
Numer. Math. Theor. Meth. Appl. Vol. xx, No. x, pp. 1-32

doi: 10.4208/nmtma. x 2023

Character Modelling with Sketches and ODE-Based

Shape Creation

Ouwen Li1, Haibin Fu1,*, Shaojun Bian1, Xiaosong Yang1,
Xiaogang Jin2, Andres Iglesias3,4, Algirdas Noreika5,
Lihua You1 and Jian Jun Zhang1

1 National Centre for Computer Animation, Bournemouth University,

United Kingdom
2 State Key Lab of CAD&CG, Zhejiang University, China
3 Department of Applied Mathematics and Computational Sciences,

University of Cantabria, Spain
4 Department of Information Science, Toho University, Japan
5 Indeform Ltd, Lithuania

Received 9 November 2022; Accepted (in revised version) 2 March 2023

Abstract. Character models have enormous applications in industry. Efficient cre-

ation of detailed character models is an important topic. This paper proposes a new
and easy-to-use technique to quickly create detailed character models from sketches.

The proposed technique consists of two main components: primitive deformer and
shape generators. With this technique, 2D silhouette contours of a character model

are drawn or extracted from an image or sketch. Then, proper geometric primitives

are selected and aligned with the corresponding 2D silhouette contours. After that,
a primitive deformer is used to create a base mesh and three shape generators are

used to add 3D details to the base mesh. The primitive deformer and three shape

generators are developed from ODE-driven deformations. The primitive deformer
deforms the aligned geometric primitives to exactly match the 2D silhouette con-

tours in one view plane and obtains a base mesh of a character model consisting of

deformed primitives. The shape generators are used to add 3D details to the base
mesh by creating local 3D models. The experimental results demonstrate that the

new technique can quickly create detailed 3D character models from sketches with
few manual operations. The new technique is physics-based and easy to learn and

use.

AMS subject classifications: 15A12, 65F10, 65F15

Key words: Sketch-based character modelling, shape generators, ordinary differential equa-
tions, finite difference solution.

∗Corresponding author. Email address: hfu@bournemouth.ac.uk (H. Fu),

http://www.global-sci.org/nmtma 1 ©2023 Global-Science Press



2 O. Li et al.

1. Introduction

Character models are widely applied in virtual reality, computer animation, and

video games etc. How to create detailed and realistic character models efficiently with

fewer manual operations is of practical significance.

Character modelling can be divided into geometric modelling, physics-based mod-

elling, and sketch-based modelling. Geometric modelling studies methods and algo-

rithms without involving physics for the mathematical description of shapes. Physics-

based modelling investigates how to create motions and deformations of objects with

the laws of physics. Sketch-based modelling explores techniques and interfaces of

drawing two-dimensional (2D) strokes of three-dimensional (3D) objects and convert-

ing the drawn 2D strokes into 3D models automatically. It also includes drawing 3D

curve networks and surfacing 3D curve networks to obtain 3D models.

Geometric modelling can be further divided into polygon [36], subdivision [32],

and Non-uniform rational basis spline (NURBS) [40] modelling. They are compu-

tationally more efficient than physics-based modelling and can create more detailed

shapes than sketch-based modelling. However, they create less realistic models, are

difficult to learn and use, and require a lot of time and manual operations.

Physics-based modelling approaches [35] such as the finite element method [26]

and mass-spring systems [20] consider underlying physics and can create more realistic

shapes of 3D models. However, they involve heavy numerical calculations. Ordinary

differential equation (ODE) based modelling [47] is physics-based and has a potential

to create more realistic shapes. It avoids heavy calculations of existing physics-based

modelling approaches.

In comparison with geometric modelling and physics-based modelling, sketch-based

modelling [37] is more efficient, straightforward and involves much fewer manual op-

erations. Sketch-based modelling method is a way that enables the user to construct

3D models using a sketch interface. It can be divided into template-based one, di-

rect creation, and primitive-based generation. The biggest problem with sketch-based

modelling is its incapability in creating detailed character models.

As discussed above, all state-of-the-art existing methods have their advantages and

disadvantages. Sketch-based modelling can significantly reduce manual operations in

geometric modelling, ODE-based modelling can avoid heavy numerical calculations in

physics-based modelling and tackle the incapacity of sketch-based modelling in creating

detailed 3D models. Based on these considerations, this paper will combine ODE with

sketch-based modelling to develop efficient shape generators, and use them to create

local shapes from user’s drawn sketches for adding 3D details to coarse base models

obtained from the primitive deformer proposed in [30,31]

With this method, we use primitives to quickly obtain initial 3D meshes. Then, we

use the primitive deformer [30, 31] to deform these primitives to the required shapes

by fitting their silhouette contours to 2D sketches. Next, these deformed primitives are

smoothly connected together to create a coarse base model. Finally, shape generators

proposed in this paper are used to add 3D details to the coarse base model.



Character Modelling with Sketches and ODE-Based Shape Creation 3

By integrating sketch-based modelling, primitive deformer, and shape generators,

the proposed approach provides a simple, easy to learn and use, and efficient modelling

solution to quickly create detailed and realistic 3D models from sketches and primitives.

The contributions made in this paper are:

1) We combine ODE-driven shape deformations with sketch-based modelling to

create detailed character models easily and quickly from sketches.

2) We develop three different shape generators to add 3D details to coarse models.

Our proposed sketch-guided and ODE-driven shape generators can create a new local

shape to match user’s drawn sketches in different views.

3) We implement a modelling system from our previously developed primitive de-

former and the shape generators developed in this paper. With our developed system,

detailed character models can be created interactively in real time.

The rest of the paper is organized as follows. The related work is reviewed in

Section 2. An overview of the proposed approach is presented in Section 3. For the sake

of completeness, our previously developed primitive deformer is briefly introduced in

Section 4, the shape generators are investigated in Section 5, and the experiments and

comparisons are given in Section 6. Finally, conclusions and future work are presented

in Section 7.

2. Related work

Since this paper aims to integrate ODE and sketch-based modelling to develop

a new technique of quickly creating detailed character models from sketches, we briefly

review existing work in sketch-based modelling and ODE-based geometry processing

in this section.

2.1. Sketch-based modelling

Due to its simplicity, easiness, and few manual operations, sketch-based modelling

(SBM) has attracted the attention of many researchers, and various sketch-based mod-

elling approaches have been developed. Comprehensive surveys of these methods can

be found in [5, 12, 13, 16, 25, 37]. According to [25], sketch-based modelling systems

can be divided into single-view systems, multi-view systems, and curve network-based

systems.

2.1.1. Single-view systems

Single-view systems use 2D sketches from a single viewpoint to create 3D models.

According to whether template models and primitives are used, they can be classified

into template-based deformation, direct creation, and primitive-based generation.



4 O. Li et al.

Template-based deformation method is proposed in [27] to find precise corre-

spondences and deform 3D models to fit user’s drawn sketches. By combining skeleton-

based skinning with mesh editing, an efficient approach is presented in [24] to quickly

deform a 3D template model to fit the user’s drawn sketches. The template-based global

modelling investigated in [48] first deforms a template model to fit user’s drawn sil-

houette contour and then adds more sketches to change the template model into a new

model.

Besides template-based modelling, most of sketch-based modelling approaches cre-

ate new 3D models directly from 2D sketches. Among them, many modelling ap-

proaches such as Teddy [22] and its various extensions [34] follow a sketch-rotate-

sketch workflow, which requires users to sketch from a large number of different views.

Besides the limitation that only coarse shapes can be created, the following limitations

of these approaches have been documented in the literature [19]:

1) Users cannot match their input strokes to a guidance image due to view changes.

2) How to find a good view for a stroke is often difficult and time-consuming.

Direct creation method is investigated by most research activities [2,8,11,15,17,

19, 22, 23, 29, 34, 39, 43–45, 50] in comparison with template-based deformation and

primitive-based generation. According to [5], surfaces can be created from sketches by

extruding, inflating, and revolving strokes.

The method of extruding strokes uses one closed stroke and another silhouette

stroke depicting the silhouette of an extruded surface. The closed stroke is translated

along the silhouette stroke to create an extruded surface [22]. The method of inflating

strokes was investigated in [22, 23, 29, 34]. Igarashi et al. [22] developed a system to

interactively draw 2D strokes and inflate the 2D strokes to create rotund 3D models.

Nealen et al. [34] introduced smooth and sharp curves to enrich editing operations

for inflated models. Karpenko and Hughes [23] proposed a SmoothSketch system to

address the problem of T-junctions and cusps. Li et al. [29] investigated the method

of creating a freeform surface from sketched patch boundary and a small number of

strokes representing the major bending directions of the shape. The method of revolv-

ing strokes creates a surface by moving a stroke around an axis in a circular order [8].

Besides the methods of extruding, inflating, and revolving strokes, some other

methods have been developed. The interface for clothing virtual characters developed

in [44] identifies two types of contour lines: silhouettes that do not cross a charac-

ter body and borderlines that cross the body, converts the 2D sketches into 3D curves

through calculating the distance of the points on 2D sketches to the body, and creates

garment surfaces from converted 3D curves. The single-view sketch-based modelling

system developed in [2] sweeps one sketched construction line along another construc-

tion line to create a surface. The method proposed in [4] constructs a 3D character

model from a 2D cartoon drawing and a user’s provided 3D skeleton. And SecondSkin

proposed in [39] classifies 2D sketches into different 3D curve-types and constructs

layered 3D models around a character body from 3D curve-types.



Character Modelling with Sketches and ODE-Based Shape Creation 5

In recent years, machine learning has been introduced into sketch-based modelling.

Xiang et al. [45] proposed an end-to-end learning framework with a differentiable ren-

derer to construct 3D surfaces from sketches. Zhang et al. [50] presented a view-aware

architecture for 3D modelling from single free-hand sketches, which decomposes sketch

image features into a shape space and a view space, involves view-related information

in the view space by training a view encoder and a view decoder, and preserves shape

quality with a shape discriminator. Deng et al. [15] developed a sketch-based system

to draw surface boundary and contour lines and infer the underlying freeform roof-

like shape represented as a planar quadrilateral mesh in real-time with a deep neural

network.

Primitive-based generation methods use primitives and edit them to fit sketches.

In order to overcome the limitations caused by the sketch-rotate-sketch workflow, Gin-

gold et al. [19] proposed a new approach, which first places geometric primitives on

a 2D sketch and then applies some annotations to the geometric primitives to create

3D models. Since all manual operations are applied in a fixed view, this approach

also creates coarse models only. Shtof et al. [43] investigated a snapping approach to

determine the positions and core parameters of several geometric primitives. Chen et

al. [11] developed a tool to create a cylinder from three strokes. The 2D profile is de-

scribed by the first two strokes. The axis along which the 2D profile sweeps is defined

by the last stroke. The work is applicable to man-made objects only.

2.1.2. Multi-view systems

Multi-view systems are popularly applied in engineering design. They use a standard

3-view orthographic drawing to create a 3D model, which avoids the difficulty of find-

ing good views [33]. Besides their applications in engineering design, multi-view sys-

tems have also been used to create 3D man-made models with two or three silhouettes

from front, side, or top views [41] and organic models [28,48]. Levi and Gotsman [28]

developed an ArtiSketch system, which uses one silhouette contour sketch for each part

of the 3D models in one of animation frames, finds the correspondence between silhou-

ette contour sketches from different frames, and automatically converts the silhouette

contour sketches to articulated 3D models. You et al. [48] used three orthotropic silhou-

ettes of the whole model and its part models to create 3D character models. The main

limitation for 3-view orthographic drawing is its unsuitability in creating 3D organic

models where many polygon facets do not share common axes. In addition, multi-view

systems do not follow a coarse-to-fine workflow of organic modelling.

2.1.3. Curve network-based systems

Curve network-based systems allow designers to draw a network of 3D curves, and

create 3D models from the 3D curves. The system ILoveSketch [3] provides a virtual

sketchbook to support tearing, peeling, panning, zooming, and rotation interactions

and five different 3D curve sketching methods. The 3D curves drawn by ILoveSketch



6 O. Li et al.

are automatically converted into an acceptable, unambiguous patch representation of

3D models in [1]. JustDrawIt provides an interface consisting of 2D drawing, 3D curve

drawing, and 3D surfacing where 3D surfacing creates 3D models from sketches [21].

In order to construct 3D models from curve networks, a new algorithm of finding cycles

to bound surface patches is proposed in [51], a flow complex of capturing input topol-

ogy and geometry is employed in [42] to develop a new method, which interpolates the

input 3D curves to create intersection-free 3D triangular shapes, and a new approach of

surfacing 3D curve networks is developed in [38] by automatically aligning curvature

lines of reconstructed surface with network flow lines.

Multi-view systems require more manual operations than single-view systems to

draw sketches in three orthotropic views or a series of different views and additional

algorithms to find the correspondence among sketches. In contrast, single-view sys-

tems provide less shape information but have advantages of simplicity, ease-to-use,

and fewest manual operations. Among template-based deformation, direct creation,

and primitive-based generation, template-based deformation can create detailed 3D

models, but requires a good template model. In comparison with surface creation by

extruding, inflating, and revolving strokes, primitive-based generation is more straight-

forward and efficient in creating coarse 3D models. However, how to deform 3D primi-

tives and add 3D details to coarse models to obtain more detailed shapes is an unsolved

issue. This paper will address this issue.

2.2. ODE-based geometric processing

The solution to a vector-valued ordinary differential equation represents a 3D curve.

Sweeping the curve along one or two boundaries plus other constraints such as tangent

and curvature continuities leads to a 3D surface, which can be used to define 3D models

[47] or describe their shape changes [6]. Such a method of creating, manipulating, and

animating 3D models is called ODE-based geometry processing. Since ODEs, such as

the governing equation for bending of elastic beams, describe underlying physics, ODE-

based geometry processing is physics-based. In existing literature, various ODE-based

geometry processing methods have been developed.

A fourth-order ordinary differential equation was introduced in [47] to develop

an analytical solution, which is combined with C1 continuous boundary constraints to

develop C1 continuous sweeping surfaces. The work was extended to create C2 con-

tinuous sweeping surfaces by using C2 continuous boundary constraints to determine

the unknown constants involved in the analytical solution to a sixth-order ordinary dif-

ferential equation [7]. Here, C1 and C2 continuous boundary constraints mean the

first and second partial derivatives at the interface between two adjacent sweeping

surfaces are identical, respectively. In order to describe different types of deforma-

tions, a first-order ordinary differential equation was introduced to create axial tensile

and compressive deformations and a fourth-order ordinary differential equation was

used to create lateral bending deformations [49]. A dynamic fourth-order ordinary

differential equation was used to simulate dynamic skin deformations for character an-



Character Modelling with Sketches and ODE-Based Shape Creation 7

imation [10]. Recently, a fourth-order ordinary differential equation for beam bending

and a second-order ordinary differential equation representing Newton’s second law

of motion were combined together to reconstruct dynamic 3D models deformed with

position based dynamics [18].

As discussed above, ODE-based geometry processing has been well investigated

in the existing literature. Except for the work given in [30, 31] that integrates ODE-

based geometry processing and sketch-based modelling to create coarse base models,

all other ODE-based geometry processing methods do not involve sketch-based mod-

elling. Therefore, how to combine ODE-based geometry processing with sketch-based

modelling to create more detailed 3D models from primitives easily and efficiently has

not been investigated. This paper will tackle this problem.

3. Overview of proposed approach

The proposed approach consists of two main parts: ODE-driven primitive deformer

and shape generators. ODE-driven primitive deformer aligns primitives with the user’s

generated 2D silhouette contours to obtain an initial 3D mesh, deforms the primitives

to exactly match the contours, and blends the deformed primitives to create a coarse

base mesh, which has been investigated in [30, 31]. After that, shape generators add

new local shapes to the coarse base mesh to obtain a final detailed model using three

different algorithms from: 1) two open silhouette contours in two different view planes,

2) one open and one closed silhouette contour in two different view planes, and 3) two

open and one closed silhouette contours in three different view planes.

Taking the creation of a 3D female model as an example, the modelling process of

the proposed approach is shown in Fig. 1. First, the silhouette contours of the 2D female

Figure 1: Creation of a 3D female model using the proposed approach, (a) 2D sketches (silhouette contours),
(b) initial 3D mesh without primitive deformations, (c) deforming the primitives to match the generated 2D
silhouette contours, (d) coarse base mesh by adding blending surfaces to smoothly connect the deformed
primitives, (e) final detailed model through local shape creation with the developed shape generators.



8 O. Li et al.

model shown in Fig. 1(a) are generated by drawing silhouette contours directly or

inputting selected sketches. Then, an initial 3D mesh shown in Fig. 1(b) is obtained by

selecting proper primitives (ellipsoid for head, cylinders for neck, arms, torso, and legs,

and boxes for feet) and automatically placing them to align with the corresponding

silhouette contours through purely geometric transformations, i.e., translation, scale,

and rotation. Since the silhouette contours of the primitives do not match the generated

2D silhouette contours, the primitive deformer developed from sketch-guided and ODE-

driven deformations described in [30, 31] is used to deform the primitives to exactly

match the corresponding 2D silhouette contours as depicted in Fig. 1(c). After that,

these deformed primitives are smoothly connected with the aid of ODE-based surface

blending [46] to create a coarse 3D base mesh, as shown in Fig. 1(d).

Once a 3D base mesh model is obtained with the method proposed in [30,31], the

shape generators described in Section 5 are employed to add 3D details to the coarse

base mesh. These 3D details include the detailed face shape, armors such as chest vest,

barcer, leg guard, thin sheet armors, and hair whose creation will be explained below.

The final detailed 3D female model is shown in Fig. 1(e).

In order to create the female face model, users first draw sketches to define the

female face shown in Fig. 19(b). The creation of the 3D mouth model from the mouth

sketch in Fig. 19(b) is shown in Fig. 14. The creation of the eye socket from the sketch

in Fig. 19(b) is shown in Fig. 16(b). All other parts of the female face can be created

with the method of creating the surface defined by four curves C1,C6,C9, and C5

shown in Fig. 15. The male face model shown in Fig. 20(b) can be created with the

same methods.

The chest vest, the male and female barcers and leg guards, and the armors on the

male and female shoulder are created with the methods shown in Figs. 5, 17, and 12,

respectively. All other thin sheet armors are created with the method shown in Fig. 15.

Each of the hairs on the male and female head shown in Fig. 20 is represented with an

ODE-based curve.

4. Primitive deformer

As shown in Fig. 1(b), the placed primitives cannot match the generated 2D sil-

houette contours. To tackle this problem, a primitive deformer has been developed

in [30, 31]. For the sake of completeness, this section briefly introduces the primitive

deformer developed in [30,31].

After 3D primitives have been placed and aligned with the user’s generated 2D sil-

houette contours, these 3D primitives should be deformed so that their 2D silhouette

contours can match the generated 2D silhouette contours exactly. Here, we use the

example shown in Fig. 2 to demonstrate this. Fig. 2(a) depicts the torso part of the

female model shown in Fig. 1, which is represented by a cylinder. The blue 2D silhou-

ette contour to be matched is also shown in Fig. 2(a). Fig. 2(b) shows the cylinder

is deformed with the algorithm proposed below to match the generated 2D silhouette

contour exactly.



Character Modelling with Sketches and ODE-Based Shape Creation 9

Figure 2: Primitive deformer: (a) the female torso represented by a cylinder and the user’s generated 2D
silhouette contour in blue, (b) the deformed shape of the cylinder.

Physics-based modelling can create more realistic deformations than geometric

modelling. As discussed in [30, 31], the elastic energy considering local stretching

and bending of two-manifold surfaces [9] can be used to create physics-based defor-

mations. From the elastic energy, a fourth-order ordinary differential equation derived

in [30,31], which has the form below, is used to develop the primitive deformer

kb
d4X

du4
− ks

d2X

du2
= 0, (4.1)

where kb and ks are the stiffness parameters controlling the resistance to stretching and

bending, u is a parametric variable, and X is a vector-valued function used to describe

the deformation of a curve which has three components x, y and z.

The closed form solution to Eq. (4.1) is obtainable. Since the closed form solution

is a vector-valued function involving four vector-valued unknown constants only, it

cannot represent many user’s drawn sketches with an acceptable accuracy. In contrast,

numerical methods can represent user’s drawn sketches with user’s required accuracy

by increasing the number of discrete nodes. Due to this advantage of the numerical

methods over the closed form solution, this paper uses the finite difference method to

solve Eq. (4.1).

For a typical node i shown in Fig. 3 and using the central finite difference ap-

proximations of the second- and fourth-order derivatives in [10], the following finite

difference equation at a typical node i can be obtained as:
(

6kb − 2ks∆u2
)

Xi + kbXi−2 + kbXi+2

−
(

4kb + ks∆u2
)

Xi−1 −
(

4kb + ks∆u2
)

Xi+1 = 0, (4.2)

where ∆u is the parametric distance between two adjacent nodes, and Xi is the dis-

placement of the node i, which has three components xi, yi, and zi.

Figure 3: Typical node i for the finite difference approximations of derivatives.



10 O. Li et al.

As shown in Fig. 4, the silhouette contours of a 3D primitive are c1 and c2 and

the user’s drawn sketches are c′1 and c′2, which are defined by the points c1j, c2j , c
′

1j

and c′
2j , j = 1, 2, . . . , 6, respectively. The question is to deform the primitive with the

silhouette contours c1 and c2 into a shape with its silhouette contours coinciding with

the user’s drawn sketches c′1 and c′2. This can be achieved by deforming the cross-

section curve c passing through the points c1j and c2j into a new cross-section curve c

passing through the points c′1j , and c′2j and then obtaining the deformed primitive from

the new cross-section curves. In what follows, we take the cross-section curves passing

through the points c13 and c23 shown in Fig. 4(b) as an example to demonstrate this.

For the dotted curve shown in Fig. 4(b), its parametric domain is between 0 and 1.

We uniformly discretized this domain into 2N intervals and get ∆u = 1/(2N) and node

i, i = 0, 1, 2, . . . , 2N − 1, 2N, with X2N = X0.

With the above discretization, the finite difference equation for the inner nodes

i = 1, 2, . . . , N − 1, N + 1, . . . , 2N − 1 can be formulated with Eq. (4.2). In order to

solve these finite difference equations, the boundary conditions at the finite difference

nodes 0 and N must be applied. These boundary conditions can be obtained below.

From the four points c′13, c
′

23, c13 and c23 on the two user’s generated silhouettes

c′1 and c′2 and the two silhouettes c1 and c2 of a primitive shown in Fig. 5(a), we can

obtain X0 = c′13 − c13 and XN = c′23 − c23 as shown in Fig. 4(b).

When we write the finite difference equations for the nodes 1, 2, 2N −2 and 2N−1,

the node 0 will be involved. Since we have the boundary condition X0 = c′13 − c13, the

Figure 4: Silhouettes c1 and c2 of the primitive, sketched silhouettes c′1 and c
′

2, and finite difference nodes
0, 1, 2, . . . , 2N − 2, 2N − 1.



Character Modelling with Sketches and ODE-Based Shape Creation 11

finite difference equations at these points can be derived from Eq. (4.2). Substituting

the boundary condition X0 = c′13−c13 into these equations, we obtain the finite differ-

ence equations for the nodes 1, 2, 2N − 2 and 2N − 1, and present them in Appendix A.

When we write the finite difference equations for the nodes N − 2, N − 1, N + 1
and N + 2, the node N will be involved. Since we have XN = c′23 − c23. Similarly, the

finite difference equations at these points can be derived from Eq. (4.2). Substituting

XN = c′23 − c23 into these equations, we obtain the finite difference equations for the

nodes N − 2, N − 1, N + 1 and N + 2, and present them in Appendix A as well.

For all other nodes i = 3, 4, 5, . . . , N − 3, and N + 3, N + 4, . . . , 2N − 3, the finite

difference equations are the same as Eq. (4.2). For these nodes, there are 2N − 10
finite difference equations. Plus the 8 finite difference equations at node 1, 2, 2N − 2
and 2N−1, N−2, N−1, N+1 and N+2 presented in Appendix A, we get 2N−2 linear

algebra equations, which can be solved to determine the 2N − 2 unknown constants

X1,X2, . . . ,XN−1,XN+1,XN+2,XN+3, . . . ,X2N−2, and X2N−1. Adding the Xi, i =
1, 2, 3, . . . , 2N−1, to the original curve c, we obtain the deformed curve c, and depict it

as a solid curve in Fig. 4(b). Repeating the above operations for all other points on the

two silhouette contours, we obtain all deformed curves. These curves describe a new

3D deformed shape.

With the above primitive deformer, we deform the primitives of the 3D base mesh

shown in Fig. 1(b) to obtain the deformed primitives shown in Fig. 1(c). It can be seen

from Fig. 1(c) that the deformed primitives match the generated 2D silhouette contours

exactly. Besides using the developed primitive deformer to deform primitives to match

user’s generated sketches, it can be used to modify cross-section shapes from generated

cross-section contours. With this method, the influence range of a cross-section contour

is first specified to generate two boundary curves. The cross-section contour and the

two boundary curves are parameterized to find the corresponding points. If only the

position continuity is required, the three corresponding points: two are on each of the

two boundary curves and the third is on the cross-section contour, are taken to be the

nodes of the finite difference calculations and introduced into Eq. (4.2) to reduce three

unknown constants. If both position and tangent continuities are required, the first

partial derivatives at the boundary curves are obtained from the original model and

introduced into Eq. (4.2) to reduce two more unknown constants.

Taking the vest created in Section 5.3 and shown in Fig. 5(a) as an example, one

original cross-section curve of the vest is an ellipse highlighted in blue in Fig. 5(b),

and the real cross-section curve of the vest on a female body should be the red one

shown in the same figure. The real cross-section curve in red and the two boundary

curves highlighted in blue are depicted in Fig. 5(c). The cross-section shape within the

boundary curves is modified and shown in Fig. 5(d). It can be observed that a more

realistic shape is created.

The disconnected primitives shown in Fig. 1(c) can be smoothly connected by using

the surface blending method proposed in [46] to generate a smooth transition surface

between two adjacent deformed primitives as detailed below.



12 O. Li et al.

For a smooth transition surface generation, boundary curves and boundary tan-

gents are first determined. Boundary curves can be obtained by interactively drawing

one curve on each of two disconnected primitives or using one plane to intersect each

of two disconnected primitives to obtain two boundary curves of the transition sur-

face. Boundary tangents can be obtained by calculating the first derivatives of the

disconnected primitives on the boundary curves in the direction perpendicular to the

boundary curves. With the two boundary curves and the tangents at the two boundary

curves as blending boundary constraints, the ODE-based surface blending method pro-

posed in [46] is used to create the smooth transition surface that smoothly connects

two primitives together. Fig. 6 gives such an example where the two disconnected

primitives shown in Fig. 6(a) are smoothly connected with a smooth transition surface

as shown in Fig. 6(b).

With the above surface blending method, the transition surfaces between the de-

formed primitives shown in Fig. 1(c) are created. A smooth coarse 3D base mesh is

obtained in Fig. 1(d).

Figure 5: Cross-section shape modifications by cross-section contours: (a) vest, (b) the origin cross-section
contour (in blue) and a modified cross-section contour (in red), (c) the modified cross-section is in place,
(d) 3D shape after cross-section contour modifications.

Figure 6: Creation of the smooth transition surface between primitives where (a) shows disconnected prim-
itives and (b) shows transition surface.



Character Modelling with Sketches and ODE-Based Shape Creation 13

5. Shape generators

The base mesh generated from the deformed primitives only represents a coarse

3D model. Therefore, we need to add 3D details to the coarse base model to generate

a fine detailed 3D model. When using polygon modelling method to manipulate 3D

models, the vertices in deformation regions are pulled or pushed to create local shapes.

Such local shapes can be also created by drawing their silhouette contour sketches and

generating 3D local shapes from the drawn sketches. In this section, we will develop

ODE-driven shape generators to create such local shapes from the user’s drawn silhou-

ette contour sketches. These sketches can be divided into the following three types:

(1) two open sketches, (2) one open and one closed sketch, and (3) two open and one

closed sketches. Among the three types of sketches, the third one provides the most

complete silhouette contour information but requires more manual operations to draw

the two open sketches and the closed sketch. When the shape of a local 3D model can

be defined by two open silhouette contours, the third type is degenerated to the first

type to reduce manual operations in drawing the closed sketch. When the shape of

a local 3D model can be defined by an open sketch and a closed sketch, the third type

is degenerated to the second type to reduce the manual operations in drawing one of

the two open sketches. In the following subsections, we will describe the algorithms to

create 3D shapes from the three different types of sketches.

5.1. Two open silhouette contours in two different view planes

For creation of a local 3D shape from two open silhouette contours in two different

view planes, we use the intersecting point p to segment each of the two sketched 2D

silhouette contours obtained from the front view and the side view into two curves

and denote all the four segmented curves with c1, c2, c3 and c4, which are defined

by the points c1j , c2j , c3j and c4j , j = 1, 2, 3, . . . , J , respectively. Then we find the

four corresponding points from the four curves, and denote them with c1j , c2j , c3j and

c4j, j = 1, 2, 3, . . . , J , respectively as shown in Fig. 8(a). Since the four points are

on the two sketched 2D silhouette contours in the front view and the side view, their

coordinate values are known.

The 3D model to be created from the two sketched 2D silhouette contours can

be regarded as a sweeping surfaces whose generator is a closed curve c(u) shown in

Fig. 7(b) passing through the four corresponding points c1j, c2j , c3j and c4j as shown

in Figs. 7(a) and 7(b). We uniformly divide the domain of the parametric variable u
corresponding to the closed curve (generator) c(u) into 2N equal intervals and obtain

∆u = 1/(2N) and nodes i = 0, 1, 2, . . . , 2N − 1, 2N with X2N = X0. The nodes corre-

sponding to c1j, c2j , c3j and c4j are 0, N/2, N and 3N/2 respectively as demonstrated

in Fig. 7(b). Here, the selection of N should ensure that N is an even number and

N ≥ 4.

For the problem shown in Fig. 7(b), the finite difference equation for the inner

nodes i = 1, 2, . . . , N − 1, N + 1, . . . , 2N − 1 can be formulated with Eq. (4.2). In



14 O. Li et al.

Figure 7: The finite difference nodes used in the algorithm in the case of two open silhouette contours in
two different view planes.

order to solve these finite difference equations, the boundary conditions at the finite

difference nodes 0, N/2, N, and 3N/2 must be applied. These boundary conditions are:

X0 = c1j,XN/2 = c2j,XN = c3j , and X3N/2 = c4j.

Among the inner nodes, the finite difference equations for the nodes 3, 4, . . .,
N/2 − 4, N/2 − 3; N/2 + 3, N/2 + 4, . . . , N − 4, N − 3; N + 3, N + 4, . . . , 3N/2 − 4,

3N/2 − 3; 3N/2 + 3, 3N/2 + 4, . . . , 2N − 4, and 2N − 3 are the same as Eq. (4.2).

The finite difference equations for the nodes 1, 2, N/2−2, N/2−1, N/2+1, N/2+2,

N−2, N−1, N+1, N+2, 3N/2−2, 3N/2−1, 3N/2+1, 3N/2+2, 2N −2, and 2N−1 can

be obtained by introducing the corresponding one of c1j , c2j , c3j and c4j into Eq. (4.2)

to replace X1,XN/2,XN and X3N/2 accordingly. The finite difference equations for

these nodes are given in Appendix B.

Putting all obtained finite difference equations together, we obtain all the unknown

constants X1,X2, . . . ,XN/2−2,XN/2−1; XN/2+1, XN/2+2, . . . , XN−2, XN−1; XN+1,

XN+2, . . . ,X3N/2−2,X3N/2−1; X3N/2+1,X3N/2+2, . . . ,X2N−2, and X2N−1. They to-

gether with the known four points c1j, c2j , c3j and c4j are used to define the generator.

Repeating the above treatment for all other points on the four curves c1, c2, c3 and

c4, we obtain the generators at the other positions. With these generators, we create

local 3D shapes. Fig. 8 shows an example of using the shape generator to create a head

model.

Figure 8: The Shape creation with the first shape generator: (a) 2D silhouette contours of a male head in
the front view, (b) 2D silhouette contours of the male head in the side view, (c) the cross sections of the
male head, (d) lofting the cross-sections into the male head mesh.



Character Modelling with Sketches and ODE-Based Shape Creation 15

Figure 9: Generation of a leg shape from two open silhouette contours in two different view planes:
(a) contours in the side view, (b) contours in the front view, (c) leg mesh by using our method in the
perspective view, (d) leg mesh in the point view, (e) leg mesh in the side view, (f) leg mesh in the front
view.

Figure 10: Generation of a neck shape from two open silhouette contours in two different view planes:
(a) contours of a neck, (b) cross sections of a neck generated by our method.

The above method can be directly extended to deal with local shape creation from

four disconnected silhouette contours. The silhouette contours of a leg model in the

front and side views are shown in Figs. 9(a) and 9(b), respectively. The corresponding

four points on the four silhouette contours are used to define a cross section curve. All

these cross-section curves are used to generate a 3D leg model shown in Figs. 9(c) and

9(d) with the front and side views in Figs. 9(e) and 9(f), respectively.

Another example is to create a neck shape shown in Fig. 10. Fig. 10(a) shows the

four disconnected contours, Fig. 10(b) shows the cross-sections.

5.2. One open and one closed silhouette contours in two different view
planess

For creation of a local 3D shape from one open and one closed silhouette contours

in two different view planes shown in Fig. 11, the intersecting points p1 and p3 be-

tween the open silhouette contour and the closed silhouette contour divide the closed



16 O. Li et al.

Figure 11: Finite difference nodes for one open and one closed silhouette contour in two different view
planes.

silhouette contour into two curves. Then we find the middle points p2 and p4 of the

two curves. These four points p1,p2,p3 and p4 divide the closed silhouette contour into

four curves c1, c3, c4 and c6. Next, we find the middle point p of the open silhouette

contour which divides the open silhouette contour into two curves c2 and c5. With this

treatment, the creation of the local 3D detail model is changed into creation of two

sweeping surfaces: one is defined by the three curves c1, c2 and c3, and the other is

defined by the three curves c4, c5 and c6.

Since the creation process of the two sweeping surfaces is the same, we take the

creation of the sweeping surface defined by the three curves c1, c2 and c3 to demon-

strate the process. For each of the three curves c1, c2 and c3, we uniformly divide it into

2N equal intervals, and use c1j , c2j and c3j, j = 1, 2, 3, . . . , J , to respectively indicate

the nodes on the three curves.

The sweeping surface can be generated by sweeping a generator c(u) passing thro-

ugh the points c1j , c2j , and c3j . Based on this consideration, the creation of the sweep-

ing surface is transformed into the determination of the generator at different positions

along the curve.

To create the generator c(u) passing the points c1j, c2j , and c3j, we uniformly divide

the domain of the parametric variable u corresponding to the generator c(u) into 2N
equal intervals, and obtain ∆u = 1/(2N) and the nodes 1, 2, . . . , 2N−1, 2N and 2N+1.

The finite difference equation for the inner nodes i = 2, 3, . . . , N − 1, N , N +2, . . . , 2N
can be formulated with Eq. (4.2). In order to solve these finite difference equations, the

boundary conditions (i.e. the values) at the finite difference nodes 0, 1, N + 1, 2N + 1
and 2N + 2 must be applied. These boundary conditions can be obtained below.

Since the nodes 1, N + 1 and 2N + 1 are on the curves c1, c2, and c3, respectively,

their values are known, i.e., X1 = c1j ,XN+1 = c2j and X2N+1 = c3j . When writing

the difference equations for the node 2 and the node 2N , the node 0 beyond the bound-

ary node 1 and the node 2N + 2 beyond the boundary node 2N + 1 will be involved.

Their value can be determined with the following method.



Character Modelling with Sketches and ODE-Based Shape Creation 17

If the created local 3D shape is to be smoothly connected to another 3D shape with

positional and tangential continuities, the vector-valued first derivative T1j at the node

1 and T3j at the node 2N +1 can be obtained from another 3D shape. Then, the nodes

0 and 2N + 2 can be determined by the following finite difference approximation:

T1j =
X2 −X0

2∆u
, T3j =

X2N+2 −X2N

2∆u
. (5.1)

Solving the above equation, we obtain the nodes 0 and 2N + 2 by

X0 = X2 − 2T1j∆u, X2N+2 = X2N + 2T3j∆u. (5.2)

Writing the finite difference equations for all the nodes from 2 to 2N , we obtain

2N − 1 linear equations. Among them, the finite difference equations for the nodes

4, 5, . . . , N−3, N−2 and N+4, N+5, . . . , 2N−3, 2N−2 are the same as Eq. (4.2), and

the finite difference equation involves X0 and X1 at the node 2, X0 at node 3, XN+1

at the nodes N−1, N,N +2, N +3, X2N+1 at the node 2N−1, and X2N+1 and X2N+2

at the node 2N , which are determined by considering the five boundary conditions

X0 = X2−2T1j∆u, X1 = c1j , XN+1 = c2j , X2N+1 = c3j and X2N+2 = X2N+2T3j∆u.

The obtained finite difference equations for the nodes 2, 3, N−1, N,N+2, N+3, 2N−1
and 2N are given in Appendix C.

Solving the finite difference equations for all the inner nodes 2, 3, . . . , N − 1, N ,

N + 2, N + 3, . . . , 2N − 1 and 2N , we obtain all the unknown constants X2,X3, . . . ,
XN−1,XN ,XN+2,XN+3, . . . ,X2N−1, and X2N . They together with the three known

points c1j , c2j , and c3j are used to create the generator.

Using the same treatment, we can obtain the generator at the other positions. From

these obtained generators, a detail 3D shape can be created. Fig. 12 gives a buttock

shape created with the above method.

Figure 12: The shape creation from one open and one closed silhouette contours in two different view planes.

HP
Sticky Note
Please provide a new image where all captions start with a small letter.

HP
Highlight

HP
Highlight



18 O. Li et al.

5.3. Two open and one closed silhouette contours in three different view
planes

As shown in Fig. 13, the task of creating a local 3D shape passing through two

open and one closed silhouette contours can be transformed into creating 4 sweeping

surfaces encircled by the curves c1c6c5, c2c7c6, c3c8c7, and c4c5c8, respectively.

Since the creation algorithm for the four sweeping surfaces is the same, without the

loss of generality, we take the sweeping surface encircled by the three curves c1, c6 and

c5 as an example to demonstrate the creation algorithm.

The sweeping surface can be regarded as sweeping the curve c5 to the curve c6
along the curve c1 and the point p. In order to obtain the generator of the sweeping

surface, we uniformly divide the curve c1 into J − 1 equal intervals and obtain the

nodes j = 1, 2, 3, . . . , J − 2, J − 1, J , where j = 1 and j = J are the intersecting points

between the curve c5 and c1 and between c6 and c1. The two ends of the generator

j are at the point j and the point p, respectively. We uniformly divide the domain

of the parametric variable u of the generator j between the point j and the point p

into 2N equal intervals, and obtain ∆u = 1/(2N) and the nodes 1, 2, . . . , 2N , and

2N + 1. Then, we use Xj,i, j = 1, 2, 3, . . . , J − 2, J − 1, J, i = 1, 2, . . . , 2N, 2N + 1, to

indicate the vector-valued coordinate of the node i on the generator j. When j = 1,

X1,i, i = 1, 2, . . . , 2N, 2N + 1, indicate the vector-valued coordinates of the nodes on

the curve c5. When j = J , XJ,i, i = 1, 2, . . . , 2N, 2N + 1, indicate the vector-valued

coordinates of the nodes on the curve c6.

In order to create the sweeping surface encircled by the three curves c1, c6 and

c5, we require the additional information called sculpting forces acting at all the inner

notes. To this aim, we modify the vector-valued ordinary differential equation (4.2) by

introducing a sculpting force f and obtain

kb
d4X

du4
− ks

d2X

du2
= f , (5.3)

f is a vector-valued force, which has three components fx, fy, and fz.

Figure 13: Creation of a 3D local shape from two open and one closed silhouette contours.



Character Modelling with Sketches and ODE-Based Shape Creation 19

Accordingly, the finite difference equation at the typical node i of the generator j
for the above ordinary differential equation is

(6kb − 2ks∆u2)Xj,i + kbXj,i−2 + kbXj,i+2 − (4kb + ks∆u2)Xj,i−1

− (4kb + ks∆u2)Xj,i+1 = ∆u4fj,i. (5.4)

For the example shown in Fig. 13, the finite difference equation for the inner nodes

i = 2, 3, . . . , 2N − 1, 2N can be formulated with Eq. (4.2). In order to solve these finite

difference equations, the boundary conditions (i.e. the values) at the finite difference

nodes 0, 1, 2N +1, and 2N+2 must be applied and the forces fj,i must be known. They

can be obtained below.

When using Eq. (5.4) to write the finite difference equation at the inner nodes i = 2
and i = 2N , the boundary nodes 1 and 2N + 1 and the node 0 beyond the boundary

node 1 and the node 2N + 2 beyond the boundary node 2N + 1 are involved. When

using Eq. (5.4) to write the finite difference equation at the inner nodes i = 3 and

i = 2N − 1, the boundary nodes 1 and 2N + 1 are involved. Therefore, we first discuss

how to determine the boundary conditions (i.e., the values Xj,0,Xj,1,Xj,2N+1 and

Xj,2N+2) at the node 0, 1, 2N + 1, and 2N + 2.

Since the curve c1 and the point p are known, we obtain Xj,1 = c1,j and Xj,2N+1 =
c5,2N+1. Since the curves c5 and c6 are known, we can calculate the vector-valued first

derivatives of the curves c5(u) and c6(u) at the node 1 and 2N + 1, and indicate them

with T1,1, T1,2N+1, TJ,1, and TJ,2N+1. Using the central finite difference approximation

and Fig. 13, we have

T1,1 =
X1,2 −X1,0

2∆u
, T1,2N+1 =

X1,2N+2 −X1,2N

2∆u
,

TJ,1 =
XJ,2 −XJ,0

2∆u
, TJ,2N+1 =

XJ,2N+2 −XJ,2N

2∆u
.

When sweeping the curve c5 along the curve c1 and the point p to the curve c6, the

vector-valued first derivatives T1,1 and T1,2N+1 gradually change to TJ,1 and TJ,2N+1.

Here we use a linear interpolation to describe the gradual change and obtain the vector-

valued first derivatives Tj,1 and Tj,2N+1, j = 2, 3, . . . , J − 2, J − 1, with the following

equations:

Tj,1 = T1,1 +
Lj

L
(TJ,1 − T1,1),

Tj,2N+1 = T1,2N+1 +
Lj

L
(TJ,2N+1 − T1,2N+1),

(5.5)

where Lj is the arc length from the point p1 to the node j on the curve c1 and L is the

arc length from the point p1 to the point p2. Since

Tj,1 =
Xj,2 −Xj,0

2∆u
, Tj,2N+1 =

Xj,2N+2 −Xj,2N

2∆u
,

we obtain

Xj,0 = Xj,2 − 2Tj,1∆u, Xj,2N+2 = Xj,2N + 2Tj,2N+1∆u. (5.6)



20 O. Li et al.

In order to obtain Xj,i, j = 2, 3, . . . , J − 2, J − 1, i = 2, 3, . . . , 2N − 1, 2N from

Eq. (5.4), we need to determine fj,i. For each of the inner nodes 2, 3, . . . , 2N−1, 2N , we

can write a finite difference equation. Since the coordinate values for all the nodes on

the curve c5 are known, we can calculate the sculpting force fi, i = 2, 3, . . . , 2N−1, 2N
from the finite difference equation (5.4). We denote these sculpting forces acting at the

nodes of the curve c5 as f1,i = fi, i = 2, 3, . . . , 2N − 1, 2N . With the same method, we

can obtain the sculpting forces fJ,i, i = 2, 3, . . . , 2N − 1, 2N , acting at the nodes of the

curve c6.

When sweeping the curve c5 along the curve c1 to the curve c6, the sculpting force

f1,i acting at the node i of the curve c5 is gradually changed to the sculpting force

fJ,i acting at the node i of the curve c6. Same as above, we use a linear interpolation

to describe the gradual change and obtain the sculpting force fj,i below acting at the

inner node i of the generator j

fj,i = f1,i+
Lj

L
(fJ,i−f1,i), j = 2, 3, . . . , J−2, J−1, i = 2, 3, . . . , 2N−1, 2N. (5.7)

Having known the sculpting forces fj,i, j = 2, 3, . . . , J−2, J−1, i = 2, 3, . . . , 2N − 1,

2N , boundary nodes Xj,1 and Xj,2N+1, and the nodes Xj,0 and Xj,2N+2 beyond the

boundary nodes Xj,1 and Xj,2N+1, we can write the finite difference equations for all

the inner nodes on the generator j. The finite difference equations at the inner nodes

(j = 2, 3, . . ., J − 2, J − 1, i = 4, 5, . . . , 2N − 3, 2N − 2) are the same as Eq. (5.4). The

finite difference equations at the inner nodes 2, 3, 2N − 1 and 2N on the generator j
are given in Appendix D.

Solving all the finite difference equations, we obtain all the unknown constants

Xj,2,Xj,3, . . . ,Xj,2N−1, and Xj,2N . They together with the two known points Xj,1 and

Xj,2N+1 are used to create the generator j of the sweeping surface.

With the above method, we draw a closed lip contour and two open curves, as

shown in Figs. 14(a) and 14(b). The two open curves divide the mouth into four

regions. One surface is created for each of the four regions. Fig. 14(c) depicts the

mouth shape, which consists of the four surfaces.

The above method can also be extended to deal with the situations where the two

open curves do not intersect. For such situations, the intersecting point of the two open

curves becomes the upper closed curve as indicated in Fig. 15, and a sweeping surface

Figure 14: A mouth shape creation from two open and one closed silhouette contours in three different view
planes.



Character Modelling with Sketches and ODE-Based Shape Creation 21

Figure 15: Finite difference nodes for four open and two closed silhouette contours.

Figure 16: Vest and eye socket creation from four open and two closed silhouette contours.

Figure 17: Creation of a thin sheet on the left forearm.

is encircled by four curves. With this extension, we can create a 3D vest model and an

eye socket model, as shown in Figs. 16(a) and 16(b), respectively.

The extended algorithm is not only applicable to top and bottom closed curves,

but also top and bottom open curves. Fig. 17 gives such an example where the three

curves in red are open as shown in Fig. 17(a). The generated 3D model is depicted in

Fig. 17(b).



22 O. Li et al.

6. Experiments and comparisons

In this section, we present two experiments to validate that the proposed approach

can create more realistic shapes and use the creation of a 3D facial model to demon-

strate that the proposed approach can create detailed 3D models more efficiently.

The first experiment is to deform a plastic ruler and compare its ground-truth de-

formations with those determined by our ODE-driven deformation approach. As shown

in Fig. 18(a), the plastic ruler is fixed at one end and its other end is tied with a heavy

weight, like a cantilever beam. The ruler is bent towards the ground by 7.2 cm at its free

end with a force equal to the gravity of the heavy weight acting on it. The setup of our

ODE-driven deformations is: the displacement differences y0 = 0 and yN+1 = 7.2 cm,

the rotation of the fixed end dy0/du = 0, and the third derivative of displacement at

the free end is proportional to the force applied to it d3yN+1/du
3 = fy/kb. The ruler

material is PP plastics. We use its bend modulus to determine the bending stiffness

kb = 5 GPa = 0.5 N/cm2. The red curve in Fig. 18(a) shows the simulation result,

which is very close to the ground-truth (the grey curve).

In the second experiment shown in Fig. 18(b), two identical objects simply support

a ruler at its two ends, and a load is put at the midpoint of the ruler. Since we do not fix

the two ends of the ruler, no bending moment M results in zero curvature at the two

ends d2y0/du
2 = d2y2N/du2 = M/EI = 0/EI = 0. Together with the displacement

y0 = y2N = 0 at the two ends and yN = 1.06 cm at the midpoint, the simulation result

by our ODE-driven deformation technique is shown as the red curve in Fig. 18(b),

which is also very close to the ground-truth (the grey curve). These two experiments

indicate that the OED-driven deformations produce realistic appearances.

Next we use 3D face creation as a specific application to demonstrate that the pro-

posed approach can efficiently add 3D details to create detailed 3D models. With our

sketch-based and ODE-driven shape modelling approach, a curve network shown in

Figure 18: Deformation comparison: (a) deform a plastic ruler by fixing one end of the ruler and putting
a heavy weight on the other free end of the ruler, (b) deform a plastic ruler by placing a load at the midpoint
of a plastic ruler, with the two ends of the ruler simply supported by two identical objects. Red curves are
the simulated results and the grey curves are the ground-truths.



Character Modelling with Sketches and ODE-Based Shape Creation 23

Fig. 19(b), which defines the female face, is first generated. Then, the curve network

is decomposed into different groups of sketches and our ODE-driven deformations are

used to automatically create surface patches from different groups of sketches. All the

created surface patches are naturally and smoothly connected to generate the detailed

facial model shown in Fig. 19(c). Compared to the approach of manipulating primitives

in one view plane proposed in [19], our approach adds 3D details to eyes, nose, mouth,

etc. and creates more detailed 3D shapes. With Maya polygon modelling, we take about

40 hours as a less experienced person to create the facial model in Fig. 19(a). The total

time of obtaining the detailed facial model in Fig. 19(c) including generating the facial

curve network in Fig. 19(b) is about 5 hours. Clearly, our proposed sketch-based and

ODE-driven shape generator is more efficient in creating detailed facial models than

the polygon modelling.

The computer language used to implement our proposed approach is Python script-

ing language. It was used to get information from and control Houdini via the Houdini

FX Education Edition 16.5.323 package. The implemented approach ran on a dual boot

Linux PC with 23 GB memory and 64 bits Intel(R) Xeon(R) CPU E5-1650 0 @ 3.20 GHz
CPU. The average time for deforming a primitive is 0.17 seconds and the average time

for detail generation is 0.09 seconds, which ensures a smooth real-time modelling user

experience. The average time is the total time divided by the times of using the primi-

tive deformer and shape generators to obtain shape changes.

After using our developed shape generators to add 3D details to the base model, we

can obtain a detailed model shown in Fig. 20(a). We also use the approach developed in

this paper to create another detailed character model shown in Fig. 20(b). Comparing

the 3D models obtained in Fig. 21 with the 3D models obtained in [19], it is clear that

our proposed approach creates more detailed models than the existing approach.

Figure 19: Comparison of creating 3D facial details with the polygon modelling and sketch-based and
ODE-driven shape generators: (a) traditional polygon modelling result, (b) generated contours for face
reconstruction, (c) result of our sketch-based modelling.



24 O. Li et al.

Figure 20: 3D character models created using our approach.

7. Conclusions and future work

A new modelling method has been presented in this paper to quickly create detailed

character models from sketches. By proposing an efficient finite difference solution

to a fourth-order ordinary differential equation, we have developed an ODE-driven

primitive deformer, which deforms primitives to fit 2D sketches exactly and ODE-driven

shape generators in creating new 3D local shapes from the user’s drawn sketches. We

have also demonstrated the efficiency of our approach to create detailed 3D models

with physical realism.

Compared to existing sketch-based modelling approaches, our approach is physics-

based and able to create physically realistic and detailed 3D models from 2D sketches

efficiently. It is particularly powerful in deforming and manipulating primitives to ob-

tain more detailed shapes. Compared to the traditional polygon modelling technology,

the approach developed in this paper has the advantages of: 1) easier for beginners to

create detailed character models, 2) greatly reducing manual operations, and 3) more

efficient in modelling character models.

Our current approach has several limitations. First, the input stroke coordinates of

sketches may have certain ambiguities, since in essence they are 2D sketches instead of

3D sketches. Although our approach could create 3D shapes from 2D sketches in two or

three different views, including generating various 3D details, having the capability to

directly handle 3D sketches can make this approach more robust. Second, our current

approach does not support suggestive contours [14], which makes the face creation



Character Modelling with Sketches and ODE-Based Shape Creation 25

more complicated compared to other details such as shoulder, armors, etc., as the user

has to provide more strokes to assist the generation of face parts. We plan to address

these limitations in our future work.

Although the modelling examples presented in this paper are character models in-

cluding human part models, our approach is potentially applicable to other organic

models and man-made models. In the future, we will extend its applications to geo-

metric modelling of various organic and man-made models.

Appendix A. Finite difference equations at the unknown nodes adjacent
to the known nodes 0 and N

The finite difference equations at the unknown nodes 1, 2, N−2, N−1, N+1, N+2,

2N − 2 and 2N − 1 can be formulated below.

At node 1,

(6kb − 2ks∆u2)X1 + kbX2N−1 + kbX3

− (4kb + ks∆u2)X2 = (4kb + ks∆u2)(C ′

13 −C13). (A1)

At node 2,

(6kb − 2ks∆u2)X2 + kbX4 − (4kb + ks∆u2)X1

− (4kb + ks∆u2)X3 = −kb(C
′

13 −C13). (A2)

At node N − 2,

(6kb − 2ks∆u2)XN−2 + kbXN−4 − (4kb + ks∆u2)XN−3

− (4kb + ks∆u2)XN−1 = −kb(C
′

23 −C23). (A3)

At node N − 1,

(6kb − 2ks∆u2)XN−1 + kbXN−2 + kbXN+1

− (4kb + ks∆u2)XN−2 = (4kb + ks∆u2)(C ′

23 −C23). (A4)

At node N + 1,

(6kb − 2ks∆u2)XN+1 + kbXN−1 + kbXN+3

− (4kb + ks∆u2)XN+2 = (4kb + ks∆u2)(C ′

23 −C23). (A5)

At node N + 2,

(6kb − 2ks∆u2)XN+2 + kbXN+4 − (4kb + ks∆u2)XN+1

− (4kb + ks∆u2)XN+3 = −kb(C
′

23 −C23). (A6)



26 O. Li et al.

At node 2N − 2,

(6kb − 2ks∆u2)X2N−2 + kbX2N−4 − (4kb + ks∆u2)X2N−3

− (4kb + ks∆u2)X2N−1 = −kb(C
′

13 −C13). (A7)

At node 2N − 1,

(6kb − 2ks∆u2)X2N−1 + kbX2N−3 + kbX1

− (4kb + ks∆u2)X2N−2 = (4kb + ks∆u2)(C ′

13 −C13). (A8)

Appendix B. Finite difference equations at the unknown nodes adjacent
to the known nodes 0, N/2, N , and 3N/2

The finite difference equations at the unknown nodes 1, 2, N/2−2, N/2−1, N/2+1,

N/2 + 2, N − 2, N − 1, N + 1, N + 2, 3N/2 − 2, 3N/2 − 1, 3N/2 + 1, 3N/2 + 2, 2N − 2,

and 2N − 1 can be formulated below.

At node 1,

(6kb − 2ks∆u2)X1 + kbX2N−1 + kbX3

− (4kb + ks∆u2)X2 = (4kb + ks∆u2)C1j . (B1)

At node 2,

(6kb − 2ks∆u2)2 + kbX4 − (4kb + ks∆u2)X1

− (4kb + ks∆u2)X3 = −kbC1j . (B2)

At node N/2− 2,

(6kb − 2ks∆u2)XN/2−2 + kbXN/2−4 − (4kb + ks∆u2)XN/2−3

− (4kb + ks∆u2)XN/2−1 = −kbC2j . (B3)

At node N/2− 1,

(6kb − 2ks∆u2)XN/2−1 + kbXN/2−3 + kbXN/2+1

− (4kb + ks∆u2)XN/2−2 = (4kb + ks∆u2)C2j . (B4)

At node N/2 + 1,

(6kb − 2ks∆u2)XN/2+1 + kbXN/2−1 + kbXN/2+3

− (4kb + ks∆u2)XN/2+2 = (4kb + ks∆u2)C2j . (B5)

At node N/2 + 2,

(6kb − 2ks∆u2)XN/2+2 + kbXN/2+4 − (4kb + ks∆u2)XN/2+1

− (4kb + ks∆u2)XN/2+3 = −kbC2j . (B6)



Character Modelling with Sketches and ODE-Based Shape Creation 27

At node N − 2,

(6kb − 2ks∆u2)XN−2 + kbXN−4 − (4kb + ks∆u2)XN−3

− (4kb + ks∆u2)XN−1 = −kbC3j . (B7)

At node N − 1,

(6kb − 2ks∆u2)XN−1 + kbXN−3 + kbXN+1

− (4kb + ks∆u2)XN−2 = (4kb + ks∆u2)C3j . (B8)

At node N + 1,

(6kb − 2ks∆u2)XN+1 + kbXN−1 + kbXN+3

− (4kb + ks∆u2)XN+2 = (4kb + ks∆u2)C3j . (B9)

At node N + 2,

(6kb − 2ks∆u2)XN+2 + kbXN+4 − (4kb + ks∆u2)XN+1

− (4kb + ks∆u2)XN+3 = −kbC3j . (B10)

At node 3N/2 − 2,

(6kb − 2ks∆u2)X3N/2−2 + kbX3N/2−4 − (4kb + ks∆u2)X3N/2−3

− (4kb + ks∆u2)X3N/2−1 = −kbC4j . (B11)

At node 3N/2 − 1,

(6kb − 2ks∆u2)X3N/2−1 + kbX3N/2−3 + kbX3N/2+1

− (4kb + ks∆u2)X3N/2−2 = (4kb + ks∆u2)C4j . (B12)

At node 3N/2 + 1,

(6kb − 2ks∆u2)X3N/2+1 + kbX3N/2−1 + kbX3N/2+3

− (4kb + ks∆u2)X3N/2+2 = (4kb + ks∆u2)C4j . (B13)

At node 3N/2 + 2,

(6kb − 2ks∆u2)X3N/2+2 + kbX3N/2+4 − (4kb + ks∆u2)X3N/2+1

− (4kb + ks∆u2)X3N/2+3 = −kbC4j . (B14)

At node 2N − 2,

(6kb − 2ks∆u2)X2N−2 + kbX2N−4 − (4kb + ks∆u2)X2N−3

− (4kb + ks∆u2)X2N−1 = −kbC1j . (B15)

At node 2N − 1,

(6kb − 2ks∆u2)X2N−1 + kbX2N−3 + kbX1

− (4kb + ks∆u2)X2N−2 = (4kb + ks∆u2)C1j . (B16)



28 O. Li et al.

Appendix C. Finite difference equations at the unknown nodes adjacent
to the known nodes 1, N + 1, and 2N + 1

The finite difference equations at the unknown nodes 2, 3, N − 1, N,N + 2, N + 3,

2N − 1 and 2N can be formulated below.

At node 2,

(6kb − 2ks∆u2 − kb)X2 + kbX4

− (4kb + ks∆u2)X3 = 2kbT1j∆u+ (4kb + ks∆u2)C1j . (C1)

At node 3,

(6kb − 2ks∆u2)X3 + kbX5 − (4kb + ks∆u2)X2

− (4kb + ks∆u2)X4 = −kbC1j . (C2)

At node N − 1,

(6kb − 2ks∆u2)XN−1 + kbXN−3 − (4kb + ks∆u2)XN−2

− (4kb + ks∆u2)XN = −kbC2j . (C3)

At node N ,

(6kb − 2ks∆u2 + kb)XN + kbXN−2 + kbXN+2

− (4kb + ks∆u2)XN−1 = (4kb + ks∆u2)C2j . (C4)

At node N + 2,

(6kb − 2ks∆u2)XN+2 + kbXN + kbXN+4

− (4kb + ks∆u2)XN+3 = (4kb + ks∆u2)C2j . (C5)

At node N + 3,

(6kb − 2ks∆u2 + kb)XN+3 + kbXN+5 − (4kb + ks∆u2)XN+2

− (4kb + ks∆u2)XN+4 = −kbC2j . (C6)

At node 2N − 1,

(6kb − 2ks∆u2)X2N−1 + kbX2N−3 − (4kb + ks∆u2)X2N−2

− (4kb + ks∆u2)X2N = −kbC3j . (C7)

At node 2N ,

(6kb − 2ks∆u2 + kb)X2N + kbX2N−2

− (4kb + ks∆u2)X2N−1 = (4kb + ks∆u2)C3j − 2kbT3j∆u. (C8)



Character Modelling with Sketches and ODE-Based Shape Creation 29

Appendix D. Finite difference equations at the unknown nodes adjacent
to the known nodes 1 and 2N + 1

The finite difference equations at the unknown nodes 2, 3, 2N − 1 and 2N of the

generator j can be formulated below.

At node 2,

(6kb − 2ks∆u2 + kb)Xj,2 + kbXj,4 − (4kb + ks∆u2)Xj,3

= ∆u4fj,2 + 2kb∆uTj,1 + (4kb + ks∆u2)X1,j . (D1)

At node 3,

(6kb − 2ks∆u2)Xj,3 + kbXj,5 − (4kb + ks∆u2)Xj,2

− (4kb + ks∆u2)Xj,4 = ∆u4fj,3 − kbC1,j . (D2)

At node 2N − 1,

(6kb − 2ks∆u2)Xj,2N−1 + kbXj,2N−3 − (4kb + ks∆u2)Xj,2N−2

− (4kb + ks∆u2)Xj,2N = ∆u4fj,2N−1 − kbC5,2N+1. (D3)

At node 2N ,

(6kb − 2ks∆u2 + kb)X2N + kbX2N−2 − (4kb + 2ks∆u2)X2N−1

= ∆u4fj,2N − 2kb∆uTj,2N+1 + (4kb + ks∆u2)C5,2N+1. (D4)

Acknowledgments

This research is supported by the PDE-GIR project, which has received funding

from the European Union Horizon 2020 research and innovation programme under

the Marie Skodowska-Curie grant agreement No. 778035, by the project PID2021-

127073OB-I00 of the MCIN/AEI/10.13039/501100011033/FEDER, EU, and by the

Santander PGR Grants. X. Jin was supported by the Ningbo Major Special Projects

of the “Science and Technology Innovation 2025”, grant No. 2020Z007.

References

[1] F. ABBASINEJAD, P. JOSHI, AND N. AMENTA, Surface patches from unorganized space

curves, in: Proceedings of the Twenty-Eighth Annual Symposium on Computational Ge-

ometry, Association for Computing Machinery (2012), 417–418.
[2] A. ANDRE AND S. SAITO, Single-view sketch based modeling, in: Proceedings of the Eighth

Eurographics Symposium on Sketch-Based Interfaces and Modeling (SBIM ’11), Associa-

tion for Computing Machinery, (2011), 133–140.



30 O. Li et al.

[3] S.-H. BAE, R. BALAKRISHNAN, AND K. SINGH, ILoveSketch: As-natural-as-possible sketch-
ing system for creating 3D curve models, in: Proceedings of the 21st Annual ACM Sympo-

sium on User Interface Software and Technology, Association for Computing Machinery,

(2008), 151–160.
[4] M. BESSMELTSEV, W. CHANG, N. VINING, A. SHEFFER, AND K. SINGH, Modeling character

canvases from cartoon drawings, ACM Trans. Graph. 34(5) (2015), 1–16.
[5] S. BHATTACHARJEE AND P. CHAUDHURI, A survey on sketch based content creation: From

the desktop to virtual and augmented reality, Comput. Graph. Forum 39 (2020), 757–780.

[6] S. BIAN, Z. DENG, E. CHAUDHRY, L. H. YOU, X. S. YANG, L. GUO, H. UGAIL, X. JIN,
Z. XIAO, AND J. J. ZHANG, Efficient and realistic character animation through analytical

physics-based skin deformation, Graph. Models 104 (2019), 101035.

[7] S. BIAN, G. MAGUIRE, W. KOKKE, L. H. YOU, AND J. J. ZHANG, Efficient C2 continu-
ous surface creation technique based on ordinary differential equation, Symmetry 12(1)

(2019), 38.
[8] P. BOROSÁN, M. JIN, D. DECARLO, Y. GINGOLD, AND A. NEALEN, Rigmesh: Automatic

rigging for part-based shape modeling and deformation, ACM Trans. Graph. 31(6) (2012),

1–9.
[9] M. BOTSCH AND O. SORKINE, On linear variational surface deformation methods, IEEE

Trans. Vis. Comput. Graph. 14(1) (2008), 213–230.

[10] E. CHAUDHRY, S. BIAN, H. UGAIL, X. JIN, L. H. YOU, AND J. J. ZHANG, Dynamic skin

deformation using finite difference solutions for character animation, Comput. Graph. 46

(2015), 294–305.
[11] T. CHEN, Z. ZHU, A. SHAMIR, S.-M. HU, AND D. COHEN-OR, 3-Sweep: Extracting editable

objects from a single photo, ACM Trans. Graph. 32(6) (2013), 1–10.

[12] P. COMPANY, A. PIQUER, M. CONTERO, AND F. NAYA, A survey on geometrical reconstruc-
tion as a core technology to sketch-based modeling, Comput. Graph. 29(6) (2005), 892–

904.

[13] M. T. COOK AND A. AGAH, A survey of sketch-based 3-D modeling techniques, Interact.
Comput. 21(3) (2009), 201–211.

[14] D. DECARLO, A. FINKELSTEIN, S. RUSINKIEWICZ, AND A. SANTELLA, Suggestive contours

for conveying shape, ACM Trans. Graph. 22(3) (2003), 848–855.

[15] Z. DENG, Y. LIU, H. PAN, W. JABI, J. ZHANG, AND B. DENG, Sketch2PQ: Freeform planar

quadrilateral mesh design via a single sketch, IEEE Trans. Vis. Comput. Graph. (2022),
doi: 10.1109/TVCG.2022.3170853.

[16] C. DING AND L. LIU, A survey of sketch based modeling systems, Front. Comput. Sci. 10

(2016), 985–999.
[17] E. ENTEM, L. BARTHE, M.-P. CANI, F. CORDIER, AND M. VAN DE PANNE, Modeling 3D

animals from a side-view sketch, Comput. Graph. 46 (2015), 221–230.
[18] J. H. FANG, E. CHAUDHRY, A. IGLESIAS, J. MACEY, L. H. YOU, AND J. J. ZHANG, Recon-

structing dynamic 3D models with small data by integrating position-based dynamics and

PDE-based modelling, Mathematics 10(5) (2022), 821.
[19] Y. GINGOLD, T. IGARASHI, AND D. ZORIN, Structured annotations for 2D-to-3D modeling,

ACM Trans. Graph. 28(5) (2009), 1–9.

[20] K. GOLEC, J.-F. PALIERNE, F. ZARA, S. NICOLLE, AND G. DAMIAND, Hybrid 3D mass-

spring system for simulation of isotropic materials with any Poisson’s ratio, Vis. Comput. 36

(2020), 809–825.
[21] C. GRIMM AND P. JOSHI, JustDrawIt: A 3D sketching system, in: Proceedings of the Inter-

national Symposium on Sketch-Based Interfaces and Modeling, Association for Comput-



Character Modelling with Sketches and ODE-Based Shape Creation 31

ing Machinery (2012), 121–130.
[22] T. IGARASHI, S. MATSUOKA, AND H. TANAKA, Teddy: A sketching interface for 3D freeform

design, in: Proceedings of ACM SIGGRAPH 2006 Courses, Association for Computing

Machinery (2006), 1–11.
[23] O. A. KARPENKO AND J. F. HUGHES, SmoothSketch: 3D free-form shapes from complex

sketches, ACM Trans. Graph. 25(3) (2006), 589–598.
[24] I. K. KAZMI, L. H. YOU, X. S. YANG, X. G. JIN, AND J. J. ZHANG, Efficient sketch-based

creation of detailed character models through data-driven mesh deformations, Comput. An-

imat. Virtual Worlds 26 (2015), 469–481.
[25] I. K. KAZMI, L. H. YOU, AND J. J. ZHANG, A survey of sketch based modeling systems,

in: Proceedings of the 11th International Conference on Computer Graphics, Imaging

and Visualization, IEEE (2014), 27–36.
[26] D. KIM, T. KUANG, Y. L. RODRIGUES, E. BOXERMAN, J. GATENO, S. G. F. SHEN, X. WANG,

K. STEIN, H. H. DENG, M. A. K. LIEBSCHNER, AND J. J. XIA, A novel incremental simu-

lation of facial changes following orthognathic surgery using FEM with realistic lip sliding

effect, Med. Image Anal. 72 (2021), 102095.

[27] V. KRAEVOY, A. SHEFFER, AND M. VAN DE PANNE, Modeling from contour drawings, in: Pro-
ceedings of the 6th Eurographics Symposium on Sketch-Based Interfaces and Modeling,

Association for Computing Machinery (2009), 37–44.

[28] Z. LEVI AND C. GOTSMAN, ArtiSketch: A system for articulated sketch modeling, Comput.
Graph. Forum 32 (2013), 235–244.

[29] C. LI, H. PAN, Y. LIU, X. TONG, A. SHEFFER, AND W. WANG, BendSketch: Modeling

freeform surfaces through 2D sketching, ACM Trans. Graph. 36(4) (2017), 1–14.

[30] O. W. LI, Efficient and Detailed Sketch-Based Character Modelling with Composite General-

ized Elliptic Curves and ODE Surface Creators, PhD Thesis, Bournemouth University, 2020.
[31] O. W. LI, S. J. BIAN, A. NOREIKA, I. K. KAZMI, L. H. YOU, AND J. J. ZHANG, Efficient

creation of 3D organic models from sketches and ODE-based deformations, in: Transac-

tions on Computational Science XXXVIII, Lecture Notes in Computer Science, Springer,
(2021), 1–16.

[32] W. MA, Subdivision surfaces for CAD - an overview, Comput. Aided Des. 37(7) (2005),
693–709.

[33] D. P. MADSEN, Engineering Drawing and Design, Cengage Learning, 2016.

[34] A. NEALEN, T. IGARASHI, O. SORKINE, AND M. ALEXA, FiberMesh: Designing freeform

surfaces with 3D curves, ACM Trans. Graph. 26(3) (2007), 41.

[35] A. NEALEN, M. MÜLLER, R. KEISER, E. BOXERMAN, AND M. CARLSON, Physically based

deformable models in computer graphics, Comput. Graph. Forum 25 (2006), 809–836.
[36] F. NOORUDDIN AND G. TURK, Simplification and repair of polygonal models using volumet-

ric techniques, IEEE Trans. Vis. Comput. Graph. 9(2) (2003), 191–205.
[37] L. OLSEN, F. F. SAMAVATI, M. C. SOUSA, AND J. A. JORGE, Sketch-based modeling: A sur-

vey, Comput. Graph. 33(1) (2009), 85–103.

[38] H. PAN, Y. LIU, A. SHEFFER, N. VINING, C. LI, AND W. WANG, Flow aligned surfacing of

curve networks, ACM Trans Graph 34(4) (2015), 1–10.

[39] C. D. PAOLI AND K. SINGH, SecondSkin: Sketch-based construction of layered 3D models,

ACM Trans. Graph. 34(4) (2015), 126.
[40] L. PIEGL AND W. TILLER, The NURBS Book, Springer, 2012.

[41] A. RIVERS, F. DURAND, AND T. IGARASHI, 3D modeling with silhouettes, ACM Trans.
Graph. 29(4) (2010), 1–8.

[42] B. SADRI AND K. SINGH, Flow-complex-based shape reconstruction from 3D curves, ACM



32 O. Li et al.

Trans. Graph. 33(2) (2014), 1–15.
[43] A. SHTOF, A. AGATHOS, Y. GINGOLD, A. SHAMIR, AND D. COHEN-OR, Geosemantic snap-

ping for sketch-based modeling, Comput. Graph. Forum 32(2) (2013), 245–253.

[44] E. TURQUIN, J. WITHER, L. BOISSIEUX, M. CANI, AND J. F. HUGHES, A sketch-based

interface for clothing virtual characters, IEEE Comput. Graph. Appl. 27(1) (2007), 72–81.

[45] N. XIANG, R. WANG, T. JIANG, L. WANG, Y. LI, X. S. YANG, AND J. J. ZHANG, Sketch-

based modeling with a differentiable renderer, Comput. Animat. Virtual Worlds 31(4-5)

(2020), 1–12.

[46] L. H. YOU, H. UGAIL, B. P. TANG, X. JIN, X. Y. YOU, AND J. J. ZHANG, Blending using ODE

swept surfaces with shape control and C1 continuity, Vis. Comput. 30 (2014), 625–636.

[47] L. H. YOU, X. S. YANG, M. PACHULSKI, AND J. J. ZHANG, Boundary constrained swept

surfaces for modelling and animation, Comput. Graph. Forum 26(3) (2007), 313–322.
[48] L. H. YOU, X. S. YANG, J. PAN, T.-Y. LEE, S. J. BIAN, K. QIAN, Z. HABIB, A. B. SARGANO,

I. K. KAZMI, AND J. J. ZHANG, Fast character modeling with sketch-based PDE surfaces,
Multimed. Tools Appl. 79 (2020), 23161–23187.

[49] L. H. YOU, X. S. YANG, X. Y. YOU, X. JIN, AND J. J. ZHANG, Shape manipulation using

physically based wire deformations, Comput. Animat. Virtual Worlds 21 (2010), 297–309.
[50] S.-H. ZHANG, Y. GUO, AND Q.-W. GU, Sketch2Model: View-aware 3D modeling from single

free-hand sketches, in: Proceedings of IEEE/CVF Conference on Computer Vision and

Pattern Recognition (CVPR), IEEE (2021), 6000–6017.
[51] Y. ZHUANG, M. ZOU, N. CARR, AND T. JU, A general and efficient method for finding cycles

in 3D curve networks, ACM Trans. Graph. 32(6) (2013), 1–10.




