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1   |   INTRODUCTION

Do you know who Angela Merkel is? If so, you can not only 
point out her face in Figure 1a but you will also recall some 

information regarding her life. If you are able to do this, it 
can be assumed that you have a certain representation of 
Angela Merkel in your brain. But do you know the people 
shown in the fourth, fifth and sixth places in Figure 1a? It is 
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Abstract
Recognizing a face as belonging to a given identity is essential in our everyday life. 
Clearly, the correct identification of a face is only possible for familiar people, but 
‘familiarity’ covers a wide range—from people we see every day to those we barely 
know. Although several studies have shown that the processing of familiar and 
unfamiliar faces is substantially different, little is known about how the degree 
of familiarity affects the neural dynamics of face identity processing. Here, we 
report the results of a multivariate EEG analysis, examining the representational 
dynamics of face identity across several familiarity levels. Participants viewed 
highly variable face images of 20 identities, including the participants' own face, 
personally familiar (PF), celebrity and unfamiliar faces. Linear discriminant clas-
sifiers were trained and tested on EEG patterns to discriminate pairs of identities 
of the same familiarity level. Time-resolved classification revealed that the neural 
representations of identity discrimination emerge around 100 ms post-stimulus 
onset, relatively independently of familiarity level. In contrast, identity decod-
ing between 200 and 400 ms is determined to a large extent by familiarity: it can 
be recovered with higher accuracy and for a longer duration in the case of more 
familiar faces. In addition, we found no increased discriminability for faces of PF 
persons compared to those of highly familiar celebrities. One's own face benefits 
from processing advantages only in a relatively late time-window. Our findings 
provide new insights into how the brain represents face identity with various de-
grees of familiarity and show that the degree of familiarity modulates the avail-
able identity-specific information at a relatively early time window.
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highly likely that if you were a teenager in the 1980s, follow 
the current "Fridays for future” climate demonstrations in 
Germany or watch Hungarian talk-shows you would feel 
that you have seen some of them already and that they are 
familiar. But being familiar with someone does not neces-
sarily mean that you "know” the person in the sense that 
you can also activate their representations, necessary for 
identification. In other words, familiarity involves the rec-
ognition of an object being novel or having been observed 
previously, while identification involves the additional re-
call of their biography, or the contexts in which you have 
perceived them. Indeed, current models propose that fa-
miliarity is the first step towards establishing identification 
(Rugg & Yonelinas, 2003; Yakovlev et al., 2008).

Recent years have seen considerable progress in identi-
fying the neural correlates of familiarity, at least for faces. 
First, a broad range of behavioral studies have found 
vast perceptual differences between unfamiliar and fa-
miliar faces (for reviews, see, Gobbini & Haxby,  2007; 
Jenkins & Burton,  2011; Johnston & Edmonds,  2009; 
Ramon & Gobbini,  2018; Young & Burton,  2017, 2018). 
Consequently, neuroimaging studies have identified a 
large network of areas where familiarity modulates neural 
responses (for a review see Kovács, 2020). Further, electro-
physiological studies, better suited to discovering the dy-
namics of neural processing, have identified an extended 
time-window, including several event-related potential 
(ERP) components, during which familiarity modulates 
neural activity. Specifically, ERP studies have found that 

familiar faces elicit more negative waves from 200 ms 
post-stimulus onset, corresponding to the N250 compo-
nent (Bentin & Deouell, 2000; Caharel et al., 2011, 2014; 
Huang et al., 2017; Kaufmann et al., 2009; Schweinberger 
& Neumann,  2016; Wiese, Ingram, et al.,  2019), extend-
ing towards 400–600 ms, where another ERP component 
has recently been labeled as the “sustained familiarity ef-
fect” (SFE; Wiese, Ingram, et al., 2019; Wiese, Tüttenberg, 
et al., 2019; Wiese et al., 2021). Consistent with these ERP 
studies, recent multivariate pattern analysis (MVPA) of 
EEG/MEG data have also found familiarity-related in-
formation from 200 ms onwards (Karimi-Rouzbahani 
et al., 2021; see Bayer et al., 2021 for an even earlier fa-
miliarity representation), peaking mostly in the 400–
600 ms time-window (Ambrus et al.,  2019, 2021; Dalski 
et al., 2022; Dobs et al., 2019; Li et al., 2022).

While familiarity has been studied extensively in the 
past, relatively less information is available on face iden-
tity (ID) representation. This is because the low spatial res-
olution of univariate electrophysiological methods makes 
it very difficult to study the neuronal processing differ-
ences of face IDs. Therefore, only a handful MVPA studies 
have so far evaluated the neural dynamics of face ID pro-
cessing. These studies have found robust ID representa-
tions starting from 200 ms onwards and peaking at around 
400 ms for both unfamiliar (Nemrodov et al., 2016, 2018; 
Vida et al., 2017) and familiar faces (Ambrus et al., 2019; 
Dobs et al., 2019). Importantly, while the earlier ID repre-
sentations seem to be modulated by gender and low-level 

F I G U R E  1   (a) A six example faces for illustration purposes (from left to right: the first two faces were created by https://this-perso​n-
does-not-exist.com/; the subsequent images of Angela Merkel, Nena, Luisa Neubauer and András Stohl were downloaded from world-wide 
web). (b) The average familiarity index. (c) The average reaction time in the face matching task for the six familiarity categories, analyzed 
separately in the classification analysis. OWN, participants' own face; PF, personally familiar faces; HF, highly familiar celebrity faces; MF, 
medium familiarity celebrity faces; LF, low familiarity celebrity faces; UF, unfamiliar faces.
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image properties, the later information, emerging around 
400 ms, is unaffected by these factors, suggesting that they 
play a different role in identification (Ambrus et al., 2019).

As familiar and unfamiliar faces are processed quan-
titatively differently, it is also important to know how the 
neural dynamics of ID representation depends on famil-
iarity. Unfortunately, so far only two studies have tested 
the familiarity dependence of ID representation. First, 
Dobs et al. (2019), using celebrities and unfamiliar faces 
found that familiarity enhanced face ID information be-
tween 100 and 570 ms. Second, Ambrus et al.  (2021), fa-
miliarized participants experimentally either by passive 
exposure, media presentation or via personal interactions 
and found robust ID representations which, however, 
were not different before and after familiarization.

In addition, we know that (1) familiarity is not a 
threshold, rather a gradual, signal-detection process 
(Yonelinas,  1994; Yonelinas et al.,  2010) and that (2) 
neural processing differences have been reported be-
tween highly familiar personally known faces and those 
of celebrities (for reviews see Kovács,  2020; Ramon & 
Gobbini,  2018). Therefore, it is important to study how 
ID is represented across several levels of familiarity in a 
systematic manner. For this purpose, we used the data re-
ported in Li et al. (2022), where familiarity was estimated 
both by subjective ratings and by a familiarity-sensitive 
(Ambrus et al., 2017; Andrews et al., 2015; Clutterbuck & 
Johnston, 2004) face-matching task. This study also mea-
sured familiarity across a large set of identities, ranging 
from the participants' own face, via personally familiar 
(PF) and celebrity faces to unfamiliar ones, covering the 
entire familiarity spectrum (Figure 1a). As such, the data 
in Li et al.  (2022) study are ideal for estimating ID rep-
resentations across several levels of familiarity. For this 
purpose, we decoded ID information for same-gender 
face-pairs for several different levels of familiarity.

2   |   METHOD

2.1  |  Datasets

The identity classification decoding analysis was carried 
out using data from the second, EEG study reported in Li 
et al. (2022).

2.2  |  Participants

The EEG data of 25 right-handed participants (19 females; 
average age 22.1 years, SD = 3.7) was used. Participants 
gave informed consent and received partial course cred-
its or monetary compensation. They had normal or 

corrected-to-normal vision, and none had any history 
of neurological disorders. The study was conducted in 
accordance with the guidelines of the Declaration of 
Helsinki and was approved by the ethics committee of the 
Friedrich-Schiller-Universität Jena.

2.3  |  Stimuli

Fourteen celebrities (7 females), representing a broad 
range of familiarity degrees, were selected from Study 1 of 
Li et al. (2022) and served as stimuli. These were all ambi-
ent, naturally variable faces, including nationally or inter-
nationally famous celebrities such as athletes, politicians, 
actors, and singers of both sexes, with a broad range of age. 
All images were collected using the Google image search 
engine. In addition, photographs of the participants' own 
faces and those of three PF persons were used. The PF 
persons were either family members and relatives or close 
friends, reported as being very familiar. For practical rea-
sons, these IDs varied in gender across participants (for 12 
we received the images of two IDs matching the gender of 
the participant and for 13 we received 1 gender matching 
ID only). These images were typical family snapshots of 
our participants, taken on their mobile phones or amateur 
cameras. Special care was taken to balance low and me-
dium level features (such as viewing angle, facial expres-
sions, eye-gaze, hair-color and style) among familiarity 
levels. In addition, two Hungarian celebrities, unknown 
to the participants, were added to the stimulus set to serve 
as unfamiliar identities. We collected ambient face im-
ages for each ID and presented in color, reflecting a large 
range of facial expressions and lighting conditions, but 
having similar luminance (average and SD of pixel in-
tensity values: 123 ± 22; not significantly different across 
familiarity categories; one-way ANOVA: F(5,1159) = 1.6, 
p = .16; Shine toolbox; Willenbockel et al., 2010); and hav-
ing identical resolutionresolution across familiarity levels 
(200 × 280 pixel, 72 DPI). The images were cropped and 
resized to 2.8 × 3.9 ° (viewing distance: 108 cm), using 
GIMP 2.8.6 (data-security does not allow the presentation 
of actual images, but similar, representative faces are pre-
sented in Figure 1a).

We created a “mnemonic familiarity index” (MFI) 
from the results of the familiarity rating of the Study 2 of 
Li et al. (2022) and from the answers of the explicitly re-
called memories the following way:

where LR is the Likert Familiarity Rating score and MS is 
the total memory score of the participants obtained for the 
four declarative memory questions (briefly, they were asked 

MFI = 100 × ([LR × 0.5 +MS × 0.5]∕7)
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to recall the depicted persons' full name, occupation, any ad-
ditional biographical details and personally related episodes; 
for details see Li et al. 2022). This combined MFI measures 
familiarity on a 0–100 scale and reflects both the subjective 
feeling of familiarity and the amount of explicitly recalled 
information about the persons, with an equal weight. We 
calculated MFI for each ID and participant separately and 
averaged them across the sample. Note that PF faces and the 
participants' own faces were assumed to be more familiar 
than the faces of the celebrities, and as such, to have an MFI 
above the maximum (100) attainable for the famous iden-
tities. We further assumed that the own face will be more 
familiar than PF faces. Thus, these identities were assigned, 
arbitrarily, the MFI values of 105 for PF identities and 110 
for the own faces. Please note, that the exact values do not 
affect the results as ordinal statistics and rank correlations 
were used in the comparisons below (Figure 1b,c).

Altogether a total of 20 identities served as stimulus 
material for the EEG experiment, including participants' 
own face (OWN), three personally familiar faces (PF), four 
celebrity faces with high familiarity (two females; MFI 
above 60; HF), four moderate familiarity celebrities (two 
females; MFI between 40 and 60; MF), four low familiarity 
celebrities (two females; MFI between 10 and 40; LF) and 
four entirely unfamiliar faces (two females; MFI below 
10; UF). Figure 1b shows the average MFIs per familiar-
ity category. For each ID we collected 16 face images. For 
the EEG recording sessions we used 10 of these (Ambrus 
et al., 2019) while for the subsequent face matching-task 
five previously unseen images were presented, per ID. 
Additionally, 20 unfamiliar faces (10 female; similar age 
and hair color as the target faces) were selected as “foil” 
images for the face matching task (Ambrus et al., 2017).

2.4  |  Procedures

The experiment was comprised of three phases: an EEG 
recording session, a subsequent face matching task and 
a final familiarity evaluation phase to calculate MFI. The 
EEG recording session was similar to that of Ambrus 
et al. (2019, 2021). A total of 1760 (1600 nontarget and 160 
target) trials were presented in 8 runs, separated by self-
paced breaks. Each run included one presentation of the 
10 images of the 20 identities. Additionally, 20 target trials 
were added to each run in a pseudorandom order to avoid 
any consecutive presentations of identical images.

In each trial, a central fixation cross was presented for 
250 ms, followed by the face stimulus for 600 ms and an 
Inter-Trial-Interval (ITI), selected randomly between 700 
and 1000 ms. Participants were asked to press the space 
button when they saw a target image (1-back task; mean 
detection accuracy: 99.08 ± 0.67%). These target trials were 

set to ensure that participants maintained their attention 
and were excluded from the analysis. PsychoPy (Version 
3.0) was used for stimulus presentation and behavioral 
response collection (Peirce, 2009). Stimuli were presented 
centrally on a uniform gray background (23.0-inch EIZO 
display, 1920 × 1080 pixel resolution, refresh rate 60 Hz).

A face matching task was conducted after the EEG ex-
periment where participants made same-different deci-
sions about pairs of previously unseen images. Participants 
completed 800 trials (40 per ID), allocated into four blocks 
of 200 trials. Each trial started with a 250 ms central fixa-
tion cross, followed by a 1000 ms presentation of pair of 
face images. The face pairs consisted of either two differ-
ent images of a given ID (‘same’) or an unseen image of a 
previously seen ID and an image of a “foil” identity (‘dif-
ferent’ condition), with equal probability. Next, a response 
screen was presented until participants signaled their an-
swer by a button-press, followed by an ITI of 700–1000 ms. 
The participant's task was to decide whether the pair of 
faces belonged to the same ID or not. The experimental 
software was written in PsychoPy (Peirce, 2009). Figure 1c 
depicts the average reaction times for the various familiar-
ity conditions, separately.

The experiment was concluded by a familiarity evalua-
tion task whereby participants were asked to estimate the 
subjective familiarity of the identities on a 10-point Likert 
scale and answer four explicit memory questions regard-
ing the biography of the presented identities. Finally, an 
MFI index was calculated for each participant and ID sep-
arately, as described above.

2.5  |  EEG recording and preprocessing

Participants were tested in a dimly lit, electrically shielded 
and sound-attenuated cabin with 108 cm between the 
screen and the eyes, secured via a chin rest. The EEG re-
cording was performed continuously, using a 64-channel 
BioSemi Active II system (BioSemi) with a 512 Hz sample 
rate (band with: DC to 120 Hz). Electrooculogram (EOG) 
was recorded by four additional electrodes, placed over 
the outer canthi of both eyes, and above and below the 
left eye.

EEG preprocessing was similar to that of Ambrus 
et al.  (2021). The preprocessing pipeline was imple-
mented in a combination of EEG-lab (Delorme & 
Makeig,  2004) and Modeling toolbox (ADAM, version: 
1.07-beta; Fahrenfort et al.,  2018). EEG data were first 
re-referenced to the average of the electrodes. EEG was 
notch-filtered at 50 Hz, band-pass filtered between 0.1 and 
40 Hz, segmented from −200 to 1200 ms relative to stimu-
lus onset, and baseline corrected with respect to the first 
200 ms. The resulting data was downsampled to 100 Hz to 
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increase signal-to-noise ratio in the multivariate analyses 
(Grootswagers et al., 2017).

2.6  |  Decoding analysis

MVPA was performed on the raw EEG of all 64 channels, 
using the Amsterdam Decoding and Modeling (ADAM) 
toolbox (Fahrenfort et al.,  2018). To that end, a 10-fold 
cross-validation scheme was used (data of individual 
participants was split into 10 equal-sized folds after ran-
domizing the trial order). A linear discriminant classifier 
was then trained on the data of nine of these folds and 
tested on the data of the remaining one (leave-one-out 
procedure) and this procedure was repeated until each 
fold was used as test set exactly once. Finally, the classi-
fier performance was averaged across the folds. For each 
condition, we trained a classifier to differentiate trials on 
which one of the targets was one image of a given ID ver-
sus an image of another ID. Ten images per ID were used 
and the resulting performance was averaged across im-
ages, leading to a single classification performance meas-
ure per identity pair. As a performance measure, we used 
decoding accuracy, being the most often used metric.

As prior studies suggest that the perceived gender of the 
face strongly influences identity representations (Ambrus 
et al., 2019) we tested classification for faces of the same 
gender (within-gender comparisons) and present the re-
sults of the same analysis for cross-gender ID pairs in the 
Supplementary material. We calculated classification per-
formance for the previously established 6 familiarity cat-
egories of Li et al. (2022) separately. Specifically, first, we 
tested the neural signals for images of the own face of the 
participant against the faces of a same-gender PF person, 
selected randomly from the three available identities. This 
classification condition, reflecting the differential process-
ing of one's own face from that of another, highly PF face 
is denoted as OWN. Second, the discrimination capacity 
of the neural data for two same-gender PF identities was 
tested. Next, we created two same-gender pairs from the 
four HF, MF, LF and UF identities separately. We tested 
the data for the 10 images of these same-gender ID pairs 
against each other and then averaged the classification 
performance of the female and male ID pairs for each 
familiarity category separately. This led to six classifica-
tion performance measures (for each familiarity condition 
one) per time-point and participant. Group-level classifi-
cation was then computed, using the individual first-level 
data. The decoding performance for a given condition was 
statistically tested against chance level (0.5) by running 
two-sided one-sample t-tests across participants for every 
time point. To correct for multiple comparisons, we used 
cluster-based permutation tests (10,000 permutations) on 

adjacent time points with the alpha level set to α = 0.05 
(Maris & Oostenveld, 2007).

To compare the temporal dynamics of ID information 
across familiarity conditions we identified three separate 
time-windows (100–200, 200–400 and 400–600 ms), based 
on previously available literature (Ambrus et al.,  2019; 
Dobs et al.,  2019; Wiese, Ingram, et al.,  2019; Wiese, 
Tüttenberg, et al.,  2019; Wiese et al.,  2021). We calcu-
lated the integral under the decoding accuracy curves 
within each time-window for each familiarity condition 
and participant separately, using the trapz function in 
Matlab (R2022, The Mathworks, Inc.). These measures 
of classification performance were then compared using 
the Friedman test, the non-parametric alternative to the 
one-way ANOVA with repeated measures testing for dif-
ferences between groups when the dependent variable 
being measured is ordinal. Finally, for each participant 
and time-window the decoding accuracy and the MFI 
were correlated using Spearman's rho rank correlations. 
Statistical analyses were performed by using JASP 0.11.1 
(JASP Team, 2023).

2.7  |  Data and code availability

Data and all applied codes of Li et al. (2022) are uploaded 
to OSF (https://osf.io/2czu5/). We have also uploaded the 
experimental stimuli, with the exception of personal pho-
tos of the participants and their friends, as well as the cur-
rently used scripts. The conditions of our ethics approval 
do not permit public archiving of these images and of 
study data. The entire data and stimulus sets will be made 
available to interested researchers following completion 
of a data sharing agreement and approval by the local 
ethics committee. The Matlab scripts for EEG preprocess-
ing and MVPA analysis are available under https://osf.
io/8zywd/. No part of the study procedures or analyses 
was pre-registered prior to the research being conducted.

3   |   RESULTS

To reveal the neural dynamics of familiarity sensitive 
identity information in the EEG signals, we performed 
a classification analysis across time. We decoded face ID 
information for each participant, familiarity condition 
and time-point separately. The analysis showed a sig-
nificant and long-lasting decoding performance that de-
pended strongly on the prior familiarity with the identities 
(Figure 2).

Table  1 summarizes the properties of the neural dy-
namic curves, for each familiarity condition separately. 
First, face ID information emerged for each familiarity 
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condition at around the same time (110–140 ms post stim-
ulus onset), except for LF and UF for which ID informa-
tion could only be retrieved after 350 and 250 ms following 
stimulus onset, respectively. Second, ID information could 
be detected in the signal for an extended time-window up 
until 400–700 ms for most familiarity conditions. The only 
exception to this was the MF which only contained ID in-
formation in a relatively early and very short period.

To further explore the familiarity dependence of ID 
classification quantitatively we calculated the mean clas-
sification accuracy for the 100–200 ms, the 200–400 and 
the 400–600 ms time-windows, for the six familiarity 

conditions and each participant separately. Next, we com-
pared these measures of classification accuracy, indexing 
the amount of available ID information across familiarity 
conditions, separately for each time-window (Figure  3). 
A non-parametric Friedman test of differences among 
repeated measures suggested a significant familiarity ef-
fect of ID classification performance only for the 200–400 
and 400–600 ms time-windows (100–200 ms: χ2(5) = 6.9, 
p < .23; 200–400 ms: χ2(5) = 16.474, p < .006; 400–600 ms: 
χ2(5) = 32.046, p < .0008). Pairwise comparisons, using 
Bonferroni corrections, revealed that the decoding per-
formance depends on familiarity the most within the 

F I G U R E  2   Time-resolved decoding accuracies (shaded regions represent SEM) separately for the six familiarity conditions (left) and 
for illustrative purposes superimposed on each other without SEM (right). Thicker curves (left) and horizontal lines (right) denote temporal 
clusters with significantly different decoding accuracies from chance (10,000 two-sided cluster-based permutations, p < .05). Different colors 
signal the level of familiarity with the classified identities. OWN, participants' own face; PF, personally familiar faces; HF, highly familiar 
celebrity faces; MF, medium familiarity celebrity faces; LF, low familiarity celebrity faces; UF, unfamiliar faces.

Condition Onset (ms) Peak (ms) End (ms)
Cluster based 
p-value

OWN 140 510 730 .0001

PF 130 150; 340 410 .01; .0002

HF 140 160; 850; 1060 1100 .0001; .03; .006

MF 130 140 210 .0008

LF 350 510; 700 660 .0001; .0005

UF 250 280; 320; 600 610 .01; .02; .004

T A B L E  1   Results of the time-resolved 
identity classification for each familiarity 
level, separately. Clusters marked as 
significant on Figure 2; two-tailed cluster 
permutation tests against chance.
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200–400 ms time-window: accuracy of OWN is signifi-
cantly different from MF, LF and UF (pBONF <.003 for each 
comparison), and PF is also significantly different from 
MF, LF and UF (pBONF <.05 for each comparison). In addi-
tion, OWN differed significantly from all other familiarity 
conditions in the 400–600 ms time-window (pBONF <.02). 
Please note that OWN was not significantly different from 
PF in the earlier time-windows but showed a strong dif-
ference in discriminability in the 400–600 ms window 
(pBONF = .015), suggesting differential encoding only at 
this later time. Also, it is worth mentioning that facial 
ID was similarly represented for PF and HF conditions 
as suggested by the fact that they were not significantly 
different for either time-window (pUNCORRECTED = 1.0 for 
each time-window).

To evaluate whether gender information affects ID 
classification, we replicated the above analysis for ID 
pairs which also differed in gender. Table  S1 contains 
the results of the time-resolved ID classification for these 
cross-gender ID classifications, for each familiarity level 
separately. These cross-gender analyses led to somewhat 
larger decoding performances in the early time-periods 

than the within-gender ID decoding, supporting prior 
findings (Ambrus et al., 2019). However, when tested for-
mally against each other with a cluster-based permutation 
test (Figure  S1), decoding performances were not statis-
tically different for the within- and between-gender ID 
decodings, suggesting that perceived gender has relatively 
little interaction with the observed ID encoding.

To provide a different estimate of whether identity 
classification accuracy depends on the level of stimulus 
familiarity within the above time-windows, we correlated 
the reaction times in the face matching task with the ID 
decoding performances of the neural classifier for each 
participant, time-window and ID separately (Figure  4). 
We found a negative correlation (shorter reaction times 
for ID pairs, which could be classified better by the algo-
rithm), which was significant for the 200–400 and 400–
600 ms time-windows (Spearman's rho = −0.22; p = .008 
and rho = −0.24; p = .003, respectively).

Overall, these results suggest that face ID information 
is present in the EEG signal from 100 ms onwards; it peaks 
at around 200–400 ms and it depends strongly on the level 
of existing familiarity with the persons.

F I G U R E  3   Decoding accuracy within the 100–200 (a), 200–400 (b) and 400–600 ms (c) time-windows (expressed as the integral of the 
classification performance curves within the respective time-windows), separately for each familiarity condition. Error bars denote SEM. 
*p < .05.

F I G U R E  4   The correlation of neural 
identity decoding, expressed as the 
integral of the classification performance 
curve between 200 and 400 ms (left) 
and 400 and 600 ms (right), with the 
mean reaction time for the 20 identities, 
separately. Dashed lines denote 95% 
confidence intervals.
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4   |   DISCUSSION

The major results of the current study are as follows. (1) 
Identity information is present very early in the EEG sig-
nal, but this encoding stage is relatively independent of 
the level of familiarity. (2) Later ID information, emerg-
ing between 200 and 400 ms is determined to a large ex-
tent by familiarity: it can be recovered with better quality 
and longer duration for more familiar faces. (3) Signals for 
faces of PF persons have not been shown to be better clas-
sifiable than those of highly familiar celebrities. (4) One's 
own face enjoys processing advantages only in a relatively 
late time-window.

4.1  |  Familiarity determines identity 
encoding but only at later processing stages

In the current study we calculated pairwise face ID decod-
ing with a linear discriminant machine learning algorithm 
from the EEG signal for six familiarity levels, separately. 
The results showed a rapidly emerging, very early onset of 
ID information, beginning for most familiarity conditions 
shortly after 100 ms post-stimulus onset. This onset is in 
accordance with prior findings for famous faces (Ambrus 
et al., 2019; Dobs et al., 2019) and for media familiarized 
faces (Ambrus et al., 2021) but it is earlier than we and oth-
ers have observed for unfamiliar faces (Dobs et al., 2019; 
Nemrodov et al., 2018; but see Nemrodov et al., 2016 for 
an even earlier onset). The fact that the ID information 
between 100 and 200 ms is relatively weak and insensitive 
to familiarity degree is in accordance with previous find-
ings showing that until 400 ms post-stimulus onset the ID 
signal is modulated by the perceived face gender and low-
level image properties (Ambrus et al., 2019).

ID information from 200 ms onwards, on the other 
hand, is very strong and it shows dependency on and sig-
nificant correlation with the degree of familiarity. The 
long-lasting nature of ID representation confirms prior 
studies (Ambrus et al., 2019, 2021; Dobs et al., 2019), which 
showed peaks of ID information between 200 and 400 ms. 
While Dobs et al. (2019) showed the disappearance of this 
information for unfamiliar faces, Ambrus et al.  (2021), 
using brief media-based familiarization training, found 
similar decoding pre and post familiarization within this 
time-window. So far, however, the current study remains 
the only one to estimate familiarity dependence for sev-
eral familiarity types and levels. Therefore, we argue that 
superior sensitivity of such measures explains the par-
tially different results.

Overall, our results further support the idea that the 
representation of face ID involves several, functionally 
distinct steps and it starts with the encoding of visual 

characteristics, specific to a given person and enabling 
the discrimination and recognition of a face, even without 
familiarity. This idea is further supported by recent com-
putational modeling results. Blauch et al.  (2021) trained 
a deep neural network to discriminate face identity and 
found that representations in the early layers of the net-
work remain similar, while later network representations 
change as faces become familiar.

But how does this familiarity-sensitive identity signal 
relate to the processes underlying familiarity discrimi-
nation? ERP studies demonstrated some time ago that 
familiar and unfamiliar faces elicit different responses 
from around 200 ms (Caharel et al.,  2011, 2014; Huang 
et al.,  2017; Schweinberger & Neumann,  2016; Karimi-
Rouzbahani,  2021), reaching a peak between 400 and 
600 ms (Wiese, Ingram, et al.,  2019; Wiese, Tüttenberg, 
et al.,  2019; Wiese et al.,  2021). MVPA studies have re-
cently confirmed these results as they typically find fa-
miliarity information in similar time-windows with peaks 
of information, usually at around 400–600 ms (Ambrus 
et al., 2019, 2021; Dalski et al., 2022; Dobs et al., 2019; Li 
et al.,  2022). Li et al.  (2022) found that the peak of cor-
relation between behavioral familiarity measures and 
familiarity decoding performance was maximal between 
450 and 550 ms. These values are somewhat later than 
the peaks we have now found for familiarity-sensitive ID 
decoding, except for the decoding of one's own versus a 
PF face (OWN; 490 ms). This is consistent with the the-
ory that familiarity and ID processing do not necessarily 
evolve simultaneously: For example, Ambrus et al. (2021), 
using various experimental familiarization techniques re-
ported strong familiarity representations without genuine 
changes in ID representations.

4.2  |  PF versus famous faces

Several past studies have shown the important role of per-
sonal real-life interactions and the differential processing 
of PF and famous faces (Campbell & Tanaka, 2021; Ramon 
& Gobbini, 2018; Visconti di Oleggio Castello et al., 2017; 
Wozniak et al.,  2018). In fact, our own prior study (Li 
et al.,  2022) also found better familiarity discrimination 
when OWN and PF were included as compared to famous 
faces only. However, in the current study we found no sig-
nificant differences in ID decoding between PF and the 
most familiar category (HF). We argue that there is no 
incompatibility here. Previous studies have typically not 
differentiated among familiarity levels for famous faces 
and have often confounded degree of familiarity with 
personal/media familiarity. Here, we incorporated varia-
tion in familiarity for those faces not known personally, 
allowing a comparison of highly familiar celebrities with 
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PF faces—a comparison which, interestingly, showed no 
differences in ID-decoding. This highlights the impor-
tance of not treating familiarity as a simple present/ab-
sent variable, but one which varies continuously. Further 
experimental work is necessary to understand whether 
any genuine differences arise in processing the faces of 
those we know personally and those we know through the 
media. Indeed, we acknowledge that the ID decoding re-
mains significant for famous faces somewhat longer than 
for PF (compare PF and HF on Figure 2). But we refrain 
from drawing stronger conclusions regarding this differ-
ence as a formal test of PF and HF fails to show any sig-
nificant differences (Figure S2).

4.3  |  Own face processing

The encoding advantage for one's own face (self-face ad-
vantage) may be special for obvious reasons (Keyes & 
Brady, 2010; Tong & Nakayama, 1999). Recent ERP stud-
ies suggest that the P100 (Alzueta et al., 2019) or the N250 
(Estudillo, 2017) components are the first to be sensitive to 
self-faces. Our results only partially support the advantage 
of own-face processing over PF faces: In the time-window 
of 400–600 ms, corresponding to its peak (490 ms), ID de-
coding is indeed significantly stronger for OWN when 
compared to other familiarity conditions. However, in the 
earlier periods, OWN and PF are not different in any way. 
This raises the possibility that the processing differences 
of one's own face develop at a relatively later stage only, 
possibly reflecting higher level processes, rather than 
any early perceptual advantage for recognizing images of 
oneself.

Two limitations of this conclusion are related to the 
nature of the applied stimulus set. First, we compared 
OWN against another ID from another (PF) familiar-
ity category, meaning that the OWN is the only cross-
familiarity level category comparison in our study and 
this confound might increase ID decoding artificially. 
This is, in fact, plausible, as most of the studies have 
found the highest familiarity encoding in the 400–600 ms 
time-window. Nonetheless, this confound is unavoid-
able as one can only have one ID categorized as “OWN”. 
Second, both the within-gender as well as the between-
gender decoding was based on a single pair of IDs, while 
we had two pairs for the famous IDs which might also 
affect decoding performances. The fact, however, that we 
observed higher performances for OWN and PF (where 
less data could be used for training and testing) as com-
pared to HF, MF, LF and UF argues against the role of 
this difference in explaining our data.

In conclusion, our findings, obtained by the de-
coding analysis of the electrophysiological signal of Li 

et al.  (2022), provide further information into how the 
brain represents the identity of faces with various degrees 
of familiarity. Our data shows that the degree of familiar-
ity modulates decodability of facial identity at a relatively 
early time window: the more familiar a face is the better 
one can decode identity information from the EEG signal 
at around 200–400 ms.
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