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Abstract
3D gaze estimation aims to reveal where a
person is looking, which plays an important role
in identifying users’ point-of-interest in terms
of the direction, attention and interactions.
Appearance-based gaze estimation methods
could provide relatively unconstrained gaze
tracking from commodity hardware. Inspired
by medical perimetry test, we have proposed a
multi-scale framework with visual field analysis
branch to improve estimation accuracy. The
model is based on the feature pyramids and
predicts vision field to help gaze estimation. In
particular, we analysis the effect of the multi-
scale component and the visual field branch
on challenging benchmark datasets: MPIIGaze
and EYEDIAP. Based on these studies, our
proposed PerimetryNet significantly outper-
forms state-of-the-art methods. In addition, the
multi-scale mechanism and visual field branch
can be easily applied to existing network archi-
tecture for gaze estimation. Related code would
be available at public repository https://
github.com/gazeEs/PerimetryNet.

Keywords: Gaze Estimation, Multi-Scale, Fine
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1 Introduction

Eye gaze estimation has been an attractive re-
search area since its numerous application areas
such as human–computer interaction, saliency
detection and virtual reality by identifying the
users’ point-of-interest. It provides important
cues for human cognition understanding [1, 2],
automotive [3, 4], aviation [5], accessibility
[6, 7] and visual scan path analysis [8].

Gaze estimation methods could be generally
divided into feature & model-based methods
and appearance-based methods. Early feature &
model-based methods have employed infrared
(IR) imaging or high-resolution cameras tech-
niques and achieved commercial realm. How-
ever, such kind of solutions are mostly limited
to laboratory environment due to short work-
ing distance and lack of robustness in the wild.
A series of appearance-based gaze estimation
methods have been proposed since they could
provide relatively unconstrained gaze tracking



from commodity hardware. The development
of appearance-based methods has facilitated the
widespread of gaze tracking without additional
cost on many platforms, such as mobile devices
[9]. In addition, the application of deep convolu-
tional neural networks (CNNs) has reduced esti-
mation error of appearance-based system signif-
icantly [10].

In order to conduct high quality gaze esti-
mation, previous works have tried to use multi-
stream input [11, 12, 13, 14, 15],dilated convo-
lution [13, 14, 15], multi-task techniques [16,
17], unsupervised representation learning[18]
and zero-shot learning[19]. Gaze information is
directly conducted as a regression result from
estimation. In this work, the gaze estimation
is modified as a dual task including a regres-
sion branch and a support classification branch
to improve the per-angel prediction accuracy.
The idea of support classification branch is in-
spired by medical perimetry test, where the vi-
sual field is categorized into location grids de-
scribe maps of light sensitivity. Therefore, a
perimetry branch is designed in our work that
calculate gaze vision field classification loss.

To verify the superiority of the proposal idea,
extensive experiments are conducted on the
challenging benchmark dataset MPIIGaze[20].
Our model significantly outperforms state-of-
the-art works in extensive evaluations. The con-
tributions of this work are summarized as fol-
lows:

• For the first time, we investigate the strat-
egy of visual field analysis in-depth and
propose a novel perimetry test branch for
the gaze estimation problem.

• We design a multi-scale 3D gaze estima-
tion framework with dual tasks. Our exper-
iment demonstrates that visual field infor-
mation could offer complementary infor-
mation for gaze estimation.

• We conduct comprehensive evaluations on
benchmark datasets and achieve a signif-
icant improvement. Notably, the pro-
posed perimetry branch is generic to seam-
lessly work with existing multi-stream
appearance-based model.

Figure 1: An example of Perimetry test re-
sult with ZEISS system: left eye
(top),right eye (bottom). The numbers
in the left column and grey in right col-
umn stands for the light sensitivity of
visual field.

2 Related Work

In this section, 3D Gaze estimation methods in-
cluding two categories: feature & model-based
approaches and appearance-based approaches,
would be reviewed respectively.

2.1 Feature & model-based gaze
estimation methods

Commercial gaze-trackers are usually con-
ducted by feature based gaze estimation meth-
ods using infra-red (IR) imaging techniques,
where such approaches are based on well es-
tablished theory that using the pupil centers and
corneal reflections. For instance, Guestrin and
Eizenman have presented a point of gaze esti-
mation system in a desk top settings with an
evaluation on 4 subjects [21]. A mobile de-
vice based gaze estimation has been reported by
Brousseau et al that compensates for the rela-
tive roll between the system and subject’s eyes
[22]. Recent Tobii 1 is a predominantly feature-
based gaze estimation system that claim to pro-
vide gaze accuracy of less than 1.9° error un-
der real-world usage conditions. In addition to
the above desktop setting, many real-time pupil
detection in-the-wild approaches have been de-
signed for gaze estimation [23, 24, 25, 26, 27].

1www.tobii.com/



However, few work has been reported about the
performance comparison of these approaches in
term of gaze estimation via pupil detection.

Model based gaze estimation methods ex-
tract visual features such as pupil, eyeball cen-
ter and eye corners that aim to fit a geometric
3D eyeball model to conduct gaze estimation.
Early model-based approaches mainly rely on
high resolution cameras for feature extraction
but suffers from illumination variation problem
[28, 29, 30]. Later approaches have tried to over-
come such requirements that only commodity
web cameras are adopted, while machine learn-
ing techniques are used to empower feature ex-
traction [31, 32].

2.2 Appearance-based gaze estimation
methods

Compare with aforementioned feature & model
based approaches, appearance-based methods
aim to estimate gaze directions directly from
images that captured using commodity cam-
eras without handcrafted feature [16, 20]. Con-
sidering the time consuming personal calibra-
tion for every participant required by feature
& model-based gaze estimation methods, these
appearance-based methods have significant ad-
vantages and are benefited with the rapid growth
of datasets and advancements in deep learn-
ing techniques. Considering the input type,
appearance-based gaze estimation method could
be generally classified into single-stream and
multi-stream methods.

GAZENet [20] is a well known appearance-
based gaze estimation method, which is a single-
stream network that using single eye image as
input. In the following work, a single-stream
Spatial-Weights CNN model is proposed with
full face image as input [16] where additional
layers that learn spatial weights for last convolu-
tional layer is introduced to use face information
effectively. A head pose branch is designed in
a CNN model which involves signal eye image
and head pose [33]. A multi-task CNN based
approach is proposed to extract eyeball feature,
head pose and 3D eye position for gaze predic-
tion with eye images and RGBD head image as
input [34].

Multi-stream methods are proposed alterna-
tive to single-stream methods. A multi-stream

approach called iTracker is designed that us-
ing left eye image, right eye image, face im-
age and face grid as input[11]. Dilated con-
volution mechanism has also been applied with
eye images and face image as input, where di-
lated convolutions are used to instead of sev-
eral max pooling layers in their model [13, 14].
An extended dilated convolutional approach has
introduced a gaze decomposition method that
decomposes the gaze angle into the sum of a
subject-independent gaze estimate from the im-
age and a subject-dependent bias [15]. AGE-Net
has tried to use an attention mechanism with the
dilated convolution model [35]. FAR-Net has
proposed a face-based asymmetric regression-
evaluation network that utilize the asymmetry
between subject’s two eyes, where a confidence
score is obtained from each eye[36].
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Figure 2: Related concepts of gaze direction.
(a).The head coordinate system repre-
sented by red lines is defined based on
a triangle connecting three midpoints
of the eyes and mouth. (b). Pitch
and yaw of gaze direction. Green lines
represent the three-dimensional coor-
dinate system, and red lines represent
the gaze direction.

Apart from those CNN based model, a hybrid
transformer approach has been developed where
a CNN is employed to learn local feature from
face images and a transformer is used as encoder
to estimate gaze [37].

3 Methodology

3.1 Pre-processing

Gaze vector g is usually defined as a unit vec-
tor from a reference point in the head coordinate
system. Figure 2(a) shows the head coordinate



system, which is defined by a triangle connect-
ing the three midpoints of the eyes and mouth.
The x axis of the head coordinate system is de-
fined as the direction from the center of the right
eye to the center of the left eye. The y axis is de-
fined as the direction perpendicular to the x axis
in the triangle plane, and the z axis is defined as
the vertical direction from the triangle plane to
the back of the subject[38].In the model train-
ing, 3d gaze vector is converted into 2D form
represented by pitch and yaw, as shown in Fig-
ure 2(b).

Different from earlier constrained gaze es-
timation, appearance-based gaze estimation
needs to be implemented in unconstrained envi-
ronment. Unconstrained gaze estimation com-
plicates the problem by introducing new factors
such as head posture, camera distance and illu-
mination. The purpose of data pre-processing
is to eliminate the influence of these factors
by mapping input images and gaze labels to
a standardized space. Sugano et al. pro-
posed a method of data normalization for 3D
appearance-based gaze estimation[38]. The ba-
sic idea is to first rotate the camera to eliminate
the freedom of head rotation and then translate
the camera to keep the same distance between
the camera and the reference point. In our work,
we follow the procedure in [38] to normalize
the MPIIGaze dataset [20] and the procedure in
[39] to normalize the EYEDIAP dataset [40].
Furthermore, to analyse the strategy of vision
field, we split up the continuous gaze target in
each dataset into bins with binary labels based
on gaze labels. At last, both datasets have bins
labels and continuous labels for the estimation
of vision field and gaze direction.

3.2 Perimetry: vision field branch

Perimetry test is a systematic measurement of
visual field function, where the visual fields are
mapped to lights of different sizes and bright-
ness [41]. It is accomplished by keeping the size
and location of a target constant and varying the
brightness until the dimmest target the patient
can see at each of the test locations is found.
Such results are essential in diagnosing diseases
of the visual system since different patterns of
visual loss are found with diseases of the eye,
optic nerve central nervous system. An exam-

ple of Perimetry test results from ZEISS system
2 is shown in Figure 1, where the numbers in
left column indicate the light sensitivity thresh-
old and right column reflect the visual field func-
tion area that dark means visual function loss.
Hence, we divided the visual field into grids by
pitch and yaw, where a example of the data dis-
tribution is illustrated in Figure 3. Hence, a clas-
sification task would be conducted once the fea-
ture extracted from backbone model to identify
the corresponding grid. The details of architec-
ture and loss function would be presented in the
following paragraph.
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Figure 3: Distribution of gaze on MpiiGaze(left)
and EYEDIAP(right).

3.3 Architecture

We propose PerimetryNet, a network for Gaze
Estimation with visual field analysis branch.
The PerimetryNet architecture is presented in
Figure 4. It is a single-stream model that only
use the face images as input since our primary
focus has been to investigate the factor of visual
field analysis affecting the performance.

The input images, collectively referred to by
Xi,j , are first fed separately to the backbone
CNN model. The features are extracted by the
backbone model Resnet50 and five feature maps
C1 to C5 of different scales can be get. We
select feature maps C3, C4 and C5 for subse-
quent processing. In feature pyramid network,
channel numbers will be adjusted by 1×1 con-
volution. Then, up-sampling and feature fusion
are carried out for enhanced feature extraction.
Multi-scale feature maps P3 to P5 can be get.
Inspired by Retinaface[42], we also apply inde-
pendent SSH modules on three feature pyramid
levels to increase the receptive field. The SSH
module uses a stack of 3×3 convolution replace

2www.zeiss.com/meditec/us/
product-portfolio/perimetry.html



+

+

64×7×7

C1

64×28×28

64×14×14

C2

C3

C4

C5 P5

P4

P3

Backbone: Resnet50 Feature Pyramid Network

64

32 16 16

Gaze direction

Perimetry
P

itch

C

64

Single Stage Headless FC layers

Face images

Figure 4: Network Architecture of proposed approach. PerimetryNet is designed based on the feature
pyramids with three scales. For each scale of feature maps, we apply SSH modules. At last,
fully connected layers are used to predict the field of view and gaze direction.

the 5×5 convolution and the 7×7 convolution. At
last, each of feature maps is connected to two
fully connected layers. One of the fully con-
nected layers is used to predict the the field of
view and the other is used to predict gaze di-
rection. More specifically, In the vision field
branch, we divide the field into pitch and yaw.
In the gaze direction branch, the gaze vector can
also be converted into pitch and yaw. We pro-
pose to use two identical losses for pitch and
yaw. Each loss consists of a combined focal loss
and mean-squared error.

L = Lgaze + αLperimetry (1)

The focal loss is used to increase the weight of
hard samples. The focal loss and MSE loss are
defined as:

Lperimetry = − (1− pi)
γ log (pi) (2)

Lgaze =
1

N

N∑
i=1

(yi − pi)
2 (3)

Where γ = 2, pi is the predicted value, yi is
the ground-truth and α is the weight of direct
prediction of gaze direction.

The backbone model has been initialized
from an ImageNet-pretrained model. Transfer
learning is appealing that the low level features
generate from fine-tuned pretrained model per-
form well, since gaze datasets contain much
fewer samples than large-scale image classifica-
tion datasets like ImageNet. For instance, we
have found that networks with the same struc-
ture but trained from random initial weights

achieve higher errors compared to PerimetryNet
reported in Table 2.

The visual field analysis branch only works
in training stage, the gaze information would be
directly predicted during inference.

4 Experimental Results and
Discussions

In this section, we carried out extensive compar-
isons and ablation experiments to demonstrate
the effectiveness and robustness of our proposed
idea. The details of our network configuration
are given out in the section. Comprehensive
quality and quantity results are reported to show
the superiority of the perimetry branch as well as
multi-scale strategy against the state-of-the-art
models. Discussions of these experiments point
out the interesting findings of our work.

4.1 Dataset and Metric

The performance of proposed method is eval-
uated on two challenging benchmark datasets:
MPIIGaze [20] and EyeDiap [40].

Evaluation Metric Following most gaze esti-
mation methods, we use gaze angular error (°)
as our evaluation metric. Assuming the ground-
truth gaze vector is g ∈ R3 and the predicted
gaze vector is ĝ ∈ R3, the gaze angular error(°)
can be computed as:

Langular =
g · ĝ

∥g∥∥ĝ∥
(4)



Table 1: Comparison with SOTA methods for 3D gaze estimation on MPIIGaze and EYEDIAP.

Methods Publisher MPIIGaze(degree) EYEDIAP(degree)

iTraker(AlexNet)[11] CVPR 2016 5.6° 9.9°
Spatial-Weights CNN[16] CVPRW 2017 4.8° 6.0°
RT-Gene(4 model)[43] ECCV 2018 4.3° /
MeNet[44] CVPR 2019 4.9° /
Bayesian Approach[45] CVPR 2019 4.3° 9.9°
FAR-Net[36] IEEE TIP 2020 4.3° 5.71°
CA-Net[12] AAAI 2020 4.1° 5.3°
I2DNet[14] JEMR 2021 4.3° /
AGE-Net[35] CVPRW 2021 4.09° /
GazeTR[37] Arxiv 2021 4.0° 5.17°
GEDDNet[15] IEEE TPAMI 2022 4.5° 5.4°
L2CS-Net[46] Arxiv 2022 3.92° /
PrimetryNet(Ours) / 3.72° 5.10°

MPIIGaze MPIIGaze dataset is collected in
real-world conditions with 15 people from di-
verse ethnic backgrounds under illumination,
appearance and head pose variation. We use the
“Evaluation Subset”, which contains 3,000 im-
ages per subject, which is 45000 samples in to-
tal. The reference point for image normaliza-
tion is set to the center of the face. We fol-
low same procedure as state-of-the-art works
[11, 12, 14, 15, 16, 35, 36, 43, 44] used for cross-
subject validation.

EYEDIAP EYEDIAP dataset contains videos
of full face with continuous screen target, dis-
crete screen target or floating target, and with
static or dynamic head pose. We followed the
evaluation protocol described in [16], which is
used in most SOTA works. We use the data from
screen targets that used in prior work, where 14
subjects (three female, none with glasses) are in-
cluded. The reference point for image normal-
ization is set to the midpoint of both eyes [47].

4.2 Implementation Details

The entire model has been trained on 2 NVIDIA
RTX 3090 GPUs while PyTorch is used as deep
learning frameworks. Furthermore, we apply
Adam optimizer with a learning rate of 0.0001
with a step of 5 times decay at the 5th, the 10th
and 20th epochs. For simplicity, weight α is
set as 1, while a resnet-50 is employed as back-
bone model in the ablation study. After that,

our perimetry branch and main gaze estimation
branch are installed with the backbone models
for the fine-tuning process to further enhance the
model performance. The grid of visual field is
set as 3° for MPIIGaze and 3° for EYEDIAP.

4.3 Comparison with SOTA methods

We compare our work with prior works [11,
12, 14, 15, 16, 35, 36, 37, 43, 44, 45, 46] that
use face images or face plus eye images as in-
put on the MPIIGaze and EYEDIAP datasets.
The results are shown in Table 1. The proposed
PerimetryNet achieves a 3.72° mean angular er-
ror on MPIIGaze and a 5.10° mean angular error
on EYEDIAP, outperforming the state-of-the-art
significantly. Detail performance on each sub-
ject is presented in Figure 5. Some examples
from EYEDIAP with estimated gaze are illus-
trated in Figure 6.
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Table 2: Ablation study on MPIIGaze.

Methods w/ pretrain MAE

baseline 4.29°
baseline + VFA 3.83°
baseline + VFA + Multi-scale
(PrimetryNet)

3.72°

PrimetryNet w/o pretrain 3.81°

4.4 Ablation Study

Experiments in this section are conducted on
MPIIGaze dataset for the purpose of analysing
the different components and designs of our
method. The overall test accuracy of experi-
ments is compared using MAE while Resnet-
50 is chosen as the baseline model. The train-
ing details are available in the public repository.
The results shown in Table 2 have indicated that
the proposed visual field branch and multi-scale
mechanism are able to improve the performance
of gaze estimation. The transfer learning strat-
egy with Imagenet-pretrained model parameters
could also reduce error.

5 Conclusion

To sum up, a multi-scale gaze estimation frame
work is proposed in this paper, where a visual
field analysis branch that inspired by medical
perimetry test is designed to improve estima-
tion accuracy. A comprehensive study has been
taken to investigate the effect of the multi-scale
component and the visual field branch . The
experimental results have shown that the pro-
posed PerimetryNet outperforms state-of-the-art
methods on two challenging benchmarks. The
ablation study has also presented the effective-
ness of the multi-scale component and the visual
field branch. In addition, the proposed multi-
scale mechanism and visual field branch can be
easily applied to existing network architecture,
e.g. multi-stream framework, for gaze estima-
tion. A further study on calibration settings like
[15] will be taken in future.
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