the up-

date state of the drones’ flight time availabity for effective route planning and

assignment, while our gang-scheduling approach involves co-scheduling and co-

locating tasks firmly on available resources. We detail the procedures of the

three components of EdgeDrones as follows:495

4.3.1. Resource and execution time estimation

Algorithm 1 describes the resource and execution time estimations for multi-

job. As J are released, their collective resource requirement T̃ 〈c,m〉′total and execu-

tion time Ẽtotal
ex′ are estimated. The set of runtime parameters fmt(ω, ε, γ), where

ω is the number of instances, ε is type of tasks , γ is dependency depth, are500

fed into the model Θ? to to produce the estimation values (line 2 ∼ 9). Once

the estimation values are produced, they are used in the assignment and route
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Algorithm 1 Linear Regression Estimation
Input: At t > 0, J at Li; fmt are fed into Θ?

Output: T̃ 〈c,m〉′total and Ẽtotal
ex′

1: for Ji ∈ J do

2: Type of Job J = εJ

3: Number of instances of Job J = ωJ

4: Dependency depth of Job J = γJ

5: for Ti ∈ Ji do

6: fmt(ω, ε, γ) ·Θ? =
[
T̃
〈c,m〉
i Ẽexi

]

7: end for

8: T̃
〈c,m〉′
i = T̃

〈c,m〉′
i + T̃

〈c,m〉
i

9: Ẽexi′ = Ẽexi′ + Ẽexi

10: end for

planning.

4.3.2. Mission planning

Given the update state from the CP, i.e., all ready drones DRi ∈ DR at the505

depot L0 (which include each drones’ flight time availability favali and resource

capacity RC〈c,m〉i ), all end devices at target locations Li ∈ L (which include each

device set of inter-dependent tasks resource requirement T̃ 〈c,m〉′total and execution

time Ẽtotal
ex′ estimation), and the distance matrix DM, such that starting from

L0, a route is iteratively built and assigned to a drone DRi, by selecting from510

among the nearest locations which meet the constraints, i.e., L1 whose its end

device(s) T̃ 〈c,m〉′total and Ẽtotal
ex′ does not exceed the drone’s RC〈c,m〉i and favali ,

respectively, and whose flight travel time f total1 does not exceed the drone’s

favali . This process resumes from L1 to find L2, and so on until there is no

feasible neighbor (line 6 ∼ 17). L0 is finally added to conclude the route. This515

procedure is repeated to find other routes until all the possible target locations

are chosen. This mission planning also aims to optimized and minimize the

distance travelled by each drone, which lets us find an optimal solution from the
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Input: At t > 0; Li ∈ L; T̃ 〈c,m〉′total ∈ Li; Ẽtotal
ex′ ∈ Li; DRi ∈ DR; faval ∈ DRi;

RC〈c,m〉∈DRi; and DM

Output: DRassigni and DRroutei

1: for DRi ∈ DR do

2: Initialize total flight travel time f totali for DRi
3: Initialize total travel distance dtotali for DRi
4: favali = Flight travel time availability of DRi
5: RC〈c,m〉i = Resource capacity of DRi
6: L = Target locations

7: Li = route start for DRi
8: while Li 6= end of route do

9: T̃
〈c,m〉′
total = Resource demand at Li

10: Ẽtotal
ex′ = Execution time estimation at Li

11: f totali = dtotali + Ẽtotal
ex′

12: if f totali ≤favali ; ϑ
[
DRassigni , Li

]
=0; and T̃ 〈c,m〉′total ≤ RC

〈c,m〉
i then

13: ϑ
[
DRassigni , Li

]
=1

14: Lj = next feasible neighbor

15: Li = Lj

16: else

17: Lj = next feasible neighbor

18: Li = Lj

19: end if

20: dtotali = dtotali + dLi,j

21: end while

22: end for
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Algorithm 3 Multi-job Co-location

Input: J gang-scheduled onto DRi? , resource demand estimation
∑
J∈J T̃

〈c,m〉′
J ,

resource availability I〈c,m〉i of all nodes Ii∈DRi?
Output: J is co-located, such that Minimize

∑
Ii∈DRi? Ii

1: for Ii ∈ DRi? do

2: if β (Ii) = 1 then

3: I
〈c,m〉
i = 〈c,m〉, i.e., initial resource available

4: for J ∈ J do

5: if Γ [J, Ii]=0 and T̃ 〈c,m〉′J ≤I〈c,m〉i then

6: J ⇒ Ii

7: Γ [J, Ii] = 1

8: I
〈c,m〉
i = I

〈c,m〉
i − T̃ 〈c,m〉′J

9: end if

10: if I〈c,m〉i close to zero then

11: break

12: end if

13: end for

14: end if

15: end for

given Algorithm 2. To solve this mission scheduling problem, we have adopted

the CP-SAT solver and the MPSolver wrapper.520

4.3.3. Co-location

In the edge resources attached to each drone DRi, our co-location algorithm

uses the I〈c,m〉i and T̃ 〈c,m〉′i of each Ji ∈ J to provide efficient co-location, such

that fewer nodes are used for execution at each location. Specifically, the gang

scheduling approach is adopted alongside our bin-packing optimization to co-525

schedule and co-locate J at a time. Bin-packing is one the of the most popular

packing problems. The goal is to minimize the number of nodes used as given

in optimization (45). Unlike other approaches, such as first fit bin packing
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problem (FFBPP) [48], it requires the next Ji to be placed on the active node,

otherwise, it is placed on a new node. Our approach scans all J ∈ J and maps530

Ji to active nodes in full utilization. All J ∈ J are co-located firmly on active

nodes, so that resource wastage is avoided and fewer nodes are used to execute

all jobs concurrently. Hence our co-location strategy is to find the solution to

the problem:

Minimize
∑

Ii∈DRi?

Ii, (45)

subject to J⇒ DRi? , ∃, (46)
∑

J∈J
Γ [J, Ii] · T̃ 〈c,m〉′J ≤ I〈c,m〉i , ∀c,m, (47)

where

Γ [J, Ii] =





1, if J ⇒ Ii,

0, otherwise.
(48)

The constraint (46) is the multi-job J deployment constraint, guaranteeing that535

J is gang-scheduled to DRi? , such that dependent tasks within each J ∈ J

can communicate and execute faster. The constraint (47) indicates that the

total estimated resource requirements of co-located jobs
∑N
i=1 T̃i

〈c,m〉′
cannot

exceed I〈c,m〉i , the node resource availability. The condition (48) means that if

job Ji is placed on the node Ii, then Γ [Ji, Ii] = 1; otherwise, Γ [Ji, Ii] = 0.540

This is to guarantee that each J ∈ J is placed in exactly one node. To solve

this multi-job packing problem, we have adopted the solving Constraint Integer

Programs (SCIP) solver, which is currently one of the fastest mathematical

programming (MP) solvers for this problem [12]. Algorithm 3 describes the co-

location strategy which co-locates multi-dependent tasks firmly on nodes, such545

that for any given jobs, resource wastage is avoided and fewer nodes are used

for execution. It takes the resource demand estimation of multi-task/job and

resource availability of nodes as input, then scans all J ∈ J and maps them to

active nodes in full utilization (line 2 ∼ 7).
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4.3.4. Connection with optimization objectives550

As stated previously, our objectives are to minimize the number of selected

drones and total distance travelled by each drone, maximize the actual edge

cluster resource utilization, and to minimize the overall actual execution time

of the task-dependent multi-jobs. Algorithms 1, 2 and 3 together achieve these

objectives. By gang-dispatching the task-dependent multi-jobs to an edge hav-555

ing the sufficient resource for the jobs and flight time availability, Algorithm 2

ensures that drones assigned for missions allocates the sufficient actual resources

needed for jobs execution DR〈c,m〉iU , such that the dependent tasks can be ex-

ecuted faster, ultimately leading to a smaller actual aggregate execution time

Etotal
ex′ and better actual cluster resource utilization. By intelligently packing de-560

pendent tasks tightly on nodes, Algorithm 3 is capable of fully utilizing available

resources at edge clusters, ultimately leading to the actual resource assigned to

the execution of jobs DR〈c,m〉iU as small as possible while guaranteeing it is suf-

ficient for the multi-jobs. More specifically, the actual resource usage (ARU) of

the cluster for multi-job J deployment is given by565

DR〈c,m〉iARU =
DR〈c,m〉iU

RC〈c,m〉i

. (49)

It can be seen that solving the optimization (45) is directly linked to minimize

the ARU (49). Let the actual CPU resource and the actual memory resource

assigned for J be DR〈c〉iU and DR〈m〉iU , respectively. Further denote the actual

CPU consumed and the actual memory consumed in executing J as
∑
J∈J T

〈c〉′

and
∑
J∈J T

〈m〉′, respectively. Then the actual CPU utilization ρ
〈c〉
DRi and the

actual memory utilization ρ〈m〉DRi are defined respectively by

ρ
〈c〉
DRi =

∑
J∈J T

〈c〉′

DR〈c〉iU
, (50)

ρ
〈m〉
DRi =

∑
J∈J T

〈m〉′

DR〈m〉iU

. (51)

Algorithms 2 and 3 are directly connected with minimizing dtotal, minimizing

Etotal
ex′ as well as maximizing ρ〈c〉DR and maximizing ρ〈m〉DR.
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Table 3: Multi-job across multiple disjointed locations in a city, where the actual resource

consumed for multi-job execution T
〈c,m〉′
total and the actual execution time Etotal

ex′ are taken from

the original Alibaba data, while the estimated resource demand T̃
〈c,m〉′
total and execution time

Ẽtotal
ex′ are calculated by Algorithm 1

L J T T̃
〈c,m〉′
total T

〈c,m〉′
total NAEE Ẽtotal

ex′ (s) Etotal
ex′ (s) NAEE

L1 2 10 〈570.18, 1.98〉 〈595, 1.92〉 〈0.04, 0.03〉 173.46 148 0.17

L2 3 12 〈625.06, 2.37〉 〈540, 1.85〉 〈0.15, 0.28〉 189.03 164 0.15

L3 2 9 〈478.02, 1.73〉 〈340, 0.96〉 〈0.4, 0.8〉 167.8 142 0.18

L4 2 8 〈398.42, 1.71〉 〈445, 1.42〉 〈0.1, 0.2〉 56.69 44 0.28

L5 5 21 〈1135.11, 4.13〉 〈1035, 3.38〉 〈0.09, 0.22〉 355.68 309 0.15

L6 5 23 〈1228.72, 4.56〉 〈1080, 3.4〉 〈0.13, 0.3〉 370.27 311 0.19

L7 5 19 〈1005.85, 3.89〉 〈1070, 3.39〉 〈0.05, 0.14〉 236.95 198 0.19

L8 3 15 〈773.7, 3.02〉 〈655, 2.13〉 〈0.18, 0.4〉 211.06 178 0.18

L9 2 10 〈570.18, 1.98〉 〈595, 1.92〉 〈0.04, 0.03〉 173.46 148 0.17

L10 3 14 〈727.81, 2.8〉 〈670, 2.1〉 〈0.08, 0.3〉 202.45 172 0.17

L11 3 15 〈773.7, 3.02〉 〈655, 2.13〉 〈0.18, 0.4〉 211.06 178 0.18

L12 4 17 〈876.45, 3.44〉 〈785, 2.38〉 〈0.11, 0.4〉 224.49 188 0.19

L13 5 19 〈1025.99, 3.7〉 〈885, 2.88〉 〈0.15, 0.28〉 341.79 298 0.14

L14 3 17 〈925.32, 3.48〉 〈990, 3.14〉 〈0.06, 0.1〉 341.79 182 0.87

L15 3 14 〈727.81, 2.8〉 〈670, 2.1〉 〈0.08, 0.33〉 202.45 172 0.17

L16 4 15 〈773.7, 3.02〉 〈655, 2.13〉 〈0.18, 0.4〉 202.45 178 0.13
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5. Performance Evaluation

In this section, we described our experimental setup including cluster re-

source configuration, the Alibaba cluster data traces used, and the comparison570

baselines. We perform extensive experiments to compare EdgeDrones against

some existing schemes. We will also compare the performance of EdgeDrones

against exisiting schemes in individual drones. We show that EdgeDrones can

achieve minimized actual execution time of multi-dependent tasks, achieve high

resource utilization, achieve load balancing, use fewer cluster resources and avoid575

loss of job in an aerial edge computing system.

5.1. Experimental Setup

Drone’s Mission Scheduling and Resources: Our MLCMSP is imple-

mented using Google OR Tools12. It uses MPSolver wrapper for solving LP

and MIP problems. We perform experiments for a set of drones with comput-580

ing resource and flight time constraints, among a set of 16 target locations in a

city. At each of these locations are end devices, with multi-dependent tasks/jobs

needed to be executed. Our linear regression ML model, as given in Algorithm 1,

estimates the resource demands and execution time of tasks at each location (as

shown in Table 3).585

Each of the drones has different payload capacity. The payload is the weight

a drone can carry in the air. The total weight of the payload has a great

impact on the flight time of the drone. For example, the Aurelia X8 Standard

drone13 with a payload of 8 kg, has a net flight time of 25 min. However, with a

maximum payload capacity, the maximum flight time availability of the drone590

will be 12 min. It has a maximum flight speed s of 15 m/s and a maximum wind

resistance speed of 9 m/s. Also, for the Aurelia X6 Pro drone, its net flight time

is 55 min, however, with its full payload of 5 kg, it will have a 30 min flight time

12https://developers.google.com/optimization
13https://aurelia-aerospace.com/our-drones/
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Table 4: Drones assigned locations, optimal routes and resources

DRi DRroutei dtotali (m) fhover′i (s) Attached Edge Devices and total weight RC〈c〉i RC〈m〉i favali (s)

DR1 {L0 → L12 → L13 → L0} 936 566 Huawei AR502H Series x3 = 3.3kg 12 Cores 6 GiB 600

DR2 {L0 → L9 → L14 → L16 → L8 → L7 → L0} 1712 1165 HIVECELL x2 = 2.72kg 12 Cores 16 GiB 1200

DR3 {L0 → L1 → L4 → L3 → L15 → L11 → L0} 2192 811 HIVECELL + Huawei AR502H Series = 2.46kg 10 Cores 8 GiB 900

DR4 {L0 → L10 → L2 → L6 → L5 → L0} 1712 1117 Azure Stack Edge mini = 3.17kg 16 Cores 48 GiB 1200

availability. Hence, the flight time availability of the selected drones, as well as

their resource capacities is given in Table 4.595

The optimal routes of the selected drones is also given in Table 4. These

optimal routes are derived using Algorithm 2. The entire missions covered a

distance of 6552 meters, with total flight travel time of 3659 seconds, given that

each drone is traveling at a constant flight speed s of 13 m/s.

Multi-dependent Tasks: We employ the v-2018 version of Alibaba cluster600

trace14, which records the activities of about 4000 machines in a perids of 8 days.

The entire trace contains more than 14 million tasks with more than 12 million

dependencies, and more than 4 million jobs. Among which we have deployed 54

jobs with total of 238 tasks (including dependencies) for our experiments. The

number of tasks within each job ranges from (1, 5], while the task dependency605

depth among the jobs ranges from (1, 4]. The multi-task dependencies in in

the data trace is valuable for our investigation. Researchers have thoroughly

investigated v-2018 version of Alibaba cluster trace and used it for various task

scheduling problems [11, 12, 49, 50].

Comparison Baselines: We compare the scheduling approach of EdgeDrones610

(ED) with the following three existing schemes and the random approach, fixing

each drone’s routes to that of EdgeDrones, as follows:

1. An approach which does not consider tasks’ dependencies, but schedules

50% of any given multi-dependent tasks by mainly focusing on task co-

location. We refer to this approach as No Dependency and Full Packing615

14https://github.com/alibaba/clusterdata
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(NDFP), and it is similar to the approach in [45].

2. An approach which schedules up to 40% of any given multi-dependent

tasks with task co-location. We consider this approach as a Partial De-

pendency and Full Packing (PDFP), and it is similar to to the approach

in [47].620

3. An approach which schedules up to 15% of any given multi-dependent

tasks at a time, but does not consider task co-location. We refer to this

approach as Partial Dependency and No Packing (PDNP), and it is sim-

ilar to to the approach in [46].

4. An approach which schedules tasks according to their resource requests625

for execution, i.e., the more resource demand, the higher priority for the

task to be scheduled and allocate resources. We refer to this strategy as

Resource Priority (RP), and it is similar to the approach in [51].

5. Random (RD) approach schedules a single task individually and assumes

a node can only execute a task at a time.630

5.2. Deployment Results and Performance Comparison

Our investigation focuses on CPU and memory usage/utilization, task de-

ployment, scheduling time, execution time and successful mission completion.

The results obtained by ED, NDFP, PDFP, PDNP, RP and RD are compared.

5.2.1. Resource and execution time estimation accuracy635

As detailed in the previous section, to implement the proposed learning

based intelligent drone routing and multi-task co-location strategy, we train a

linear regression model from a training dataset. In the real-time application ex-

periments, the trained model is used to estimate the resource requirement and

execution time (Algorithm 1). The estimated resource requirement and execu-640

tion time are then employed to aid our optimal route planning and intelligent

multi-task scheduling strategy (Algorithms 2 and 3). Clearly, the accuracy of

Algorithm 1 impacts the achievable performance of our EdgeDrones. Therefore,

we first investigate the accuracy of our trained linear regression model.
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The multi-job execution information across the federated deployments, ob-

tained according to Alibaba data, are listed in Table 3, where the estimated

resource demand T̃ 〈c,m〉′total and the estimated execution time Ẽtotal
ex′ are calculated

using Algorithm 1, while the actual resource consumed for the multi-job exe-

cution T 〈c,m〉′total and the actual execution time Etotal
ex′ are taken from the original

data. The normalized absolute estimate error (NAEE), defined as

NAEE =

∣∣estimated value− actual value
∣∣

actual value
, (52)

is also listed in Table 3 for both resource consumed and execution time, which645

serves as the estimation accuracy measure for the trained multi-output linear re-

gression model. The average NAEE across 16 locations is 0.13 for CPU resource,

0.28 for memory resource, and 0.22 for execution time. From Tables 3 and 4, it

can be seen that T̃ 〈c,m〉′total <DR〈c,m〉, T 〈c,m〉′total <DR〈c,m〉i and f total<faval ∀DRi,
given that each drone is traveling at a constant flight speed s of 13 m/s. In other650

words, each drone has sufficient resource to execute its multi-jobs assigned to

it. This further indicates the suitability or accuracy of the trained ML model

to provide the necessary information for our intelligent co-location strategy.

5.2.2. Performance comparison across integrated edge resources

After completing the optimal route planning, as shown in Table 4, we are655

now ready to co-schedule the drones for their missions, apply our EdgeDrones

to orchestrate 54 jobs with 238 tasks among the four drones and compare its

performance with those of the benchmark schemes. We first investigate the

CPU utilization across the assigned locations of the four drones, depicted in

Figs. 4(a), 5(a), 6(a) and 7(a). It can be observed that both EdgeDrones (ED)660

achieved the highest CPU utilization across the entire missions. Specifically,

in Drone-1’s mission, as shown in Fig. 4(a), EdgeDrones acheieves an average

of 98% CPU utilization across Drones-1’s assigned locations. This is followed

by the NDFP, PDFP and PDNP schemes, which achieves the same average of

92.5%. The remaining two schemes, RP and RD achieves the lowest CPU uti-665

lization across the same assigned locations of Drone-1. RP achieves an average
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Figure 5: Activities and utilities of Drone-2’s mission.
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Figure 6: Activities and utilities of Drone-3’s mission.40
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of 79.5%, while RD obviously achieves an average of 69.5%. It can also be seen

that Edgedrones achieves the highest CPU utilization, according to Figs. 5(a),

6(a) and 7(a) for Drone-2, Drone-3 and Drone-4, respectively. Edgedrones is

able to intelligently gang-schedule and co-locate all task tightly on nodes, re-670

sulting in higher resource utilization. In Figs. 5(a), 6(a) and 7(a), EdgeDrones

achieves the highest average CPU utilization of 96.6, 92.6 and 94.5, respec-

tively, compared to other schemes. In particular, NDFP achieves the second

highest average CPU utilization across the assigned locations of the drones, i.e.,

it achieves an average CPU utilization of 6.4%, 4.8% and 3% less than Edge-675

Drones across Drone-2. Drone-3 and Drone-4 missions, respectively. PDFP and

PDNP schemes performed averagely in terms of CPU utilization compared to

EdgeDrones and NDFP, i.e., PDFP and PDNP achieve 9.2%, 14.6%; 14%, 18%;

and 5%, 8.25% less than EdgeDrones across Drone-2, Drone-3 and Drone-4 mis-

sions, respectively. However, RP and RD schemes performed poorly mainly due680

to their resource under-utilization, i.e., both RP and RD schieve an average

CPU utilization of 19.8%, 28.2%; 25.8%, 37.4%; and 18.25%, 44.25% less than

EdgeDrones across Drone-2, Drone3 and Drone4 missions, respectively.

Figs. 4(b), 5(b), 6(b) and 7(b) compares the Memory Utilization of Edge-

Drones with those of the four baseline schemes and the random approach. Note685

that all the tasks executed across the assigned locations of the four drones are

CPU intensive tasks, hence, the memory utilization across the locations are

lower compared to the CPU utilizations. Nevertheless, EdgeDrones outper-

formes all the benchmark schemes, including the random approach. For exam-

ple, across Drone-1’s activities at its assigned locations, EdgeDrones is superior690

in achieving higher memory utilization with 3.5%, 6.5%, 6.5%, 12% and 18%

more memory utilizations than NDFP, PDFP, PDNP, RP and RD, respectively.

It achieves 23.4% average memory utilization across Drone-2’s activities, which

surpasses NDFP, PDFP, PDNP, RP and RD by 1%, 2.2%, 3.6%, 4.8% and 7.2%,

respectively. EdgDrones also outperforms all the baseline schemes and random695

approach across Drone-3 and Drone-4 assigned locations. It achieves an aver-

age of 30.2% and 17% memeory utilization at Drone-3 and Drone-4 activities,
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respectively. NDFP came second at both drones memory utilization (with 1.6%

and 1.25% less compared to EdgeDrones at Drone-3 and Drone-4, respectively).

PDFP and PDNP came third and forth, respectively. PDFP achieves 4.6%700

and 1.5% less in memory utilization compared to EgeDrones at Drone-3 and

Drone-4 activities, respectively, while PDNP achieves 5.8% and 1.75% less com-

pared to EgeDrones at Drone-3 and Drone-4 activities, respectively. RP and

RD performance are the worst compared to all other schemes. In particular,

the random approach (RD) achieves an average of 17.6% and 11.25% memory705

utilization across the assigned locations of Drone-3 and Drone-4, respectively,

which is 12.6% and 5.75% less than EdgeDrones’ achievement across the two

drones activitites. RP on the other hand, achieves an average of 8.6% less com-

pared to EdgeDrones across Drone-3 assigned locations, and an average of 3.5%

less than EdgeDrones across Drone-4 assigned locations.710

Figs. 4(c), 5(c), 6(c) and 7(c) compares the actual resource usage DR〈c,m〉iARU

of EdgeDrones with those of the four baseline schemes and the random ap-

proach. It can be seen that solving the optimization (45) is directly linked to

minimize the ARU (49), by packing or co-locating tasks firmly on available re-

sources. Hence, it can be seen that EdgeDrones consumes the fewest resources715

across the integrated drones activities with NPFP as the very close second best,

while Random uses all the resources across almost all the drones activities with

RP as the second worst. PDFP ranks in the middle, in terms of resource usage

across the drones activities. Again, EdgeDrones and NDFP are superior than

PDFP, PDNP, RD and Random, and they achieve the highest and close second720

highest resource utilization across the integrated drones activities, respectively.

For example, across Drone-1’s assigned locations, EdgeDrone uses the fewest re-

sources amounting to an average of 71% compared to NDFP, PDFP, PDNP and

RP, which use 4%, 8%, 8%, 16.5% more than EdgeDrones, respectively. How-

ever, RD uses all available resources, i.e., 100%, due to its inability to co-locate725

tasks on nodes. Across Drone-2, Drone-3 and Drone-4’s assgined locations, it

can also be seen that EdgeDrones uses fewer resources, up to an average of 37%

less compared to other baseline schemes and the random approach.
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Three other key metrics are the actual multi-tasks/job scheduling time
∑
J∈J

∑m
z=1

∑kz
i=

where m is the number of scheduling units, kz is the number of tasks within730

the z-th scheduling unit, and more importantly, the actual multi-tasks/jobs ex-

ecution time Etotal
ex′ and total flight travel time f total. Figs. (4(d), 5(d), 6(d),

(7(d)); (4(e), 5(e), 6(e), 7(e)); and (4(f), 5(f), 6(f), 7(f)) compares the ac-

tual multi-tasks/jobs scheduling time, multi-tasks/job execution time and total

flight travel time of EdgeDrones with those of the four benchmarks and random735

approach, respectively. The results show that EdgeDrones is the best, NDFP is

the second best, and PDFP is the third best, PDNP is forth best, while RP and

Random is the worst and RP the second worst, in terms of actual task scheduling

times, actual task execution times and drone’s total flight time. The superior

performance of EdgeDrones over the other benchmarks is overwhelmingly clear.740

5.2.3. Performance comparison in individual Drones

Figs. 4 ∼ 7 show the performance of the schemes in terms of resource utiliza-

tion, actual resource usage, actual task scheduling times, actual task execution

times and actual flight total travel times across the integrated drones. We now

delve into the individual drone to examine the performance of all the schemes.745

Drone-1 is attached with three Huawei AR502H Series edge devices, with

total resource capacity of 12 Cores and 6GiB for CPU and memory, respec-

tively. The entire weight of the devices is ≈3.3kg. Its assigned locations

DRassign1 = {L12, L13}; its route DRroute1 = L0 → L12 → L13 → L0; and

its flight time availability faval = 700(s). We deploy 9 jobs with a total of 36750

tasks, where the job has a task dependency depth γ (1, 5]. Utilizing the gang

scheduling strategy, EdgeDrones co-shedules and co-locates all the 9 jobs at a

time in the attached edge devices as possible to minimize the overall used nodes.

These jobs are tightly co-located, which enables dependent tasks to communi-

cate and share data effectively. As a result, EdgeDrones achieves the fastest755

scheduling time and execution time compared to NDFP, PDFP, PDNF, RP and

the random approach. In addition, EdgeDrones only uses an average 71% of

resources to execute the jobs. Using the same resource capacity, NPFP, PDFP,
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PDNP and RP utilize an average of 75%, 79%, 79% and 87.5% of the resources,

respectively, as shown in Fig 4(c). The random approach uses all available re-760

sources. It is observed that EdgeDrones is 1.7 times and 2 times faster than

the second best NDFP in both the scheduling time and execution time, respec-

tively. EdgeDrones is more than 3 times and more than 3 times faster than

PDFP as well as more than 5 times and more than 4 times faster than PDNP in

the scheduling time and execution time, as shown in Figs 4(d) and 4(e), respec-765

tively. EdgeDrones is 6 times and 5 times faster than the RP, as well as 47 times

and 18 times faster than the random approach in the scheduling and execution

times, respectively. The most important is the total flight travel time f total of

Drone-1, such that if along the drone’s mission f total becomes greater than its

flight time availability faval, then it might lead to loss of job or mission failure.770

Recall that f total =
∑n
i=0

∑m
j=i+1f

Li,j + fhoverj , where
∑m
j=0 f

hover
j = Etotal

ex′ .

Hence, EdgeDrones is bale to quickly schedule and execute all the 9 jobs at

each assigned location, resulting to a successful mission, and the fastest f total

(upto 2.7 times faster) compared to the four baseline schems and the random

approach, as shown in Fig. 4(f). The random approach could not successfully775

schedule and execute all the jobs within the drone’s faval, thereby leading to a

failed mission.

Like Drone-1, Drone-2 is attached with two HIVECELL portable edge de-

vices with total weight of ≈2.72kg, and total resource capacity of 12 Cores and

16GiB for CPU and memory, respectively. Its assigned locations DRassign1 =780

{L7, L8, L9, L14, L16}; it has to visit and execute tasks on route: DRroute1 =

L0 → L9 → L14 → L16 → L8 → L7 → L0; and its flight time availability

faval = 1200(s). Here, we deploy a total of J = 17, where each J ∈ J has a task

dependency in the range of (1, 4]. The total number of tasks in
∑

J is 76. We

ensure that the attached edge resources are fully utilized by co-locating the jobs785

tightly on them. As discussed earlier, application container provides isolation

to co-located tasks, thereby eliminating interference and resource contentions

in the cluster. A single node is capable of running several containerized tasks,

given that available resources are sufficient. In this drone’s activities, Edge-
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drones consume an average of 5.2% fewer resources than NDFP, an average of790

6.8%, 11.8%, 16.8% and 28.4% fewer resources than PDFP, PDNP, RP and

Random. EdgeDrones, also gain an average of upto 28.2% higher CPU utiliza-

tion over NDFP, PDFP, PDNP, RP and Random (as shown in Fig. 5(a)), as

well as an average of upto 7.2% higher memory utilization than NDFP, PDFP,

PDNP, RP and Random, as shown in Fig. 5(b). More significantly, EdgeDrones795

is 2, 3.7, 5, 7.4 and 42.5 times faster in the scheduling time than NDFP, PDFP,

PDNP, RP and the random approach respectively, while it is 2, 3, 4, 5 and

14.8 times faster in the execution time than NDFP, PDFP, PDNP, RP and

the random approach, respectively across the assigned locations. Although all

the schemes, except for the random approach were able to complete their task800

within the drone’s flight time availability, nonetheless, EdgeDrones achieves the

fasters mission completion time, which is much more less than the drone’s flight

time availability. It can be seen in Fig. 5(f) that EdgeDrones is upto 2.7 times

faster than other schemes.

Drone-3 is attached with one HIVECELL and one Huawei AR502H Series805

portable edge devices with total weight of ≈2.46kg. Its total resource capacity

is 10 Cores and 8GiB of CPU and memory, respectively. Its assigned locations

DRassign1 = {L1, L3, L4, L11, L15}; flight travel route DRroute1 = {L0 → L1 →
L4 → L3 → L15 → L11 → L0}; and flight time availability faval = 900(s). In

this cluster, we deploy J = 12 in total of 56 tasks, where each J ∈ J has a task810

dependency depth γ range (2, 5]. Across this drone’s activities, EdgeDrones

achieve reduced DR〈c,m〉iARU by 3.8%, 9.4%, 13%, 20.4% and 37% compared with

NDFP, PDFP, PDNP, RD and Random, respectively (as shown in Fig. 6(c)).

EdgeDrones achieve 4.8%, 14%, 18%, 25.8% and 37.4% higher CPU utiliza-

tion as well as 1.6%, 4.6%, 5.8%, 8.6% and 12.6% higher memory utilization815

compared to NDFP, PDFP, PDNP, RD and Random, respectively. In terms

of scheduling, EdgeDrones is about 2.3 times, 4.2 times, 6.5 times, 9.6 times

and 34 times faster than NDFP, PDFP, PDNP, RD and Random, respectively

(as shown in Fig. 6(d)). It achieves approximately 2 times, 3 times, 4 times, 5

times and 11 times faster execution times than NDFP, PDFP, PDNP, RD and820

46



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

Random, respectively (as shown in Fig. 6(e)). Not surprisingly, Random has

the worst scheduling time and execution time performance, resulting to incom-

plete mission (since its f total > faval). On the other hand, EdgeDrones achieves

the fasters mission completion time, which is upto 1.4 times faster than NDFP,

PDFP, PDNP and RD, as shown in Fig. 6(f).825

Drone-4 is attached with Azure Stack Edge mini memory intensive edge

device, with resource capacity of 16 Cores and high memory capacity of 48GiB.

It is four locations DRassign1 = {L2, L5, L6, L10}, where there are total of 16

jobs made up of 70 tasks to be executed. Its flight travel route DRroute1 =

{L0 → L10 → L2 → L6 → L5}, and flight time availability faval = 1200(s).830

It is observed that EdgeDrones consumes the fewest resources at an average of

61.5%, followed by NDFP at 64%. PDFP consumes an average of 65.5%, PDNP

consumes an average of 67%, RP consumes an average 75.75% of the resources,

while the Random approach uses all the available resources at L10, L6andL5

locations, but consumes an average of 93.75% of resources across the assigned835

locations. EdgeDrones also achieves 3%, 5%, 8.25%, 18.25% and 44.25% higher

CPU utilization over NDFP, PDFP, PDNP, RP and Random, respectively (as

shown in Fig. 7(a)). Note the edge device attached to this drone is memory

intensive, i.e., it has huge memory capacities compared to the memory resource

request of jobs at the assigned locations. Therefore, the jobs can only consume840

few such capacities, as shown in Fig. 7(b). In terms of scheduling time, Edge-

Drones is approximately 1.6 times, 1.5 times, 4.3 times, 5.8 times and 41.7 times

faster than NDFP, PDFP, PDNP, RP and random respectively (Fig. 7(d)). In

terms of execution time, EdgeDrones is about 2 times, 3 times, 4.2 times, 5

times and 17.6 times faster than NDFP, PDFP, PDNP, RP and the random845

approach respectively (Fig. 7(e)). Importantly, Drone-4 completed its mission

with the fastest time under EdgeDrones strategy, with up to 1.5 times faster

compared to the baseline schemes, as shown in Fig. 7(f)).
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5.3. Discussion

Overall, EdgeDrones has demonstrated better performance in an integrated850

edge computing system. It has consistently outperform existing schemes (NDFP,

PDFP, PDNP, RP and Random) by achieving faster scheduling times and excu-

tion times, while using fewer resources. Most importantly, effective multi-tasks

scheduling and execution of EdgeDrones across the locations, enables faster

tasks response times and mission completion times. EdgeDrones achievements855

is attributed to its effective orchestration strategy, gang-deployment and co-

location of multi-jobs, which allows inter-dependent tasks within each job to

communicate and share data faster. Such fast execution is crucial for modern

applications to perform better. The existing schemes do not consider task’s

dependecies or multi-tasks co-location, leading to limited edge resource wastage860

through under utilization, as well as causing execution delay.

6. Conclusions

This paper has presented a novel Multi-Location Capacitated Mission Schedul-

ing Problem (MLCMSP) that selects suitable drones and co-schedules their

flight routes with the least total distance to visit and execute tasks at the tar-865

get locations. We proposed an intelligent multi-dependent tasks orchestration

scheme called EdgeDrones, a variant bin-packing optimization approach through

gang-scheduling of multi-dependent tasks, that co-schedules and co-locate tasks

firmly on available nodes, so as to avoid resource wastage. Evaluations using

real world workloads from Alibaba clusters, shows that EdgeDrones is Superior870

compared to the baseline schemes. Importantly, EdgeDrones is able to avoid

loss of jobs in aerial edge computing missions. In our future research, we can

further integrate cost models to MLCMSP by assigning an operational cost per

drone’s mission, and convert the MLCMSP into a profit maximization problem.

In addition, we can also deploy on-premise (fog-based computing) alongside with875

the drones (aerial-based computing) to form a hybrid deployment.
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