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Abstract. A point cloud is a collection of disordered and discrete points
with irregularity, and it lacks of topological structure. The number of
discrete points in the point cloud is huge, and how to capture the key
features from the large amount of points is crucial to improve the accu-
racy of model recognition. In this paper, based on point cloud geometry
construction and embeddable attention, a 3D object recognition algo-
rithm is proposed. By constructing triangular geometries between points,
topological structure information to the point cloud is stored for points’
geometric construction module. The embeddable attention module uses
an improved attention mechanism with feature bias and nonlinear map-
ping to enable focused attention to capture key features. In addition,
a combination of max and average pooling to aggregate global feature
has been applied to avoid situations when using only one method would
ignore other key information. In comparison with other state-of-the-art
methods using ModelNet40 and ScanObjectNN, the proposed method
shows significant improvements in identifying both mAcc and OA. The
experiments also demonstrate the effectiveness of the modules in this
algorithm.

Keywords: 3D object recognition · Point cloud · Convolutional Neural
Network · Geometric construction · Embeddable attention.

1 Introduction

In recent year, 3D object recognition has become a research hotspot in the field
of computer vision with great research prospects. Such as autonomous driving
[1], intelligent robotics [2], virtual reality [3], etc.

The research of classification in pattern recognition based on point cloud has
received wide attention from researchers around the world, and the accuracy
of classification in pattern recognition has been significantly improved over the
past years. However, due to the fact that each point cloud model contains a
large number of discrete points, it may cause information overload. In addition,
point clouds are aggregated from disordered discrete points without topological
structure, and it lacks geometric information. According to the analysis of the
above deficiencies, this paper proposes a 3D object recognition algorithm based
on point cloud geometry construction and embeddable attention. The algorithm
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mainly includes three steps, i.e., point cloud data pre-processing, feature ex-
traction and classification in pattern recognition. In the stage of point cloud
pre-processing, the point cloud is randomly sampled from a uniform distribution
to reduce the number of discrete points in each point cloud to avoid information
redundancy and to simplify the computational complexity. Feature extraction is
the key step, which gradually expands the perceptual field through local feature
extraction and finally aggregates to obtain a global shape descriptor with rich
semantic information. Finally, the class of each point cloud model is obtained
by the classifier.

In summary, the main contributions of this paper are as follows:

• Point geometry construction module (PGCM) is proposed to construct tri-
angular geometric structures for sampled points and their two nearest neigh-
boring points. The topological structure information is attached to the point
cloud to make up for the shortage of geometric information, so that the ex-
tracted point cloud shape descriptors are closer to the real shape of 3D
objects.

• During the deep feature extraction of point clouds, an embeddable attention
module (EAM) is introduced to achieve focused attention on key informa-
tion. Meanwhile, the module is embeddable and can be ported to other
network structures. By applying a combination of max pooling and average
pooling, global features are aggregated for avoiding situations where critical
information is overlooked.

• According to the experimental results, the proposed method shows significant
improvements over other advanced algorithms from point cloud benchmark
datasets ModelNet40 and ScanObjectNN.

The rest of this paper is structured as follows. A brief review of the related
work is presented in Section 2. Then, the various parts of the proposed algo-
rithm are presented in Section 3. Section 4 presents the specific configuration
of the experiments and the comparison of the experimental results with other
algorithms. Finally, the conclusions of this paper are presented in Section 5.

2 Related Work

Along with the iterative update of GPU computing power and the emergence
of large 3D model data in the computer field, point cloud classification methods
based on deep learning have gradually taken a dominant position, and in this
section we mainly introduce several point cloud classification methods related to
our algorithm.

2017 Qi et al [4] pioneered the PointNet which is directly applied to point
cloud learning, which learns features of individual points by MLP and uses sym-
metric function max pooling to solve the disorder of point clouds; A three-
dimensional spatial transformer network is used to solve the problem of rotation
invariance of point clouds; Geometric and feature transformations are performed
on the input point clouds, and max pooling aggregated point features are used
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to solve the problem of point cloud substitution invariance. Although PointNet
provides a new idea for learning point clouds, it only captures the information
of individual points and global points when extracting features, and does not
fully consider the interaction of neighboring points and does not extract the
local shape information. Without knowing the local shapes, it is difficult for
point cloud learning. To learn from local structures, we define a point cloud ge-
ometric construction module with discrete and explicit locality, with additional
triangular geometry shape information to complement the Cartesian coordinate
information of the points.

Convolutional Neural Networks (CNN) have also achieved good results in the
classification and recognition task of point clouds. Although traditional CNNs
can exploit spatial local correlation, applying them directly to irregular point
clouds will not only lose point cloud shape information, but also suffer from
point cloud disorder. Li et al [7] proposed the X-transformation transform con-
volution operator in PointCNN, which solves the problem of disorder of point
clouds to some extent. The KPConv proposed by Thomas H. et al [9] provides
variable convolution operators that use a set of kernel points to define the re-
gion applied to each kernel weight. In the proposed method, we use symmetric
function max pooling to solve the disorder of point clouds, and apply a 1 × 1
convolution operation along with batch normalization and activation functions
to implement MLP. Other researchers have applied attention mechanisms to
point cloud classification. Attentional mechanisms enable the system to focus on
primary information and ignore secondary information. Guo et al [11] proposed
a point cloud transformer network (PCT) for point cloud learning by borrowing
the transformer structure in the field of natural language processing, and used
stacked offset attention modules in the encoder part to improve the accuracy of
classification and recognition of point clouds. In this paper, we also propose an
embeddable attention module that uses feature bias and nonlinear mapping to
improve the self-attention mechanism. The key information is focused and the
network model is optimized.

3 Deep Hierarchical Network for Point Clouds

3.1 Point Geometric Construction Module

In contrast to existing research programs, we intend to provide some clues about
the low-level geometry for the network, rather than repeating similar informa-
tion for each layer. Point cloud data, although easy to collect, lacks geometric
information compared to well-constructed mesh or voxel data. To remedy this
drawback and better capture the geometric feature information of point clouds
for representing 3D objects adequately, we explicitly enrich the geometric in-
formation of points in the low-level space, and apply the MLP-based hierarchy
in the high-level feature space to implicitly learn the local geometric context of
points and the global feature information between points. For a particular 3D
object, we only provide the coordinate information of the 3D point cloud model
as a priori knowledge of the network. However, this is not sufficient to describe
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Fig. 1. Network structure of our algorithm. 1024 points are randomly and uni-
formly selected from the point cloud. And we use only the coordinates information
P = {pi|i = 1, ..., 1024} ∈ R3 as the input to the network.

the local geometry. By forming physically explicit geometric relationships in the
low-level space, we are able to attach geometric information to the representa-
tion of the point cloud. And the richer low-level geometric cues are provided for
better implicit geometric feature learning in the subsequent high-level space.

Inspired by the triangular mesh in computer graphics, the KNN method is
used to find two nearest neighbors pi1,pi2 for any sampled point pi, i = 1, ..., 1024
to form a triangle in 3D space, as shown in Fig. 1. The triangular mesh can flex-
ibly present continuous and complex 3D shapes, and then the features of the
triangular mesh are used to explicitly enhance the low-level geometric relation-
ships between discrete points and the extracted new geometric descriptor p

′

i

corresponding to pi. This geometric descriptor p
′

i contains 1)the global position
information of point pi, 2)the vector information from two neighboring points
pi1 and pi2 to point pi, 3)the side lengths from two points pi1 and pi2 to point
pi in the triangular mesh, 4)the normals of the triangular mesh, 5)and the cen-
ter of mass obtained through the intersection of the three medians. The specific
formulas are shown below:

p
′

i = (pi, edge1, edge2, length1, length2, normal, centroid); p
′

i ∈ R17 (1)

pi = (xi, yi, zi), pi1 = (xi1, yi1, zi1), pi2 = (xi2, yi2, zi2); pi, pi1, pi2 ∈ R3 (2)

centroid = (
xi + xi1 + xi2

3
,
yi + yi1 + yi2

3
); centroid ∈ R3 (3)

edge1 = pi1 − pi, edge2 = pi2 − pi; edge1, edge2 ∈ R3 (4)
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length1 = |edge1|, length2 = |edge2|; length1, length2 ∈ R1 (5)

normal = edge1 × edge2;normal ∈ R3 (6)

p
′

i extends the features of pi from 3 dimensions containing only coordinates to
17 dimensions containing additional geometric information, combining the loca-
tion and geometric information. The topological structure information between
points is enriched. In the point geometry construction module, the obtained new
geometric descriptor p

′

i is subjected to further feature extraction by MLP to
make the feature representation of the point more expressive. The MLP is ex-
pressed as a channel fully connected layer. In our experiments, we implement
MLP by performing a 1×1 convolution operation on the feature map of the point
cloud, as well as batch normalization and activation functions, as shown in the
following equations:

M(p
′

i) := τ(BN(c1×1(p
′

i))) (7)

where M is the MLP,τ is the activation function, BN is the batch normalization,
and c1×1 is the convolution, and its subscript indicates the size of the convolution
kernel.

3.2 Embeddable Attention Module

The attention system of human brain is to select and to focus on a small portion
of useful information from a large amount of input information, then solving the
information overload problem by filtering out a large amount of irrelevant infor-
mation. The proposed embeddable attention module is established based on this
mechanism. It enables the neural network to automatically select channel fea-
tures containing key information for enhancement from a large amount of input
information. It helps to improve the ability of data processing in neural network.
The limited computational resources will be well utilized for processing more im-
portant information and solving the information redundancy problem. To extend
its applicability, the module has been designed with the same dimensionalities
for both input and output parameters, and it can be directly embedded into
other network architectures, as shown in Fig. 1.

The embeddable attention module uses the query-key-value model to map the
input features F1 to three different spaces using different linear transformations
to obtain the query matrix Q, the key matrix K and the value matrix V . The
linear mapping process is shown below:

Q = F1Wq ∈ RDk×N (8)

K = F1Wk ∈ RDk×N (9)

V = F1Wv ∈ RDv×N (10)

Where Wq,Wk,Wv are shared learnable linear transformations, Dk is the dimen-
sion of query matrix and key matrix, Dv is the dimension of value matrix, and
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Dk is not necessarily equal to Dv. Firstly, we use the query matrix and the key
matrix to calculate the attention weights by matrix dot product:

A
′
= (α

′
)i,j = Q ·KT (11)

The attention distribution is obtained by normalizing the weights using the
softmax operator and the L1 parametrization:

αi,j =
α

′′

i,j∑
k α

′′
i,j

, α
′′

i,j = softmax(α
′

i,j) =
exp(α

′

i,j)∑
k exp(α

′
i,j)

(12)

Then the weighted sum of the input information is calculated based on the
attention distribution and the value matrix to obtain the attention feature Fa:

Fa = A · V = (α)i,j · V (13)

In order to obtain the output features Fout of the embeddable attention mod-
ule, first of all, the channel attention feature F

′

in is achieved by mapping, the
input feature Fin nonlinearly through the fully connected layer fc1, the acti-
vation function ReLU and the fully connected layer fc2. Then, similar to the
Laplace operator, by calculation of element subtraction, the attention feature
Fa is replaced by the offset F

′

a between the input Fin of the attention module
and the attention feature Fa. Finally, the matrix sum of F

′

a processed by the
convolution layer and the channel attention features F

′

in is the output features.
The equations are shown below:

F
′

in = fc2(ReLU(BN(fc1(Fin)))) (14)

Fout = CBR(F
′

a) + F
′

in = CBR(Fin − Fa) + F
′

in (15)

In our designed attention module, softmax operator is used in the first dimen-
sion and the L1 parametrization is applied in the second dimension to normalize
the attention mapping, which improves the attention weight and reduces the
effect of noise. The offset between the input Fin of the attention module and
the attention feature Fa is also calculated for replacing the attention feature Fa

in order to prevent its happening where the absolute coordinates of the same
object are completely different under strict transformation. Since the query ma-
trix, key matrix and value matrix are jointly determined by the corresponding
linear transformation matrix and the input features Fin ∈ RN×de , they are all
order-independent. Moreover, the softmax operator and the weighted sum are
both permutation-independent operators. Therefore, the whole attention pro-
cess is alignment invariant and is well suited for disordered and irregular regions
presented by point clouds. The process of nonlinearly mapping of the input fea-
tures Fin to obtain the channel attention features F

′

in enables our network more
adaptive to different channel features and more robust. In our network struc-
ture, we also applied stacked EAMs for controlling and optimizing the outputs,
based on the global context, fine-grained attention features are generated for the
input features and transformed into a high-dimensional feature space which can
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Fig. 2. Residual Connection Pooling Block

characterize the semantic similarity between points, as shown in the following
equations:

F1 = EAM1(Fin) (16)

Fi = EAM i(Fi−1); i = 2, 3, 4 (17)

Ffinal = MLP (concat(F1, F2, F3, F4)) (18)

3.3 Deep Feature Extraction

As illustrated in Fig. 1, for deep feature extraction, the stacked RMs gradually
expand the receptive field and aggregate the local feature information and global
relationship information of the point cloud. The RM module initially contains a
residual connection pooling block (RCPB). As is shown in Fig. 2, RCPB is a small
residual network that improves the information propagation efficiency by adding
directly connected edges to the nonlinear convolutional layer, while obtaining a
new feature descriptor p

′

i for each sampling point pi. The local geometric context
and feature context are fused based on the geometric relation between points.
RCPB aggregates the local structure relationships of the point cloud to obtain
the local feature F1. Meanwhile, in order to increase the global relationship
information between points, the global relationship matrix G between each point
and other points is constructed using the same down-sampling index set Idx1 as
RCPB. Then it is converted into a weight matrix W and multiplied with feature
F1 by elements to get feature F2. Finally, feature F1 and feature F2 are summed
by elements to get the output features of RM module.

In the final stage of classification for recognition, in order to extract more
representative global shape descriptors of the point cloud, a combination of max
pooling and average pooling is applied to obtain the global feature by aggregating
the extracted deep features as input. Max pooling is a symmetric function, which
is insensitive to the input order and can solve the problem of disorder in point
clouds. Also in combination with average pooling, it can avoid ignoring other
critical information. To classify point clouds into multiple object classes (e.g.,
tables, desks, chairs, etc.), we input global features to a classifier. The classifier
consists of two cascaded feedforward neural networks with a dropout of 0.5 for
each layer, which is finally determined by the linear layer. The class with the
highest score in the final predicted classification score is the class of the point
cloud.
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4 Experiment

We evaluated the performance of our proposed network model on two datasets,
ModelNet40 and ScanObjectNN, and compared it with other state-of-the-art
methods. The effectiveness and superiority of the modules in this algorithm are
demonstrated by ablation experiments.

4.1 Evaluation Indicators

For the evaluation metrics, we use the average accuracy(mAcc) on each category
and the overall accuracy(OA) on all categories to evaluate the experimental
results, as expressed by the following equations:

mAcc =

∑K
i=1

Ti

Ni

K
,OA =

T

N
(19)

where T is the number of correctly predicted point clouds. T =
∑K

i=1 Ti , Ti is the
number of correctly predicted point clouds in class i. K is the number of classes
in the dataset. N is the number of all point clouds in the dataset.N =

∑K
i=1 Ni

, Ni is the number of point clouds in class i.

4.2 Classification on The ModelNet40 Dataset

The ModelNet40 dataset contains 12311 noise-free shape models from 40 classes,
9843 training models and 2468 test models. The experimental batch size is 32,
and the initial learning rate is 0.1. The learning rate is adjusted using CosineAn-
nealingLR. The optimizer is SGD with a weight decay of 0.0002. 300 epochs were
trained for the experiment. The experiment was run on GPU 3090 and CPU
AMD epyc 7543.

The experimental results are shown in Table 1. Compared with the Transformer-
based PointTrans.[20] method, the mAcc improved by 1.1% and OA improved
by 0.8%; Compared with CAA, the mAcc improved by 0.7% and OA improved
by 0.7%. The mAcc improved by 1.5% and OA improved by 1.6% over the graph
convolution-based method DGCNN; The mAcc improved by 3.6% and OA im-
proved by 2.0% over the point convolution-based method PointCNN; The mAcc
improved by 1.3% and OA improved by 1.9% over the attention-based method
Point2Sequence. Our method obtains higher mAcc value and more competitive
OA value, indicating that our method has robust classification performance for
different types of point clouds.

4.3 Classification on The ScanObjectNN Dataset

The ScanObjectNN dataset is the first real-world dataset for point cloud classi-
fication, containing 15,000 point cloud models in 15 categories. There are 2902
corresponding unique object instances with background, noise and occlusion. The
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Table 1. Comparison with the latest methods on the ModelNet40 classification dataset.
All cited results are taken from the cited papers. P=points, N=normals. The best is
marked in bold.

Method Input #Points mAcc(%) OA(%)
PointNet [4] P 1k 86.0 89.2
PointNet++ [5] P 1k - 90.7
PointNet++ [5] P+N 5k - 91.9
PointCNN [7] P 1k 88.1 92.5
PCNN [13] P 1k - 92.3
PointConv [8] P+N 1k - 92.5
Point2Sequence [14] P 1k 90.4 92.6
RS-CNN [15] P 1k - 92.9
DGCNN [10] P 1k 90.2 92.9
CAA [16] P 1k 91.0 93.8
PointASNL [18] P 1k - 92.9
Point Trans. [17] P 1k - 92.8
PosPool [18] P 5k - 93.2
MLMSPT [19] P 1k - 92.9
PCT [11] P 1k - 93.2
Point Trans. [20] P 1k 90.6 93.7
RepSurf-T [21] P 1k 91.1 94.0
SGCNN [22] P 1k 90.4 93.4
3DCTN [23] P+N 1k 91.2 93.3
ours P 1k 91.7 94.5

experimental batch size is 32. The initial learning rate is 0.01. The optimizer is
SGD. The weights are decayed by 0.0001, and 200 epochs are trained.

Compared to the current state of the art, our method outperforms all meth-
ods with significant improvements in both mAcc and OA. As shown in table 2,
our mAcc and OA are 5.5% and 3.8% higher than PRANet, respectively. Fur-
thermore, we note that our method achieves the smallest gap between mAcc
and OA. This phenomenon indicates that our method is not biased towards a
particular class and shows a fairly good robustness.

4.4 Ablation Studies

The results of the ablation experiments performed on ModelNet40 are shown
in Table 3. As can be seen from the first row of data, the removal of the point
geometric construction block resulted in a 0.7% decrease in mAcc and a 0.9%
decrease in OA. The second row of data shows a 1.3% decrease in mAcc and
a 1.4% decrease in OA after removing the embeddable attention module. As
can be seen from the third row of data, after removing the global relationship
matrix, mAcc decreases by 0.3% and OA decreases by 0.5%. As can be seen
from the fourth row of data, using only maximum pooling when performing
global feature aggregation, the mAcc decreases by 0.4% and the OA decreases
by 0.8%. In summary, each component of the network is effective for point cloud
classification recognition.
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Table 2. Comparison with the latest methods on the ScanObjectNN classification
dataset. All cited results are taken from the cited papers. The best one is marked in
bold.

Method mAcc(%) OA(%)
PointNet [4] 63.4 68.2
PointNet++ [5] 75.4 77.9
PointCNN [7] 75.1 78.5
SpiderCNN [24] 69.8 73.7
DGCNN [10] 73.6 78.1
BGA-PA++[25] 77.5 80.2
BGA-DGCNN[25] 75.7 79.7
Simple View [26] - 80.5± 0.3
GBNet [16] 77.8 80.5
DRNet [27] 78.0 80.3
PRANet [28] 79.1 82.1
MVTN [29] - 82.8
RepSurf-T [21] 81.2 84.1
ours 84.6 85.9

Table 3. Ablation experiments for the proposed network on ModelNet40. GRM indi-
cates global relation matrix.

PGCM EAM GRM Max Max+Avg mAcc(%) OA(%)
% ! ! % ! 91.0 93.6
! % ! % ! 90.4 93.1
! ! % % ! 91.4 94.0
! ! ! ! % 91.3 93.7
! ! ! % ! 91.7 94.5

5 Conclusion

In this study, by constructing triangular geometries between points with stacked
attention modules focus on the key information, a 3D object recognition algo-
rithm based on point cloud geometry construction and embeddable attention is
proposed. To enhance the robustness and effectiveness of the neural network,
a combination of max pooling and average pooling is also applied to aggregate
global shape descriptors. Due to the advantages of this algorithm, the proposed
method has outperformed the most state-of-the-art methods by evaluating Mod-
elNet40 and ScanObjectNN datasets. The proposed method has achieved higher
accuracy and has shown good performance in 3D object recognition.
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