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Abstract: With advances in machine learning and ambient sensors as well as the emergence of ambient
assisted living (AAL), modeling humans’ abnormal behaviour patterns has become an important
assistive technology for the rising elderly population in recent decades. Abnormal behaviour observed
from daily activities can be an indicator of the consequences of a disease that the resident might
suffer from or of the occurrence of a hazardous incident. Therefore, tracking daily life activities and
detecting abnormal behaviour are significant in managing health conditions in a smart environment.
This paper provides a comprehensive and in-depth review, focusing on the techniques that profile
activities of daily living (ADL) and detect abnormal behaviour for healthcare. In particular, we
discuss the definitions and examples of abnormal behaviour/activity in the healthcare of elderly
people. We also describe the public ground-truth datasets along with approaches applied to produce
synthetic data when no real-world data are available. We identify and describe the key facets of
abnormal behaviour detection in a smart environment, with a particular focus on the ambient sensor
types, datasets, data representations, conventional and deep learning-based abnormal behaviour
detection methods. Finally, the survey discusses the challenges and open questions, which would be
beneficial for researchers in the field to address.

Keywords: ambient sensors; healthcare; abnormal behaviour detection

1. Introduction
1.1. Background

The share of the global population aged 65 years or above is predicted to grow
from 10 percent in 2022 to 16 percent in 2050 [1]. These numbers imply a massive demand
for healthcare, putting more pressure on health systems. Unsurprisingly, senior people
prefer to live in a self-determined private home environment while ageing. Age-in-place
could help improve the quality of elderly people’s daily life [2]. Hence, tracking daily
life activities in a smart environment (SE) and detecting abnormal behaviour arising from
health conditions can help to monitor the health conditions of elderly people [3–5].

An SE is a dwelling that is mounted with ambient sensors to enable monitoring of
the occupants, capturing their behaviour and understanding their activities by using an
array of different sensors such as motion, door switch, temperature, pressure, pulse rate, or
blood glucose sensors [6]. In this way, ambient intelligence can predict normal or abnormal
behaviour and inform about risky situations requiring further assistance or interference.
The application areas of ambient intelligence involve fall detection, detection of dementia
indicators, normal or abnormal behaviour (physical) detection, well-being monitoring,
etc. [3,7–12].
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Abnormal behaviour detection is the task of identifying daily living activities whose
execution deviates from the expected or normal execution due to the health problems
that elderly people may have (such as cognitive impairment). For example, people with
dementia might have difficulties performing daily activities and cannot lead an independent
life. An SE can be exploited to track the daily lives of elderly people and detect abnormal
behaviour stemming from cognitive decline [3–5,13,14].

Given the importance of elderly healthcare in an SE, especially for people with cog-
nitive impairment, providing a summary of the literature works and identifying the cor-
responding gaps and challenges within the field would be beneficial for researchers in
this field. Henceforth, in this paper, we analyse the recent trends in abnormal behaviour
detection in an SE, primarily focusing on healthcare applications using ambient sensors,
such as item, door, motion sensors, etc.

Our survey goes beyond the prior research surveys [15–22] by: (1) focusing on health-
care applications for elderly people; (2) providing an updated assessment of the literature;
(3) covering available simulation datasets as well as real-world datasets; and (4) identifying
the research gaps in an SE for healthcare.

1.2. Recent Surveys on Abnormal Behaviour Detection

Table 1 summarises the earlier surveys on healthcare and their focuses. In [17], smart
monitoring systems, their design and technologies, modeling, and development challenges
were reviewed. Nevertheless, it does not address the approaches to detecting abnormal
behaviour, the issues in dataset collection and the generation of artificial datasets when
necessary. Dhiman et al. [18] provide a structured overview of abnormal human activity
recognition (AbHAR) methods, with a focus on 2D and 3D AbHAR based on RGB, depth
and skeleton evidence, for single-person and multiple-person-based methodologies. They
do not discuss healthcare-related abnormal behaviour in the sensor-based environment.

Table 1. Related surveys on abnormal behaviour detection.

Main Focus Reference

Technologies and methodologies on indoor and out-
door context, based on multi-modality sensors Cicirelli et al. [22]

Context-aware computing in healthcare for the elderly Mshali et al. [17]

Abnormal behaviour detection with wearable and am-
bient sensors Lentzas et al. [20]

Sensors, data, analysis, algorithms, reminder system
and anomaly activity detection Bakar et al. [16]

2D and 3D AbHAR based on RGB, skeleton, and depth Dhiman et al. [18]

Sensors and communication platforms, along with ar-
tificial intelligence techniques, used for modeling and
recognising activities

Amiribesheli et al. [15]

Activity recognition methods, but still covers abnormal
behaviour detection methods Patel et al. [19]

Abnormal behaviour identification for elderly care, us-
ing dense-sensing networks Deep et al. [21]

Infrastructure systems and sensor technologies, activ-
ity recognition, and anomaly detection techniques Dunne et al. [23]

In [24], outlier detection methods for temporal data are presented and summarised.
Whilst the survey does not focus on abnormal activity recognition for an SE. In [16], the
focus is on activity recognition in sensor-based data. The study categorises the anomaly
detection methods in two ways: profiling and discriminating. The former learns normal
behaviour and detects anomalies, and the latter learns anomalies from historical data
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and detects similar patterns from incoming data. Deep et al. [21] present a dense sensing
network-based anomaly detection. The advantages and disadvantages are investigated,
along with an overview of sensor fusion technology. In [19], the authors review sensors,
data, analysis, algorithms, prompting reminder systems, and anomaly activity detection.
The survey in [15] summarises ambient technologies, the sensors used, communication
platforms, modeling techniques, and activity recognition methods, but it does not discuss
the sensor-based abnormal behaviour detection for healthcare in an SE.

In a recent survey [23], infrastructure systems, such as body area networks, dense/mesh
sensor networks, and microelectromechanical system (MEMS) sensors, are presented. More-
over, activity recognition and anomaly detection techniques for healthcare purposes are
discussed. In addition, ethical issues such as anonymisation and privacy-preserving tech-
niques are discussed, along with possible healthcare applications in an SE. Cicirelli et al. [22]
provide a review on active and assisted living, covering possible application contexts for
elderly people. They focus on different technologies and compare their pros and cons,
including ambient sensors, smart everyday objects, wearable sensors, and socially assistive
robots. They also discuss the different methodologies used for data processing, considering
the context.

Overall, some of the studies in Table 1 skip a discussion about different definitions of
abnormal behaviour for different tasks and contexts, while some others miss a discussion
about the publicly available datasets and methods to artificially generate synthetic data
reflecting abnormal behaviour. Thus, our survey will consider the healthcare domain,
focusing on the recent methods as well as the issues in datasets.

1.3. Overview of the Survey

The references in this survey are obtained in the following way. First, the queries of
“abnormal behaviour detection in an SE” and “activity recognition in a smart home” are
run on Google Scholar, which covers most academic search engines such as IEEE, Springer,
Elsevier, and ACM. Then, the papers are filtered based on their relations to the healthcare
of elderly people and ambient sensors.

The organisation of our survey is shown in Figure 1. Section 2 discusses the different
definitions of abnormal behaviour and categorises the purposes of abnormal behaviour
detection. Section 3 presents different sensor types. Section 4 summarises the methods to
segment sensor data and different ways to represent sensor readings in the format of the
features. Different methods used to detect abnormal behaviour, including conventional
machine learning and deep learning models, are presented and analysed in Section 5. The
research gaps, challenges, and open questions are discussed in Section 6. Finally, Section 7
presents the conclusion of the paper.

Figure 1. Overview of the survey.

2. Definition of Behaviour Changes in Elderly People

Changes of behaviour in the daily life routines of elderly people, can be indicators of
some health-related problems, such as cognitive decline. Thus, understanding and defining
these changes and providing a warning system for caregivers, is important. The definition
of abnormal behaviour depends on the context of the research problems. For example,
waking up and going to the toilet in the middle of the night might be an abnormal behaviour
to predict dementia indicators [3–5,14,25], but can be regarded as normal behaviour for
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fall detection. Thus, defining abnormal behaviour for the given purposes would be more
sensible. We provide a discussion about the definition of abnormal behaviour in the
following, with a summary of the related work in Table 2.

A number of studies define abnormal behaviour based on the time and location where
the behaviour occurs. In [26], three types of anomalies are defined, i.e., temporal, spatial,
and behavioural anomalies. A temporal anomaly can be found in the duration of an
activity that takes longer than usual or shorter, while spatial anomalies are ones which are
performed in different places to usual. For instance, sleeping in the living room at night
can be a spatial anomaly. On the other hand, a behavioural anomaly occurs in the sequence
of sub-activities, when the person performs the activity in a way different to their usual
patterns. The authors in [27] classify the anomalies based on the time spent on the activity
as follows: activities at unusual times, e.g., rather than sleeping, the resident is spending
time in the living room or kitchen during the night; unusually long activities, e.g., the
resident spends more time on an activity than usual, which can be an indicator of falling
off; unusually short activities, e.g., the user sleeps less at night, wakes up earlier than usual,
or wakes up much earlier than usual, can suggest a health problem.

Table 2. Abnormal activity types.

Definition Rules Abnormality Types Reference

Time and location

Temporal
Paudel et al. [26]Spatial

Behavioural

Activity in unusual time
Novák et al. [27]Unusually long activity

Unusually short activity

Deviation

Temporal deviation

Lundström et al. [9]Transitional deviation
Transitional and spatial deviation
Spatial, temporal, and transitional deviation

Usual behaviour at a deviating time

Tran et al. [28]Anomaly in intensity or intra-variations in sensor
firings
Behaviour with a deviating duration
Behaviour with a deviating spatial context

Behaviour or
order changes

Point
Chandola et al. [29]Collective

Contextual

Order-based Suresh et al. [12]Duration-based abnormal behaviour

Some researchers define the abnormal activities according to deviations. For example,
they are classified as in [9] : (1) temporal deviation, the activities take time at an unusual
time, such as having breakfast at night; (2) transitional deviation, the activity is performed
earlier or later than usual, such as getting up or leaving home at night; (3) transitional and
spatial deviation, when the activity is performed at an unusual location but an unusual time,
such as falling in the bathroom at night; (4) spatial, temporal and transitional deviation,
the time and location of the activity are unusual while the activity itself is normal, such
as watching television at night. In [28], the abnormalities are identified as: (1) known
behaviour at a deviating time (e.g., waking up, getting dressed, eating, and leaving home);
(2) changes in the intensity or intra-variations in sensor firings during an activity (e.g.,
falling in the bedroom going to the bathroom); (3) behaviour with a deviating duration (e.g.,
spending a longer time in the bathroom); (4) behaviour with a deviating spatial context
(sleeping in the living room during the night).
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For some applications, the completion of the activity might be enough, but the ordering
of sub-activities could be important for the detection of indicators of dementia [3,5,14].
Certain authors classify the anomalies on the basis of the relationship of the activity
with others, or changes to the order of activities [28]. There are three anomalies defined
in [29]: point, collective, and contextual anomalies. Point anomalies consider each activity
independent from the other and it does not depend on time or space. On the other hand,
in collective anomalies, activities are considered dependent on each other. Contextual
anomalies, such as time, visitors, or medications, are defined under some context. We
can also consider sequential abnormal activities as a collective anomaly, which is defined
as a sequence of events. An activity can be normal alone but abnormal when they come
together with other events. For example, going to the toilet is a typical and expected
activity, but a frequent repetition in a short time may indicate something anomalous [25].
The authors in [12] classify abnormal behaviour into duration-based and order-based. The
duration-based abnormal behaviour looks at the unusual amount of time spent performing
a behaviour, e.g., the elderly spend too much time in the toilet during the night. The
order-based abnormal behaviour determines the irregularities and deviations in the order
of activities. E.g., the elderly forget to take their medicine at the scheduled time. The
abnormality detection, based on the above cases, can enable the early detection of risk
related to specific health issues and enhance the elderly performing their daily routines
independently.

Other abnormal activities, such as not opening the refrigerator all day or turning on
the bathwater but not turning it off, can be risky in terms of the health of a resident and the
caregiver should be notified [30]. In [3,5,7], abnormal behaviour is described in the context
of early indicators of dementia. For instance, an elderly person suffering from dementia may
forget to have dinner or have multiple dinners, as they have forgotten they have already
eaten. On the other hand, not having dinner might be normal behaviour for a young person.
In addition, we can see from Table 2 that the definition of abnormal behaviour can be
interwoven, e.g., in [26], the definition involves both time-based and order-based rules.
Hence, the definition of abnormal behaviour differs from context to context.

3. Ambient Sensors and Datasets

Figure 2 presents a typical pipeline of ambient sensor-based abnormal behaviour
detection. First, activity-related data from the ambient sensors deployed in a house are
acquired. The sensor measurements are then sliced into window chunks and mapped in
different ways to attributes in the preprocessing stage. For conventional behaviour detec-
tion methods, the extracted features from the preprocessed data, including time, duration,
frequency, or the quality of the activity being performed, are required for modeling. As for
the deep learning-based methods, they can automatically learn the features instead. The
abnormal behaviour detected can be used in the decision making for caregivers, community
centres, or hospitals to trigger risk alarms, early diagnosis, and so on.

3.1. Sensor Types

In an SE, profiling and tracking user activities via cameras introduces user privacy and
ethical problems. Meanwhile, tracking activities with the help of wearable sensors might be
obtrusive for the residents or cause discomfort during long-term use [31]. One of the most
popular ambient sensors used in an SE is passive infrared (PIR) sensors, also called motion
sensors. Motion sensors are attached to a bed, a couch, around a table or the predefined
places to track the resident’s motion [32,33]. Item sensors, another commonly-used sensor,
are usually attached to kitchen utilities or medicine boxes to observe daily activities such
as cooking or medicine usage [34,35].
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Figure 2. Abnormal behaviour detection in an ambient sensor-based SE.

A typical ambient sensor layout, named HomeSense [36,37], is displayed in Figure 3.
HomeSense is a smart home project at the University of South Florida. It uses an ambient
sensor network for health and wellness monitoring, to assist older adults living indepen-
dently with routine healthcare. These deployed devices collect motion-related information,
like the use of a microwave or TV, room entry/exit, electrical consumption, humidity, tem-
perature, luminance, location of an occupant, toilet using, etc. It is noted that the number
of sensing devices can vary along with the number of rooms in a real home; most smart
environments deploy 16 to 20 sensing devices to cover 90% of the home environment.

Figure 3. Sensor layout for a typical home in HomeSense.

Sensor status is usually binary for motion, door, and item sensors, where ON status
is recorded as 1 and OFF status is recorded as 0. These sensors give information about
collecting objects’ status, such as doors opening or closing, lights turning on or off, or
residents’ movement. Temperature sensors measure the temperature in an SE. Sensor
activation information is recorded as a time tuple, where each sensor recording is a sequence
of date, time, sensor identification number and status.

A range of ambient sensors that provide time-series measurements are used for be-
haviour detection; a summary of the related studies is provided in Table 3. Apart from the
typical ambient sensors, we can also see WiFi, GPS, and RFID frequently used in an SE for
behaviour detection. As a ubiquitous element in indoor environments, WiFi can deliver
channel state information and signal strength signals for positioning, gestures, or other
behaviours. RFID is also a commonly used technique, capable of automatically tracking
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and identifying the movement of humans based on the measurements of signal strength or
frequency phase values received by the reader. The GPS modules built in smart devices are
conveniently used for positioning. At the same time, they can also be used for behaviour
inference in an SE by detecting the movment speed, the location, or the number of available
satellites provided.

Table 3. Commonly- used sensors in ambient sensor-based abnormal behaviour detection.

Sensor Types Data Types Reference

Pressure sensor Numerical: continuous pressure mea-
surements [8,13,38,39]

Passive infrared (PIR)
sensor Categorical: binary [9,26,32,33,37,38,40,41]

Temperature sensor Numerical: continuous temperature
measurements [5,33,36,41,42]

Contact sensor Categorical: binary [8,13,35,37,39,40,43,44]

Humidity sensor Numerical: continuous humidity mea-
surements [33,36,42,45]

Smoke, light, ultra-
sonic, water sensors,
etc.

Categorical: binary [13,36,44–46]

Item sensors Categorical: binary [30,34,39,47]
Motion sensors Categorical: binary [30,34–36,47]

RFID Numerical: measurements of signal
strength or frequency phase values [48–51]

Radar Categorical: binary [52–55]

WiFi Numerical: channel state information
and signal strength [56–60]

GPS Numerical: speed, location, etc. [61–63]

3.2. Real-World Data

This subsection summarises datasets that are constructed for tracking daily life activi-
ties. Although data collection is a tedious task and takes time, there are datasets [7,8,26,64]
(see Table 4) collected to monitor daily life activities in an SE. One of them is the MavHome
(managing an intelligent versatile home) project [64], in which an SE that acts as an intelli-
gent agent is designed. Sensors help perceive the state of the home, and the agent optimise
the comfort and productivity of the residents.

The Kasteren [66] dataset is collected in 28 days from a house with 14 state-change
sensors, where a 26-year-old man lives alone. In the house, digital sensors are placed on
the cupboards, doors, refrigerator, etc. The activity labels are annotated using a blue-tooth
headset and speech recognition software. In the dataset, there are 2120 sensor events, which
are comprised of seven activities, such as using the toilet, leaving the house, sleeping, showering,
preparing breakfast, preparing a beverage, and preparing dinner. This dataset covers a period
of less than a month; thus it would not be sufficient for the application of deep learning
methods that require a large training dataset. Conventional methods, such as SVMs, would
be more applicable to this dataset.

In [8], three different datasets are collected. The first resident is an entirely autonomous
adult man living independently; the second resident is an elderly female with Parkinson’s
disease; the third resident is an autonomous elderly woman without life-threatening
diseases. The sensors used include: pressure mats for measuring lying in bed or sitting on
a couch, passive infrared sensors for detecting motions in a specific area, float sensors for
measuring the toilet being flushed and contact switch sensors for the open–close status
of cupboards and doors. In total, 12 sensors are used and the total number of days is 14,
25, and 21, respectively. Real data acquired from the sensors are analysed by experts; the
abnormal sensor observations are manually labeled. The three datasets are suitable for
detecting the abnormal behaviour of elderly people.
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Table 4. A summary of sensor-based SE datasets.

Dataset Resident Sensors Publicly Avail-
able or Not

Dataset A,B,C
[8]

(A) an autonomous and inde-
pendent adult man, (B) an el-
derly woman diagnosed with
Parkinson’s disease, (C) an
autonomous, healthy elderly
woman

Pressure mats, passive
infrared sensors, contact
switches for doors, cup-
boards, float sensors in the
toilet, etc.

nPA

Domus [65] A group of residents
Pressure detector, IR, door
contacts, switch contacts,
lamps, flow meter, etc.

PA, https:
//domus.
recherche.
usherbrooke.
ca/ (accessed
on 13 February
2023)

Kasteren [66] 26-year-old adult
Sensors on cupboards, doors,
refrigerator, a toilet flush sen-
sor, etc.

PA, https:
//www.uva.
nl/~tlmkaste
(accessed on 13
February 2023)

Kyoto [67] 400 residents

Infrared motion sensors,
item, temperature, burner,
magnetic door, hot and cold
water sensors, etc.

PA, https:
//casas.wsu.
edu/datasets/
(accessed on 13
February 2023)

Logan [68]
Cook [34]
Suresh [12]

Two married people Motion, temperature, water,
electrical energy sensors, etc.

PA, https:
//ailab.eecs.
wsu.edu/casas
(accessed on 13
February 2023)

PA: Publicly available; nPA: not publicly available.

In the Domus dataset [65], six adults’ early morning routines (grooming, breakfast)
are tracked. The data are collected in two different ways: (i) the user performs the early
morning routine, and (ii) repeats the same routine with the introduction of a constraint. The
dataset comprises 84 sequences during the grooming activity and 62 sequences gathered
during the breakfast activity. The dataset involves five activities: waking up, using the
toilet, preparing breakfast, having breakfast, and washing the dishes. In total, 36 binary
sensors are used, such as lamps, PIR, switch contacts, pressure detectors, flow meters, and
door contacts. The data were collected for resident identification.

In Placelab [69], research participants individually live in a smart apartment that
contained a dining area, a bedroom, a living room, a small office and a kitchen. The
apartment deployment facilitates data collection for multiple or individual inhabitants
over a period of a couple of weeks. Conditions inside the apartment are detected using
10 humidity sensors, 34 distributed temperature sensors, one barometric pressure sensor
and five light sensors. The PlaceLab dataset also featurs two gas flow meters, 37 electrical
current sensors, and 11 water flow sensors. The PlaceLab dataset suits studies that focus on
multi-week or multi-day observations of individuals living independently or as a couple.

The dataset Kyoto in [67] is collected from 400 participants by CASAS (Centre for
Advanced Studies in Adaptive Systems) at Washington State University. The sensors used
include item sensors for selected items in the kitchen, wide-area infrared motion sensors,
temperature sensors, hot and cold water sensors, burner sensors and magnetic door sensors.
Out of the 400 participants, there are 239 healthy participants and 3 participants previously
diagnosed with cognitive impairment. In this dataset, temporal and spatial abnormal

https://domus.recherche.usherbrooke.ca/
https://domus.recherche.usherbrooke.ca/
https://domus.recherche.usherbrooke.ca/
https://domus.recherche.usherbrooke.ca/
https://domus.recherche.usherbrooke.ca/
https://www.uva.nl/~tlmkaste
https://www.uva.nl/~tlmkaste
https://www.uva.nl/~tlmkaste
https://casas.wsu.edu/datasets/
https://casas.wsu.edu/datasets/
https://casas.wsu.edu/datasets/
https://ailab.eecs.wsu.edu/casas
https://ailab.eecs.wsu.edu/casas
https://ailab.eecs.wsu.edu/casas
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behaviour are included; other activities include dusting the living room, obtaining a set of
medicines, filling the medicine dispenser, sweeping the kitchen, and so on.

Studies in [12,34,68] use the Tulum dataset to validate their work. The Tulum data is
also from the CASAS smart home project, collected from two people living in a smart apart-
ment that is instrumented with motion sensors, door switches, light sensors, temperature
sensors, etc. However, different studies have selected different sensors and the associated
activities from the dataset for their research. Apart from the Kyoto and Tulum datasets in
CASAS, the Aruba dataset has also been frequently used in the tasks of ambient sensor-
based behaviour detection [12,35,41]. Aruba consists of eleven kinds of activities, collected
over seven months. A total of 40 sensors are used, including sensors attached to doors,
motion sensors, and temperature sensors during data collection in a smart environment
with a single elderly woman resident. It is worth noting that the samples from the same
activity in the dataset have varied lengths of sensor firings, which makes detection tasks
more challenging.

3.3. Artificial Data

Artificial data are sometimes created for comparing the performance of the anomaly
detection methods, or as a complement, when real datasets are not available [70]. Synthetic
data based on real datasets are generated in [8], following the equation D∗ = D ± ∆, where
∆ is an offset, D is the true measurement, and D∗ is the anomalous measurement. Using
the mechanism above, the authors randomly introduced the synthetic anomalies into each
dataset separately at the frequency of 5%.

The Domus dataset in [7] is modified in the following way. Given a sequence repre-
senting one typical day, the cycle “waking up, using the toilet” is initially reproduced to
mimic an inhabitant who wakes up at midnight. For example, some sequences remove the
events representing dish washing, some remove the events relating to breakfast, others
remove the events relating to showers.

The synthetic behaviour in [27] is generated on the MavHome dataset [71], focusing
on the times and locations of the events. For this purpose, the reference points that
represent anomalies (e.g., firing in the bedroom at 4.00 a.m.) are generated manually. The
synthetic data at a frequency of 5 min for both the start time and duration of an activity
are generated based on the reference anomalies. The simulator is constructed as a Markov
process, in which the probability of the next state is created only by the current state. The
simulator moves forward through the pattern states and, among these transitions, generates
noisy firings.

The authors in [72] use DSMC (direct simulation Monte Carlo) and HMM (hidden
Markov model) to produce data for ADLs of an older resident’s behaviour. There are
two levels in the simulator: the first level profiles the activities based on the movements,
and the second level models the movement of each profile and the corresponding activity.
Consequently, the simulator design comprises two phases. The first step simulates the
duration of staying in a specific location and the sequential movements of the older resident;
the second step ensures the simulated data is representative of the person’s behaviour.

In [73], the researchers alter the real-world dataset to synthetic health-related abnormal
behaviour. Daily living activities, like waking up and sleeping, are chosen; the abnormal
behaviour, like no exercise, frequent toilet visits and slept without dinner, are synthesised.
In [9], more data are synthesised based on collected real data. The sensor events are
modeled by the Poisson distribution and a combination of Markov chains to increase
the data simulation realism. Nevertheless, in [9,73], the authors do not mention how the
data synthesis is completed in detail. In [74], the authors modify a real-world dataset by
converting the room’s occupation information into activities; they focus on eating, sleeping
and walking, and samples are inserted manually.

The deviating behaviour [9] is detected through analysis of associations and data
clustering between data vectors expressing adjacent time intervals and clusters. Three
types of abnormal behaviour are generated: temporal, transitional, and spatial deviations.
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The temporal deviation anomaly is designed to test whether the activities are placed in
clusters of appropriate activities, including getting dressed, waking up, preparing breakfast,
getting out of bed and eating.

In [3–5,14], abnormal behaviour representing the early indicators of cognitive decline
is generated by removing or repeating activity sequences or sensor readings from real
activity sequences. For example, a sequence of sensor events representing eating activity is
injected into sleeping activity, implying that the resident has a sleeping problem. The type
of anomalies generated represents cognitive decline-related problems. Some studies that
use artificial datasets are summarised in Table 5.

Table 5. A summary of simulated abnormal behaviour.

Dataset Reference Application Abnormality Publicly Available or
Not

Domus Saives et al. [7] Dementia evolu-
tion Frequency

PA, https:
//domus.recherche.
usherbrooke.ca/ (ac-
cessed on 13 February
2023)

Own
data Ordonez et al. [8] Parkinson’s dis-

ease Duration nPA

Own
data Dahmen et al. [70] General Sensor events, se-

quence, time nPA

MavHome Novak et al. [27] Elderly care Time anomaly

PA, https://ailab.
wsu.edu/mavhome/
research.html (ac-
cessed on 13 February
2023)

Own
data Elbayoudi et al. [72] Elderly care Location

anomaly nPA

Own
data Lundstrom et al. [9] Elderly health-

care
Temporal, transi-
tional, spatial nPA

PA: Publicly available; nPA: not publicly available.

4. Data Preprocessing and Sensor Representation
4.1. Sensor Data Segmentation

Different studies have been dedicated to addressing sensor data segmentation [66,75–78].
For example, sliding a time window over sequential sensor data is a popular method to deal
with time dependency, as in Figure 4. An overlap can also be used in time windows, e.g., an
overlap of 50% is used to avoid information loss in [75]. There mainly exist two approaches
to slide time windows: (i) using a static sliding window [66,75], where a window with a
fixed length is used to slide over the sequence; or (ii) using a dynamic time window with
varying window lengths [76–78]. For example, a window length of 1 min is used in [79].
The sensors are converted to a one-hot encoded feature representation, where the column
length equals the number of sensors available in the SE.

https://domus.recherche.usherbrooke.ca/
https://domus.recherche.usherbrooke.ca/
https://domus.recherche.usherbrooke.ca/
https://ailab.wsu.edu/mavhome/research.html
https://ailab.wsu.edu/mavhome/research.html
https://ailab.wsu.edu/mavhome/research.html
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Figure 4. Raw sensor representations are segmented by applying a sliding window, with different
time windows.

The fixed time slices cause immense time complexity since the sliding window is
applied even when no sensor is activated. In [80], a hidden Markov model is used to
segment sequential sensor data via a variable time window. However, prior data and
segmentation rules are required to decide the optimal time-window length in the work.

Another problem with sliding window-based segmentation is that sensor activation
data and the correct activity labels are discretised using the same time-slice length. During
the discretisation process, two or more activities occur within a single time slice. For
example, an activity might end somewhere halfway through the time slice and another
activity can start immediately after. In this case, the authors in [79] represent the time slice
with the most dominant activity in the time window. On the other hand, the discretised
correct labels might differ from the actual ground truth. The discretisation error is hence
introduced to express the magnitude of this difference. The discretisation error represents
the percentage of incorrect labels in the discretised ground truth.

4.2. Sensor Data Representation

For conventional detection methods, the raw sensor readings usually need to be
mapped to features after a sliding window is applied to extract chunks of data. For this
purpose, in earlier literature, a series of feature representations that are beneficial in identi-
fying abnormal behaviour are introduced. One of the earlier sensor representations [79]
(see Figure 5) has been explored widely in the literature.

• Raw sensor: in a given time slice, if a sensor is triggered, its representation is assigned
to 1 and otherwise to 0 [4,5,79].

• Change-point: whenever a sensor changes its state, either going OFF from ON or vice
versa, it is assigned to 1 and otherwise to 0.

• Last-fired: in this representation, the sensor that changed its state last is assigned to 1,
and others are assigned to 0.

Figure 5. One of the earlier feature representations.
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The raw features may fail to provide information about the activity being performed.
The change point representation represents when a sensor changes state and thus indicates
when an object is used. However, the location of the resident can be understood from the
last-fired representation. Moreover, these features extracted from time-slice chunks repre-
sent sensor activation as a bag-of-words style model and ignore the relationship between
sensors, such as their activation frequency and order. The abnormal activity recognition
tasks, such as detecting early dementia, require more context-related feature representa-
tions, where the relation between sensor activation and their frequency is modeled better
to understand the intrinsic substructures of activities. Thus, the studies [3,9,14,81,82] in
Table 6 model the sensors based on their intrinsic structures and their relationship with
each other. The interaction between sensors and their order is more suitable for applications
such as the detection of dementia indicators [3,14] that require a fine-grained level of detail
about the sensors’ activation and their relations.

Table 6. Sensor representations.

Sensor Representation Reference

Graph features represented as nodes and edges Akter et al. [82]
Spatio-temporal features in a matrix Lundstrom et al. [9]
Adjacency matrix Twomey et al. [81]
Graph features Arifoglu et al. [3]
Hierarchical features in an RAE tree Arifoglu et al. [14]
Binary, change-point, last-fired Kasteren et al. [79]
Activity image Gochoo et al. [83]

Instead, the authors in [83] use a deep convolutional neural network (DCNN) for
activity recognition of the elderly living alone based on PIR motion and door binary
sensors. The data are first split with varied sliding window sizes and then alerted into
binary activity images that will be fed to their proposed DCNN model. The activity image is
a 2D visual representation with a black background and white pixels, corresponding to each
“ON” and “OFF” or “OPEN” and “CLOSE” of the binary sensory data from the motion and
the door sensors, respectively. Figure 6 shows an activity image sample in [83] with a size
of 50 × 40 converted from the segmented csv file, in which the two dimensions represent
the temporal and intra-sensor patterns of the activities, respectively. The length equals the
sliding window length L, while the height H is a parameter that needs to be determined.

Figure 6. Activity (bed to toilet) sample with 20 events.
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5. Abnormal Behaviour Detection Methods
5.1. Methods Overview

Most abnormal behaviour (change) detection studies rely on the assumption that a
person’s daily activities (ADLs) follow regular patterns. For example, it is assumed that
people normally get up at approximately the same time in the morning or sleep for roughly
the same amount of time every night. Based on this assumption, the existing studies try
to detect abnormal activities by first modeling the regular patterns and then detecting
the deviations from the regular ones. This section will cover the conventional machine
learning models [40,84] and deep learning methods [85–87]. The conventional machine
learning models include the generative [88], the probabilistic [89], the discriminative [90],
the clustering [91], the graph-based [92] and the rule-based methods [93], etc. Please see
Table 7 for a summary of the methods.

5.1.1. Generative Methods

A generative classifier learns the model to generate the data by estimating the assump-
tions and distributions of the model [73]. Models, like conditional random field and hidden
Markov models, belong to this group.

Daily life activities occur in a temporal context following a sequential trend. Modeling
activities based on temporal dependency makes detecting abnormal behaviour deviating
from the cumulatively learned normal ones easy. For this purpose, sequence-based methods,
such as hidden Markov models (HMMs) [38,73], are exploited. HMM generates hidden
states from input data, assuming a Markov process with unobserved or missing states. The
assumption involves event ordering, in which the probability of each event only relies on
the previous adjacent event [94]. HMM is widely employed for anomaly detection, for
it is a statistical method that works well on insufficient training data or small datasets.
Sanchez et al. [38] use an HMM to model normal behaviour, including a person’s location,
duration and posture. The HMM shows the ability to detect the deviation from the normal
or usual pattern of the person, thereby predicting the abnormal behaviour in a person’s
usual pattern.

5.1.2. Probabilistic Methods

Probabilistic methods make use of the distribution of the training data or features,
to identify the location of the anomaly boundary [13]. Probabilistic-based methods work
poorly when the data are insufficient. Probabilistic methods typically include methods
based on data distribution, such as cumulative distribution [99], Bayesian methods [8], etc.
Bayesian methods feature a mechanism of convening prior beliefs into posterior beliefs
when unseen data arrives. Based on this, the behaviour features can be modeled using
Bayesian statistics. Bayesian methods offer a powerful framework to construct modeling
techniques that specifically consider uncertainties.

The authors in [33] propose a cumulative distribution function (CDF)-based proba-
bilistic method to analyse the temporal and sequential information from volunteers; the
aim is to identify the daily patterns for detecting abnormal behaviour. The study only
uses contact sensors attached to the objects in a kitchen; each contact sensor provides two
possible states (“0” or “1”) of the corresponding object. The CDF obtains the probabilities of
abnormal behaviour regarding time and steps. The probabilistic analysis achieves accurate
results for activities with a long duration and many steps. However, for activities with
short time durations or fewer steps, how CDF can be used to identify abnormal behaviour
is not studied in this paper. Probabilistic methods, e.g., cumulative distribution, determine
the bounds of normal or abnormal behaviour using the distribution of the training data.
The performance of such methods is less satisfactory, especially in a small data scenario,
since reliable estimations cannot be obtained.
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Table 7. Typical studies in pervasive sensor-based abnormal activity detection.

Method Target Dataset (Publicly Available or
Not) Sensors Performance Ref.

(Year)

Bayesian Anomalous behaviour
signs

Datasets consisting of raw observa-
tions of the activities of the corre-
sponding user (nPA)

Pressure mats, passive infrared sen-
sors, contact switches, installed in
different home settings

Specificity: 0.98 Sensi-
tivity: 0.73 [8] 2015

HMM
Abnormal behaviour
from normal pattern of
the person

An open dataset using binary
sensors, gathered by two people
living in their own homes (PA,
https://archive.ics.uci.edu/ml/
datasets/Activities+of+Daily+
Living+28ADLs29+Recognition+
Using+Binary+Sensors (accessed
on 13 February 2023))

PIR sensors in rooms, magnetic
sensors attached to the objects,
pressure sensors under bed, seat,
etc.

Accuracy: 72% [38] 2019

Probabilistic
spatio-temporal
model

Anomalies that are differ-
ent from the subject’s past
pattern

Data collected from recruited se-
nior subjects by using a commer-
cial product (nPA)

Door, pressure and motion sensors
mounted in different positions of
the apartment

True positive rate for
anomaly detection:
0.72 [13] 2016

Decision tree Noisy patterns for older
people

Dataset collected in a care home by
thirteen senior residents during a
long period (nPA)

Temperature sensor, humidity sen-
sor, CO2 concentration sensor, PIR
sensors, etc., installed in the envi-
ronment

Accuracy for room
occupancy: 98% Ac-
curacy for ventilation
model: 93%

[33] 2019

Incremental deci-
sion tree

Activities of daily living
(ADL)

MAVHome (PA, https://ailab.wsu.
edu/mavhome/research.html (ac-
cessed on 13 February 2023))

Manually generated anomalies
data

Accuracy: more than
90% [95] 2021

Semantic rules Anomaly from the nor-
mal behaviour

two public datasets, one dataset
collected from one single-resident
home, one dataset from a commer-
cial provider (PA, https://ailab.
eecs.wsu.edu/casas (accessed on
13 February 2023))

Floor presence mats, door and cab-
inet sensors, PIR sensors, chair and
bed occupancy sensors, etc.

Reduces false positives
and false negatives by
at least 46% and 27%,
respectively

[43] 2015

SPARQL rules Behaviours of daily living
Dataset including three defined ac-
tivities collected twice per day and
for 5 days (nPA)

Pressure, contact, ultrasonic sen-
sors

Accuracy for getting
dressed: 85% Accuracy
for taking shower: 90%
Accuracy for watching
TV: 100%

[46] 2017

Association rules Unexpected behaviour

Dataset from AGACY monitor-
ing system (PA, http://hadaptic.
telecom-sudparis.eu/ (accessed on
13 February 2023))

Smart lab equipped with bea-
cons, motion sensors, thermome-
ters, switches, etc.

Accurate and effective [96] 2018

SVM
Abnormal conditions,
like weakness, falls,
altered mental status, etc.

Collected during approximately
seven months from multiple sub-
jects (nPA)

Infrared (IR) motion sensors
Positive predictive
value: 90.5% [32] 2011

Multivariate
Gaussian via max-
imum likelihood
estimation

Activities of daily living
(ADL)

Twelve real-life activities from four
subjects (nPA) RFID sensor

Accuracy: 97.9% Pre-
cision: 96.97% Recall:
96.73% [97] 2019

Graph-based
approach

Temporal, spatial, be-
haviour anomaly

Kyoto dataset with 400 participants
provided by Washington State Uni-
versity’s CASAS program (PA,
https://ailab.eecs.wsu.edu/casas
(accessed on 13 February 2023))

Infrared motion sensors, item sen-
sor, burner sensor, hot and cold wa-
ter sensor, etc., set up throughout
the house

Anomalies are flagged
in different scenarios [26] 2018

CNN, autoen-
coder, convolu-
tional autoen-
coder

Daily activities, including
falling

1007 gait samples spanning 12 dif-
ferent classes collected from 11 sub-
jects (nPA)

Radar

Convolutional autoen-
coder ranks best, with
the overall accuracy of
94.2%

[26] 2018

NB, HMM, SVM,
MLP, autoen-
coder, DBN, CNN,
LSTM, etc.

Activities of daily living

Dataset from AGACY monitor-
ing system (PA, http://hadaptic.
telecom-sudparis.eu/ (accessed on
13 February 2023))

Binary environment sensors: reed
switches, pressure mats, mercury
contacts, passive infrared, float sen-
sors, etc.

CNN1d obtains better
results with or without
NULL class

[39] 2020

Deep neural net-
work Health risk prediction

Patient’s physical data including
EMR and PHR, and their environ-
mental information including PHD
and open API data (nPA)

Temperature, humidity, illumina-
tion, noise, position, date, time

Success in predicting
patients’ risk of disease [42] 2018

CNN, RNN

Abnormal behaviour re-
lated to dementia; activity
patterns of elderly people
with cognitive decline

Two datasets: Aruba and
WSU, available publicly (PA,
https://ailab.eecs.wsu.edu/casas
(accessed on 13 February 2023))

Motion, door, and temperature sen-
sors, etc.

Sensitivity: 98.67%
Sensitivity: 88.70% [5] 2019

https://archive.ics.uci.edu/ml/datasets/Activities+of+Daily+Living+28ADLs29+Recognition+Using+Binary+Sensors
https://archive.ics.uci.edu/ml/datasets/Activities+of+Daily+Living+28ADLs29+Recognition+Using+Binary+Sensors
https://archive.ics.uci.edu/ml/datasets/Activities+of+Daily+Living+28ADLs29+Recognition+Using+Binary+Sensors
https://archive.ics.uci.edu/ml/datasets/Activities+of+Daily+Living+28ADLs29+Recognition+Using+Binary+Sensors
https://ailab.wsu.edu/mavhome/research.html
https://ailab.wsu.edu/mavhome/research.html
https://ailab.eecs.wsu.edu/casas
https://ailab.eecs.wsu.edu/casas
http://hadaptic.telecom-sudparis.eu/
http://hadaptic.telecom-sudparis.eu/
https://ailab.eecs.wsu.edu/casas
http://hadaptic.telecom-sudparis.eu/
http://hadaptic.telecom-sudparis.eu/
https://ailab.eecs.wsu.edu/casas
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Table 7. Cont.

Method Target Dataset (Publicly Available or
Not) Sensors Performance Ref.

(Year)

Deep belief net-
works (DBFs)

Behaviours and abnor-
malities within activities
of daily living (ADLs) of
the elderly

Dataset including a range of activ-
ities collected from the bathroom,
bedroom, kitchen, and living room
(nPA)

Motion sensor, door sensor, light
sensor, smoke sensors, cameras,
etc., installed inside living room,
bedrooms, kitchen, etc.

F1 score: bedroom
89.1%, bathroom
90.1%, living room
80.8%, kitchen 83.6%

[44] 2020

Hybrid frame-
work with 1D-
CNN, 2D-CNN,
and LSTM

Behaviours and abnor-
malities within activities
of daily living

Data collected with FMCW radar,
operating at 5.8 GHz C-band and
400 M bandwidth (nPA)

Frequency-modulated continuous
wave (FMCW) radar

Overall accuracy:
93.391% Accuracy of
Falling: 100%

[55] 2021

Transformer with
bidirectional GRU Multi-resident ADLs

CASAS (PA, https://ailab.eecs.
wsu.edu/casas), ARAS (PA, https:
//www.cmpe.boun.edu.tr/aras/
(accessed on 13 February 2023))

Temperature sensors, motion sen-
sors, door sensors, PIR sensors,
item sensors, cabinet sensors, wa-
ter sensors, burner sensors, phone
sensors, etc.

Accuracy: 91.44% Pre-
cision: 90.64% Recall:
91.15% F-measure:
90.89%

[98] 2022

PA: Publicly available; nPA: not publicly available.

5.1.3. Discriminative Methods

Discriminative methods try to find a boundary between different classes instead of
modeling how instances of the classes are generated [84]. SVM is one of the most popular
discriminative methods used to detect abnormal activities by modeling a normal activity
as one-class and then detecting deviations from this class.

In [100], the hand-crafted features are extracted and then autoencoders and one-class
SVMs are used to first learn the normal behaviour and then detect the abnormal behaviour.
Moreover, the abnormal activities are simulated in the dataset by introducing disruption in
sleeping patterns, abnormal temperature changes and frequently leaving the room. The
results show that one-class SVM achieves an accuracy of 98.6%, and autoencoders achieve
a detection rate of 72%. The authors claim that both experiments have a high number
of false positives. In [101], SVMs are used to predict the progression of mild cognitive
impairment based on movement data using motion sensors. First, hand-crafted features,
such as detrended fluctuation analysis, cyclomatic complexity, fractal index, entropy and
room transition, are extracted and fed into the SVM. The results show that the onset is
predicted six months earlier than the clinical diagnosis.

5.1.4. Clustering

Clustering-based abnormal behaviour detection [9,27,102] might be appealing because
it can provide promising results in the detection of deviations and unsupervised modeling
of human behaviour. Abnormal behaviour detection-based clustering methods, typically
either cluster the data into different groups and then identify the data not belonging to
the groups as an anomaly; or determine the distance or the threshold between the normal
group and the abnormal ones. The clustering methods’ performance relies strongly on the
assumption of the data distribution.

The authors in [9] detect abnormal behaviour by data clustering and analysing transi-
tions between data vectors representing adjacent time intervals and clusters. First, they train
a random forest to obtain clusters of activity patterns. The information from the random
forest data, i.e., proximity matrix, is mapped onto the 2D space; data clusters are obtained
by agglomerative clustering. A third-order Markov chain models the transitions between
clusters. One advantage of the approach is that it does not make any assumptions about the
position, type and relationship of the sensors. Experimental results show that temporal and
spatial anomalies can be detected by analysing a 2D map of high-dimensional data. The
authors state that such a map is independent of the number of clusters formed. In addition,
the data clusters can be obtained by analysing the structure of the most representative tree
and identifying the most important variables.

https://ailab.eecs.wsu.edu/casas
https://ailab.eecs.wsu.edu/casas
https://www.cmpe.boun.edu.tr/aras/
https://www.cmpe.boun.edu.tr/aras/
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5.1.5. Graph-Based Methods

Graph-based methods [7,26,103] allow the relationship between sensors to be exploited.
Long and Holder [104] perform an activity prediction by using three different graph-based
approaches, representing time-based sensor data as a graph. In their case, none of the
graph-based models outperforms the non-graph SVM models. It also shows that the graph-
based approaches are able to correctly classify graphs that cannot otherwise be classified
correctly. Akter and Holder [82] represent an SE as a graph, in which motion sensors
are taken as vertices and movements as edges to perform activity recognition. They then
extract the graph-based features as input for a support vector machine (SVM). This method
outperforms conditional random fields (CRF), hidden Markov model (HMM) and Naive
Bayes. However, their study fails to take temporal information into account.

The elderly can benefit from a reduced risk of falls by following the OTAGO exercise
program. The research in [105] generated a weighted, directed multigraph from the de-
ployed PIR motion sensor network in the flat where the resident lived. Then, the authors
subtract the weights of one day from a baseline and use the difference to monitor the
performance progress of older adults. They also find the adults who finish the OTAGO
exercise program could slow their decline, compared with the older people who do not
finish the exercises. Further clinical studies are required to verify their findings based on
the pilot study.

5.1.6. Rule-Based Methods

Rule-based methods [7,43,46,96,106–109] require expert knowledge to provide rules
to the proposed system for abnormal behaviour detection. Rule-based approaches are
easily readable by humans, while they cannot handle noisy data. Although these rules
help eliminate false alarms, they sometimes change from person to person, as well as from
application to application.

In [110], entropy-based measures are used to detect anomalies in daily living when
there are visitors. The authors first calculate the maximum entropy value in normal
activities per hour and day, and then use it as a threshold to decide whether a new activity
is abnormal. One advantage of this study is that the algorithm not only detects abnormal
activities but also detects the cause of them, such as disruption in sleeping patterns or
visitor presence. Moreover, the authors compare different types of entropy, like Shannon
entropy, dispersion entropy, etc., on the accuracy of the results, and find that fuzzy entropy
and multiscale-fuzzy entropy achieve the best accuracy rates.

5.2. Sub-Activities

Daily activities are typically composed of granular level units, called actions, steps,
or sub-activities [25,111]. These interior structures are important to model the activities
hierarchically and construct coarse-grained details. For example, the activity wash clothes
involves the actions below: getting clothes from a basket, filling up the washing machine, turning
the washing machine on and taking clothes out. Modeling daily life activities from sub-activities
is important to detect abnormal behaviour for applications such as detecting indicators of
cognitive decline [3–5,14]. The anomalies stemming from cognitive decline may be reflected
in the repetition frequency of these steps and their relation with each other.

In [112], actions are defined as the simplest movements, and behaviours are described
as the most complex ones. Behaviours are divided into two different types, intra-activity
and inter-activity behaviours. The different elements of user behaviour are as follows.

• Actions are temporally short and conscious muscular movements made by the users
(e.g., taking a cup, opening the fridge).

• Activities are temporally longer but finite, and are composed of several actions (e.g.,
preparing dinner, taking a shower, watching a movie).

• The intra-activity behaviours describe how a user performs a single activity at different
times (e.g., while the user is preparing dinner, sometimes they may gather all the
ingredients before starting, while on other occasions, the user may take them as they
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are needed). The inter-activity behaviours describe how the user chains different
activities (e.g., on Mondays, after having breakfast, the user leaves the house to go to
work, but on the weekends, they go to the main room).

5.3. Deep Learning Methods

The above conventional machine learning methods can model complex ambient sensor
data, yet require extensive efforts in feature engineering. Deep learning (DL) approaches
are the state-of-the-art methods also used in the detection of abnormal behaviour in an
SE [44,89,113,114]. Deep neural network architectures (DNN) have become very popular
for abnormal behaviour detection due to their characteristics of being able to automatically
mine the nature of input data [4,5,44,114]. DNN techniques automatically learn hierarchical
discriminative features from data. There is no need to develop manual features by expertise,
compared with the conventional methods discussed above. Various DL-based methods, e.g.,
recurrent neural networks (RNNs) [114], long short-term memory networks (LSTM) [67], or
graph neural networks [115], have also been deployed for abnormal behaviour detection.

5.3.1. RNN and CNN

RNNs have been exploited to detect anomalies where sequential data are
present [4,5,114]. RNNs can be an alternative method to HMMs, where abnormal be-
haviour might occur in the sequential context of activities. For example, in [4], variants of
RNNs, namely vanilla, long short-term memory and gated recurrent units, are exploited to
detect abnormal behaviour to identify indicators of cognitive decline. The authors try to
model sequential activities with RNNs, and then detect abnormal activities deviating from
temporal patterns by utilising a threshold in the activity recognition confidence probabili-
ties. Moreover, RNNs in [5] are combined with convolutional neural networks (CNNs) for
the same task. While CNNs extract their own features, RNNs add temporal context to these
features. The authors claim that RNNs and CNNs are promising for detecting abnormal
behaviour in detecting cognitive decline indicators in an SE.

In [116], CNNs are used to detect anomalies in the path of wandering activity for
elderly people suffering from Alzheimer’s. The authors in [55] focus on the multi-domain
fusion of radar information with a novel hybrid neural network for human activity recogni-
tion. The network combines a 1D convolution neural network (CNN), a 2D convolution
network and a recurrent neural network (RNN) to extract much richer attributes, so as to
enhance the recognition performance effectively.

In [55,86,117], CNNs, LSTM, CNN-LSTM and autoencoder-CNN-LSTM are used to
detect the abnormal activities of elderly people. Two datasets are used: simulated activities
of daily living (SIMADL) and MobiAct. MobiAct is collected with a smartphone placed in
the pocket while the participants performed activities such as jumping, sitting, walking,
etc. As the number of abnormal activities is fewer, compared to the normal ones, the
SMOTE statistical method is used to oversample the abnormal activities, thus solving the
imbalanced class problem. The results show that the CNN-LSTM method achieves an
accuracy of 93% on the MobiAct dataset and 98% on the SIMADL dataset, as they take both
the temporal and spatial information into account.

5.3.2. Graph Neural Networks

Some researchers apply CNNs to extract the spatial dependencies between sensors
and then deploy LSTM on the time dimension to learn temporal dependencies [118,119].
The data in the above-mentioned CNN or RNN methods are typically represented in
Euclidean space. CNNs and RNNs only model the temporal dependencies of time series
or the spatial dependencies between sensors; this somehow ignores the influence of other
sensors. There are many applications in which data are generated from non-Euclidean
domains, such as social networks, knowledge graphs or interaction networks. Motivated
by graph embedding and CNNs, graph neural networks (GNNs) are proposed to learn
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a state embedding, relying on the feature information of a node through the historical
attributes of itself and its neighbours [115].

In [3], the authors exploit GCNs (graph convolutional networks) building daily ac-
tions from their granular-level structures, thereby detecting abnormal behaviour from
cognitive impairment. The authors in [14] use recursive autoencoders (RAE) to create a
hierarchical tree structure, which can detect the abnormal behaviour of dementia sufferers
by decomposing actions into sub-actions.

Spatial-temporal GNNs, recurrent GNNs and convolutional GNNs have been widely
applied to data represented in graphical forms, such as drug chemical stability identifi-
cation [120], traffic flow prediction [121], fault diagnosis [122], etc. The authors in [123]
propose a hierarchical attention graph convolutional network (HAGCN) for remaining
useful life (RUL) prediction. HAGCN aims to improve the accuracy of RUL predictions
of ambient sensor-based abnormal behaviour by modeling the sensor network to spatial-
temporal graphs. They use a regularised self-attention graph pooling layer in HGRL for
graph representation. Two case studies are conducted to verify the performance of HAGCN
in generating graphical representations. To the best of our knowledge, only a few studies
using GNNs for ambient sensors-based abnormal behaviour detection (ASABD) have been
performed. We believe there will be an increasing number of tasks for ASABD using GNNs,
since the deployment of ambient sensor data are graphically presented in essence. Similarly,
the other popular models, like attention or transformer-related frameworks [124], are also
rarely accessed in the field.

6. Challenges and Open Questions
6.1. Sensor Representation

Representation of the sensor activation in time-slice chunks extracted with sliding win-
dows is one of the critical steps in activity recognition and abnormal behaviour detection.
Most of the studies treat each sensor activation independently from each other and ignore
the relationship with each other (such as order of triggering) [4,5,66,79]. Whereas, abnormal
behaviour detection applications, such as healthcare (supporting elderly, detecting indica-
tors of dementia), require sensor representations which encode the granular-level details
of sensor activation, such as frequency, order, etc. Although there are studies dedicated
to this purpose, such as exploiting an adjacency matrix to model the relative locations of
the sensors [81], modeling the sensors in a graph structure [3,82], or encoding the sensors
in an adjacency matrix [9], there is still room for further analysis to exploit sequential
sensor activation. The traditional sensor representations, such as binary, change-point
and last-fired, treat the sequential information with a bag-of-words style where in-depth
information is lost.

Moreover, sub-activities are critical when detecting abnormal behaviour related to
dementia. Existing studies take each activity as an atomic unit and fail to model activities
based on their sub-activities. Although there are a few studies [3,14] trying to model
activities hierarchically from their sub-activities, future research should be dedicated
to representing the sensor activation, frequencies and their interaction with each other
to exploit the hidden, fruitful information lost in the bag-of-sensors approach. These
representations will boost the success of abnormal behaviour detection methods, such as
detecting the indicators of dementia, where the abnormality lies within the details and
hierarchy of the sensor activation.

6.2. Multi-Resident

Abnormal behaviour detection methods learn the patterns of habits of a single
user [8,66] in an SE and detect the abnormal behaviour deviating from these patterns.
Understanding the resident’s patterns and differentiating abnormal behaviour is still chal-
lenging in the context of multi-resident homes. Further study is needed to detect abnormal
behaviour in the case of multi-resident homes.
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6.3. Dataset Issues

• Realness of the simulated instances

Although publicly available datasets can be used for daily life activity recognition
tasks [8,65,66], there is still a gap for datasets addressing specific healthcare applications,
such as dementia care. Collecting of real-world datasets is time-consuming and challenging,
especially for diseases such as dementia. These datasets need to be collected over a period
of years, since this type of disease might change slowly. When there are no real-world
data available, simulation of abnormal behaviour might be a solution [3–5,7–9,27,70,72–74].
Future research should focus more on simulating and generating abnormal behaviour for
specific cases of healthcare applications. Although some studies target the simulation of this
kind of dataset, they may be lacking in their representation of real-world instances. Thus,
methods are also required to check the real-world applicability of simulation methods.

• Imbalanced dataset

Daily life activity recognition datasets suffer from the following problems: (1) the
frequency of some of the activities dominates the others (such as cooking and going to the
toilet vs. sleeping); (2) some other activities take a longer time than others (e.g., sleeping
takes hours, while leaving or entering the home is performed only a couple of times). This
introduces a class instance imbalance problem that needs to be considered, in, for example,
training-based methods, where the model learns the class labels based on the instances,
especially discriminative methods and generative methods, that favour the most frequent
classes [4,25,66]. In contrast, deep learning methods, like RNNs and CNNs [4,5], perform
relatively better on the less frequent classes. The HMM is complex when there is a large
set of transitions for all possible states. Neural network methods can be slow, expensive
to train, and have a complex architecture. Thus, future studies should explore how to
differentiate between the dominant classes and the less common ones, to provide better
accuracy for activity recognition systems.

• Limited abnormal instances

Another challenge in abnormal behaviour detection is a dataset’s limited number of
false positives. An abnormal behaviour is one that deviates from normal behaviour [9,26–28],
but it is difficult to know its characteristics beforehand. Unfortunately, training-based meth-
ods need to learn and model normal and abnormal behaviour, and it is necessary to have
both normal and abnormal instances in the training set. However, there are not enough
instances of abnormal behaviour in the training set. As a result, the training-based studies
in the literature follow a method first to learn what normal is (on a training set containing
only normal instances) and then flag the abnormal behaviour based on activity recognition
score. Studies that do not favour the frequent classes (normal behaviour) and model the
least occurring ones well (abnormal behaviour) should be proposed and developed.

6.4. Ethical Issues

In recent years, the use of artificial intelligence involving ambient sensors for healthcare
has proliferated. Data collection and its usage are critical in the associated applications;
however, this can also bring ethical concerns. The collected data are recorded in various
formats, including personal information and sensor readings. Inferences are then drawn
from the data for specific uses. Each project involving data collection should carefully
consider the questions, such as how to store and maintain the data, how or when the data
should be accessed or used, etc. The legal requirements or ethical agreements should be
approved to protect participants from unexpected disturbances or intrusions into their
personal life.

7. Conclusions

This survey comprehensively reviews the literature on abnormal behaviour detection
methods in healthcare. Specifically, we present varied definitions of abnormal behaviour.
We survey popular ambient sensors, the datasets available in the fields and the methods
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for generating synthetic data. As one of the core focuses of this survey, we discuss different
modeling methods to detect abnormal behaviour and suggest potential application contexts
for them. Finally, we highlight the research gaps and challenges.

There exists a large body of methods for activity recognition or abnormal behaviour
detection. However, the methods that have become dominant in the fields of computer
vision or language processing, such as attention-based, graph neural networks, as well as
transformer-based models, have yet to be commonly applied in abnormal behaviour detec-
tion using ambient sensors. This may imply that challenging questions exist in deploying
these novel techniques in SEs. The other open questions that need to be addressed include
abnormal behaviour detection in a multi-resident SE, data collection for dementia, tackling
false positives in activity recognition, ethical concerns, and so on.
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