
An empirical investigation of
software project schedule behaviour

Austen William Rainer

A thesis submitted in partial fulfilment of the requirements of
Bournemouth University for the degree of Doctor of Philosophy

July 1999

Bournemouth University
in collaboration with
IBM Hursley Park

Abstract
Two intensive, longitudinal case studies were conducted at IBM Hursley Park. There were

several objectives to these case studies: first, to investigate the actual behaviour of the

two projects in depth; second, to develop conceptual structures relating the lower-level

processes of each project to the higher-level processes; third, to relate the lower-level and
higher-level processes to project duration; fourth, to test a conjecture forwarded by

Bradac et al i. e. that waiting is more prevalent during the end of a project than during the

middle of a project.

A large volume of qualitative and quantitative evidence was collected and analysed for

each project. This evidence included minutes of status meetings, interviews, project

schedules, and information from feedback workshops (which were conducted several

months after the completion of the projects).

The analysis generated three models and numerous insights into software project
behaviour. The models concerned software project schedule behaviour, capability and an

integration of schedule behaviour and capability. The insights concerned characteristics of

a project (i. e. the actual progress of phases and milestones, the amount of workload on

the project, the degree of capability of the project, tactics of management, and the socio-

technical aspects of a project) and characteristics of process areas within a project (i. e.

waiting, poor progress and outstanding work). Support for the models and the insights was

sought, with some success, from previous research.

Despite the approach taken in this investigation (i. e. the collection of a large volume of
evidence and the analyses of a wide variety of factors using a very broad perspective), this
investigation has been unable to pinpoint definite causes to explain why a project will or
will not complete according to its original plan. One `hint' of an explanation are the
differences between the socio-technical contexts of the two projects and, related to this,
the fact that tactics of management may be constrained by a project's socio-technical
context. Furthermore, while the concept of a project as a distinct entity seems
reasonable, the actual boundaries of a project in an organisation's `space-time' are
ambiguous and very difficult to properly define. Therefore, it may be that those things
that make a project difficult to distinguish from its surrounding organisation are
interwoven with the socio-technical contexts of a project, and may be precisely those
things that explain the progress of that project.

Recommendations, based on the models, the insights and the conclusions, are provided for
industry and research.

Overview

Abstract

Overview

Contents

List of figures

List of tables

Acknowledgements

Chapter 1 Introduction

Chapter 2 Actual time usage in software projects

Chapter 3 Methodology

Chapter 4 Three analytic models

Chapter 5 Project-level behaviour

Chapter 6 Waiting

Chapter 7 The progress of work

Chapter 8 Outstanding work

Chapter 9 Integrating the analyses

Chapter 10 A summary of the thesis

Glossary

Appendices

References

ii

iv

viii

ix

x

1

6

19

38

47

81

102

116

126

146

158

161

204

iii

Contents

Abstract ii

Overview iii

Contents iv

List of figures viii

List of tables ix

Acknowledgements x

Chapter 1 Introduction 1
1.1 Statement of the problem 1
1.2 A definition of `software project schedule behaviour' 3
1.3 Aims of the inquiry 3
1.4 Scope of the inquiry 4
1.5 Structure of the thesis 4

Chapter 2 Actual time usage in software projects 6
2.1 Introduction 6
2.2 A brief review of five areas of software engineering research 6
2.3 Studies of actual time usage in software projects 8

Bradac, Perry and Votta's `prototype experiment' 8
Subsequent research to Bradac et al. 's study 11
Van Genuchten's investigation of activities 13
Summary of research into time usage 16

2.4 Opportunities and objectives for this research 17
Opportunities 17
Objectives 18

Chapter 3 Methodology 19
3.1 Introduction 19
3.2 An appropriate research strategy 19
3.3 Heuristics for the design and conduct of case studies 21
3.4 The selection of projects for case studies 25
3.5 Summary of the evidence collected 26
3.6 Methods for analysing the evidence 30

A method for developing descriptions and explanations of behaviour 30
A method for testing Bradac et al. 's conjecture 32

3.7 Operational details of the investigation 33
Organising the evidence relating to process areas 33
Additional analyses for the waiting evidence 35
Adjusting Bradac et al. 's waiting evidence 35
Mapping phases of Projects B and C to Bradac et al. 's study 36

iv

Chapter 4 Three analytic models 38
4.1 Introduction 38
4.2 A simple model of software project schedule behaviour 38

Examples of the logic of the model 39
Support for the model 40
Caveats to the model 41
Problems with the model 42

4.3 A model of capability 43
4.4 Integrating the models 44
4.5 Alternative models 45
4.6 Summary 46

Chapter 5 Project-level behaviour 47
5.1 Introduction 47
5.2 The socio-technical contexts of Projects B and C 47

Project B 47
Project C 50
Similarities and differences between Projects B and C 54

5.3 The actual progress of Project B 56
5.4 The actual progress of Project C 68
5.5 Tactics to manage the projects 77
5.6 Summary 77

The socio-technical contexts of the two projects 78
The actual progress of the two projects 79
The tactics of management for the two projects 80

Chapter 6 Waiting 81
6.1 Introduction 81
6.2 A description of the evidence 83
6.3 The frequency and prevalence of waiting 83

The frequency of waiting 83
The prevalence of waiting 86
Explanations for the frequency and prevalence of waiting 87

6.4 The types of waiting and their frequencies 88
Comparison of the types of waiting using Bradac et al. 's classification 88
Comparison of the types of waiting using the alternative classification 90

6.5 The `source' and `dependent' process areas 92
6.6 Process areas and types of waiting 96
6.7 Summary 100

Chapter 7 The progress of work 102
7.1 Introduction 102
7.2 The frequency and prevalence of progress of work 103

The frequency of progress of work 103
The prevalence of the poor progress of work 105
Explanations for the frequency and prevalence of progress 106

7.3 The different types of progress of work, and their frequencies 108
7.4 Process areas reporting the progress of work 110
7.5 The causes of poor and good progress 113
7.6 Summary 115

V

Chapter 8 Outstanding work 116
8.1 Introduction 116
8.2 The frequency and prevalence of outstanding work 117

The frequency of outstanding work 117
The prevalence of outstanding work 119

8.3 Types of outstanding work, and their frequencies 120
8.4 Process areas reporting outstanding work 121
8.5 Summary 125

Chapter 9 Integrating the analyses 126
9.1 Introduction 126
9.2 A summary of the various insights into Projects B and C 126

3 Relating the insights to Bradac et al. 's research 9 131
. 9.4 Relating the insights to the model of capability 133

9.5 Relating the insights to the model of software project schedule behaviour 136
9.6 Other studies of actual progress 137

Actual progress of phases 137
Actual workload 140
Actual capability 140

9.7 Other studies of the characteristics of process areas 141
9.8 Other studies of the tactics of management 141
9.9 Other studies of the socio-technical contexts of projects 143
9.10 Applying the insights to a wider `population' of projects 144

Chapter 10 A summary of the thesis 146
10.1 Introduction 146
10.2 A summary of the components of the empirical analyses 147
10.3 Conclusions and implications 148

Conclusions 148
Implications 150

10.4 Recommendations 151
10.5 A critical review of the investigation 152
10.6 Opportunities for further research 154
10.7 A review of the aims and objectives of this investigation 155

Glossary 158

Appendix AO Deciding meaningful associations between entities 161
AO. 1 Introduction 161
AO. 2 Using a Poisson distribution to decide meaningful associations 161
AO. 3 Using a series of computer simulations to decide meaningful associations 163
AO. 4 Parameters for the simulations 166
AO. 5 Additional assumptions for the simulations 166

Appendix B1 The selection of projects 168
131.1 Introduction 168
B1.2 The selection of projects for case studies 168

Appendix B2 Diagram structure and notation 172
B2.1 Introduction 172
B2.2 Explanation of the purpose, structure and notation of the diagrams 172

Appendix B3 Raw evidence from Projects B and C 174
B3.1 Introduction 174
B3.2 Evidence from Project B 174
B3.3 Evidence from Project C 178

vi

Appendix B4 The waiting evidence
B4.1 Introduction
B4.2 The classifications of items of waiting evidence
B4.3 The Mann Whitney U tests of the prevalence of waiting
B4.4 Adjustments to Bradac et al. 's data

Appendix B5 The progress of work evidence
B5.1 Introduction
B5.2 The classifications of items of progress evidence
B5.3 The Mann Whitney U tests of the prevalence for outstanding work

Appendix B6 The outstanding work evidence
B6.1 Introduction
B6.2 The classifications of items of outstanding work evidence
B6.3 The Mann Whitney U tests of the prevalence of outstanding work

Appendix B7 Feedback workshop questionnaire
B7.1 Introduction
B7.2 Methodology

References

180
180
180
187
188

189
189
189
196

197
197
197
201

202
202
202

204

vii

List of figures
Figure Page

3.6.1 A method for developing descriptions and explanations of software
project behaviour 30

4.2.1 A simple model of software project schedule behaviour 38
4.3.1 A model of capability 43
4.4.1 An integrated model of schedule behaviour and capability 44
5.2.1 The relationship between three releases of Product B 48
5.3.1 Planned and actual project schedule, project workload and project

staffing for Project B 57
5.3.2 Actual feature schedule for two features of Project B 60
5.3.3 Internal re-plans and indicators of project activity for Project B 62
5.3.4 The status of functional verification testcases for four features in

Project B 64
5.3.5 Status of defects in Project B 67
5.4.1 Project-level schedule, workload and capability for Project C 69
5.4.2 Re-plans and indicators of project activity for Project C 73
5.4.3 Re-plans and phase-level schedules for Project C 76
6.2.1 Frequency of status meetings for Projects B and C 82
6.3.1 Frequency of references to waiting for Project B 83
6.3.2 Frequency of references to waiting for Project C 84
6.4.1 Comparison of types of waiting (using Bradac et al. 's classification) 89
6.4.2 Comparison of types of waiting (using the alternative classification) 91
6.5.1 Associations between the `source' and `dependent' process areas 94
6.6.1 Types of waiting and `source' process areas 98
6.6.2 Types of waiting and `dependent' process areas 99
7.2.1 References to the progress of work for Project B 103
7.2.2 References to the progress of work for Project C 103
7.2.3 Frequency of poor progress for Project B 105
7.2.4 Frequency of poor progress for Project C 105
7.3.1 Types of progress of work for Projects B and C 108
7.4.1 Types of progress per process area 112
8.2.1 References to outstanding work for Project B 117
8.2.2 References to outstanding work for Project C 117
8.3.1 Types of outstanding work 120
8.4.1 Process areas and their relationships with outstanding work 124
9.4.1 Smoothed frequency of the reporting evidence for Project B 133
9.4.2 Smoothed frequency of the reporting evidence for Project C 133
9.5.1 An integrated model of schedule behaviour and capability 136
10.2.1 The components of the empirical analyses 147

VI"

List of tables
Table Page

2.3.1 Bradac et al. 's frequency of states 8
2.3.2 Van Genuchten's classification of reasons 14
2.3.3 Summary of studies that investigate time usage 16
3.2.1 Benbasat et al. 's characteristics of a case study 20
3.3.1 Heuristics for the number of cases to use 22
3.3.2 Heuristics for designing the method to be used 23
3.3.3 Heuristics for building theory 24
3.5.1 Summary of the evidence collected 26
3.5.2 Summary of the interviews 28
3.6.1 Summary of the types of analysis conducted 31
3.6.2 Comparison of Bradac et al. 's research design with this investigation 33
3.7.1 Phrases for searching the minutes of status meetings 34
3.7.2 Adjusted percentages from Bradac et al. 's study 36
3.7.3 `Mapping' Bradac et al. 's tasks to the phases of Projects B and C 36
5.2.1 Differences between Project B and Project C 55
5.2.2 Similarities across Project B and Project C 55
5.4.1 The effect of certain events on development workload, capability an d

schedule for Project C 70
5.5.1 A summary of some tactics used by the projects' managements 77
6.3.1 Summary statistics for the frequency of waiting 84
6.3.2 Mann Whitney U tests of hypothesis H1EXp 86
6.3.3 Summary statistics for the middle and end of the project 87
6.4.1 Comparison of types of waiting (using Bradac et al. 's classification) 88
6.4.2 Comparison of types of waiting (using the alternative classification) 90
6.5.1 Significant values in Table 6.5.2 92
6.5.2 Breakdown of the `source' and `dependent' process areas 93
6.6.1 Significant values in Table 6.6.3 96
6.6.2 Significant values in Table 6.6.4 96
6.6.3 Types of waiting and `source' process areas 97
6.6.4 Types of waiting and `dependent' process areas 97
7.2.1 Summary statistics for the frequency of progress of work 103
7.2.2 Results of the Mann Whitney U tests of hypothesis H2EX 106
7.2.3 P Summary statistics for the tests of poor progress of work 106
7.3.1 Types of progress of work for Projects B and C 108
7.4.1 Significant values for Table 7.4.2 110
7.4.2 Types of progress per process area 111
7.5.1 Factors contributing to poor progress on Project B 114
7.5.2 Factors contributing to good progress on Project B 114
8.2.1 Summary statistics for the frequency of outstanding work 117
8.2.2 Results of the Mann Whitney U tests of hypothesis H3EX 119
8.2.3 p Summary statistics for the prevalence of outstanding work 119
8.3.1 Types of outstanding work 120
8.4.1 Significant values in Table 8.4.2 122
8.4.2 Relationships between types of outstanding work and process areas 123
9.2.1 A summary of the insights into Project B and Project C 128-130
10.4.1 A summary of recommendations for industry 151 10.4.2 A summary of recommendations for research 152 10.5.1 A summary of threats to the investigation 152-153 10.6.1 A summary of opportunities for further research 154

ix

Acknowledgements

I should like to express my sincere thanks to Prof. Martin Shepperd for all of his support
(intellectual and otherwise) throughout the duration of my research. Similarly, sincere
thanks to John Allan for his support during the period of full-time research at IBM

Hursley Park, and my regular visits since.

I should also like to thank Paul Gibson and Prof. Sa'ad Medhat for laying the foundations

between IBM Hursley Park and Bournemouth University which `bore fruit' with this

research project.

Also, I am deeply grateful to the many people at IBM Hursley Park (who for reasons of

confidentiality must unfortunately remain anonymous) for allowing their projects to be

studied (or at least be candidates for study!) and for willingly making time to openly
discuss their opinions of their projects and of my interpretations of their projects. This

research really would not have been possible without them.

Thanks to Dr. Frank Milsom and Colin Kirsopp for their advice on my research,
particularly to Colin for his contributions to the statistical analysis discussed in Appendix

AO.

Finally, thanks to Glyn, Si, Tom, Emma, Pete and Min for their friendship over the last
four years.

X

Chapter 1 Introduction
1.1 Statement of the problem

A software product that is delivered to the market earlier than its competitors typically

enjoys several advantages over those competitors: the product is seldom obsolete any

sooner, has an increased share of the market and a higher profit margin ([84,114])1.

At the same time, there is a substantial amount of research to show that software
development projects are frequently completed later than planned. Some of this research

surveys a broad range of projects (see, for example, [10,21,35,57,123]) whilst other

research concentrates on particular projects (e. g. [63,80,95,134]), some of these

projects being of high public interest, such as the London Ambulance Service's Computer

Aided Dispatch System (e. g. [8]).

The frequency of poorly performing software projects suggests that project managers
have great difficulty both planning and executing their projects. This may be for a

number of reasons, such as:

" Project managers may lack a comprehensive and widely-applicable understanding of

the behaviour of software projects. Their lack of understanding is increasingly likely

as products become increasingly complex and as they address new, increasingly

complex requirements. Obvious examples are projects that are involved with rapidly
developing technologies, such as the World Wide Web.

" Events beyond the control of the project prevent these projects completing
according to plan.

" The goals of the project, particularly the product's requirements, cannot be stabilised,

with the result that the project either completes later than planned or may even be

abandoned.

" The demand for new products, and the competition between products within a
market, creates `pressure' for increasingly shorter project durations. This may cause
project managers to take increasing risks with their projects, with the consequence
that projects are increasingly likely to complete later than planned.

Two fundamental goals of research are first to explain, and then to communicate that
explanation, so that practitioners may make better informed decisions and take better
informed actions. Software engineering research has yet to provide a comprehensive

' Not all products first to the market are, however, the eventual ̀winners' (e. g. [16]).

1

explanation of the behaviour of software development projects and, more particularly,
the factors affecting project duration. For example, Carmel ([20]) writes:

"It should be noted that nowhere does the software engineering literature make

any causal claims regarding cycle time. Instead, the variables are normative and

prescribed for 'successful development'. " ([20], p. 112)

Taking a broader perspective, Olsen ([84]) complements the opinion of Carmel. Olsen

writes:

"Not only does engineering literature rarely address time-to-market as the central

goal, but management often embrace the short-sighted view that the most
important goal is to control software labor and capital budgets, without

considering the effect on time-to-market. This is often because information

engineers cannot persuasively show how cost factors affect time-to-market; they

typically have few tools and case histories to back up their recommendations -
whereas budget costs are all too clear. " ([84], p. 30)

Abdel-Hamid and Madnick ([2]) argue that the software engineering research community

still lacks a fundamental understanding of software development processes. In a related
field to software engineering research, that of information systems (IS) research,
Remenyi and Williams ([101]) argue that there is no established theory, and Jarvenpaa

([55]) argues that the lack of theory development, rather than appropriate research
methodologies, is the real problem for IS research.

On the subject of the development of theory, Eisenhardt ([39]) draws upon Glaser and
Strauss ([45]) to argue that:

"... it is the intimate connection with empirical reality that permits the
development of a testable, relevant, and valid theory. " ([39], p. 532)

Thus, a testable, relevant and valid explanation of software project schedule behaviour is

one founded on a close, solid connection with the actual processes of software
development and the processes of managing that development. This necessarily requires a
focus on particular projects, so that the subtleties, nuances and complexities of actual
process may be best understood. (A focus on particular projects raises the problem of
applying the findings drawn from these projects to a broader set of projects. This problem
is briefly considered in section 1.4, and then considered in more depth in chapters three
and nine.) Given that Carmel and Olsen are correct in their assessment of a lack of

2

research explaining software project cycle-time, then one fundamental reason would

appear to be a lack of research that seeks to generate these explanations i. e. a lack of

studies that intimately connect with empirical reality. There are a number of bodies of

research, within the software engineering community, that are potentially relevant to the
development of theory. These bodies of research and the issue of generating theory are
discussed in more depth in chapter two.

Overall, there is a need for explanations of software project behaviour and, more

specifically, software project schedule behaviour, and while empirical evidence and

conceptual structures do exist there is no established theory.

1.2 A definition of `software project schedule behaviour'

The term `software project schedule behaviour' is meant to convey the following:

" The duration of a project from its initiation to completion.

" The duration of a project from its initiation to the delivery of its product (the

product may be delivered before the project is completed).
" How those durations are structured and associated with work i. e. the project schedule.

These structures and associations consist primarily of intervals of time (i. e. phases)

and instantaneous events (i. e. milestones).

" How those structures and associations change during the project i. e. the dynamics of
the schedule.

" How those dynamic structures and associations are interwoven with the wider
behaviour of the project.

1.3 Aims of the inquiry

Given the need for, and lack of, explanation this inquiry has the following aims:

1. To consider the degree to which existing empirical studies within the software
engineering research community identify, describe or explain relationships between
the actual processes of software development and the schedule behaviour of software
projects.

2. To identify gaps within the existing research that prevent, or limit, the development
of a theory.

3. To identify the opportunities for a contribution in this area of research, and to select
one or more of these opportunities as specific objectives for the empirical
component of this research.

3

4. To conduct empirical inquiry, so as to contribute to the body of research on software

engineering in general and software project schedule behaviour in particular.

1.4 Scope of the inquiry

In order to make this inquiry feasible, the inquiry is bounded in a two ways. First, as

already suggested, this inquiry concentrates on extant knowledge within software

engineering research. This is recognised as a potential limitation to this inquiry, and as a

result some attention is directed outside of software engineering research. (This attention
is mainly directed, however, at methodological issues.)

Second, this inquiry places particular value on Eisenhardt's requirement for an intimate

connection with empirical reality. This has two implications. First, some potentially

valuable research, such as experts' anecdotal accounts of software projects (e. g. [51] and
[136]), are excluded because they do not communicate systematic and detailed evidence

on actual processes. (In this context, anecdotal accounts are distinguished from the

narrative accounts provided by ethnographic studies.) Second, and as noted previously, an

emphasis on particular processes introduces the problem of applying findings to other

projects. This investigation seeks to overcome this problem in two ways. First, having

conducted the empirical component of this inquiry, attention is re-directed at previous

research to determine whether other studies have independently drawn similar insights.

Second, part of the empirical component of this inquiry seeks to test a conjecture made
by Bradac et al. ([18]) and thus strengthen the applicability of that conjecture to a wider
set of projects.

1.5 Structure of the thesis

The remainder of this thesis is organised as follows. Chapters two and three lay the
theoretical and methodological foundations for the subsequent empirical inquiry. Chapter

two concentrates on the contribution of studies of actual time usage in software projects
for explaining software project schedule behaviour. This discussion includes a particular
consideration of the work of Bradac et al. ([18]) as part of his work is tested in the

subsequent empirical inquiry. Chapter two also identifies specific opportunities for further

research and appropriate objectives for the empirical investigation conducted as part of
this research.

Chapter three discusses a collection of methodological issues. The chapter identifies the
appropriate research strategy (the case study research strategy) to achieve the objectives
identified in chapter two, discusses the selection of cases, the volume of evidence

4

collected, the types of analyses conducted on that evidence, and various operational

details of the case studies.

Chapter four presents and discusses two models that were iteratively developed from the

evidence. The first model is a simple model of software project schedule behaviour. The

second model is a model of capability. The chapter shows how these two models can be

integrated into a third model, and how they can also be related to the studies of actual

time usage discussed in chapter two. Chapter four also discusses a number of caveats and

problems with the models, as well as potential alternatives to the models.

Chapters five through nine present and discuss the behaviour of the two projects that

were studied. Chapter five presents comprehensive analyses based around the model of

software project schedule behaviour. The scope of the inquiry is broad, considering the

socio-technical contexts of the two projects, the actual progress of the two projects, and

the management tactics used by the two projects. Chapters six through eight each

examine one characteristic of process areas of a project, using the model of capability.

Chapter six examines reports of waiting. Chapter seven examines reports of the progress

of work (and particularly the poor progress of work). Chapter eight examines reports of

outstanding work. (Chapter five provides a context within which the analysis of these

three characteristics can be better understood.) Chapters six through eight include a test

of Bradac et al. 's ([18]) conjecture that waiting is more prevalent during the end of a

project than during the middle of the project.

Chapter nine then brings together the various `threads' of chapters two and four through

eight. The chapter relates the insights drawn from chapters five through eight with the

models presented in chapter four and the review of actual time usage presented in chapter

two. Chapter nine also presents a second review of previous research, this review focusing

on the specific insights gained from the empirical inquiry. Finally, chapter nine speculates

on the wider applicability of the insights.

Chapter ten then summarises the investigation, considering the components of the

empirical analyses, the main conclusions, some recommendations, threats to the validity

of the conclusions and opportunities for further research. Chapter ten also reviews the

aims of the inquiry and the degree to which they have been satisfied.

The appendices provide detailed empirical evidence on the two projects. For reasons of
confidentiality, transcripts of the interviews and the content of the minutes of status
meetings are not included.

5

Chapter 2 Actual time usage in software
projects
2.1 Introduction

As explained in chapter one, particular value is placed on Eisenhardt's ([39]) argument
that the generation of explanation requires an intimate connection with empirical reality.
The argument was also made that there appears to be a lack of research, within the

software engineering community, that seeks to generate explanation.

This chapter first briefly reviews a number of bodies of research, within the software
engineering community, to support the argument that there is a lack of theory-generating

research. The chapter then concentrates on reviewing studies of actual time usage in

software development projects. In principle, studies of time usage are considered to be an
excellent method for an intimate connection with empirical reality because they
(potentially) explore both `visible' and `invisible' work ([82]). Also, studies of actual
time usage provide the most direct connection with intervals of time and instantaneous

events in a software project.

2.2 A brief review of five areas of software engineering research

Besides research on time usage, five bodies of research have been identified as potentially

relevant to the development of explanations of software project behaviour and software
project schedule behaviour. These are;

" Surveys of practitioners' opinions of the software process.
" The development and validation of system dynamic models of software development

projects.

" The development and validation of prediction systems of characteristics of software
projects e. g. effort, cost, quality and duration.

" The development and validation of software process models.
Investigations of actual process.

Surveys (e. g. [9,10,21,35,38,47,74]) investigate tendencies but are not ideally suited
to explaining those tendencies.

System dynamics is a promising approach to both explaining and predicting the behaviour
of software development projects, but there appears to be little substantial empirical

6

work, within the field of software development, available to-date. The main empirical

research is provided by Abdel-Hamid (e. g. [2,3,108]) with more recent contributions by

Lehman et al. (e. g. [68-70]) and Tvedt ([126,127]). Other recent contributions appear

to be mainly theoretical in content (e. g. [22,27,28,103-105,130]).

Prediction systems (e. g. [50,60,61,65,73,106,110,111,129,135]) develop

relationships between measured-attributes and predicted-attributes, but these relationships

are not prescribed as causal relationships, and are not assumed to provide explanation.

The development and validation of software process models is founded on the logic that
improving the processes of development will improve the outcomes of that development

e. g. reduced project cost, effort and duration, and increased product quality, functionality

and performance. In considering this area of research, Rodden et al. ([102]) first

characterise this research as being typically concerned with developing (or validating)

abstract descriptions that are to be instantiated for a particular (organisational) setting
before being enacted to manage the use of tools within an environment. Rodden et al.

then argue that these abstract descriptions are often too abstract in that they no longer

(or, perhaps, at no time did) represent the actual nature of software development. (It

may be that software process research is first concerned with developing appropriate

technologies before using those technologies to inquire on the actual process.)

Although the tendency in software process research is toward the development of abstract

models of process, there are a number of studies of actual process. Many of these studies,
however, do not relate their findings explicitly to software project schedule behaviour.
Also, studies of actual process tend to investigate the lower-level processes, such as
individuals, teams and activities (e. g. [18,25,26,32,48,49,71,85,91,92,95,112,
113,115,128,132,138]), rather than the higher-level processes, such as `functional

areas' of the project, the project itself, and the organisation `surrounding' the project. (It

may be that the focus on lower-level processes reflects difficulties with investigating

actual software development processes in-the-large.) Curtis et al. 's ([31]) seminal study of
large software systems is perhaps the only study that seeks to empirically investigate the
interactions between the various process levels of a project. Their study does not,
however, explicitly relate the effect of these interactions on software project schedule
behaviour. Watson ([134]) reports on the use of COCOMO (e. g. [13,14] see also, more
recently, [12]) as a tool for validating estimates made though other methods. Implicit

within his study is an examination of processes at a high-level i. e. the major phases of the
project. Watson's study is considered in depth in chapter nine.

7

The position taken in this thesis is that while all of these bodies of research are valuable
for the long-term development and validation of theory, they are currently not ideally

suited to generating the initial material for an explanation. (This is comparable with
Jarvenpaa's [55] claim that the lack of theory development is the real problem for IS

research.) As already noted, the remainder of this chapter concentrates on reviewing

studies of actual time usage. Chapter nine complements the review in this chapter by

reviewing some of the research identified above in light of the insights gained from the

empirical component of this inquiry.

2.3 Studies of actual time usage in software projects

There appears to be few studies that specifically investigate the characteristics and effects

of time usage in software development projects- (i. e. [5,18,34,92]). Of these, Bradac,

Perry and Votta's study ([18]; an earlier version was published as [17]) appears to be the
first study conducted in this area.

Bradac, Perry and Votta's `prototype experiment'

Bradac et al. ([17,18]) conduct a study to investigate what people actually do when they

add features (features are sets of market requirements) to a large software system. Their

study is a prototype study, conducted as preparation for a more substantial subsequent

study ([92]) that consists of a time-diary study and a direct-observation study. The

findings of the prototype study and the subsequent study establish some assumptions that
inform two further studies ([5,34]).

Table 2.3.1 Bradac et al. 's frequency of states

State % time
Working the process 19.6
Documentation 8.2
Reworking the process 7.0
Reworking the documentation 4.2
Waiting on the laboratory 2.7
Waiting on an expert 3.1
Waiting on a review 9.2
Waiting on hardware 1.0
Waiting on software 1.9
Waiting on documentation 2.4
Waiting on other 40.7

Total 100.0

Bradac et al. initially characterise the software process in terms of fifteen tasks and
eleven states, with the states referring either to some type of progress or to some type of
waiting. One of their "basic set of analyses" ([18], p. 781) is to investigate the frequency

8

of states, and the results of this analysis are reproduced here in Table 2.3.1. As the table
indicates, about 40% of the time spent in the process is spent being productive (the first

four states in the table) and 60% of the time appears to be spent waiting. The apparent
frequency of waiting is discussed below. Using the information presented in the table,
Bradac et al. form a conjecture that one important way of reducing the development

interval is to significantly reduce the number of days in blocking states. They add,
however, that the 40: 60 ratio is dependent on the concurrency of processes. If the global

process (presumably, Bradac et a!. mean the project-level process; they do not provide an

explicit definition) also experiences a 40: 60 ratio (which would be affected by the

concurrency of processes) then significantly reducing the amount of time spent in

blocking states would significantly reduce project duration.

Table 2.3.1 indicates that the `Waiting on other' state clearly dominates the frequency of

states, and it is the dominance of this state that raises the issue of whether waiting

actually occurs for 60% of the process. Bradac et al. recognise that the dominance of the
`Waiting on other' state reveals a weakness in their characterisation, and this leads them

to revise their characterisation so that their states refer either to some type of working,
to some type of waiting, or to some type of not working. The not working categories are:

" Not working, training

" Not working, reassigned

" Not working, vacation

" Not working, weekend

" Not working, other

Having revised their characterisation, it is unfortunate that Bradac et al. do not then
present details of the frequency of their revised set of states, because their reworked
classification provides a different interpretation of their findings. This is discussed below.
(It is understandable that Bradac et al. do not report on their revised classification when
one considers that the revised characterisation is a result of their prototype study,
intended to be used in subsequent studies.) In Perry et al. 's study ([92]), the subsequent
study to Bradac et al. 's study, it is clear that the five most prominent states of the revised
classification are, in descending order:

1. Not working, reassigned
2. Not working, weekend
3. Working the process
4. Not working, other

9

5. Reworking the process.

It is clear from Perry et al. 's evidence that the not working categories, and particularly
the `Not working, reassigned' category, occur more frequently than the waiting

categories. (It is difficult to establish accurate breakdowns from the information provided
by Perry et al.) This evidence suggests an alternative interpretation of Bradac et al. 's

evidence, viz. that the not working categories potentially have more affect on the process
than blocked work. The effect of vacations and weekends ought to be planned for, so this
leaves the effect of the `Not working, reassigned' category as particularly interesting. It is

interesting because one of the techniques that management use to manage projects is to

reassign work. Waterson et al. ([133]) found, for example, that workload fluctuated and
that teams would be temporarily restructured (with staff being drafted in from other teams
in the project if the workload became too demanding) to ensure that project milestones

and deadlines were met. In principle, the reassignment of work may then cause problems

elsewhere in a project because resource is drawn away from those parts of the project.

The frequency of time spent in the `Not working, reassigned' category in Perry et al. 's

paper (and potentially Bradac et al. 's paper) suggests that other parts of the project, or

other projects, are experiencing problems. Once again it is unfortunate, although entirely

understandable, that evidence on the project as a whole and the wider organisation is not

available from Bradac et al. 's and Perry et al. 's papers. Despite this lack of evidence,
Perry et al. ([92]) recognise that developers may be reassigned to higher priority projects,

and for Perry et al. the reassignment of developers to other work reflects the fact that
large-scale software development projects are extremely dynamic.

The reassignment of developers to higher priority projects supports the argument that a
project is affected by factors external to the project (see, for example, [111). The `twist'
here is that the effect consists of drawing away resources to external projects rather than
imposing requirements, or constraining the project through technical and strategic
dependencies with other projects.

In addition to their observation on the breakdown of states, Bradac et al. observe that:

"... blocking tends to be more prevalent at the beginning and at the end of the
process. " ([18], p. 783)

This observation leads Bradac et al. to conclude that one should attack the blocking
factors in the requirements, high-level design and high level test phases of the process.
This also suggests that the requirements, high-level design and high-level test phases have

10

the most influence on software project schedule behaviour. Bradac et al. do not define

what parts of the project constitute the beginning and the end of a project (see chapter
three for more information). They do express an interest as to whether this conjecture is

valid for a wide variety of projects.

Subsequent research to Bradac et al. 's study

Bradac et al. advise caution on how their findings should be treated. They write:

"We reiterate our caveat about this data: Though they are real data, they are

reconstructed data of only one instance of the process, with some blurring of
the accuracy because of retrospection. We feel, however, that there are some
intriguing conjectures about our feature development processes that we hope

to validate with subsequent experiments. " ([18], p. 783; emphasis added)

Indications that these subsequent experiments occur are the publications by Perry et al.
(e. g. [92]) that report on the conduct of the time-diary study and the direct-observation

study, a publication by Ballman and Votta ([5]) that reports on simulations (rather than
investigations of actual behaviour) of meeting congestion, and two publications by

Dandekar et al. ([33,34]) that report on a process simplification exercise.

Perry et al. 's study ([92]; but see also [91,93]) appears to confirm the 40: 60 ratio, for a
designer, between being productive and waiting. Their evidence may also be used to

support the alternative interpretation raised above viz. that the `Not working, reassigned'

category potentially has more of an effect on the process than waiting.

Ballman and Votta ([5]) develop a model which relates the average waiting time for a

meeting to the number of meetings in developers' calendars. As the fraction of the
`population' of developers in the organisation required to attend the meeting increases,

and as the meeting generation rate increases, so the time between when the meeting was
arranged and when it can occur increases in a non-linear relationship. From this Ballman

and Votta argue that:

"A significant portion of an individual feature interval seems to consist of time lost

while developers wait for meetings" ([5], p. 123)

It must be emphasised, however, that Ballman and Votta simulate the effect of meeting
congestion on the time until a meeting actually occurs, and that they then use the results
of their simulations to imply that the time until a meeting occurs affects feature interval.

11

Overall, Ballman and Votta's investigation provides insights into the potential effects of

a lower process (i. e. scheduling meetings) on a higher process (i. e. the behaviour of a
feature's development process) and so complements rather than validates the work of
Bradac et al. and Perry et al.

Dandekar et al. ([33]) also draw upon the work of Bradac et al. ([17]) and Perry et al.

([92]) when they write:

"One of the primary problems in large-scale software development is the

time spent waiting for resources, responses, meetings, etc. One may be able to
fill in the intervening time productively, but for a particular sequence of

activities there may be a significant difference between the actual time spent

and the time that elapses before completion... " ([33], p. 3)

A closer examination of Bradac et al. 's paper indicates that Bradac et al. provide evidence

consisting of a time-line lasting 75 days for one developer, in which there were three
instances of waiting on reviews (lasting between four and seven days) and two instances of

waiting on experts (one lasting two days and the other lasting three days). While this

empirical evidence is intriguing, it does not seem to constitute a body of evidence that is

conclusive. Strictly speaking, Bradac et al. do not provide sufficient evidence from which
Dandekar et al. can claim that waiting is a primary problem in large-scale software
development. (It may be that because Bradac, Perry and Dandekar are all researching
within the same organisation, Dandekar et al. have access to evidence unpublished by
Bradac et al., perhaps unpublished for confidentiality reasons.) Rather than validating
Bradac et al. 's claims, Dandekar et al. assume those claims to be valid and use them to
direct their own research.

All four of the studies ([5,18,34,92] reviewed here were conducted at Lucent

Technologies and, so far as this author is aware, there are no independent studies that

seek to corroborate the findings of these studies. Thus, there is no independent support
for their conclusions. With this in mind, it is particularly important to emphasise Bradac

et al. 's caution with regards the quality of their evidence and how it should be treated.

It is also important to re-iterate the distinction between the time-usage of an individual
designer and the time-usage of the project, and the caveat that the project's time-usage

must exhibit the same 40: 60 ratio as the designer's time-usage for one (and possibly
more) of Bradac et al. 's conjectures to apply. Perry and his colleagues do not appear to
have subsequently investigated this caveat for the phenomenon of waiting, although
Ballmau and Votta's study provides some support for the caveat.

12

Van Genuchten's investigation of activities

Two years prior to the publication of Bradac et al. 's investigation, van Genuchten ([128])

published the findings of a related study. Whereas Bradac et al. focus principally on
intervals of time, and how those intervals of time are used (i. e. the states of working,

waiting or not working), van Genuchten focuses on activities and how much time they

use. Because of their contrasting perspectives, Bradac et al. are able to investigate

`invisible' tasks (cf. [82]) and visible tasks, whereas van Genuchten investigates only

visible tasks. Van Genuchten's study complements Bradac et al. 's study because both

studies investigate time usage, and the effect of waiting, but in different ways.

Van Genuchten ([128]) investigates reasons for why activities start later or earlier than

planned, why these activities last longer or shorter than planned, and why the effort

expended on activities is more or less than planned. Van Genuchten collects evidence on
160 activities across six representative projects in one software development department.

The average duration of an activity is four weeks and the average effort is approximately
100 person-hours. Van Genuchten discourages unjustified generalisations from his

findings, providing evidence from another department to demonstrate that the
distribution of reasons varies strongly for different software development departments.

Table 2.3.2 presents a simplified version of van Genuchten's classification of reasons,

together with an interpretation of these reasons from the perspective of waiting. All six

categories used by van Genuchten are shown in the table, but only those relevant to this
discussion are elaborated. One should be cautious about interpreting van Genuchten's

reasons as types of waiting when his study was not conducted with that perspective.

13

Table 2.3.2 Van Genuchten's classification of reasons

Capacity-related reasons
Code Reason From a blocked work perspective

11 Capacity not available because of Waiting on capacity to become
overrun in previous activity available

12 Capacity not available because of Waiting on capacity to become
overrun in other activity available

13 Capacity not available because of Waiting on capacity to become
unplanned maintenance available

14 Capacity not available because of Waiting on capacity to become
unplanned demonstration available

15 Capacity not available because of Waiting on capacity to become
overrun in other unplanned activities available

16 Capacity not available because of Waiting on capacity to become
overrun in other causes available

19 Other Waiting on capacity to become
available

Personnel-related reasons
not elaborated

Input-related reasons
Code Reason From a waiting perspective

31 Requirements late Waiting for requirements
32 Requirements of insufficient quality Waiting for requirements of

sufficient quality
33 (specifications of) delivered software Waiting for (specifications of)

late delivered software
34 (specifications of) delivered software Waiting for (specifications) of

of insufficient quality delivered software of sufficient
quality

35 (specifications of) hardware late Waiting for (specifications of)
hardware

36 (specifications of) delivered hardware Waiting for (specifications of)
of insufficient quality delivered hardware of sufficient

quality
39 other

Product-related reasons
not elaborated

Organization-related reasons
not elaborated

Tools-related reasons
Code Reason From a waiting perspective

61 development tools too late or Waiting on development tools
inadequately available

62 test tools too late or inadequately Waiting on test tools
available

Other
not elaborated

14

It is clear from van Genuchten's study that of those activities that start late,

approximately 80% of them start late for capacity-related reasons. Van Genuchten

explains that this was because many activities start late because of a delay in completing a

previous activity (i. e. reason 11). From a perspective of waiting, many activities start
late because they are waiting on a previous activity to complete, or waiting on resource to

become available from a previous activity. Van Genuchten also seems to suggest that

unplanned work, particularly unplanned maintenance work (i. e. reason 13), is an
important reason for activities starting later than planned. Clearly such unplanned

activities mean that resource becomes unavailable to conduct planned activities because

the resource is addressing unplanned activities.

For the remaining activities that start late, they- start late either because of input-related

reasons (approximately 15%) or because of tools-related reasons (approximately 5%). As
Table 2.3.2 indicates, all of the input-related and tools-related reasons can be interpreted

as types of waiting. The implication is that for those activities that start late, they all

start late because they are waiting on something.

With regards to the reasons for differences between the planned and the actual durations

of the activities, input-related reasons account for differences in 20% of the cases, and

capacity-related reasons account for differences in almost 40% of the cases. In total,

approximately 60% of the differences between planned and actual durations are due to
instances of waiting. Van Genuchten does not identify whether these differences were
'positive' (i. e. the actual duration was greater than planned) or 'negative' (actual duration

was less than planned) but it seems unlikely that durations are shorter than planned
because of waiting.

With regards to the planned and actual effort, Van Genuchten finds a prevalence for when
in the project actual effort increased over the planned effort. He writes:

"... the relative differences between planned and actual efforts increased for

the subsequent phases of the projects... " ([128], p. 587)

and for the planned and actual starts and durations of activities, Van Genuchten writes:

"... the delays [to the start of activities] and overruns [in the duration of, and
the effort for, activities] increased toward the end of the project. " ([128], p.
587)

15

This observation is consistent with Bradac et al. 's observation that waiting is more

prevalent at the beginning and at the end of a project.

Summary of research into time usage

Table 2.3.3 Summary of studies that investigate time usage

Investigation
Unit of
analysis Cases Method

Bradac et al. time segment one developer time-diary
[17,18]
Perry et el. time segment 13 developers time-diary & direct-
[91-93] across four observation

departments
Ballman & Votta meetings three artificial simulation
[5] 'projects'
Dandekar et al. activities the inspection value added analysis,
[33,34] process time usage,

alternatives analysis
van Genuchten activities six projects in activity analysis
[128] one

department

Overall, it appears that only a small number of studies have investigated actual time usage
in software development projects. These studies are summarised in Table 2.3.3. The

studies concentrate on describing the use of time at the lower levels of a project. None of

the studies explain the effects of time usage on project duration, although some of the

studies speculate what the effects might be. The lack of explanation is significant because

these studies, and this thesis, assumes that explaining actual time usage is an important

foundation upon which to explain project duration.

All of the studies employ a case-based research strategy, focusing on one or a few cases.
This raises concerns as to the applicability of the findings to other projects; a concern

recognised by Bradac et al. when they advice caution on how their findings should be

treated. (Bradac et al. also express an interest as to whether their conjectures would apply

to a wider set of projects.) All of the studies employ a priori classifications or models to

analyse their evidence.

With regards to the content of these studies, the studies distinguish between working, not

working and waiting states. Bradac et al. find that waiting accounts for 60% of the time

spent in the process (at a low level). An alternative interpretation is that not working
states, specifically the state of being reassigned to another project, may account for much
of this time. The frequency of time spent assigned to other projects then suggests that

16

external factors are an important influence on a project. Bradac et al. also investigate

when waiting is most prevalent, and suggest that reducing waiting during the requirements,
high-level design and high-level test phases are likely to be the most effective areas for

reducing project duration. Bradac et al. also outline the requirement for the project-level

processes to exhibit the same 40: 60 ratio as the low-level processes for blocked work to

affect project duration.

With one exception, all of the studies were conducted at Lucent Technologies, and they

concentrate on the possible impacts of blocked work. Only van Genuchten's study has

been conducted elsewhere and his study does not replicate, but rather complements, the
Lucent Technologies' studies. Furthermore, the Lucent Technologies' studies subsequent
to Bradac et al. 's study do not validate the observations of Bradac et al. but rather assume
them to be valid, and conduct further research based on those assumptions. There is,

therefore, a clear need for independent replication of the above studies, or testing of the

conjectures from those studies.

2.4 Opportunities and objectives for this research

Opportunities

The summary presented at the conclusion of the preceding section suggests a number of
opportunities for subsequent investigations. The first opportunity is to partially or
completely replicate one or more of the studies reviewed. The most valuable study to

replicate would be Bradac et al. 's study as this is the first study in the area, has not been

replicated, and has established assumptions upon which subsequent studies are founded. A

successful replication would strengthen both the claims of Bradac et al. 's study and the
claims of the subsequent studies that have built on Bradac et al.

A second opportunity is the investigation of higher-level processes. All of the studies of
actual time usage have, looked at the lower-level processes and there are no studies that
have looked at the higher-level processes within the context of schedule behaviour. With

studies of higher-level processes, the concept of `time usage' becomes more abstract as
the inquiry is no longer concerned with how individual's actually use their time, but rather
how teams, process areas and the project actually uses time.

A third opportunity is the investigation of the effects of the lower-level processes on
schedule behaviour. This would require a research design that investigated both the lower-
and higher-levels of the process. There appear to be no studies that have looked at lower-

17

and higher-levels of the process within the context of software project schedule
behaviour.

A fourth opportunity is the development of a theory of software project schedule
behaviour. As argued in chapter one, there is no established theory of software project

schedule behaviour, so the provision of a theory is desireable. The lack of studies of the
higher-level processes, and of the relationships between lower-level and higher-level

processes indicates that the development of a theory is premature.

Finally, given that the development of a theory of schedule behaviour is premature, there
is the opportunity to develop `conceptual scaffolding' ([141]). As with physical
scaffolding, the purpose of conceptual scaffolding is to support `construction', in this

case the construction of a theory. Conceptual scaffolding should not be confused with the

conceptual structure itself, and upon completion (or nearing completion) of the

conceptual structure, the scaffolding may be `thrown away'.

Objectives

Given the opportunities available for investigations in this area, the value placed on
Eisenhardt's requirement for an intimate connection with empirical reality, and the desire

to contribute to the systematic accumulation of evidence, the objectives for the empirical

component of this investigation are:

1. To replicate parts of Bradac et al. 's study. This will consist of a replication of the

types of waiting, and a test of Bradac et al. 's conjecture that waiting is more

prevalent during the end of the project than during the middle of the project.
2. To investigate actual time usage at higher-levels of the project, specifically at the

level of the whole project, and also at the level of process areas within the project.
3. To investigate the relationships between the lower-level and higher-level processes,

and their relationships to schedule behaviour.

The second two objectives will be addressed in two complementary ways. First, narrative
descriptions and explanations will be provided for both the characteristics of the project
and the process areas within the project. Second, more formal descriptions and
explanations, in the form of conceptual models, will be provided.

18

Chapter 3 Methodology
3.1 Introduction

This chapter discusses four methodological issues:

1. An appropriate research strategy for developing descriptions and explanations of

software projects and their schedules.
2. Heuristics for the design and conduct of case studies.
3. Some technical details relating to the selection of cases, the identification and

exploitation of appropriate sources of evidence, and the development of methods for

analysing the evidence in order to describe and explain behaviour.

4. Some operational details concerning the organisation of evidence relating to process
areas, and the replication of a part of Bradac et al. 's study.

Points 3 and 4 concern detailed information that might normally be explained together

with the actual analysis of the evidence (i. e. in chapters four through eight). This

information, however, is common to all the subsequent chapters (and underpins much of
the empirical analyses) and consequently it is more efficiently explained once here.

3.2 An appropriate research strategy

Because of the desire to develop descriptions and explanations of actual behaviour,

particular value is placed on Eisenhardt's ([39]) argument regarding the need for an
intimate connection with empirical reality. From this argument follows a requirement for

the systematic study of actual processes and, by implication, the study of particular
processes.

Of the three broad strategies for collecting and analysing empirical evidence (i. e.
experimental study, survey study and case study) it is widely recognised that the case study
research strategy is most appropriate for investigating particular real-world settings.

Benbasat et al. ([7]) draw upon a number of previous researchers' arguments and
definitions (i. e. [6,15,58,119,139]) to provide a useful summary of the characteristics
of a case study. These characteristics are presented here in Table 3.2.1. Simplifying the
points presented in the figure, a case study is an intensive investigation of one or more
entities within their natural setting.

19

Table 3.2.1 Benbasat et al. 's characteristics of a case study

Characteristic
I Phenomenon is examined in a natural setting.
2 Data are collected by multiple means.
3 One or few entities are examined.
4 The complexity of the unit is studied intensively.
5 Case studies are more suitable for the exploration, classification and

hypothesis development stages of the knowledge building process; the
investigator should have a receptive attitude towards exploration.

6 No experimental controls or manipulation are involved.
7 The investigator need not specify the set of independent and dependent

variables in advance.
8 The results derived depend heavily on the integrative powers of the

investigator.
9 Changes in site selection and data collection methods could take place as the

investigator develops new hypotheses.
10 Case research is useful in the study of 'why' and 'how' questions because these

deal with operational links to be traced over time rather than with frequency
of incidence.

11 The focus is on contemporary events.

Benbaset et al. 's characterisation of a case study clearly indicates the appropriateness of

the case study research strategy for investigating the objectives presented in chapter two

i. e..

"A case study allows the exploration of previously unexplored aspects of a

phenomenon. (Yin [140] argues that all three of the research strategies may be used

for exploratory studies.)

0A case study is ideally suited to the study of the actual behaviour of a phenomenon,

because the phenomenon is examined within its natural setting.

"A case study is oriented toward the intensive investigation of the complexity of the

phenomenon and so is ideally suited to developing an "intimate connection with

reality" ([39], p. 532). Accordingly, a case study should provide a solid empirical

foundation upon which subsequent investigations may develop theory.

"A case study may be used to replicate the investigations of another study. Kelly and

McGrath ([59]), for example, argue that multiple research methods should be used to

examine a phenomenon, because the strengths of each method compensate for the

weaknesses inherent in the other methods.

An inherent weakness with case studies is the difficulty in generalising their findings to a

wider set of cases. This weakness is addressed in the next section and again in chapter

nine.

20

3.3 Heuristics for the design and conduct of case studies

A number of papers have been reviewed in order to establish heuristics for the design and

conduct of case studies (i. e. [7,24,39,42,66,86,94,131]; a number of personal

communications with researchers were also conducted i. e. [23,43,44,67,81,86]). The

heuristics derived from these papers were organised into three sets: advice on the number

of cases to use, advice on the design of the case study, and advice on the building of
theory. The heuristics are presented in Tables 3.3.1 through 3.3.3.

Cases from a single site strengthen the internal validity of a theory, but one would prefer

cases from several sites in order to strengthen the applicability of the theory to a broader

set of cases. Heuristic #17 indicates that theories built from case study research are

essentially theories of particular types of situation. Thus, the complexity of the

phenomenon being observed, the limitations on the number of cases investigated, and the

variety of sites from which these cases are drawn all influence the degree to which one

can explain the behaviour of a wider set of cases.

Exponents of case-based research methodologies (e. g. [39,140]) argue that generalisation
is not based on the findings of the case study but rather on the theory for which the case
is an empirical example. One first demonstrates that the empirical evidence validates the

theory for a particular situation and then, through the use of replicated studies, that the

theory applies to other, specific settings. (This is why theories built from case study

research are essentially theories of particular types of situation.)

This investigation is not seeking to generate or test a theory, but it is seeking to provide
some degree of explanation. Because this investigation is not generating or testing a
theory, one might argue that not only is the investigation free from any obligation to

consider generalisability but would be inherently incapable of offering any findings that
do generalise (because, without a theory, there is no basis on which to claim
generalisations, and empirical generalisations are not possible with such a small sample of
projects). The conceptual models developed through this investigation do, however,

provide a basis on which some generalisation may be made. Furthermore, attention in

chapter nine is re-directed back to previous studies in an effort (which is partially
successful) to identify other empirical studies whose findings complement those generated
in this investigation. Therefore, although a formal theory is not exploited in this
investigation, conceptual structures are exploited and do provide some basis on which
generalisations may be made.

21

Z)

r. +

CAS

4. n

C

+: r
L

u

U

" _U

0

pUD
ÖCo
L "o

0 toc

CCS

C ai
92.

O 'a U

X33
UVÜ

UjO

Ü0
_w

w

L- C>

U '_O '0
C) o° 4I

B U

.r
E

0 U

o, M

'O

cý r

h

N

w

0

cv
3
r_ o
ö

J.
N
NL

V w°
oc

! sý3

ICL

Cß .0

GC

03

= 1Z3 -12

V

x

I-

3
0 x
.i
O

r-

M icn Q CO

C)

I-
0

ö

0

w
c°

ti
.
äaý
wN

h

00

GU

i. (}r

NN

eC G
U cC

C_ ý

y
U,
N
ß
U

O

O
CI,

N IM

i

Q
CC
U

"G

ýÜ "T

3
=o
0-

.ä

-NO
Öc

Ö

L Q% 4n

0 C) 9_

-0 cz M

y
SS Cn c

CZ C

-0 m ti

irr

r-, M
N
u

Gý
U CQ

ö

L

Im ce
U

r. a

tj ;
ÜU

O ^ O y U. .
ý C am
c C G).

r/i y
aý
ý

Ö
L b(

a

0 O L
w+ CA

y
O

RS L V1

3°
LL

w°
L

ce
i� O "

C1 "
OO
v(7

0OO
- ä

.5 r i C 02 (;

CL. m ý^ U , '0 C

r-,
u

3
aý L

yý_
i.. ý

Muj
3ý o cz
"' $

0

>
y

VVc

U O

^.
9) ö0

OD
p UE iz r_ V

^o ono, i

ýÜO ý Uý vNi ,
-. CA X+

Uy
ß

,wm
N tD(i

-z
k, O

0 c>
Ü y, U "- C)

fl
y ýn 0

ýC
(A eC

=

CU u rn 0 C) a, 3
cm o

r- E
=

=. = i ö
ýý 4ý .ý

ßa
fl� c0 U

Cý U D Uv ý 3 . º , ÜO

V- I' Is

a

ct

w

..
c U

U
C)

I-
L
0
a)

r-+

C)

r. +

R
i..

a)

0
C)
C)

0

CC
U

C4

U)

Oý
-w U yN

o

O
ed

= ^p
14 4.

0

y "C
"ý C

cC a)
G 'O
cC cC

Ov

cn -0

ºý
Ü

a)
., w 0
N

aq
4 N

N

N

0

on

L
w

O
Q

3Co
't

F"" ü

L
W

N

Cd

8-.
CL N.

wý0 ce
Ü

sue- NO

Q) Cl) c) 'CJ

44+
9) "L'

cC
CJ =

k.. 0 CL)

0
Cs"� ' -O M

"=
-

O =c4-.
m "- U0
ti

C
0

G) N vý

0 Ö

0=Oo. N
u4 00Z.,

CM) Iu I Iýü II
L N N N ; ;

Cl)
3 3 3

-9 -0 0 -0 iz to IID C
a° aýi äý äi ý* v v

w ýI

bA cJ
ýw

u
w

MV

ei
M

Em

cR
N
CC

Y

Cd)

U

O
L

Cr.. +

Uy

-0 j cu
-v 1

oý
cn y

y

N ý3
CC d

¢I
00

" U

ý L y

*Z >% CA M

't' ace 0 E2 Ov
w
y

CC y

-
_
_L "ß a

r+
.

3
'C . 1. - UL

OO

" U O vi

^
"ý 0

RS
yQ

"N } w+ G)

ý. + +"' . ice E) ec

O

y CC

UOy
. -p 0

L-
y as

C '.
L C Nec

C1 (

w
a
aý
O w
aý
O

Ü

0

3
b

N

Ri
r_

N

iý

7
Cý

! 15

LL

72

O

cUiý ^
cz U

ÜO
"L

r. +

N"
OU

Q) U
, º+ ,U

U
r-L

U

ýyw ýr

a3i
;ý

ewe Lý

COD . -O. (n

!!! I"' I"T

CC

N

O

r. +

w. +

r. +

..
O
co

fr
:U

t1.

p

In

"-

Z-

'0

ý
ö

V

r-
ce -a

0 cij 0=

"b+
V1

ct2 U'y

iii

3c

-Oý
Us

oA

Z

E-

L

c -0

Qi

L

CG

=Ü

2Ü

3..

1. v

ia)

M

'- V
ei

w

0

N
aý
0
L

y

H
CC
UO

O .=
t: =

Q
(n O.
a) ýn
OO
UO

is

Q)
L Q)

VL
C)

N
CZ

ý ý' w bA

L

.L

w

L 12-- -p C""E
E0LN

r+ _

IY
OO

1.0
Lp-

0
"E Cu

yL

O_ L2 LO C% ,

0 u

C)

r-
M

I

w

cn
w

ö
U

Q)

0
Q)

.0

r' L

4+ ý

io

0 w

0

to
a
to I, aý

w
o., 0
a

ýN
ý°

I-.

ýö

L
c bI

UN
Uk

Cý cý

cý M

ý.

WI

p

0oN

o0

L EI =

U (" o
o

CUý"a'
YC

U) s s ai

o"r ý. m Uj
CO
20

yU

.ýUN cC Z 'a U
Qw CZ

C)
r.
on

.i
ýs
0

W

önv;

L

O

CO ý

CA CU

p o')

r- oý M

"O
L

r

i c)

_y
W

ci
L

N
0

U

L

Qi
L
CC

Q)
L

0.

}, u

CC

WICH
U
w 0
L

O
U

Cw6 r''
"O >,

N. - t+.

N U,

UV

c ti
wV
c3

0- (1)

.. 0 y
U

UU

wÜO
ry

Iý

I0

ININýN

I-
L

w

0
U_

'Li

O
U

Ö
ä
k

w

With regards to the selection of cases, Pettigrew ([94]) suggests that one chooses polar

cases, extreme situations, critical incidents, and cases with high 'experience levels' (see

heuristic #7). In choosing such cases, however, one may select cases that are actually

quite unusual and therefore not particularly representative, consequently affecting one's

ability to generalise with the case.

Pettigrew also recognises that practical constraints limit the number of cases that can be

observed, the sites from which these cases can be drawn, and the time-frame within which

the cases can be investigated. For the current investigation, there is an approximately

twelve-month time-frame to conduct the evidence-gathering portion of the investigation,

and a further twelve-month time-frame to complete the analysis of the evidence.
Selecting projects that start and complete within the twelve-months of evidence-

gathering places a constraint on the kinds of project that can be investigated. This will

affect the potential applicability of a subsequent theory i. e. that the theory is applicable

to relatively short projects.

Fenton ([40]) provides some cautionary advice on the duration of an investigation:

"Sometimes research is designed and measured properly but just isn't carried out

long enough... the lonb term view led to conclusions very different from the

short-term view. " ([40]; p. 92)

and:

"Researchers must take a long-term view of practices that promise to have a

profound effect on development and maintenance, especially since the

resistance of personnel to new techniques and the problems inherent in making

radical changes quickly can mislead those who only take a short-term view. "

([40]; p. 93)

Against these cautionary words, twelve-month projects are still of reasonable length and
it is not uncommon for commercial software development projects to last for such
durations.

3.4 The selection of projects for case studies

Five projects were initially selected for case studies from a candidate set of 16 projects, all
taken from IBM Hursley Park. Almost immediately, there were problems gaining regular
access to two of these projects, and these projects were dropped as case studies and

25

replaced by a sixth project. As the evidence collection period progressed, it became

increasingly clear that it would be impractical to maintain four case studies (because of the
demands of collecting and analysing evidence from four cases), so the number of cases was
further reduced to two, here called Project B and Project C. Appendix BI provides a
description of the 16 candidate projects, the criteria for selecting the original five cases,

and more detail on the reduction of case studies from four to two.

3.5 Summary of the evidence collected

Table 3.5.1 Summary of evidence collected

Type of evidence Project B Project C
Interviews 8 9
Meeting minutes, of which: 51 76

- Project status meetings 49 N/A
- Design/Code/Test status meetings 0 37
- Feature commit and approval meetings N/A 34
- Senior management meetings 1 5

- Project review (post-mortem) 1 N/A
Researchers records of status meetings 2 N/A
Project schedules 1 2
Projector overheads (from presentations) 1 2
Project documents, of which: 6 7

- Plans 3 1

- Other documents 3 0
Risk assessments 2 2
Project `contract' 1 1
(including amendments for Project C)
Feedback workshop questionnaires 1 2

Total number of `documents' 73 101

Table 3.5.1 summarises the evidence collected for Projects B and C. As the table
indicates, naturally occurring evidence was supplemented by the conduct of interviews and

a feedback workshop following the completion of the project. `N/A' indicates that
information was not available from the project. Also, the researcher attended two project

status meetings for Project B, with the purpose of evaluating the degree to which the

minutes of the status meetings represent the actual content of those meetings. The
`learning curve' required to understand the discussion at the meetings meant that this

approach was unfeasible, and consequently it was not pursued. The inability to assess the

representativeness of the minutes is recognised as a threat to validity of this
investigation.

The primary source of evidence used in the analyses was the minutes of status meetings
(project status meetings for Project B and design/code/test status meetings for Project C),
and these were supplemented by information from interviews, project schedules and the
feedback workshop. The status meetings (whether project or design/code/test) are the

26

highest-level meetings within the respective projects, occur regularly (typically weekly or
fortnightly), are typically attended by representatives from process areas important to
the given project (e. g. design/code, test, marketing, finance, support; see below for a
clarification of this point) and are a naturally occurring phenomenon (so that the

researcher is not intruding on the project).

For Project B, project status meetings appear to typically last between 1.5 and two hours,

each producing about ten A4 pages of minutes. At every meeting, the first item on the

meeting agenda was a discussion of proposed additional design changes (each design

change is a set of requirements) for the project. Each design change was either rejected,

accepted or deferred for further investigation. The representatives of each process area

then reported on the progress of their area. Action Items were also recorded and their

progress monitored at each meeting. Overall, the minutes appeared to be structured

around the issues concerning the project.

For Project C, design/code/test status meetings appear to typically last between one and

1.5 hours, each producing about six A4 pages of minutes. The minutes were not structured

in a regular format like Project B. Proposals for new features were managed through the

feature commit and approval meetings (see Table 3.5.1; the minutes for these meetings

were very brief). Action Items and their progress were not recorded in the minutes.
Overall, the minutes appeared to be structured chronologically i. e. in the order of the

discussions that occurred at the meetings. Some recent research on the structure of

meetings, and their associated agendas and minutes ([37]), suggests that meetings, agendas

and minutes that are focused around issues, rather than chronologically, have a positive

effect on the outcome of a project.

Overall, the status minutes provide a broad view of the project over the duration of the

project. Naturally, minutes do not record all that was discussed at a meeting, or even

necessarily the most important issues, and such meetings are unlikely to discuss all the
issues occurring within the project at the time of the meeting. Consequently, there are at
least two levels of simplification with meeting minutes. First, in reporting the progress of

a process area, the representative of that process area may simplify the progress of that

area. Second, the minutes simplify the discussions that occurred at the meeting. Despite

these simplifications, the minutes provide a large volume of `rich' information about the
project over the duration of the project, and this evidence appears rich enough to provide
a substantive, longitudinal view of the software development process. Furthermore, the
minutes provide a level of detail that is unlikely to be collected from other sources of
evidence. Conversely, these other sources provide useful insights that are not provided by
the minutes.

27

One potential problem with analysing the minutes of the status meetings is that, as

already noted, Project B holds project status meetings, whilst Project C holds only

design/code/test status meetings. Project B is a larger project (see chapter five for more
information) with a larger number of distinct process areas, and representatives for each

of these areas. By contrast, Project C is a small project, with fewer distinct process areas.

The design/code/test meetings are attended by members of the design/code and test

process areas. It is likely that the content of the design/code/test meetings will be

different than the content of project status meetings. For the two projects, these two

types of meetings are still the highest-level meetings within the project. Status meetings

do not occur for every week of Project B or Project C. Section 6.2.2 presents more

information on the frequency of the status meetings for the two projects.

Interestingly, the minutes for both projects do not record any explicit comparisons
between the actual progress of the work and the planned progress, as represented in the

schedule and the work breakdown structure. It may be that these comparisons are made
but not recorded (note, however, that no such discussion occurred at the two meetings

attended by the researcher). Another possibility is that the comparisons occurred outside

the status meetings (which would be surprising because the status meetings for both

projects are an explicit mechanism for reporting the progress of each process area to the

rest of the project, and are the highest level meetings in the respective projects).

Table 3.5.2 Summary of interviews

Project Interview Id. Week Role of interviewee
Project B B. 001 8 Project Leader

B. 002 14 Business and Technical Strategy
B. 003 14 Project Leader
B. 004 15 Business and Technical Strategy
B. 005 16 Project Leader
B. 006 17 Lead developer / Project Assistant
B. 007 18 Lead developer / Project Assistant
B. 008 28 Project Leader

Project C C. 001 6 Project Leader
C. 002 8 Project Leader
C. 003 11 Project Assistant
C. 004 13 Brand and Technical Planning
C. 005 13 System Test Manager
C. 006 16 Project Leader
C. 007 25 Project Leader
C. 008 34 Project Leader
C. 009 39 Project Leader

Interviews were open-ended and semi-structured, and the questions prepared for the
interviews were dependent on recently analysed evidence (i. e. there was no standard

28

template of questions). Table 3.5.2 provides a summary of the interviews. A number of
interviews were recorded (some interviewees asked not to be recorded) and notes were

taken at all interviews. It is important to record interviews in order to aid subsequent

analysis and to provide reliable evidence (e. g. verbatim quotes) where these are required to

support an argument (personal communications with researchers i. e. [23,43,44,67,81,

86]). It is not necessary that the recordings of interviews be transcribed (and they were

not in this investigation). For reasons of confidentiality, notes from interviews are not
included in the appendices to this thesis.

The feedback workshops were conducted approximately one year after the completion of

the two projects. For Project B, one workshop was conducted. For Project C, two

workshops were conducted (the second workshop addressed outstanding issues from the

first). For both projects, the respective Project Leader and Project Assistant were present

at the workshops. The workshops took the form of exploring the study's findings with

the Project Leader and his assistant, so as to validate and clarify the findings. Van

Genuchten ([128]) adopted a similar approach in his study. In this way, the feedback

workshops provide one method of validation of the findings from this investigation. The

feedback workshops also provided additional information to help clarify and extend the

analysis in this investigation.

Conducting the workshops some time after the project's completed was advantageous
because project members are likely to have a more objective perspective of their project.
Also, with the products in the market for about a year, the project members were able to

assess the success of the products. Against these advantages, project members were unable

to remember certain information, which meant that certain questions asked during the

workshops could not be answered.

29

3.6 Methods for analysing the evidence

Two methods for analysing the evidence were used in this investigation. The first method
is concerned with developing descriptions and explanations of the behaviour of the

projects and their schedules. The second method is concerned with replicating part of
Bradac et al. 's investigation.

A method for developing descriptions and explanations of behaviour

Narrative description
and explanation

Project Process area

Project Process area

Formal description
and explanation

Figure 3.6.1 A method for developing descriptions and explanations of

software project behaviour

Descriptions and explanations of behaviour were developed through an iterative two-by-

two matrix of analysis, as shown in Figure 3.6.1. More specifically, narrative and formal

descriptions and explanations were developed for both the behaviour of the project as a

whole and the behaviour of the process areas within the project. The project and the

process area are the units of analysis for this set of methods (cf. heuristic #11).

This kind of analysis is an intense manual process, which is also iterative and intuitive in

nature, requiring the researcher to constantly search and re-search the evidence for

particular items of evidence relevant to the respective descriptions and explanations.
This process has clear similarities with Benbaset et al. 's ([7]) eighth characteristic of a
case study (see Table 3.3.1) i. e.

"The results derived depend heavily on the integrative powers of the
investigator. " ([7], p. 374)

30

two
C

CC
E
E

a,
0

- v

04

VD -U 0 to

ký w w Z
ý

do

h

A u2
"

Ö C C O+ O
ýU

- ce
r E

V V N y
V] .1

y 4ý
N

y ft3 Vf

0OO C) -- -
,ý

r" in = c"C
vý .äa, Ow c° cin

Q m
0

cu cu &-
m Co

9)
- N 9) v rA Ü

rjj
v

C)

O aý _ 2 °= OC v Ü

ý .ý "ý °' > w i
ow 3 3° O N "- ' bA

. - `n U -0 N O oO L O rA N to
l= "

(A u to
OE cC ce

°
a. Y O CA

yw
" ce

! wn' d to
O .-M ee o f. ' > er, c cc o ö 3 o

vý = °-3 ä , OZ ýUý cr ýCl ö ý ö to ö>
o --ä

cnH¢ wL a i
cz, U3 ä y 3

c, '' ä . º E-
(L) IM IM

`n ýy Lý U O O i c:
OU

.°
Ö EO

. +r
0 ° L CCS

u(4.
0

"c mo °
ei
P

ö o .
ä X Ct

° >', -
x Ö

ý "cu M RS U CC -Z L. - ' C) u

C
O

p
3

L.

Ü

4) C. 4
d

a W

CA
v w
y
i

irr
u

i
CC

U

rA

c:
Q

... c

d

This method of analysis satisfies some of the heuristics given in section 3.3 (i. e.
heuristics #16 and #23) but finds difficulty satisfying other heuristics given in that

section (i. e. heuristics #8 and #10). Benbaset et al. add:

"Using multiple methods of data collection, however, offers the opportunity for

triangulation and lends greater support to the researcher's conclusions. " ([7], p.
374)

As explained in section 3.5, multiple sources of evidence were used in this investigation,

and so lend greater support to the conclusions from this investigation.

The formal explanations (i. e. models), resulting from this analysis, are presented and
discussed in chapter four. The narrative descriptions and explanations are presented and
discussed in chapters five through eight. The formal and narrative explanations are then
integrated in chapter nine. Table 3.6.1 provides more detail on the various analyses that

are conducted as part of this investigation.

A method for replicating Bradac et al.

Bradac et al. ([18]) observed that, for the one designer they studied:

Waiting is more prevalent during the beginning and end of the project, rather
than during the middle of the project.

Three sets of evidence collected from Projects B and C provide an opportunity to test

this conjecture. The three sets of evidence are:

" Reports of waiting

" Reports of poor progress

" Reports of outstanding work

Reports of waiting most clearly relate to Bradac et al. 's investigation of waiting. Using
the model of capability, presented in chapter four, the other two sets of evidence can also
be used to test this conjecture.

The method for testing Bradac et al. 's conjecture consists of collecting evidence on the
frequency of waiting, poor progress and outstanding work per week, for the duration of
the project; to organise this evidence into three sets, representing the beginning, middle
and end of the project (see section 3.7 for a definition of the beginning, middle and end of

32

a project); and then to compare (using a Mann Whitney U test) the median frequencies of

reports for the middle and end of the project. If the median for the end of the project is

significantly greater than the median for the middle of the project then the waiting, poor

progress or outstanding work is considered to be more prevalent during the end of the

project than during the middle of the project (and Bradac et al. 's conjecture is confirmed).
Mann Whitney U tests were chosen because it is not clear that the samples of reporting

evidence are drawn from populations with a Normal distribution.

Table 3.6.2 Comparison of Bradac et al. 's research design with this
investigation

Feature of the
research design Bradac et al. 's study This investigation

Focus of inquiry Local process (designer) Process areas
Duration of evidence 30 months Approx. 12 months per

project
Source evidence Designer's actual behaviour Minutes of status meetings
Analysed evidence Designer's recorded Evidence extracted from

behaviour source evidence
Amount of evidence All the evidence Waiting, poor progress and
collected that was outstanding work evidence
used
Application of
Bradac et al. 's
characterisation

Numbers of samples

Classification applied by
designer in `real-time'

One sample from one
project

Retrospective classification
of evidence by researcher
after the completion of the
project
Six samples, three from
each project

Table 3.6.2 compares the designs of Bradac et al. 's study and the current investigation.

Differences in results between Bradac et al. 's study and the current study may partly be

due to differences in the research designs.

3.7 Operational details of the investigation

Organising the evidence relating to process areas

In order to investigate the characteristics of waiting, outstanding work and the progress of
work (so as to replicate parts of Bradac et al. 's study and to investigate the behaviour of
process areas) the minutes of the status meetings were searched, using a text editor, for

particular phrases.

33

Table 3.7.1 Phrases for searching the minutes of status meetings

Evidence Phrase Derivatives (examples)
Reports of waiting wait waiting, awaiting, await

block blocked, blocking
held up

hold holding (holding up)
Reports of outstanding work outstanding

backlog
Reports of progress of work progress

A number of phrases were acceptable for each set of references. These phrases are

presented in Table 3.7.1. Each phrase also `encapsulates' derivatives (e. g. stemmed

words) of that term. There were search options in the text editor2 allowing a search on an

entire word (e. g. select only the term `wait') or on embedded words (e. g. select such terms

as `await' or `awaiting'). The terms presented in Table 3.7.1 are not exhaustive, in that

they do not contain all the different kinds of terms that could possibly represent

references to waiting, outstanding work or progress. The table is complete in that it lists

all of the terms that were used in the searches.

As the text editor could search across a series of text files, all of the text files for a

project were stored within the same directory, and the search was conducted across all
files within that directory. Thus, one search would search all of the evidence for one

project. For each project, three searches were conducted, one search for each of the three

sets of references.

Upon completion of each search, the text editor presented a list of each occurrence of a
term (or a derivative of that term), together with the text file within which that term

occurred. If there was more than one occurrence in a text file, the text editor would list

each of the occurrences of the term. This produced an initial set of all references. This
initial set was then refined based on three criteria:

1. Whether the term was in an appropriate context. For example, sometimes
occurrences of the term `block' referred to design issues (e. g. a STATE block)

rather than process issues. Such occurrences were removed from the set.
2. Whether there were duplicate terms within the same `chunk of meaning' (e. g. a

sentence). For example, the phrase "work is held up because we are waiting on a
fix" would be selected twice by the text editor. These duplicate references were
removed.

2 The text editor that was used was BBEdit Lite version 4.1 from Bare Bones software (http: //web. barebones. com)

34

3. Whether the term was identified within the context of an action item. For
Project B, Action items were recorded twice in the minutes of a meeting: first, at
the `point' in the minutes where the action item was raised; second, in a separate
summary at the end of the minutes, where all action items (opened in the

meeting, outstanding from previous meetings and closed in the meeting) are

recorded. Duplicate references of this sort were also removed from the list.

Having refined the set of references, each of these references (together with their

surrounding `chunk of meaning') was then copied into a separate text file and labelled

with the week number in which it occurred. Each item was then classified in various ways
(see chapters six through eight for more information on the classifications).

Additional analyses for the waiting evidence

With regards to the types of work on which a process area was waiting, two classifications

were used. The first classification was `inductive' in that the types were first identified

from the items of evidence for each project, and then aggregated across the two projects
(so as to form a common classification system across the two projects). This first

classification was then mapped to Bradac et al. 's classification so that parts of Bradac et

al. 's study could be investigated. Appendix B3 provides information on the first

classification and their mappings to Bradac et al. 's classification. There were two reasons
for using two classifications. First, Bradac et al. 's classification may not be a useful

classification system for the evidence collected in this study. Second, the first

classification may provide opportunities for insights into the `Waiting on other' category

of Bradac et al. 's classification.

Adjusting Bradac et al. 's waiting evidence

Because this study is only investigating references to waiting, whilst Bradac et al. studied
observations of working and waiting, some adjustments need to be made to their

percentages of time spent waiting. Rather than using percentages of types of waiting
relative to the total time (i. e. waiting time and working time), the evidence was adjusted
so that the analysis uses percentages of types of waiting relative only to the time spent
waiting (i. e. excluding working time).

35

Table 3.7.2 Adjusted percentages from Bradac et al. 's study

State % total time % waiting
Waiting on the laboratory 2.7 4.5
Waiting on an expert 3.1 5.1
Waiting on a review 9.2 15.1
Waiting on hardware 1.0 1.6
Waiting on software 1.9 3.1
Waiting on documentation 2.4 3.9
Waiting on other (also known as Other) 40.7 66.7

Total 61.0 100.0

Table 3.7.2 summaries the adjustments to the percentages of time spent waiting. The

middle column presents the original percentages. The column on the right presents the

adjustments to the percentages. With the adjusted percentages of waiting it now becomes

clear that almost 67% of the time spent waiting was spent in the `Waiting on other'

state.

Mapping phases of Projects B and C to Bradac et al. 's study

As explained in chapter two, Bradac et al. identified several tasks that the designer they

studied might be doing. In observing that waiting is more prevalent during the beginning

and end of a project, rather than during the middle of a project, Bradac et al. appear to

map their tasks to the beginning, middle and end of a project. Bradac et al. do not,
however, clearly define which tasks mapped to which phase of the project.

Table 3.7.3 `Mapping' Bradac el al. 's tasks to the phases of Projects B and C

Tasks in
Bradac et al. 's study Part of the project

Phases of
Projects B and C

Estimate and Investigate Beginning Plan
Plan Development Beginning

Requirements Beginning
High Level Design Beginning
Low Level Design Middle Design/Code
Write Test Plans Middle Functional verification

Code Middle
Inspections and Walk-throughs Middle

Low Level Test Middle
High Level Test End System test

Customer Documentation End
Support End

Project Retrospect End

Table 3.7.3 presents the tasks identified in Bradac et al. 's study, together with an
interpretation of which tasks, in Bradac et al. 's study, and which phases, of Projects B and
C, `map' to the beginning, middle or end of the project. The table indicates that, for

36

Projects B and C, the plan phase maps to the beginning of the project, the design/code

and functional verification phases map to the middle of the project, and the system test

phase maps to the end of the project. Although the plan phase maps to the beginning of

the project, this is not to say that planning does not occur throughout the duration of the

project. For example, Rook writes:

"While the major effort on planning is required during the project initiation

phase, planning continues from phase to phase, as further details become

apparent, and as changes are introduced. " (see [75], chapter 27 page 19)

37

Chapter 4 Three analytic models
4.1 Introduction

During the collection and preliminary analysis of the evidence from Projects B and C,

two models were developed to help subsequently organise and analyse the evidence. The
first model, a simple model of software project schedule behaviour, is used to describe and

analyse characteristics of the project, at the level of the project. This model is used

primarily in chapters five and nine. The second model, a model of capability, is used to
describe and analyse characteristics of the process areas within the project. This model is

used primarily in chapters six through nine. The two models have been integrated into a
third model, the integrated model of schedule behaviour and capability. This model is used
in chapter nine.

4.2 A simple model of software project schedule behaviour

Remaining
duration

Workload Capability

Figure 4.2.1 A simple model of software project schedule behaviour

Figure 4.2.1 presents a simple model of software project schedule behaviour, consisting of
relationships between three constructs. Remaining -duration is defined as the period of
time for which the remainder of the project will last, at time t of the project. Workload is
defined as the number of units of work remaining to be completed, at time t of the
project. (There are a number of potential measures of units of work, e. g. lines of code,
modules, function points, features etc., and there are benefits, such as triangulation, in

exploiting these different measures.) Capability is defined as the ability to complete n
units of work per unit time, at time t of the project. Capability incorporates concepts of
productivity and resource.

38

The logic of the model is that a change in one of the constructs will affect a change in

one or both of the other constructs. The relationships of particular interest to the current
investigation are:

" An increase in workload will lead to a proportional increase in remaining
duration, unless there is a proportional increase in capability. Examples of an
increase in workload are the introduction of new requirements and rework.

"A decrease in capability will lead to a proportional increase in remaininb duration,

unless there is a proportional decrease in workload. An example of a decrease in

capability is skilled personnel leaving the project.

The stability of the project's schedule is dependent on the `balancing' of the project's

capability and workload. Within the context of this model, the difficulty in managing

projects is recognising what changes need to be made to capability or workload in order to

maintain the stability of the schedule.

In principle, the model can be applied to various aspects of the project e. g. to the project

as a whole, to a particular process area such as design, or to a particular part of the

product such as a feature. Three of these aspects are explored in chapter five, but the

applicability of the model to various aspects of a project still requires further

investigation. The development of the model has been documented elsewhere ([99,100]).

Examples of the logic of the model

Two brief examples of the logic of the model are examined. In the first example,

workload increases. In the second example, capability reduces.

1. Consider a project with 12 units of work and a planned project duration of 12

months. The mean capability for the project is one unit per month. If, after the end

of six months, an additional unit of work is added to the project (for example,
through new requirements, rework or undiscovered work) then the project has 7 units

of workload, and will need to increase its mean capability to 7/6`x' (i. e. 1.167) units per

month to complete the work in six months time.

2. Consider, again, a project with 12 units of work and a planned project duration of 12
months. The mean capability for the project is, again, one unit per month. If, after
the end of six months, capability reduces by '/6`h (i. e. 0.167) units per month (for

example, because of the departure of personnel to another project) then the project

39

would need to reduce its workload from six units to five units in order to complete the

work in six months time.

Support for the model

Some support for the model of schedule behaviour is available from previous research.
Olsen ([83]) distinguishes between change demand (comparable to workload) and change

service (comparable to capability) and uses a theoretical metric, the change point, as a

measure of change demand rate and change service rate. Schriber and Gutek ([107]) define

pace, a concept similar to capability, as:

"... the rate at which activities can be accomplished (i. e. the speed of activity or
the number of activities that can be done within a given deadline). " ([107]; p.
643).

Blackburn et al. ([10]) distinguish between development speed and productivity, and they

argue:

"Development speed and productivity are not the same because low productivity

organizations can be quicker to market by throwing human resource - armies of

programmers - at the project. " ([10], p. 876)

For two projects with the same workload that complete within the same duration, but one

that is more productive and one that has more resource, both projects have the same

capability. (It is likely that the more productive project will incur less costs.)

Rook's (see [75]) definition of a work breakdown structure is also closely related to the

concept of workload. McDermid writes:

"The work breakdown structure (WBS) is a product-oriented task hierarchy of all
the work to be performed to accomplish the project contractual objectives. The

products may be elements of software, hardware, documents, tests, reports,
support services, or other quantified elements of the objectives. " ([75], chapter
27 page 20)

As noted by McDermid, a work breakdown structure identifies all quantified elements of
the project's contractual objectives. In contrast to a work breakdown structure, the
concept of workload incorporates qualitative elements and non-contractual objectives
(which still introduce work into the project). The concept of workload also incorporates

40

invisible work. Nardi and Engestrom ([82]) edit a special issue of the journal Computer

Supported Cooperative Work that investigates the nature and structure of invisible work.
They write:

".., invisible work takes many guises: as tacit and contextual knowledge, as
informal social networks, as expertise acquired by old hands, as long term

teamwork. " ([82], p. 2)

The model also finds some implicit support from project managers at IBM Hursley Park.

For example, the Project Leader of Project A states:

'First determine the work to be done; then determine our ability to do that work;

then build a plan from these' [Interview A. 008. AR]

Caveats to the model

As already explained, the model was developed during the collection and preliminary

analysis of the evidence. This has both advantages and disadvantages. Yin ([140]), for

example, would disagree with this approach, arguing that the model should be developed in

some form prior to the collection of the evidence. By contrast, Strauss and Corbin

([120]), as another example, would favour the general approach taken here, but they

might disagree with the specific approach, arguing that it is not sufficiently `grounded' in

the evidence. These two examples indicate that the method by which the model was
developed is a source for debate. Subsequent analysis and discussion (see chapters five

through nine) indicate that the model is useful for describing, organising, explaining and

communicating the behaviour of Projects B and C. The important issue is to recognise

the model as a conceptual tool with both strengths and weaknesses, and with

opportunities and requirements for subsequent development and validation.

Distinct from the methodological concerns, practical constraints meant that evidence had

to be collected (because the projects had started) before a priori models could be fully

developed (cf. heuristic 414 in Table 3.3.2). Also, it was considered important to develop

a model to which practitioners could relate, because this would increase the likelihood that
the model would reflect empirical reality, and be useful to practitioners. This necessarily
requires that one collect and analyse evidence before developing a model.

Although the logic of the model relates the changes in one construct to the changes in
the other two constructs, there is no explicit recognition of how a construct would change
in the first place. Other, sometimes more subtle, processes are assumed to cause an initial

41

change. The model of capability identifies some of the subtler processes for the capability

construct.

Whilst the model recognises relationships between workload, capability and remaining
duration, it is not able to distinguish the degrees of change within each construct.
Consequently, proportional changes between constructs cannot be assessed. In one respect
this is accepted as a limitation of the model imposed by the kinds of evidence that are

naturally available from the project. This limitation is overcome, to some degree, by the

collection and analyses of various sources of evidence from the project, such as summary

status reports of the progress of features. In another respect, however, a model that only

represents precise and specific changes would exclude much, if not most, of the qualitative

evidence that has been collected. This is undesirable. Consequently, a degree of rigour is

sacrificed in the model to improve its utility. In this way, the model is more tolerant of

the qualitative evidence and, consequently, the volume and content of the qualitative

evidence can be better exploited.

Finally, no distinction is made, at this stage, between the actual, desired, planned and

perceived values of remaining duration, workload, and capability. As indicated above, and

within the context of the model, the difficulty in managing projects is recognising what

changes need to be made to capability or workload in order to maintain the stability of

the schedule. This is a `conflict' between the planned, actual, desired and perceived values

of the three constructs.

Problems with the model

The concepts represented in the model, in particular workload and capability, and the

relationships between these concepts are extremely difficult to formalise effectively. For

example, certain events in a project (such as the automation of a task) may be treated as

a reduction in workload or an increase in capability. Also, there are many different types

of work. Design work, considered an intellectually intensive task, appears to be very
different from controlling a test library, which is considered a clerical task (cf. [461). A

common measure of the workload involved with different types of task appears to be
impossible to define (which is presumably why Olsen settled for a theoretical metric).
Such problems do not prevent the investigation of these constructs, but they do limit the
kinds of insights that one can derive from such investigations. For example, because of
the difficulty in formalising these constructs, reliable prediction systems are extremely
difficult to develop.

42

4.3 A model of capability

In addition to the model of software project schedule behaviour, a second model emerged

from the preliminary analysis of the evidence. This model represents three constructs

relating to capability. The model is an attempt to relate previous research reviewed in

chapter two to the evidence collected from Projects B and C.

- Capability f-

V
Poor progress Waiting

Outstanding work

Figure 4.3.1 A model of capability

Figure 4.3.1 presents the model of capability. The main relationships are shown with solid

lines. The broken lines suggest possible relationships. The model has the following logic:

1. Two types of imbalance between workload and capability (workload is not shown in

Figure 4.3.1) lead to the poor progress of work. The two types of imbalance are those

identified in section 4.2 i. e.

" An increase in workload without a proportional increase in capability.

"A decrease in capability without a proportional decrease in workload.

2. Poor progress leads to outstanding work.

3. Outstanding work leads to waiting elsewhere in the project (either within the same

process area or in another process area). This is because some output has not been

produced when it was planned or because resource was reassigned. With the model,

waiting points to subsequent threats to capability, and reflects preceding imbalances

between workload and capability.

4. Because another part of the project has not received an input (or resource) when

planned, it must wait on that input (or resource). The waiting threatens the capability
of that other part of the project i. e. there is the potential for a reduction in capability
because another part of the project is unable to progress.

43

5. Lower actual capability leads to an imbalance between workload and capability. This

then causes poor progress, and the logic returns to point 1 above. (See section 4.4 for

a discussion of the circularity of the logic of the model.)

4.4 Integrating the models

Remaining
duration

Workload Capability

Waiting

Poor progress

; III uSISJ, c

Figure 4.4.1 An integrated model of schedule behaviour and capability

Figure 4.4.1 integrates the model of software project schedule behaviour with the model

of capability. It also indicates where studies of actual time usage (reviewed in chapter two)

are relevant. In the figure, the integrated model explicitly indicates that poor progress is a
function of workload and capability.

The integrated model partially satisfies one of the objectives of this inquiry (see chapter

two), by relating lower-level processes (i. e. relationships within and between process

areas) with higher-level processes (i. e. relationships at the project-level), and through this
integration suggesting the possible effects of lower-level processes on software project

schedule behaviour. The objective is only partially satisfied, however, because these

models have yet to be formally validated.

With the integration of the model of capability and the model of schedule behaviour, the

constructs of the model of capability must also be defined dynamically i. e. poor progress
becomes poor progress occurring at time t in the project, outstanding work becomes

44

outstanding work occurring at time t in the project, and waiting becomes waiting occurring

at time t in the project.

The effect of waiting may also be influenced by the level of the process and hence the

granularity of the work. Bradac et al. focused on a designer waiting on, for example,
designs to be delivered from the library. In such an example, the units of work cannot

easily be further divided. By contrast, chapter five shows that when the design/code phase

actually completes late, both projects start their test phases when planned. At the phase-
level, work can be further divided: some of the design/code work will have been completed

and this can be passed to the test phase. Phrased another way, work at the phase-level is

not discrete in the way that work at the individual level is. This will affect the impact of

waiting, as Bradac et al. recognised with their requirement for the global process to be

`consonant' with the local process.

It is clear from Figure 4.4.1 (but also Figures 4.2.1 and 4.3.1) that the model consists of

two sets of circular relationships: one involving the workload, capability and remaining-

duration constructs; the other involving the poor progress, outstanding work and waiting

constructs. These circular relationships may be modelled as feedback systems in system
dynamic models (e. g. [2,41]). The feedback relationships may have delays between the

cause and effect. Modelling the feedback relationships is beyond the scope of this thesis

and stands as an opportunity for further research.

4.5 Alternative models

Some attention was directed at the development of alternative models of schedule
behaviour and capability. These included mathematical models using differential

equations, system dynamics models (which also involve, at their core, differential

equations) and queueing models. While all of these types of models are interesting, and
may provide valuable insights, the rigour of these models means that they would demand

types of evidence (i. e. well-defined, quantitative evidence) that is not readily available
from Projects B and C. This relates back to a point made earlier i. e. that a certain amount
of rigour is sacrificed to improve utility.

Also, some of the constructs presented in the model of schedule behaviour and the model
of capability may be defined differently. In particular, the `outstanding work' construct
may not just refer to work that should have been completed but hasn't been completed,
but may also refer to work that is yet to be done. As a manager approaches a deadline,
they may consider all of the work that they have left to do, some of which may be work
that should have been completed by that stage, and some of which is work that was

45

planned to be completed in the remaining period leading up to the deadline. With this
definition, references to outstanding work become indicators of a manager evaluating
their ability (and probability) to achieve their goal. Similarly, the poor progress construct

may be more directly related to only capability, rather than a ratio of workload and

capability.

These alternative models and definitions of constructs reflect the complexity of the

phenomena being observed and the difficulty in properly representing that complexity.
The alternative models and definitions stand as opportunities for further research.

4.6 Summary

Two separate models have been developed to help organise, analyse and communicate the
behaviour of Projects B and C. These models have also been integrated, in order to show
how lower-level processes might affect higher-level processes and the schedule behaviour

of a project. The two models were related to previous research, and they will be used to

explain behaviour at the level of the project and the level of process areas.

46

Chapter 5 Project-level behaviour
5.1 Introduction

This chapter describes and explains the project-level behaviour of Projects B and C. The

model of software project schedule behaviour is used as a basis for these descriptions and

explanations, and is applied from three different perspectives:

" The socio-technical contexts of each project (i. e. considering the

social/organisational and technical issues, and how these issues interact).

" The actual progress of each project.

" The tactics used to manage each project.

Chapter nine relates the analyses presented in this chapter with the analyses presented in

chapters six through eight.

The figures presented in this chapter attempt to efficiently communicate a large volume

of qualitative and quantitative evidence from a variety of different sources. The figures

are based on Miles and Huberman's ([79]) advice to organise multiple sources and types of

qualitative evidence according to time. Also, the visualisation of evidence from a number

of different sources (by placing that evidence within the same figure) may reveal subtle

relationships between aspects of a project ([124,125]). A complete explanation of the

structure and notation used in the figures is presented in Appendix B2.

5.2 The socio-technical contexts of Projects B and C

Project B

Project B is one release of a middleware transaction processing system (here known as
Product B) that operates on mainframe computers. Other versions within the `family'

operate on mid-range machines and workstations. The release preceding Project B,

release B-1, introduced new transaction logging functionality that required specific
hardware to operate; hardware that was not commonly used by customers. Project B-I

was also a re-packaging of the middleware product with a systems management product
(here known as Product BS) that manages the concurrent operation of multiple instances

of the middleware product.

47

Order of project initiation

Project B-1 Project B+1 Project B

Release B-1 Release B Release B+1

Order of delivery of release

Figure 5.2.1 The relationship between three releases of Product B

The product area recognised that the requirements of specific hardware for transaction

logging restricted the product's market, and they needed to correct this issue quickly.

Because major releases of the product typically occur in a rhythmic cycle of

approximately 18 to 24 months (cf. [20]), a minor release was required to deliver a

software alternative to the hardware-based functionality. The primary purpose of Project

B was to deliver this software alternative. In addition, Project B also provided an

opportunity to deliver some functionality that should have been delivered in release B-1

and some functionality that was planned to be delivered in release B+1. Note that Project

B+1 actually started before Project B. Figure 5.2.1 illustrates the relationships between

the three projects.

Project B recognised that it was more effective for the software transaction logging

functionality to be provided via the operating system rather than within Product B itself.

This was because the functionality would be more efficient to develop, but also because

the product would perform more efficiently when in operation. The operating system is

maintained and developed by a product area external to IBM Hursley Park but within the

corporation. The external product area designed and coded the transaction logging
function and Project B tested it. Project B is also one of four successive projects which
are costed as a group. This arrangement might affect the planned staff levels for Project
B.

Overall, Project B was considered a success and, as one criterion of this success, the
release was delivered when originally planned. Closer inspection of the project indicates
that at two features were not delivered with the product, and that the quality of one of
these features was lower than desired when it was finally delivered to the market (via the
World Wide Web) some weeks later.

Certain elements of the project's socio-technical context clearly relate to workload and
capability. With regards to workload, the strategy adopted by the Project Leader was to

48

limit the changes that might occur on the project. The Project Leader, `BM', described

the strategy he adopted for managing the project:

"... my stance is that I'm accepting no ...
[design changes] - those are the words I

use. Minimum change on this project is the most important thing. So, for

example I'm running a... [Defect Screen Team]... from day one. And the first

topic of my weekly status meetings is [design changes], where I reject them all... "

[Interview B. 001. BM]

And, in the same tone:

"When I did the concept I said if anything impacts the base of the code it will be

rejected... All the team leaders have done their most to minimise the impact to

the base... I'm minimising my risk yet again... " [Interview B. 001. BM]

But the Project Leader conceded that:

"There are some... [design changes] we have to do. But I am accepting no more

...
[design changes]. " [Interview B. 001. BM]

With regards to capability, the structure of the project's management team helps to

reduce communication and co-ordination overheads. During the progress of Project B

(and Project C), a new set of business processes were introduced across the laboratory.

The Project Assistant, `BF, explained some of the beneficial effects of this new process:

"[The new business process is]... good because it made individuals more

accountable... If people are not accountable, then the project will drift. With

[Product B], there is a real knock-on effect. If development slips, then

[functional verification] will slip, then system test, etc. [With the new business

process], we're more of a team. Barriers are being broken down. Now, strategy,
finance, system test etc. - everyone is at the same meeting, working together,

communicating with each other, co-ordinating. " [Interview B. 006. BF]

With the new business process, the project management teams are multi-functional teams

comprising representatives from each of the significant process areas of the project. The

Project Leader takes a much broader view than any of the particular representatives. The

Project Leader gave his interpretation of his role:

49

"As a [Project Leader] my role is not just development. I'm concerned with a

much broader set of things. [BW] is development... so am I worried about
development? No, not really, that's [BW's] problem. I've got enough problems

on a grander scale. " [Interview B. 001. BM]

There is also a close resourcing relationship between Project B and Project B+1 which

potentially affects the capability of both projects. A senior member of the project

explained:

"... resource issues cross the boundaries of [Project B] and [Project B+1] because

the two projects/products are closely linked. If [Project B] is impacted by

resource, then this will affect [Project B+1]" [Interview B. 002. BA]

This is consistent with a comment made by the Project Leader:

"My view is to deliver on a date, so as to release resources for [Project B+1], but

also to maintain quality, and provide some functionality. " [Interview B. 001. BM]

Resourcing clearly leads to the inter-dependence of projects, and indicates how project

schedule slippage has affects within the organisation as well as affects on sales etc. to

customers. There are similarities here with Perry et al. 's ([92]) recognition that designers

may not be working on their planned work because they are assigned to a higher priority

project (see chapter two for more information).

Project C

Product C is a `local', cross-platform, middleware transaction processing system that is

used primarily in the `front office' of banks. (By contrast, Product B might be used in the
`back office' of banks. Product C is not the workstation equivalent of Product B.)
Product C runs on the DOS, OS/2 and AIX platforms. Project C is an investment to

protect the product. The Project Leader, 'CP', explained:

"What we're trying to propose is the right level of investment that maximises
the revenue, and keeps the product going as long as possible. " [Interview
C. 001. CP]

The objective of Project C was to port the existing product to run on a new operating
system (which is developed and maintained by another organisation), and to provide some
additional functionality for the DOS and OS/2 versions.

50

Overall, the Project Leader considered Project C to be a success. This was despite the fact

that the schedule was re-planned, and that some of the functionality was delivered via the
World Wide Web rather than with the product.

Like Project B, there are a number of elements of the socio-technical contexts of Project

C that relate to workload, capability and duration. With regards to duration, the Project

Leader explained how the product delivery date was determined:

"[The product delivery date]... is really driven by the 19 person-years effort, to a

certain extent... I need to bring on some extra people earlier in the year, so I've

got to take them off later in the year to make the 19 person-years fit. "

[Interview C. 001. CP]

This is a clear example of how duration and capability are fixed, with the implication that

the workload will need to be determined accordingly. The Project Leader implies such a

situation:

"I would have to say that the planning has been done somewhat backwards here,

as we have the schedule and man-power constraints, and we've been trying to fit

the work into that, rather than asking people how long it will take them, and
building the schedule from that" [Interview C. 00l. CP]

These constraints then affect the planning process:

"The basic process was to get the people who would pick those feature up to do

the sizings, factor in the service estimates, and then adjust from there to try and

make it fit to the (design) phase we thought we would need to meet [our product
delivery date]. " [C. 001. CP]

From Olsen's ([84]) arguments, it would appear that Project C's planning process is

common in software projects:

"In practice, software engineers are often given a fixed deadline and expected to
develop a schedule that meets that goal. This fixation on time is not an
aberration or the result of misguided management, but the foremost customer
requirement and the primary force behind profit. As such time dominates all
factors of the software-engineering process. " ([84], p. 28/29)

51

As already noted, the workload will need to be adjusted to balance the capability of the

project. The Project Leader explained how the workload looked impossible given the

planned schedule, but how he justified that the work could be done:

"And its actually frightening if you look at... [the workload]... in terms of the

productivity that's needed to get this product out of the door. However, the

counter argument is that there is very little new function. If you look at the lines

of code for... [the new product]... its something like 55 KLOC, and I'm trying to

do that with three person years, which looks impossible. However, that is reusing

code, its porting code. Where we're writing new code its usually with existing

design, where the architecture is already there. I can justify it to myself that its

do-able... Its not writing new code, its not using old code without change, its

somewhere between those two. " [Interview C. 001. CP]

The funding constraints, mentioned above, constrain the capability of the project. The

Project Leader explained:

"So we had a resource funding constraint.... I asked can we spend any more on

development, and the answer was very much no. This 19 person years is fixed...

But its a good business case. Even if we don't develop... [a version of the product

to run on a new operating system]..., then I still have to spend 15 person years

on service. " [Interview C. 001. CP]

This is an example of a factor, cost, that is not modelled in the model of schedule
behaviour but does affect the constructs within the model (see chapter four for more
information).

The resource constraints also affect the organisation of the new development and support

teams. Unlike Project B, Project C has a combined development and support team. The

Project Leader explained:

"In an ideal world, one would have... separate... [support]... and development

teams, but this would probably be inefficient... You have to remember we've got 19

people here and we're trying to support three products, not one product, and we're
trying to develop a new product. And we're actually trying to do an awful lot with

very little resource. " [Interview C. 00I. CP]

52

The combined team means that each person has development and support

responsibilities:

"... each developer has responsibility for some number of components in the

product. So its not a case of having three people doing development for the...

[new]... product. Each person will have a mix of... [support]... and development

responsibility, so it really depends... " [Interview C. 001. CP]

"There's about 9 people who have responsibilities for... [the new product]... but

that obviously is not their full-time job. We plan for the service work, which

comes in fits and starts. A high severity problem can take a person out for a

month. The... [support]... take priority to the development work.. " [Interview

C. 001. CP]

The funding constraints also affect the composition of the testing team. The Project

Leader explained some of the risks for Project C:

"I can see high risk areas. I've already mentioned service workload. System test is

fairly high risk, because of the resource constraints... We've only got funding for

two system testers for six months which isn't sufficient to do a good job basically.

They're starting later than I want them to start. So already I'm trying to get extra
help. Someone from marketing and some people from... [support]. So I'm trying

to sort that out 'through back door methods' in terms of getting some extra help

for free. Cos [sic] I can't guarantee three system testers. " [Interview C. 001. CP]

and:

"A major constraint is actually can we get them [the features] tested, rather than

can we develop them. It all boils down to can we get the right skills. " [Interview

C. 001. CP]

The Project Assistant also recognised system test as a concern:

"Biggest concern is testing. We have one junior person leading an inexperienced

test team. " [Interview C. 003. CG]

Finally, the Project Leader had to fulfil a number of roles (unlike the Project Leader of
Project B) and he explained the difficulties these multiple roles might cause:

53

"One of the problems I have as [Project Leader] and Development manager is finding

the time to do both jobs as well as they need to be done. And actually finding the time

to devote as much time as I should to the project management side of it is going to be

a major challenge for me I think. Because its not only managing the new
development stuff, its the... [support]... stuff involved that actually takes a lot of the

time... service extensions and all that stuff. " [Interview C. 001. CP]

This is even more pertinent, given the fact that while the Project Leader has considerable

experience in software development, prior to Project C he has not managed an entire

project as Project Leader. With the introduction of the new business process, the Project

Leader was promoted from design/code manager to Project Leader. He states:

"I haven't carried anything through the [entire] development process [until

now]. " [Interview C. 007. CP]

Similarities and differences between Projects B and C

In addition to the insights specific to the individual projects presented above, it is also

possible to identify a number of characteristics that distinguish and unite the two projects.

Tables 5.2.1 and 5.2.2 present a number of characteristics, and contrast the two projects
according to these characteristics. Three entries in Table 5.2.1 require clarification. First,

the strategic value of the two products is relative to the two products. Although Product C
has a lower strategic value this is not to say that the product is not valued by the
organisation (if the product had a low value to the organisation it is unlikely it would be

maintained). Second, although design changes and additional features are unplanned, this is

not to say that such work is unexpected. Experienced Project Leaders recognise that the

workload for a project will probably increase. Third, the KLOC sizes of the two projects
might misleading suggest that Project C is very much more productive than Project B.
Product B is, however, a mission-critical product requiring very high levels of reliability.
In addition, much of the code for Product C is being ported from an existing version of
the product. The differences between the two products are recognised by Project C's
Project Leader:

"There are some [features]... but it may be artificial to compare these with
[Product B features], because of the magnitude of [features], and what's
involved. " [Interview C. 001. CP]

54

Table 5.2.1 Differences between Project B and Project C

Characteristic Project B Project C
Size of support team Support team of 50 people Support team of 12 people

(separate from Project B). (part of Project C)
Size of planned
development team
Size of planned
management team
Assignment of work
between support team and
development team

Role(s) of Project Leader

approx. 38 people approx. 3 people

approx. 6 people

Strategic value of product
Purpose of project
Type of product

Release sizes
Number of features/design
changes

Platforms
Project status meetings

Project duration (in weeks)
Product delivery week
Determination of project
duration

Developers are either
support or development
(but development may
support in critical
situations)
Project Leader

Higher; long term
New functionality
Large, mission-critical,
middleware legacy system
36 KLOC
13 features (planned)
12 design changes
(unplanned)
Mainframe
Yes

57 (planned and actual)
52 (planned and actual)
Project end-date driven, due
to market considerations

approx. 3 people

Developers `own'
components and both
develop and support those
components.

Project Leader,
Design/Code Manager,
Support Manager
Lower; mid- to short-term
Port to new platform
Large, middleware legacy
system
70 KLOC
19 features (planned) and
11 features (unplanned)

Workstation
No, but design/code/test
status meetings
48 (planned) 59 (actual)
48 (planned) 59 (actual)
Project end-date driven, due
to resource funding
constraints

Table 5.2.2 Similarities across Project B and Project C

Characteristic Comment
Business process Both projects partially used the new business process
Organisation Both projects were within the same laboratory
Composition of Both projects used multi-functional project management
management team teams, with representatives from each significant process

area.
Project success Both Project Leaders considered their projects to be

successful.

55

5.3 The actual progress of Project B

Figure 5.3.1 presents information on the schedule, workload and capability of Project B,

at the project-level, and shows how the actual progress of the project, with regards to

these three constructs, differs from the planned progress. (See Appendix B2 for an

explanation of the structure and notation of the figures in section 5.3 and 5.4.)

From the figure, it is clear that the plan, design/code and test phases (the three main

phases of the project) all complete later than planned, with the design/code and test

phases completing many weeks later than planned. In the case of the design/code phase,

the phase lasts at least 50% longer than planned, although the comment on the

completion of design change work in week 50 (see the `Events' section of the figure)

suggests that the design/code phase may persist in some form for almost the remainder of

the project. Two design changes were also accepted, in week 37, after the actual

completion of the design/code phase. This is discussed in more detail below.

In the case of the test phase, Figure 5.3.1 indicates that the test phase continues until

week 58, six weeks after the product was actually delivered. This is because two features

are being tested and delivered, at a later date from the rest of the product, via the World

Wide Web. Note also that the design/code and test phases proceed concurrently for a

number of weeks, once again differing from the planned, sequential progress of the

project.

In addition to the differences between the planned and actual progress of phases, note the

frequency of planned milestones for the project. With only two exceptions, the design

complete milestone and the functional verification complete milestone, all milestones are

planned to occur during approximately the last quarter of the project. Two of these

milestones are project oriented (the system test and integration complete milestones)

whereas the other two milestones are business oriented (the availability and announce

checkpoints). Consequently, for long periods of the project there are no high-level

checks of how the project is progressing. This may be because progress in the design

phase is difficult to properly assess, and so even if there were milestones, these milestones

would be ineffective. Abdel-Hamid ([2]) argues that reports of actual progress often

simply reflect the planned progress because a more accurate assessment of actual progress
is not possible.

56

aN_ öCR Feature
""" ". "" 0" co tN 10 h7 en (4 rO

95

_e
t %) xI

o

-f 9Z

tlz
--- ----

o ZZ

- OZ
----ä f

-- -__ý
ýi=

8I

y 'ý--
)p

9I
bl

ý
zi

01 17

; l_
ý \0 9

,. w+ ..., 1.

a V

V ö
Y

a

q
U
v
O

40.

CC

h

C?
O

.Ö

eC

C?
O

Cr

V
h

w
V
Q

O
L
it

ee

v

aý

bD

w
r-ý- C, CD

8uguls pauutid Alleutlpp ý. __.

Workload is represented, in the figure, in terms of features and design changes. (These are

measured using the scale on the right of the figure, with range zero to 14.) Broadly, both

features and design changes are sets of market requirements of a piece of software which
"... typically involve changes and additions to multiple [software] subsystems" ([121], p.
840). Whilst, in principle, features refer to new functionality and design changes refer to

modifications to existing functionality, in practice there are no clear distinctions between

a feature and a design change. (In terms of code size, a design change may be larger than a
feature.) At the feedback workshop, the Project Leader provided more information on
features and design changes:

1. Features are the work that is planned at the beginning of the project.
2. Changes in workload, once the project starts, are managed as design changes.
3. Some of the design changes accepted on to the project were actually features, and

some of these are larger in size that the 13 features originally planned. (This indicates

how features and design changes are not effective measures of process size or product

size.)

4. There are two types of design changes:

" design changes that add function.

" design changes that remove function.

Both types involve work i. e. they increase workload on the project. The first type

increases the size of the product. The second type reduces the size of the product.
5. A very low number of design changes were expected for Project B (almost zero).

Figure 5.3.1 indicates an increase in workload on the project, with the number of design

changes increasing from zero to 12. This is a near-100% increase in the combined
number of design changes and features, although this does not necessarily imply a 100%
increase in the actual amount of workload (because features and design changes are not
reliable measures of process size and product size). Recall, from section 5.2, that the
Project Leader has a policy of rejecting all design changes, although he concedes that
there are some design changes that the project will have to do.

In addition to the increase in the number of design changes, note the timing of these
increases. The intended last week for accepting design changes is week 18, close to the
planned completion of the design/code phase, but at this point only five of the eventual
12 design changes are accepted. (The remaining seven are being considered by week 18.)
Furthermore, note that some design changes are accepted after the actual completion of
the design/code phase. As discussed earlier, this indicates that the design/code phase may
actually progress for longer than represented in Figure 5.3.1. The increase in design
changes after the actual completion of the design/code phase also suggests that the

58

project is in multiple phases at any one time (cf. [92]) and that the plan does not

represent these multiple phases accurately.

Capability is represented, in the figure, in terms of weekly resource levels. (In the project
documents for Project B, planned resource levels are recorded on a monthly basis, so
these have been converted to weekly resource levels for Figure 5.3.1. The scale on the
left of the figure, with range zero to 70, is used to measure weekly staff levels.) At the
feedback workshop, the Project Leader annotated an earlier version of Figure 5.3.1 to

indicate the actual weekly staff levels for his project. It is clear from Figure 5.3.1 that

there are some slight increases in staff, but rather than adding people to the project (cf.

Brook's Law), the Project Leader is able to delay the re-assignment of existing staff to

their new project (Project B+1). This is similar to Perry et al. 's ([92]) observation that

designers are reassigned to higher priority projects, in this instance remaining with a

project rather than being assigned, as planned, to another project.

The planned ramp-up of staff does not exhibit the left-skewed bell-shape curve assumed
by Raleigh/Putnam-based prediction models (e. g. [97]). This may be because, as noted

earlier, Project B is costed as one of four projects. Also, Project B starts after Project

B+l starts, but completes before the completion of Project B+1. The lack of symmetry
between the planned ramp-up and planned ramp-down suggests that designers and system
testers are gradually being assigned to the project (over weeks 1 through 23), but are then

abruptly unassigned from the project in week 45.

Overall, Figure 5.3.1 shows that, at the project-level, the actual progress of Project B is
different to that planned. Figure 5.3.2 shows how the actual progress of two particular
features (F02 and F03) also differ from their planned progress. These two features are
presented because, of all the features in the project, the most information is available on
these two. This is because these two features are discussed most in the project status
meetings, which is probably because they are the most problematic features on the

project.

59

T

95

y y - 4S

-zs

- Cd d. `iy

-_.
v ýa = 8b

- e -- 94

ti -------ýo _ Z4

_! 9£ = ;C
-

y
y y =_

y y

7-7
0£

-- ---------------

s =ý OZ

-91

01

9

Y
V
u
3
ü
u
Ö
V

q

.r

0 L.

H

rr

O

iw

Z

GC

N
M
kn

i

CD

W

W

tý r_ Q vi Vs Hov;
m

l
CJ n, - E: a% l5ý"' 2O MNN NO Vi C, G] to J2 6. MN ýy ý2

Lz
2ER

4.

Figure 5.3.2 shows that of seven re-plans on Project B, six refer to re-scheduling the

phases of features F02 and F03. (The other re-plan concerns the re-scheduling of feature

F07, the software transaction logger.) Consistent with these re-plans, both features

complete their respective design/code phases, functional verification phases and system
test phases later than originally planned, and are the two features delivered via the World

Wide Web. These two features most clearly impact the project-level schedule.

With regards to the frequency of the re-plans, 20 weeks of the project pass before the

first re-plan occurs, but then six further re-plans occur during the next 26 weeks. This is,

on average, every 4.3 weeks i. e. one plan per month. (The exact week when the sixth re-

plan occurs is not known, but this does not affect the calculation of the average.)

The comments presented in the `Events' section of the figure indicate that both features

experience significant re-designs early in the project. In addition, designers of feature F03

are concerned that required work by an external project will not be finished in time. This

indicates that an external project may contribute to the delay in completing the design of
feature F03, because the designers are waiting on the delivery of code from that project.

The events, the number of re-plans and the progress of the features' phases all suggest

either that the capability for these features is less than planned and/or the complexity,

and hence workload, for these two features is greater than planned. The re-plans are an
`internal' adjustment (internal because they did not require senior management approval)
to compensate for the differences in capability and/or workload.

Related to the re-plans are a series of events identified in this thesis as `indicators of
project activity'. These events suggest a number of tactics used by management to

respond to discrepancies between the planned progress and the actual progress: tactics to

reduce workload, tactics to increase capability, tactics to re-distribute capability, and
tactics to iterate a process more frequently. As a result, these tactics suggest that the

project's management recognise that in some way the project is becoming more urgent or
more `active'. The concept of project activity incorporates a psychological element in

addition to a technical element. Tactics of management are discussed in section 5.5.

61

T

SS
v

=

_ c c = 95

bS

- c
- - ZS

-os

- st

9 AE
am --- . 1 - 9£

. `y . ý = ;,

° ZE
üZ

_OE

9Z

bZ

^ý ZZ

 __ OZ

-- ----- f 81

-

9i

bi

Zl

OI

zi o

ýp v C3 b
___, __

uj r

a

.o
r. a

p

.F
L.

+. r

u

L

w

O

cl

a

C'>

en
V')

b0

w

. -

Cl) cL

Figure 5.3.3 shows the indicators of project activity. Of the 13 indicators, only one seems
to be planned (the building of weekly increments from week 22). Many of the other
indicators are `situated', in that their presence depends on how the project `unfolds', and

as a result, these indicators cannot be planned for (although they might be expected).
Most of the indicators occur as the project approaches the planned completion of test
(between weeks 37 and 43). At the `centre' of these indicators (i. e. week 41), the

project's management commit to the original product delivery date, rather than seeking
to re-negotiate (with senior management) a revised product delivery date. At the feedback

workshop, the Project Leader explained various reasons for committing to the original
date:

By this stage of the project, people have `project blues' and just want to finish

the project. Maintaining the current schedule helps to maintain current morale

and prevents a further drop in morale (which would arise if the schedule was

adjusted). This, in turn, maintains productivity. Furthermore, planning for a slip
(i. e. adjusting the schedule) means that the project will slip. Its a self-fulfilling

prophecy: work will expand to fill the allotted time. Furthermore, if the project

actually slipped, it would only have slipped by about a month, and that was a

gamble worth taking. The project could use ̀ other channels' (e. g. marketing) to

manage the effects of the project slipping.
[Feedback workshop B. FW. 001; this is not a verbatim quote]

63

9S

L
r

ý'

Y
ý..

J

r
i
C
Oý

Ü

-a

0 J

..
__

vs p
; zs -

OS . om a t . A4
SV T

ýi
V
v

C.,
s 0

r, i-.

ca .,

U
a y

-:: - =

ý
.C ý f-ý

y
ri Lei. N `Q a

W
J

�ý
y

r ý iÄ
en

Qto r ý 'j ' fi ý
. ý jý .. . LL . ra .

gq

i ýý_, Oq

-i, ä?
�ý

öE

+ ý . mCK... - qE vOi

_.. K z£ u Vj

-oc Ä 1v r. GC

LL

s

C

O

L

9Z

rt >

"t
ý

vy

91

ZT

-01

v
". C M

., - Z Lrr
I-

11-M I. V
. LOL i iir 0O

g
ýOj

NOO

aiajdwoa saseolsa, %

The point was made, toward the beginning of this section, that there is an increase in

workload (specifically, an increase in design changes) for Project B. The late completion

of the design/code and test phases are evidence that the actual capability of the project is

not `balanced' with the actual workload (so that the work cannot be completed within the

original time-frame). The suggestion has already been made that management make

efforts to increase capability and reduce workload (see the indicators of project activity)

in addition to re-organising the planned completion of the phases (i. e. the internal re-

plans). Figure 5.3.4 provides further evidence of the project management's efforts to

reduce the workload. Of the four features shown in the figure, two features (F07 and F09)

appear to have completed their functional verification testcases uneventfully. The

functional verification of a third feature (F03) appears to be problematic (reflecting the

need, in Figure 5.3.2, to re-plan the completion of the functional verification phase for

that feature). The functional verification of the fourth feature (F02) is so problematic

that the functional verification was not completed for this feature. Not completing the

functional verification is a method for reducing the workload on the project. (Despite not

completing all of the testcases, it is likely that the functional verification test team would
have prioritised the testcases, ensuring that the more important testcases were

completed.)

Closer inspection of the functional verification testcase status for feature F02 suggests a

cyclic pattern of increases and `plateaus' i. e. an increase at week 36 followed by a plateau

of four weeks; an increase at week 41, followed by a plateau for three weeks; an increase

at week 45, followed by a plateau for five weeks. This behaviour might reflect the

dependency of the functional verification process areas on the design/code process area,

where design/code release code to functional verification every few weeks and functional

verification test the new code. At a more detailed level again, this behaviour suggests that

the functional verification process area (and, indeed, the design/code process area) is

constantly re-distributing its effort, attending to other features and periodically returning

to attend to feature F02. This re-distribution of effort would be another example of the

project attempting to increase its capability by allocating effort more effectively.

Another example of re-distributing effort is the management of defects. Figure 5.3.5

presents information on defect status for Project B. Defects pass through several states.
When a problem is identified in the software, a defect is `opened'. The problem is then
investigated to confirm that the problem is a defect, and if it is a defect it is then
`accepted' as a defect. The defect is then assigned to a defect-fixer, who will then seek to

provide a fix to the defect. When a fix is developed, the defect is re-assigned to the
`answered' state. `Answered' defects are then selected for re-testing, where they are re-
assigned to `test fix'. With a successful fix, a defect leaves the defect system. An

65

unsuccessful defect is then returned to an earlier state in the process (depending on the

nature of the defect). The relatively high number of defects at the beginning of the

project is due to `residual' defects from previous releases and from customers. Units for

the y-axis in Figure 5.3.5 are not shown for reasons of confidentiality.

The statement at week 38, regarding the daily defect meetings, indicates that the status of
defects is becoming an increasing concern. (Note that the statement at week 38 was also

used as an indicator of project activity.) At week 38, effort on the part of the Defect

Screen Team, and in the form of daily meetings, is increased to attend to these concerns.
In the weeks immediately following the commencement of daily defect meetings, there is

a dramatic decline in the number of `opened' defects and an increase in the number of
`accepted' defects. This reflects the fact that the Defect Screen Team have `promoted'

defects and assigned them to a designer.

In the same vein, the statement at week 45 suggests that the project once again re-

prioritises its work, this time focusing on fixing defects for the manufacturing build. With

this re-prioritisation of work, it appears that a reasonably large number of defects are
`promoted' through to the next stage of the defect process i. e. a number. of opened
defects are `promoted' to accepted defects; a number of accepted defects are `promoted'

to answered defects; and a number of answered defects are `promoted' through to defects

with fixes awaiting re-testing. The `blip' in the number of defects with fixes awaiting re-
testing ('Test fix') at week 46 reflect first an increase in the number of fixes awaiting re-
testing (caused by the `promotion' of defects) and then a decrease as these fixes have

been tested and either accepted as fixes, or returned to the accepted stage (note the subtle
increase in the number of accepted and answered defects between weeks 46 and 48). The

number of `opened' defects increases, perhaps because attention is directed at fixing
defects and potential defects (i. e. problems) are temporarily neglected.

Overall, there appears to be two broad stages to handling defects, these stages being

triggered by the number of defects in particular states and the approach of the

manufacturing phase. In the first stage, project management focus on allocating defects

so as to reduce the number of opened defects and to accelerate the fixing of defects. In
the second stage, development focus on fixing their allocated defects so as to reduce the
number of outstanding defects.

66

C6

LN
52 = 6i

;
Ii

C

j3 ýr
yc
e0 ý

gEý
Uö
E>E

4ý LT

D-3
a, a 'M ü

As

Cý

X

OO mV

aE

C

'00 O

22
v

wo==c
NcoO=

3^ýÜ Od

;, 3£
Jv'

d
ý9ß

WýV

DyÖ

Od
Om

T

C.

EE aj

rUU

: -. ý. ca
w U'
ýC _

Q _.

.
=' 1
as , v ý'

i i i

i

i

i
i

h

ýh

I1I1I1I1111
1t1I11I1111,
11I111III11
I1111111 I"I 1 11111II1I1i
1I111I11I11
I1I111II11I
1I11II11t11
1111III1II1
11t1111111t

11111I11t1
1I1I1I1I11
t111111111
1I11I1I11

1t111111
.1tt 111I1I111

1II11I1t11
t111I11111 1ý 111I1I1I11
1I I- 11I111
I° 1I1I1111-r
1111. t111
11-I111I1ý `ý

ý.

tItt111 -r 1 1- III1t1 1- 1_ 1

1.1 1111ttiIt . -
t1111t1I 1- t ýI 1IIr1 '1 Iý .

,..., 11t1I1111.
11t11111I1

1 ""1 1-- 1 t-- 1 .- 1--1 t_ _1- 1 III1I111III
I `1' 1IIIIIII I- 1 t1 t111t I° 1ý I 1_ 111I1 I_ II1t..

_ 1111111tt11
1- 1 .

ýI

_11I111I. 1 1ý1
.1 111rI1It11I

ý1 11Ir1111tI
1 1- 1- 1111 -- 11t 111I `1

11 II
1r 1111111

/)11

I I' 1111111111,

1
1- t1t111111,11

111111
1111I11t1II
It11t111 t- 1 1111I11111
I11111Itt11
111I111111

1_ 1III1t11I11
111tI1 t- 111
"

ii
'''

-I I111iii1
I' I1 1- 1111i1i

1I1 I_ 1- 1I111 III11I1
I 11 11 1- I 1I1- p- i1I11

111111 11
,1 1111 11111

'I"' 1II 1- 1"II "I I -t 1
--I 1

-1 __I 1- I_ 1
_- I _. _. 1 __ 111I1I111

I. l11111It
1. _. I. 1

... 1 _ 1. _1_t. ,1 1_. _1 111I1II1I %l 1 %1Il I° 1I III

111I
1-- i t... , _I ,1-.. 1

11111II111
1I-I11111111

IIIIII11
IQ I1 I I- 1- I I--- I --1 1- Iý-I K-) 1,1 111111

1111I111 Ira I- I _'t_- t 1_ 1,1_ I*. I _1 t
_. ,--

p2uad0 pa3daaoy paIan%suy

D£

8Z d

or C.

Si

v
'ö
L

y
u

^C

c..
0

Pl

b0

Gz,

5.4 The actual progress of Project C

Figure 5.4.1 presents information on the schedule, workload and capability of Project C

(at the project-level) and shows how the actual progress of the project, with regards to

these three constructs, differs from the planned progress. (See Appendix B2 for an

explanation of the structure and notation of the figures.) Table 5.4.1 presents
information compiled from the feedback workshops for Project C. Most of the events in

Table 5.4.1 refer to events in the `Events' section of Figure 5.4.1, and document the

effects these events had on the actual workload, capability and schedule of the project.
Included in the table is a `template' of the questions asked and the permitted answers to

these questions. Comments to clarify responses were allowed and these are reproduced in

the table. The focus of the workload-related questions is not on whether events increase

or decrease the quality, functionality and performance of the product but whether the

events increase or decrease the workload required to deliver quality, functionality and

performance.

From the figure, it is clear that the project does not complete when originally planned

and actually completes 11 weeks later. This is a slippage of about 20%, which McKeen

([76]) found to be quite typical for software development projects. It is also clear that the

plan, design/code and test phases (the three main phases of the project) all complete later

than planned, with the design/code and test phases completing many weeks later than

planned. In the case of the design/code phase, the phase lasts approximately 80% longer

than planned. In the case of the test phase, the phase continues until approximately week
55, seven weeks after the product is originally planned to be delivered, and also
approximately 80% longer than planned. The figure also shows that the manufacturing
phase actually compresses, from seven weeks down to four. Note also that the phases are
originally planned to progress in a sequential manner, but they actually progress
concurrently. Despite the extension to the project duration, Project C, like Project B,

still delivers some features via the World Wide Web. Unlike Project B, however, these
features are delivered at the same time that the product completes, rather than several
weeks later.

Table 5.4.1 shows that, almost without exception, the major events of the project affect
the project's schedule. The Project Leader explained (although this not shown in the
table) that individually these events could be contained within the original plan, but as a
group they could not be.

68

ý

ý
. .

ö- - SS h tid
.

c
ri_
Wýý O

//

II/

Id

. wrVýr91-h
J ,

I
y. (ý
Yi

ýýT

yCa

II ".

"

-'"_I
/

ZS

:I' OS

U
1

ý. Irý"
..

: -'. +ýI
I 1.

I1ý
DY

d .n

.... 1 1

Ob

u

Y
G

--ý-- a y - 9£
lö F a.

Z£

0£

H7

, t
, 9Z °N

d
/

°°'. 0..
.

"
A
YZ

W. ' o :. OZ

URt .11

öe
-ýi.. ý.

DIU OD vý'i O DD Qý pp
z'

U

I

a cl
lu
O
L
O

ä ai

r

w

u u
0
L
a

I,
L
oý w

co'1 -o in oN r ýn o Wy C/J ä E" i sam3ea;; o "oN leis ;o off

c
E

V c. ý
o aý

. 0- 4' 0
L. A
r»d

ý° c
E

o c.
ors o yr

Vy

.0

vö

0 CD

0
rO

GE
EO
Gä
O>

A

y
r. r

O

E-4

O U

öö an

'e 0y ed F+
' OU ¢' 0 t7 0

L0

= V) Vl 0 VI V} V) (A

ÜÜ

= r- r- = = 000 C C
=ZZ

0)
än ön aý 0) aý own c)

En
ac°i j CA V7 VJ VJ L+ V) L. L.

V
v 2e

ice. - CC� 'L7

0
0)

0
0)

(U0 0

z QýaQZA 0 z

M to to tz 4) 00 4) bj) toto

U Ü U UUUU ý""

zzz zzzz~

c
0

*Z
v
0

aý
cz t tO bObO

ý0

U Ü ÜÜÜÜÜ

O

C
0

z
0

z
000

zzz~~ w

°'
Cl)
U

G4

O .r
.ý

W

0
tto
cc cc
v c)
00

ti ti

Ö
w

`r U

LUO

ýcN cu
LLU bA N2O

ri cu ce en) (10) -4
LV +-+

OO

GM
O

ý'R% C
y c 0

Ü V t
p" y

G)
to

G)
r 0 °

G)
= C) C)

U
0 to

'=
-e

.0 -0 -a

C) = U, 000
s U s U s0, tU. U tU s. Ü 1U

N

z z - - z-- -z - ö-ý _ -
O °' 0)

_

ýLL

a
-o ' '

-w
cn L ; ß ý+

CU !O=

y 023
.Z C y DO L t"

0^

"
i' 4) U

'ý
yOr rU+

w rU' w
0

NL
A

'C "O Ti Z7 ' .i r CA
- Gi C) tf

bA Cý " O
il 0 N Cti CC R3

Z
0)) 0 m

u2
2

cz

U

ý
CC UUUU

L+ Q)
C OU

O -0. -2 G
O. 2.2Op
4) 4) -

C=SU °ý Ü 0N Ö0 0U
>>> j >

y
.

0i 'ý 9) = -v 'i -v 's -ö 0
10 - U0 c) 2. ý2 v >y > O

,

aC:; a; cn
z °2v

Workload is represented, in Figure 5.4.1, in terms of features (see section 5.3 for a
definition of features; design changes were not used in Project Q. It is clear from the
figure than the actual workload increases from 19 features to 30. (Gaps in the recording

of features are due to status meetings typically occurring fortnightly, and some status

meetings not recording the progress of the features. From week 33 until the end of the

project the progress of features is not recorded.) This is an increase of almost 50% in the

number of features but, as with Project B, this does not imply a near-50% increase in

workload. For example, discussion with the Project Leader (in interview C. 008. CP)

indicates that some initial features are subsequently separated into two features in order to

help manage the workload.

The figure also indicates that it is not until week 24, half way through the original
duration of the project, that the first feature is recorded as being completed; and by week
33, approximately three-quarters of the way through the original duration of the project,
only two features are recorded as being completed. Three possible reasons for the

apparent late completion of features have been identified:

1. Work is not completed at a uniform rate. A technical planner explained:

"With applications it might be easier to develop a function incrementally. With

middleware you might need to develop the whole thing before anything tangible

results. " [C. 004. CR]

2. The Project Leader explained (in interview C. 008. CP) that the feature tracking
process had not been as rigorous as it might, and that people were more concerned
with developing the feature than ensuring it was tracked properly. (Project planning
and control appears to be traded against production capability.)

3. There was confusion as to what exactly the term `complete' meant: whether the
design and code for a feature was complete or whether the feature was designed, coded
and sufficiently tested.

In addition to the clear increase in the number of features, it is also clear that there is a
major re-design of the product in week 5, shortly after the plan was accepted. Table 5.4.1
indicates that this increases the workload required to deliver quality, and causes a major
increase in the workload required to deliver the functionality. The re-design also increases
the duration of the project.

71

Capability is represented, in Figure 5.4.1, in terms of weekly staff levels. (Staff levels

were planned on a quarterly basis and these have been converted to weekly values for the
figure. This explains the `plateaus' in staff levels.) As explained in Section 5.2, most of
the project resource is committed to supporting the previous releases (i. e. support), rather
than developing a new release. This is reflected in the high number of support staff (12)

and the low number of development staff (three). There are only two members of staff

assigned to system test, and they are assigned for only the second half of the project
(from week 37). The total number of staff on the project does not vary for the duration

of the project. The distribution of the staff, however, does vary considerably. Evidence

(from interview C. 009. CP) indicates that approximately 50% of the total resource
(approximately 8.5 person-years effort) is actually involved in development. The re-

allocation of support personnel to new development is an example of a management
tactic for dealing with project workload. As a related example, the Project Leader

explained:

"We are constantly juggling work assignments to even the workload. " [C. 007. CP]

Together, these are examples from Project C of behaviour first identified in Project B i. e.

re-allocating effort to make that effort more effective.

Table 5.4.1 also indicates that the Project Leader believes that the support workload has

a major impact on the development capability. As already explained, although three

people are formally funded for new development, many more than three people are
actually involved in new development. Support work prevented these additional people
progressing with their new development work. (There are numerous references, within the
status meeting minutes, to support work interrupting new development work.)

Besides the support work, Table 5.4.1 indicates that actual capability is lower than

planned because the key designer intends to leave the project, because there are
insufficient numbers of skilled system testers, and because the Project Leader has three
roles to fulfil. With regards the intention of the key designer to leave, the Project Leader

reflects:

"The biggest problem has been the situation with [the key designer]. However,
this is not just a resource problem, but a skilled resource problem. One can't just
replace [that designer] with someone else, because they have a lot of skills and
experience. " [Interview C. 007. CP]

72

"' ý-v-ý ß =pV as
.. L+

ÜC

Äoý
-- gado.. 9S

-1 ýý ý--b 'C dNTC

ö mý U bS
'o N °' ä

oo 'o

CvC" .N ZS
_ ý výý____ý»ý

U 00 P.
O `Yp OS

dd cý
_

d ^J 3co

v 8b H
ill

2.
p

Äp

F a ° w3 bb

""ý CJ L4 Q Zb

p yC
=v y C Ob

_
Y pNO.

" >. ÜN E£
y

ý'O vO

Z£
eo

p MR
-"ý-ý -ý - - sz

9Z

bZ

äE ZZ

"" 9 °' T 3O

nW uo 81

rN U ýN
>T

.. al

N .. r
-3 u bT

" ° 41 ' y Z
_ý

d ýL .y {

g gý = 01

t Gý _ 9
u

t ä ü CC _ _c w ý
b

G Cf
O

Z
aý eu O O Z O O -' ý+ et I'

Y
äi
3

U
d

ö
v
a

U
w u
'ö
L

L

w
u

F+ u
u

'ö
L
G

a.
O

O
.r ýS
u

C

'O
Q
el
m
C
ets

G
äa

N
l7

d
L

bD
Lk

v Fi V. 4

E. cu W Vj
mm tu a

With regards to the insufficient number of skilled system testers, these are identified as a

risk and discussed in section 5.2. Figure 5.4.1 shows that, in week 54, resource is re-

assigned to system testing. This is an another example of behaviour first identified in

Project B i. e. re-allocating effort to make that effort more effective. Section 5.2 also

considers the problems the Project Leader experiences in fulfilling his various roles.

Figure 5.4.2 shows the re-plans and the indicators of activity for Project C. Unlike

Project B, where all the re-plans are internal re-plans, Project C has one external re-plan
in which the plan is formally re-negotiated with senior management. This formal re-plan

occurs in week 39 and results in an extension to the completion of the project, from

week 48 to week 59. (From the perspective of the model of schedule behaviour, the

remaining-duration has increased, in week 39, by 11 weeks.) The formal re-plan is caused
by the introduction of new Year-2000 requirements earlier in the project, resulting in the

introduction of a new feature in week 35. The two plans toward the beginning of the

project, both labelled `1st Plan', are due to the fact that a second Plan Decision

Checkpoint was required (in week 8); the second plan addressing revenue issues rather

than schedule issues.

In the first re-plan (week 22), the project team believe that the schedule can be held (see

the corresponding event for that week). Two weeks later, the frequency of the status

meetings change from fortnightly to weekly, suggesting an increase in project activity.
One possible explanation is that the project team believe that while the schedule is still

attainable they will need to be more `focused' in their work i. e. need to increase capability
through working harder and smarter, and/or through allocating effort more effectively.

The statement regarding volunteers with available resource cycles (week 28) is ironic
because, by this stage of the project, all team members are fully assigned to work.

The increase in the number of integrate builds (week 28) might be because the test phase
is starting, or because the design phase and test phase are proceeding concurrently (where
it is important to quickly transfer completed design work over to test). Note that, like

Project B, the original plan consists of sequential phases rather than concurrent phases.

The comment on schedule movement (in week 51) refers to a schedule movement in the

start of the manufacturing phase. The test phase is still incomplete (with outstanding
defects and test cases), and the manufacturing phase is compressed to provide more time
for test. The resource re-assigned to test (in week 54), from elsewhere in the project,
appears to be a response to the outstanding test issues. Recall from section 5.2 that the

74

Project Leader, The Project Assistant and the Test Manager are all concerned with the

test process area.

Figure 5.4.3 provides detailed information on the re-plans and their effect on the phases

of the project. The first re-plan appears as a response to the delay in completing the
design phase. The schedule is adjusted in an attempt to cause minimal disruption to the

system test and manufacturing phases. In the period between weeks 27 and 31, the design

and acceptance test phases are planned to proceed concurrently. From week 32, at which
time the design phase is expected to complete, the sequential order of phases is planned
to return. This first re-plan consists of re-organising (another management tactic) the

project work into two groups. The first group of work consists of the OS/2 and DOS

work. The fact that test (acceptance test and system test) will address this work first

suggests that this work is progressing well through the design phase (or at least is believed

to be progressing well), and that it will progress well through the test phases. `Pushing'

the work relating to the new product, the second group of work, back in the test schedule

suggests that this work is more troublesome in the design phase and may be more
troublesome in the test phases. One conjecture is that the design problems with the new

product are caused by the need for a re-design, identified in week 5 (see Figure 5.4.1).

As already explained for Figure 5.4.2, the second re-plan (the formal re-plan) extends the

project duration by 11 weeks. Around the time of this re-plan, the Project Leader believes

that the project can be completed by week 48, as originally planned, if the new Year-
2000 requirements were not introduced (this was stated in interview C. 009. CP). During

the feedback workshops, the Project Leader reflects that the introduction of year-2000
requirements (imposed by the organisation on the project) was a fortuitous event for the
project because it provided much needed additional schedule.

75

_! -

n öS v 6

- ýo 9S
'O V

ZS
T ý---

h OS
y y

Ü Ü
,0 pý.

Off'
'O lý1

94

c, bh
aý

tO Z9

01,

8£

9£

b£

Z£

0£
c"

8Z

9Z

bZ

ZZ

OZ

8I

9I

Z1

O1
"w

8

ter Ii
`

ý ýC
ý

ýy y ... v ý
dddC

y dd
yr y VV _ j

0
w v
'ö
L

L
w

. L'

3d

Ö ^ý

ä c'

ß
dl

In

cl

Ilt vi

L

DD

LZ(

V =hu vyv°a V^ ve_o,
auEý00ý ýýE.

üý ý
_' aýni

ýý `ýyEDOý
Cy

ýö
R ujd

VVyy G%
C..

dVd. V. ýL 2 ci jjZ T-> c/»scaäytia2 C/:. '. >. rA E: A<<
ivýic

i

5.5 Tactics to manage the projects

The discussion and explanations of the actual progress of Projects B and C indicate that

management use a number of tactics to respond to problems in their projects.

Table 5.5.1 A summary of some tactics used by the projects' managements

Tactic Empirical examples
Re-prioritisation of work "The severity of this [defect] will be raised

from Severity 3 to Severity 2 as it is holding
up further test measurements. "

Re-distribution of work "[BW]... reported that the [feature F02]
(re-allocation of effort) approval task was currently being split

amongst the team. "
Re-definition of process "Some testers are rearranging book approval

dates because of holiday commitments -
being done with the agreement of the writer
concerned. "

Separation of a phase into multiple "... [BR] has suggested a staged delivery plan
sub-phases for the new ... system that he is

constructing. "
Creation of more time/effort on the "[Feature F03]... [BB] to start work on
project [Project B+1] although testing F03 [code

units and defects] will be his top priority. "

An exhaustive list of the tactics used by the two projects' managements is difficult to

identify and is beyond the scope of this thesis. Indeed, Sommerville and Rodden ([117])

argue that these kinds of behaviour are so diverse that it is not easy to represent them all.
They write:

"In fact, for a variety of reasons, people adapt these procedures to local

circumstances and resource and this adaption (sic) is dynamic and responsive to

change. Circumvention of the rules is the norm rather than the exception and the
different kinds of circumvention are so diverse that they cannot readily be

articulated. " ([117], p. 55)

Table 5.5.1 provides some example tactics, together with examples of their use from the

minutes of status meetings for Project B. The examples provided in Table 5.5.1

complement the tactics identified in sections 5.3 and 5.4.

5.6 Summary

As explained in the introduction to this chapter, the model of software project schedule
behaviour has been used, from three different perspectives, to describe and explain the
behaviour of Projects B and C. One interpretation is that the socio-technical contexts

77

provide an initial `state' for workload, capability and duration, as well as a constraining

framework within which these three constructs `unfold' over the course of the project,

and within which the projects' managements can use tactics to manipulate workload,

capability and duration.

The socio-technical contexts of the two projects

Although a number of similarities exist between the two projects (see Table 5.2.2), with

regards to their socio-technical context, it is clear that there are a considerable number of

differences (see Table 5.2.1). This suggests that the two projects are constrained in

different ways. Product B is, and has been, highly valued by the organisation. This means

that the product area tends to get higher levels of capability, in terms of more resource

and more highly skilled resource. Examples are: -

" Separate support and development teams.

" Considerably larger support and development teams.

"A larger management team.

"A considerably more experienced Project Leader.

"A Project Leader focused on only one role (that of project leadership).

Because of the legacy and value of the product, however, it has a number of dependencies

with other products developed and maintained by the organisation. In general, the product

also finds itself at the centre of political and strategic manoeuvrings, either because the

product is a `centre-piece' to the particular strategy or because it is a potential threat to

that strategy. (`Political and strategic manoeuvrings' is not meant to suggest malicious
behaviour; rather people pursuing what they strongly and honestly believe to be the best

direction for a product and/or an organisation.) This means that the capability of the

project is also constrained, and that the workload might be higher for these kinds of

project (either through the number of software functions to provide, through the

complexity of those functions, or the communication and coordination of technical
dependencies between projects).

Product C, by contrast, is less valued by the organisation. (Since the completion of
Project C, the product area is now managed under a different division of the organisation
and as a consequence is much more valued.) This means that the product area tends to get
lower capability, in terms of less resource and less skilled resource. In addition, there are
occasions where skilled resource is transferred to other, more important product areas.
Also, as developers develop their skills and experience so they want to move out of the

78

area into product areas with new technology. Examples of the impact of the lower value

of the product area are:

"A funding constraint which leads to a resource constraint of 19 people for the year.

" The desire of the key designer to move out of the product area.

" The fact that the Project Leader has less experience of managing an entire project,

and is required to fulfil three roles (i. e. Project Leader, Development Manager and
Support Manager).

" The resource and skills levels for testing (recognised as a risk by a number of people
in the project).

"A combined team for new development and support.

" The project end date driving the planning process.

The lower value of the product does, however, mean that there tends to be less

dependencies on other projects, and the product area is more `insulated' from the

organisation's political and strategic manoeuvrings.

The actual progress of the two projects

Both projects are considered a success by their respective Project Leaders. For Project B,

although the product is delivered when originally planned, two important features of the

product are not delivered with the product and are delivered later via the World Wide

Web. The eventual quality of one of those features is lower than desired and intended. For

Project C, the project is considered successful despite the fact that the product delivery

date is changed, so that the product is delivered 11 weeks later-than originally planned.
For both projects, there appear to be `crunch moments' when the project managers

realise that their schedules are at risk. For Project B, one of these moments occurs around

week 41. For Project C, one of these moments occurs around week 39 (and resulting in

the formal re-plan). The similar timing of these crunch moments for both projects is also

an interesting observation.

For both projects, the design/code phases complete several weeks later than planned. The.

test phases start when planned, but complete several weeks later than planned. The
design/code and test phases proceed concurrently for some time. There are also
indications of an increase in project activity on both projects.

Both projects experience an increase in workload, in terms of features and/or design

changes. Both projects also experience significant design problems during the design

phase. For Project B, this is with the two features that were eventually delivered

79

separately from the product. For Project C, a customer prototype identified fundamental

problems in the design of the product.

The tactics of management for the two projects

Both projects appear to adopt similar tactics in responding to poor progress and the
increase in workload. Both projects take actions to increase their capability. This is

partly through people working for longer on the project than planned, partly because

people work much longer hours than contracted (thus disguising the actual amount of

effort expended in the projects), and partly because effort is re-allocated so that it might
be used more effectively.

Both projects also take actions to reduce their workload. This is through such tactics as

re-prioritising and re-defining workload, and not completing lower priority work (for

example, not fixing lower severity defects and not completing testcases).

80

Chapter 6 Waiting
6.1 Introduction

This chapter presents and discusses the analysis of the waiting evidence for Projects B and
C. The waiting evidence is used in three ways. First, to provide insights into the nature of

process areas within a project. Second, to provide evidence relating to the model of

capability (recall from chapter four that waiting points to a preceding process difficulty

elsewhere in the project and a succeeding `threat' to capability). Third, to provide

evidence to test Bradac et al. 's conjecture that waiting is more prevalent during the end of

the project than during the middle of the project.

The specific research questions investigated in this chapter are:

" What is the frequency of references to waiting?

" What is the prevalence of waiting over the duration of the project? This is a test

of Bradac et al. 's conjecture (See chapter two for more information on Bradac et

al. 's work.)

" What are the different types of waiting, and what are their frequencies? This is

also a replication of part of Bradac et al. 's study.

" What is the breakdown of `source' and `dependent' process areas.

" What are the relationships between the `source' and `dependent' process areas?

" What is the breakdown of the types of waiting against process areas of the

project?

Details on the methods used to collect, organise and analyse the waiting evidence are
provided in chapter three.

81

89

99

fiS

ZS
19
0S
6i
8t,
L-V
9j7
Sj7
tb
£t
Zti
it,
0t,
6£
8£
LE
9£
S£
t'£
CE
Z£

LS

VS
£S
ZS
IS
OS
617
817
L17
9ti
Sj7

£t
Zt,

0i

8£

9£
S£
j£

Z£

K 0£
6Z 6Z

sz
LZ LZ
9Z 9Z
SZ SZ
17Z PZ

zz
tz oz 61
81
Li
91
SI
t7I
£i
Zt
Ti

8
L
9
S
j7

Z

p
cJ

ZZ
iZ

61

SI

£I

ii

8

S

i

U

ýö
sw a

U

aý 'ö
L

L
w

y
bD
C

w
Z

H

w
GQ

r. + y

w
0

LT"

bD

w

6.2 A description of the evidence

As explained in chapter three, the waiting evidence is taken from the project status

meeting minutes for Project B and the design/code/test status meeting minutes for Project

C. Figure 6.2.1 plots the frequency of status meetings for the two projects. Where a

meeting occurred, the week in which the meeting occurred is included in the figure. The

figure indicates that both projects held frequent meetings, although Project B held

meetings more frequently (typically weekly) than Project C (where meetings were
initially held fortnightly, with a subsequent increase to weekly meetings).

The descriptions provided in Figure 6.2.1 are relevant to the analysis of waiting in this

chapter, and to the analysis of the progress of work in chapter seven and the analysis of

outstanding work in chapter eight.

6.3 The frequency and prevalence of waiting

The frequency of waiting

7
ec 6

e5 3

.04
d3
ý2
L

d `" 1
C4

0
N et %0 00 Ny %0 00 0NNN0

en
MNM- N1 W1 l, O" - 'T 00

Project week

Figure 6.3.1 Frequency of references to waiting for Project B

83

ý' 6

R5 3
24

U3
02 d L

C1
0

Figure 6.3.2 Frequency of references to waiting for Project C

Table 6.3.1 Summary statistics for the frequency of waiting

Project Weeks Mean Median Mode Min Max. Range Total
B 49 2.1 10066 103
C 37 1.1 10044 42

Figures 6.3.1 and 6.3.2 present lineplots of the frequency of references to waiting for

Projects B and C respectively. The lineplots include a smoother, calculated as a moving

average over a range of nine data points3. (Precise values are presented in Appendix B4.)

Only the weeks for which a status meeting occurred are included in the lineplots. Table

6.3.1 provides summary statistics to support the two figures.

The table and figures show that the maximum number of references per week is greater

for Project B than Project C (six compared to four), and that overall there are more

references to waiting in Project B (103 compared to 42). This is partly explained by the

greater number of status meetings for Project B (49 compared to 37). The two projects

are identical in two of their central tendencies (median and mode) and their distributions

(range), but the smoothers indicate a more noticeable increase in the frequency of waiting

for Project B (around week 17).

For Project B, the increase in waiting begins in week 20 and persists through to week 50,

although there are noticeable fluctuations in the frequency during this period. The test

phase was planned to begin between week 19 and week 23, with the design/code phase
completing during that period (see Figure 5.3.1). Actually, the two phases progressed
concurrently through to about week 36. The increase in the frequency of waiting might

3 Smoothers with a range of three, five, seven, nine and eleven datapoints were explored. The smaller
ranges (i. e. three, five and seven datapoints) appeared to be too sensitive to the fluctuations in the
evidence. The largest range (i. e. eleven datapoints) appeared to be too insensitive to the fluctuations in

84

VI in 1.0 00 0M v1 00 N v1 l- ON - en r-
".. ý ". " NNNN c+1 tn t+1 t+1 in h %n

Project week

partly reflect the concurrent progress of these two phases. Furthermore, the test phase

persists through to approximately week 51, with a sudden drop-off in testcases for weeks
50 and 51. In these two weeks, the test process area concentrated on testing the `Gold

Master' tape that had been prepared for manufacturing. Figure 5.3.3 presents indicators

of an increase in project activity; these indicators beginning in week 22 and persisting
through to week 49.

The increase in the frequency of waiting may also reflect the commencement of the

defect-fixing process, where the test process area identify defects, returning them to the

design/code process area for fixing, and subsequently waiting on the design/code process

area to supply the fixes.

In sum, the frequency of waiting suggests that, for Project B, threats to the development

capability increase from week 20, and that the increase in threats is due to a general
increase in project activity (e. g. with more tasks, decisions etc. progressing concurrently),
the concurrent progress of two phases (phases which later evidence suggests are the most
fundamental phases in these two software development projects), and the inter-

dependence between process areas caused by the commencement of the defect-fixing

process.

A similar pattern of behaviour is also apparent for Project C, although harder to discern.
For Project C, the increase in references to waiting begins in week 32 and persists through

to week 54. The design/code phase was planned to complete in week 27, with the test

phase commencing in that week (see Figure 5.4.1 for more information). The design/code

phase actually completes around week 49, with the design/code and test phases proceeding
concurrently for approximately 22 weeks, from week 27. Figure 5.4.3 shows a revised
plan of the second phase of system rest commencing in week 32. As chapter five

explained, development of the new product in Project C was more problematic than the

enhancements to the DOS- and OS/2-based products, so the system test plan was revised
to `push back' testing the ported product until later in the test phase. This would provide
the design/code process area with more time to complete the work on the new product.
The increase in the frequency of waiting from week 32 may reflect the impact of the
design/code process area not completing the ported product by the revised planned start
of the ported product's test phase.

Figure 5.3.3 (in chapter five) presents indicators of an increase in project activity; these
indicators beginning in week 24 and persisting through to week 51. As with Project B, the

the evidence. A range of nine datapoints appeared to provide the best smoothed representation of the

85

frequency of waiting may also reflect the defect-fixing process that would begin around

week 27.

In sum, the frequency of waiting suggests that for Project C, like Project B, threats to the
development capability increase from week 32, and that the increase in threats is due to a

general increase in project activity (e. g. with more tasks, decisions etc. progressing

concurrently), the concurrent progress of two phases (phases which later evidence

suggests are the most fundamental phases in these two software development projects),

and the inter-dependence between process areas caused by the commencement of the

defect-fixing process.

As already stated, the behaviour of Project C is not as clear in its pattern as that for

Project B but that a similar pattern is apparent for the two projects. Difficulties in

identifying the pattern for Project C may be due to a number of causes. First, there were
less status meetings for Project C so a pattern would be harder to discern. Second, the

status meetings for Project C were design/code/test status meetings, whereas for Project B

they were project status meetings. Finally, Project C is managed differently to Project B

(see chapter five), and this may distort the pattern for Project C.

The prevalence of waiting

As explained in chapter three, the evidence collected from the two projects can be used to

test one of Bradac et al. 's ([18]) conjectures viz. that waiting is more prevalent during the
beginning and the end of the project. Because of the lack of evidence for the beginning of
the project, only the second part of Bradac et al. 's conjecture can be investigated. Also,
because of the focus of this investigation, the conjecture is investigated at a higher-level

of the process. Stated explicitly as a hypothesis, Bradac et al. 's conjecture takes the
following form:

HIExp For the process areas of the project, waiting on blocked work is more
prevalent during the end of the project than during the middle of the

project.

Table 6.3.2 Mann Whitney U tests of hypothesis H1E=P

Project paN
B 0.0008 0.001 46
C 0.002 0.01 33

tendencies within the evidence.

86

Table 6.3.3 Summary statistics for the middle and end of the project

Project
Project stage Count Median Mode Min Max Range

B Middle 17 1 0 0 6 6
End 29 3 1 0 6 6

C Middle 13 0 0 0 2 2
End 20 1.5 1 0 4 4

Table 6.3.2 presents the results of two Mann Whitney U tests of hypothesis HIEV for

Projects B and C respectively. Definitions of the beginning, middle and end of a project

are provided in chapter three. For the test of H1EXp for Project B, 46 cases are used rather

than the complete 49 cases because the first three cases occur during the beginning of the

project. For the same reason only 33 cases, rather than the total 37, are used in the test

for Project C. Tied values are used in both tests. See Appendix B4 for full details of the

tests. As indicated in Table 6.3.2, the null hypothesis is rejected and the experimental
hypothesis is retained for both tests (for Project B, p=0.0008, a=0.001, N=46; for

Project C, p=0.002, a=0.01, N=33). Table 6.3.3 provides summary statistics for the data

used in the two tests.

The two tests confirm Bradac et al. 's conjecture that waiting is more prevalent during the

end of the project than during the middle of the project, but at a higher level of the

process (Bradac et al. studied an individual designer whereas this investigation studied

process areas and the project level). Consequently, there is some support for Bradac et

al. 's requirement that the global level of the process be "consonant" with the local level

for a reduction in waiting to reduce project duration.

Explanations for the frequency and prevalence of waiting

One possible explanation for the prevalence of waiting is that waiting appears more

prevalent during the end of the project because there is an increase in reporting waiting
during the end of the project: as the balance between capability and workload increasingly

fluctuates so the reporting of waiting increases, even though the underlying waiting does

not increase in its frequency. A second possibility is that there is an interaction between

an actual increase in waiting and an increase in the reporting of waiting. These two

explanations are both consistent with the increase in project activity (tactics of
management), discussed in chapter five.

Another possible explanation for the prevalence of waiting during the end of the project
is that the number of concurrent phases increases and, as a result, the middle of the

87

project merges with the end of the project. (In chapter three, the middle of the project is

broadly defined as the design/code phase and the end of the project is broadly defined as

the test phase.) As discussed in chapter five, the design/code phases for both projects

completes later than planned and there were a number of weeks in which the design/code

phases and the test phases progressed in parallel. It might be that with the concurrency of

phases, waiting increases. An investigation of the effect of concurrent phases on the

prevalence of outstanding work stands as one opportunity for further research.

6.4 The types of waiting and their frequencies

A closer examination of the various types of waiting (strictly, the different types of work
for which process areas are waiting) allows a replication of another of Bradac et al. 's

observations (i. e. the types of waiting and their frequencies), and provides further insights

into the roots of process problems and threats to capability.

Two classifications were used to examine the types of waiting. The first classification is

taken from Bradac et al. ([18]; see chapter two for further information). The second

classification was generated inductively from the evidence.

Comparison of the types of waiting using Bradac et al. 's classification

Table 6.4.1 Comparison of types of waiting (using Bradac et al. 's
classification)

Category
Project B

Count % total
Bradac et al.

% waiting
Project

% total
C

Count
Other 53 51.4 66.7 42.9 18

Review 0 0.0 15.1 4.8 2
Expert 1 1.0 5.1 4.8 2

Laboratory 0 0.0 4.5 0.0 0
Documentation 3 2.9 3.9 0.0 0

Software 45 43.7 3.1 45.2 19
Hardware 1 1.0 1.6 2.3 1

Total 103 100.0 100.0 100.0 42

88

90 -

80 ---

70 -

60

50

40

20

1()

0. -_+
>> c

0r3
C>xä

c

.aý C

Categories from Bradac et al . 's classification

13 Project B
 Project C
11 Bradac et al.

Figure 6.4.1 Comparison of types of waiting (using Bradac et al. 's classification)

Table 6.4.1 and Figure 6.4.1 compare the results of Project B, Project C and Bradac et

al. 's lead engineer, based on the classification system used by Bradac et al. The evidence

collected from Projects B and C only include references to waiting, whereas Bradac et al.

included references to working the process aswell as references to waiting. Consequently.

Bradac et al. 's percentages of waiting have been adjusted. for the purposes of comparison,

by removing the influence of working the process (see chapter three for more

information).

The high proportion of references to waiting on software is not surprising when one

considers that these projects are developing software products. This suggests that the

software production processes (e. g. design and code) are potentially the most problematic.

Interestingly, Bradac et al. found a low proportion of references to waiting on software.

Possible explanations for this might be:

1. Lead engineers (the focus of Bradac et al. 's study) are more 'insulated' from other

parts of the development process, and consequently may be more 'autonomous' in

their own development processes. Thus, they do not wait on the availability of

software because they are not dependent on that software. But at higher levels of the

. _fý __.

3

89

project, such as the process areas and the project itself, project members become less

insulated and more dependent on other parts of the development process. Parnas'

prescription of information-hiding and encapsulation (see, for example, [19])

supports this argument.

2. The lead engineer in Bradac et al. 's study was working on a project involving

hardware and software, and either there were less software issues or that particular

engineer's work was more oriented toward hardware.

3. Testers, rather than designers, might be the ones who predominantly wait on

software. Bradac et al. 's focus on a lead engineer, who was a designer, may preclude

observations of testers. By contrast, this investigation was able to analyse evidence

on the testing processes.

The waiting on other category suggests that problematic processes and process
inefficiencies are not being captured by Bradac et al. 's classification. This was recognised
by Bradac et al.

Comparison of the types of waiting using the alternative classification

Table 6.4.2 Comparison of types of waiting (using the
alternative classification)

Category
Project

Count
B

%
Project

%
C

Count
Decision 44 42.7 16.7 7

Defect/Fix 27 26.2 33.3 14
Code 18 17.5 7.1 3
Other 5 4.8 23.8 10

Information 4 3.9 11.9 5
Resource 3 2.9 0.0 0
Unknown 2 1.9 7.1 3

Total 103 99.9 99.9 42

90

IOU

90

80

70

60

50

40

30

20

10

0

Categories

[-7

'r Y CJ

x-

13 Project B
 Project C

Figure 6.4.2 Comparison of types of waiting (using the alternative

classification)

Table 6.4.2 and Figure 6.4.2 compare the results of Project B and Project C, based on the

alternative classification for the two projects. The table and figure indicate that, with the

exception of the Defect/Fix category of waiting, there is little consistency between the

two projects. The Defect/Fix and Code categories in Table 6.4.2 are conceptually similar

to the waiting on software category in Table 6.4.1 (and suggest the composition of the

category `waiting on software'). This suggests that process areas within Projects B and C

often wait on either software or fixes to software defects. In turn, this suggests that the

defect process and the coding process are either problematic processes in themselves or

are impacted by problematic processes.

As discussed in chapter two, Bradac et al. found that the Other category in their

classification system (see Table 6.4.1) actually consisted of a variety of Not working

categories i. e. Training, Other Assignments, Vacation, Weekend, and Other. In classifying

the waiting evidence from Projects B and C, it became clear that those items of waiting

classified as Waiting on other, using Bradac et al. 's classification, were subsequently

classified as Decision, using the alternative classification. This suggests an empirical
difference in the waiting on other category between this investigation and Bradac et al. 's

investigation. The lack of references to the Not working categories may be due to the
different focus of this study i. e. on process areas and the project, rather than the local

process of an individual designer.

91

X2

J ,iü
UU

ýUC

Overall, this analysis points to defects, the delivery of code and decision-making as the

potentially problematic processes for both projects, and thus sources of threats to

capability. Also, the partial replication of Bradac et al. 's study does not confirm the types

of waiting and frequencies observed by Bradac et al.

6.5 The `source' and `dependent' process areas

Table 6.5.2 breaks down the associations between the `source' process areas and the

`dependent' process areas for both projects. Figure 6.5.1 provides a visual representation

of the breakdown. `Source' process areas are those areas of the project where a delay in

completing work is actually occurring. `Dependent' process areas are those areas of the

project where the waiting on the completion- of that work is occurring (so that a
`dependent' area is waiting on the completion of work in a `source' area).

Table 6.5.1 Significant values in Table 6.5.2

Project
Groups
of cells

Number
of cells

Total
count Mean P0.05 P50.01 P50.001

B `Internal' cells 56 82 1.46 7 8 10
B Column totals 7 82 11.71 21 23 26
B Row totals 8 82 10.25 19 21 24
C `Internal' cells 56 31 0.55 5 6 7
C Column Totals 7 31 4.43 11 12 14
C Row totals 8 31 3.87 10 11 13

Table 6.5.1 presents the probability thresholds at which values in Table 6.5.2 become

significant. Probabilities were calculated to a 95% confidence interval. A full explanation

of how the probabilities were calculated is provided in Appendix AO. The Number of cells

and Total count recorded in Table 6.5.1 is smaller than the actual number of cells and

actual total count in Table 6.5.2 because the Unknown category has been removed from

the calculations.

In Figure 6.5.1, thick, black solid lines represent extremely significant associations (i. e.
P: 50.001). Solid black lines represent very significant associations (i. e. P<_0.01). Broken

black lines represent significant associations (i. e. P: 50.05). Grey, broken lines represent

non-significant associations. Names of process areas that are emboldened and capitalised
represent those process areas with an extremely significant number of references. Names

of process areas that are emboldened represent those process areas with a very significant
number of references. Names of process areas that are in normal text represent those
process areas with a significant number of references. Names of process areas that are in

grey text are not significant.

92

rA

t: r

44

L`r

.O

CC

00
00

L

vi

F

U
cý

E0 a

ýU
0
c
Y
=a

F

U

i

eta

>, ä sU

ý' eýC Cam.
yq

.u
l=

27
QV C7

s. ý'"oU
e ., c s

>, e
I

10-

-o-o.. -N- N . -+

r-Oý ^M . ON v)
MN-

CD CD CD CD CD 000

OOONNO \J

N

000 00 110 00

N
d'

M
O

O

It N

1o-, t ooo ooool't

tor, 0o t- o

00 0- o- -

OM ONO

-M -C- O- . -+

lo- o0 00

= PZ --ON00 le

++ GO

to

(U - r. 0

En ce

c02
9. ei M r-

ci uý 92.0
rG

92 -0z

0

M

M

I?

IN

100

iý

ti

U
C
i
L'.

i.
+

v

V
rý
U

v

ü
u
i
O
O

C

U

rr Y

C
O

C

U
O

a

L

CC =

vl
CSI - C - v

CC

GI - --

" _ CI F - 401 -

1 I

1 I.

Ii
\ 1,

, \ I

al Gi+ Cn

i - C ü ä -
° x

a z

Cý CC

.+ O

W
0

- _

.Y

"! l 1

t{ Y \

<i
i\ �S {

1 \ý \
\\55

\
\t

Y

{
t

'
.ý

ýt

\ li

{ 1
t 5

V

0 - -
- _

CZ. ý .

vý - f
W
C

U
.+
v

w

It is clear that for both projects, there are complex relationships between the source and
dependent process areas. It is also clear that there are few similarities between the two

projects, although there is some indication that the design/code and test process areas are

significant for both projects.

For Project B, it is clear that external process areas have a strong association with
internal process areas, whereas such associations are not apparent for Project C. This

suggests that Project B's internal process areas frequently wait on external process areas,

whereas Project C's internal process areas frequently wait only on other internal process

areas. This difference between Project B and Project C is consistent with the contrasting

strategic values of the two products, and with the fact that Project B is dependent on an

external project delivering designs and code to Project B (see chapter five for more
information). The difference between Project B and Project C also suggests that Project

B would have greater difficulty managing the project and improving the project's
development processes, because some of the problematic processes are beyond the

control of Project B's management.

The number and variety of associations, regardless of whether these associations are
individually significant, clearly indicates that there are multiple associations across

multiple process areas. This suggests multiple dependencies between process areas. These

dependencies may be manageable using a plan consisting of sequential, discrete phases.
Alternatively, these dependencies suggest that a project consists of a number of processes
iterating through a number of process areas (cf. [92]; see also chapter two).

Chapter five discussed how Project C's external re-plan occurred officially because of the
introduction of new year-2000 requirements, and that these requirements were imposed
by the organisation on the project. In Table 6.5.2, one might expect to find references
concerning the year-2000 requirements within the `Organisational issues' process area.
Surprisingly, there are very few references within this category. It is difficult to explain
this discrepancy. One possibility is that the absence of project status meetings in Project
C meant that the management of organisational issues was not recorded, and consequently
evidence on these issues is not available to this investigation.

A potentially rewarding exercise would be to examine the `flow' of associations, as a
process area alternates between being a `source' process area and a `dependent' process
area. One example is the design/code process area for Project B. There is a significant
association between Other projects, as the source process area, and Design/Code as the
dependent process area. There is then an extremely significant association between
Design/Code and Test. Such analysis might suggest possible knock-on effects from Other

95

projects through Design/Code to Test. Another example, again with Project B, suggests
feedback relationships: the Design/Code and Build process areas are both source and
dependent process areas with regards to each other. Due to practical limitations, these
kinds of analyses are beyond the scope of this investigation, and stand as opportunities
for further research.

6.6 Process areas and types of waiting

Tables 6.6.3 and 6.6.4 break down the types of waiting for the `source' and `dependent'

process areas for the two projects. Figures 6.6.1 and 6.6.2 provide visual representations
for the two tables. The types of waiting form the basis for the relationships between

source and dependent process areas, as discussed in the preceding section.

Table 6.6.1 Significant values in Table 6.6.3

Project
Groups
of cells

Number
of cells

Total
count Mean P: 50.05 P50.01 P: 90.001

B `Internal' cells 40 83 2.075 8 9 11
B Row totals 8 83 10.375 26 28 31
B Column totals 5 83 16.6 19 21 23
C `Internal' cells 40 25 0.625 5 6 7
C Row totals 8 25 3.125 11 12 14
C Column Totals 5 25 5 9 10 12

Table 6.6.2 Significant values in Table 6.6.4

Project
Groups
of cells

Number
of cells

Total
count Mean P: 50.05 P0.01 P: 50.001

B `Internal' cells 35 92 2.628 9 10 12
B Row totals 7 92 13.14 29 31 34
B Column totals 5 92 18.4 23 25 27
C `Internal' cells 35 28 0.8 5 6 7
C Row totals 7 28 4 12 13 z 15
C Column Totals 5 28 5.6 10 11 13

Tables 6.6.1 and 6.6.2 present the probability thresholds at which values in Tables 6.6.3

and 6.6.4 become significant. Probabilities were calculated to a 95% confidence interval.
A full explanation of how the probabilities were calculated is provided in Appendix AO.
The Number of cells and Total count recorded in Tables 6.6.1 and 6.6.2 is smaller than
the actual number of cells and actual total count because the Unknown category has been

removed from the calculations.

96

W.

y

CC

y

u
O
Y

O

". S

CC

6. n
O

is

M
0

Q r1 l- : ý- Wn0OM N

Ep
00 'ti- t- :T tn C.) C-4

2

V O-MOtt0M . --
O

--MI'OOOen N tn

_= =L) ON 00000 N
i Cl O
0? 'F+

i cl
W o: p . -- ooo0CD N

=U
0, 4

' ö0
CC

000) C> C) -" E

i'0. V1

Cp M tt IRt ONOO m

C)
_ yU

Oooo -- OO
in =

C) y ^p O'. nCD O-00 c
.. N N

R
6?

(0--0- 000 N CO

q L
or

u 000O, --00 -" H
44

q c.
a? pz

V MS CIS M It OO O=
N ""z CO

ÄUp 00 -"cýrooCD

oU oo. -0o00

pp ono. -o--oo nc

o
%A a

0 (D r-
OOw L` 3

'It ýD
G) "

'«
0; V eC OO

(n
w;

3 Up`'
, 00 x

r-
2

°' i
ea
y
h
ci
u
0
i
C

w C

^O

ent"Ittkn 00M
CC

Fop 00 '1-) cn C-4

CD C-4 CD
O

Cp Ocnc-4 oO-o

ö ýc) -'oocýooC

tu

ý eßt G WBy
`ý., ^ N- 000OO

v CC

ýrO

w'V
w ay u
"ö aý

E

on ̂a
ÄÜp

Cý p

oa,

Eý' 3

C) MOO-OO
N

(D (D N ^%DCD O
^

cý1 00 O "--N . -.

NCO N^NOO

^ tý NO c"1 O "-"

C1400

.0 0 .2 w+ 1-.
UC

*v (A . 1. cC 4^ OO O "ý U
VÄ00Öä

N
T

fr1
0

0

0

Ir

0

M

N

N

C'

10

100

iý

Yl

c

Iýz
Cl)

1.6

LIL

I 3

ý-1 z
cri CID

...
ý

rte.

c`a
Ü - --

vgl -
vi c
L

6ýI

LI

V
V

C
L

sf

W (I) -
=O-

w<-

C

z

z

x
0

1

- :f G __

Z =- -

U

u
r

.., L

:. n

ti
z

:J
V

v
ri

a
V

v

G�.

i'.
r. +

Cý. r

C'J

N

L

CSL

yl

e4
lI
vl - VI -- C

LI

z

hi

F I

J
y

y

::
.,

Z

_
F=-

i

i .ý,

x-

- -_
v
ý- ý. --

.ý-

J
w u
c-
0

-

w

For Figures 6.6.1 and 6.6.2, thick, black solid lines represent extremely significant

associations (i. e. P<_0.001). Solid black lines represent very significant associations (i. e.
PS0.01). Broken black lines represent significant associations (i. e. P_<0.05). Grey, broken

lines represent non-significant associations. Names of process areas that are emboldened

and capitalised represent those process areas with an extremely significant number of

references. Names of process areas that are emboldened represent those process areas

with a very significant number of references. Names of process areas that are in normal
text represent those process areas with a significant number of references. Names of

process areas in grey text are not significant.

As with the associations between process areas, it is clear that there are complex

relationships between process areas and types of waiting. It is also clear that there are few

similarities between the two projects, although the Defect/Fixes type of work is

significant for both projects. The significance of the Defect/Fixes type of work is

consistent with the suggestion, in section 6.5, that the design/code and test process areas

are significant process areas.

For Project B, there is a strong association between process areas and decisions, although

such an association is not apparent for Project C. This difference is consistent with the

contrasting strategic values of the two projects.

As with section 6.5, the number and variety of associations, regardless of whether these

associations are individually significant, clearly indicates that there are multiple
associations of waiting across multiple process areas. Again, this suggests multiple
dependencies between process areas.

6.7 Summary

This chapter has presented and discussed the analysis of waiting evidence for Projects B

and C. A number of insights have emerged from this analysis:

1. Both projects held frequent status meetings, although Project B held meetings more
frequently than Project C.

2. Project B has more references to waiting (partly explained by the greater number of
status meetings) and a more noticeable increase in waiting.

3. For both projects, the increase in the frequency of waiting might be partly
explained by the concurrent progress of the design/code and test phases, by the
commencement of the defect-fixing process, and/or by the increase in project

100

activity on the projects. This suggests that threats to the capability of the

development process are due to:

"a general increase in project activity

" the concurrent progress of the design/code and test phases

" the inter-dependence between design/code and test process areas, due to the

nature of the defect-fixing process.
4. For both projects, and at the level of process areas of the project, waiting is more

prevalent during the end (the test phase) of the project than during the middle
(design/code phase) of the project. This complements the research of Bradac et al.

5. For both projects, there is a relatively high proportion of references to waiting on

either code or fixes to defects in code. There is little consistency between the two

projects in terms of other types of waiting.
6. There are clearly complex relationships between the process areas within each of

these two projects, and it is difficult to establish clear similarities between the two

projects. A possible similarity across the two projects is the prominence of the

design/code and test process areas, both in terms of these two process areas being

significant source or dependent process areas, and in terms of the significant

associations between these two process areas.
7. A clear difference between the two projects is the influence of external process

areas on the projects:

" For Project B, the prominent source process areas are both external and
internal to the project, and the prominent dependent process areas are,

naturally, internal to the project.
" For Project C, the prominent source process areas are only internal to the

project, and the prominent dependent process areas are, naturally, internal to
the project.

8. The multiple associations across multiple process areas suggests that the two

projects each have multiple dependencies between process areas, and also that each
of the projects have a number of processes iterating through a number of process
areas.

9. There are also complex relationships between process areas and types of waiting
although, again, similarities are not apparent.

10. For Project B only, Decisions are a significant type of waiting. This is consistent
with the relatively high strategic value of Product B to the organisation

BOURNEMOUTH
UNIVERSITY

101
IDb, tinv u.)

Chapter 7 The progress of work
7.1 Introduction

This chapter presents and discusses the analysis of the progress of work evidence for

Projects B and C. The evidence is used in three ways. First, to provide insights into the

nature of process areas within a project. Second, to provide evidence relating to the

model of capability (recall from chapter four that poor progress reflects a preceding
imbalance between workload and capability). Third, to provide evidence to test Bradac et

al. 's conjecture that waiting is more prevalent during the end of the project than during

the middle of the project.

The specific questions investigated in this chapter are:

" What is the frequency of references to progress of work?

" What is the prevalence of poor progress of work over the duration of the

project? This is intended as a complementary test of Bradac et al. 's conjecture.

" What are the different types of progress of work, and what are their frequencies?

" What is the breakdown of the types of progress against functional areas of the

project?

" What are the causes of poor progress?

" What are the causes of good progress?

Details on the methods used to collect, organise and analyse the progress of work
evidence are provided in chapter three.

102

7.2 The frequency and prevalence of progress of work

The frequency of progress of work

W) '7 T

ö6
w Gi

i
oy5

Ov2

S. QT
. li
E

z

Figure 7.2.1 References to the progress of work for Project B

77
°. d6

5

4

ý.
33

$. CA I ý' y2
E C~D

0
NN et ýO 00 OMN CO NNN C\ MN

NNNNM CO) MM IT It It NNN

Project week

Figure 7.2.2 References to the progress of work for Project C

Table 7.2.1 Summary statistics for the frequency of progress of work

Project Count Mean Median Mode Min Max Range Total
B 49 1.4 10066 67
C 37 2.7 30066 99

Figures 7.2.1 and 7.2.2 present lineplots of all references to the progress of work for
Projects B and C. The lineplots include a smoother, calculated as a moving average with a
range of nine datapoints. (Precise values are presented in Appendix B5.) Only those

103

vn 00 cn %O ON N V^ 0 It t_ 0M %D Oý N 00
... -" -N CV cal Cn

Project week

weeks where a status meeting occurred are included in the lineplots. Table 7.2.1 provides

summary statistics to complement the two figures.

For Project B, Figure 7.2.1 indicates that the reporting of progress fluctuates, with a

noticeable increase in reporting progress in the later weeks of the project i. e. from week
35 onwards. The lack of reports of progress in the first 34 weeks of the project is

interesting: a considerable amount of work would have occurred in these weeks and yet
there are almost no references to the progress of this work. This suggests that reports of

progress are not only a function of progress itself.

Comparison of Figure 7.2.1 with the figures presented in chapter five reveal interesting

patterns. The sudden increase in references to the progress of work in week 35 is one

week before the planned completion of the functional verification phase (planned to

complete in week 36), and about one week before the actual completion of the

design/code phase. With the exception of the `Design complete' checkpoint, all the

major checkpoints of the project occurred after week 35, with the first of these

checkpoints (`FV complete') planned to occur in week 36. It is likely that the series of

checkpoints introduce pressure into the project to complete work by the time of the

checkpoint, and this may lead to an increase in the reporting of progress. Similarly, most

of the indicators of project activity occurred after week 35. This may also affect the

reporting of progress. The drop-off in the number of references to the progress of work
in week 52 is the week that the product was actually delivered (even though testing

continued for about six further weeks).

For Project C, Figure 7.2.2 indicates that the reporting of progress also fluctuates, with an
increase in reporting in the second half of the project i. e. from week 28 onwards. Like
Project B, there is a noticeable trend for more references to the progress of work later in

the project. Once again, given the amount of work that would have been conducted in the
first half of the project, there are relatively few references to the progress of work
(although more references than Project B) in the first 28 weeks of the project.

Comparison of Figure 7.2.2 with the figures presented in chapter five reveal interesting

patterns. Week 28 is one week after the planned completion of the design/code phase and
one week after the actual start of the test phase. Week 28 is one week before the re-
planned and actual start of testing the product on the new operating system. Finally week
28 is the week that a member of the project stated: "... this coincides with probably the
busiest time of Development". The drop-off in the number of references to waiting in
week 54 is one week before the product is dispatched to manufacturing.

104

The prevalence of the poor progress of work

Chapter six examined the prevalence of waiting between the middle and end of the

project, as a test of one of Bradac et al. 's conjectures ([18]). A similar test can be

conducted for the poor progress of work. Explicitly:

H2Exp For the process areas of the project, poor progress of work is more prevalent

during the end of the project than during the middle of the project

'I 6

: s5,1
W an

ö4f

öý3
L . t.,

£ 32
ý1=

v ýO 00 N It ýo 00 N v'f 1- OMhN 0% MhN 0% 00
. -+ NNNNMMMMM 'ýt Nr -V - %n Y1

Project week

Figure 7.2.3 Frequency of poor progress for Project B

N7 ca �öT C ý+

ßr 5
i: c4T

0yI

y«
3

ä32

71
z

0

Figure 7.2.4 Frequency of poor progress for Project C

Figures 7.2.3 and 7.2.4 present lineplots of references to the poor progress of work for

Projects B and C. Only those weeks where a status meeting occurred are included in the

lineplots. For each lineplot, a smoother has been included, calculated as a moving average

with a range of nine datapoints. The figures suggest that poor progress is more prevalent

at the end of the projects than during the middle of the projects. The weeks of most

reports of progress of any kind (see Figures 7.2.1 and 7.2.2) are also the weeks of the

most reports of poor progress, as given in Figures 7.2.3 and 7.2.4. This raises two

speculations. First, that poor progress dominates reports of progress. Section 7.3 shows

105

00 (D %n 00
N
'Ir NNM

en MM
C4 'T IV

' 1n v VV

Project week

that reports of poor progress account for almost 50% of all reports. Second, it is only
during periods of poor progress that representatives of process areas report on any kind

of progress (good, reasonable or poor).

Table 7.2.2 Results of the Mann Whitney U tests of hypothesis H2Exp

Project paN
B 0.0091 0.05 46
C 0.0238 0.05 33

Table 7.2.3 Summary statistics for the tests of poor progress of work

Stage of
Project project Count Median Mode Min Max Range

B Middle 17 0 0 0 2 2
End 29 1 0 0 3 3

C Middle 13 0 0 0 5 5
End 20 3 0 0 6 6

Table 7.2.2 presents the results of two Mann Whitney U tests of hypotheses H2E,, p. A

definition of the beginning, middle and end of the project is given in chapter three. As

with the waiting evidence, 46 cases are used rather than the complete 49 cases for the test

of Project B, and 33 cases, rather than the total 37, are used in the test for Project C.

Tied values are used in both tests. See Appendix B5 for full details of the tests. As
indicated in Table 7.2.2, the null hypothesis is rejected and the experimental hypothesis
is retained for both tests (for Project B, p=0.0091, (x=0.05, N=46; for Project C,

p=0.0238, a=0.05, N=33). Table 7.2.3 presents summary statistics of the data used in the

two tests.

If the integrated model presented in chapter four is valid, then the confirmation of
hypothesis H2EXP provides complementary support for hypothesis HIE,, p and Bradac et
al. 's conjecture that waiting is more prevalent during the end of the project than during

the middle of the project. This is because poor progress results in outstanding work, which
results in waiting.

Explanations for the frequency and prevalence of progress

There are a number of possible explanations for the frequency of references to progress
of work, and the prevalence of poor progress. First, it might be that progress is not
reported in the earlier stages of the project because it is difficult to assess progress in
these stages (see, for example, [1,2,19]). Chapter five showed that most of the major
milestones in the two projects did not occur until the second half, or even the last quarter,

106

of the projects. The scheduling of these milestones is consistent with the frequency of

reporting progress.

Second, managers may concentrate on reporting exceptions. It may be that during the
first half of these two projects the projects progressed as planned and so managers do not

report on progress. As the project becomes more troublesome the managers report on
both `good' and `bad' exceptions ('good exceptions' may occur where a project is

consistently progressing poorly and then some good progress occurs). In the feedback

workshop for Project B (B. FW. 001), the Project Leader explained that he wanted

representatives of the process areas to report poor progress, and that he wasn't interested

in good progress. This explanation is consistent with a speculation raised earlier, which is

that the weeks with the most reports of progress were also the weeks with the most

reports of poor progress. This explanation might be affected by the first explanation i. e.

as progress is difficult to assess, the managers assume that the project is progressing to

plan. Abdel-Hamid ([2]) argues that reports of actual progress often simply reflect the

planned progress because a more accurate assessment of actual progress is not possible.

Third, it may be that during the status meetings, the managers reported good, reasonable

and poor progress, but that only reports of poor progress were actually recorded in the

minutes.

Fourth, as the project approaches its planned conclusion, so the urgency of the project
increases and so managers report on progress more often. The tail-off in reporting
progress at the end of the project might be explained by the fact that the product is
delivered to manufacturing a couple of weeks prior to the product delivery date.

Finally, it may be that the concurrent phases of the project affect the amount of poor
progress on the project. An investigation of the effect of concurrent phases on the

prevalence of outstanding work stands as one opportunity for further research.

107

7.3 The different types of progress of work, and their frequencies

Table 7.3.1 Types of progress of work for Projects B and C

Project B Project C
Type of progress Count % % Count

Good progress 11 16.4 24.2 24
Reasonable progress 8 11.9 2.0 2
Slow progress 19 28.7 23.3 23
No progress li 19.4 22.2 22
Other types 16 23.6 28.3 28

Total 67 100.0 100.0 99
Poor progress 32 48.1 45.5 45

100 -
90 -

80

70 -

60 -
D Prolcct B

50 Pro 1, -, 1 C

40

30

10

lýi
Good Reasonable Sloss No Poor Other

progress prob ess progress progress progress types

Type of progress

Figure 7.3.1 Types of progress for Projects B and C

Table 7.3.1 and Figure 7.3.1 break down the common types of progress for Projects B

and C. Initial types of progress were first identified separately for each project, and then

compared to establish common types across the two projects. Poor progress is an

aggregate type, formed from the slow progress and no progress types.

An assumption is made that the first four types in Table 7.3.1 (i. e. good progress,

reasonable progress, slow progress and no progress) constitute an ordinal scale of

measurement, with reasonable progress being treated as an indicator that progress in a

process area is approximately that which is intended. Phrased another way, reasonable

progress indicates that workload and capability are balanced (see chapter four.) This

assumption underpins the following logic:

108

Good progress is considered to be better progress than intended.

Reasonable progress is considered to be approximately that which was intended.

Slow progress is considered to be worse progress than intended, but better than No

progress.

It is clear, particularly from the figure, that the two projects are similar in their reporting

of progress, and that overall there is more reporting of poor progress (i. e. no and slow

progress) than good or reasonable progress. There is some suggestion, however, for a bi-

modal distribution, with the emphasis on reporting either good or bad progress (note the

low reporting of reasonable progress). As already noted, the Project Leader for Project B

explained, during the feedback workshop (B. FW. 001), that he wanted representatives of

the process areas to report poor progress, and that he wasn't interested in good progress.

Table 7.3.1 and Figure 7.3.1 also indicate that poor progress accounts for a substantial

percentage of references to progress. For Project B, poor progress accounts for about

48% of the reports of progress of work. For Project C, poor progress accounts for about

45%. Taking a project-wide perspective, one may speculate that Project B as a whole is

progressing worse than planned for almost 48% of the duration of the project, and

Project C is also progressing worse than planned for about 45% of the duration of the

project. This does not imply, however, that the project will take 48% longer duration or

consume 48% more resource. (Indeed, chapter five indicates that the projects do not

progress for 48% longer duration or consume 48% more resource.) Chapter five indicates,

however, that there was an increase in resource, and an increase in effort (through

overtime, shift-work etc.) and that some of the work was not completed when the

product was delivered. The increase in capability and the reduction in workload indicates

management taking action to respond to the poor progress of the project.

Given that status meetings tend to occur weekly, it would seem more reasonable to

presume that representatives of process areas would tend to report on the weekly progress

of their process area. Consequently, a reference to poor progress might indicate that a

particular process area progressed poorly for (up to) a week of the project. So for Project

B, the counts given in Table 7.3.1 suggest that particular process areas progressed poorly
for 32 weeks of the project. (In this context, the term `week' means a calendar week of

effort at the level of process area).

Despite the similarities shown in Figure 7.3.1, there may be an underlying problem in

comparing the two classifications because Project C conducts design/code/test status
meetings, whereas Project B conducts project status meetings. This means that, for

109

Project C, references to poor progress may be at the level of the individual rather than

the process area. Appendix B5 provides information on the breakdown of the initial

types, including how the individual items of evidence were mapped to these initial types

and then to the common types.

7.4 Process areas reporting the progress of work

Table 7.4.2 breaks down the types of progress of work per process area per project.

Figure 7.4.1 provides a visual representation of Table 7.4.2, indicating the associations

between types of progress and process areas.

Table 7.4.1 Significant values in Table 7.4.2

Project
Groups
of cells

Number
of cells

Total
count Mean P: 50.05 P: 50.01 P_<0.001

B `Internal' cells 20 51 2.55 9 10 11
B Row totals 5 51 10.2 >19 >19 >19
B Column totals 4 51 12.75 18 20 22
B Poor progress 15 51 3.4 10 11 13
C `Internal' cells 20 71 3.55 11 12 14
C Row totals 5 71 14.2 >24 >24 >24
C Column Totals 4 71 17.75 23 26 28
C Poor progress 15 71 4.73 12 14 16

Table 7.4.1 presents the probability thresholds at which values in Table 7.4.2 become

significant. Probabilities were calculated to a 95% confidence interval. A full explanation

of how the probabilities were calculated is provided in Appendix AO. The Number of cells

and Total- count recorded in Table 7.4.1 is smaller than the actual number of cells and

actual total count in Table 7.4.2 because the Unknown category has been removed from

the calculations.

110

U

ýi q

a- 3
0
c

x
c
ýq

U

ö iU

e

2°

U

Pa

U

v

ý, VU

L

s°. Äp

Gy
[ý ä

'et
O

.äC HF

et NMN 00 - v'l
NNNNN

N

^ON'"N %Z

^O1,0 N Olý 00

-000 -0

-OO^O

^OOO^O

ýO N ýt ON
^N^

QNýv, O
^MN

^ le

-O^M v'l ýf

tz m Cn h
OL

rn V

bn a. on ý- 3 on

öö
°z:

0

cý u r

z
u u c L
it

U

V
GA
O
G

u

`et

L
i

LI
3i

;. 1
OI

ýI
V: I

LI
L

ZI
vl

ul
O
L

n rý

i
s
:; :,
'r J

Z
L

..

w v

c°.
c.

f

`ý M

O
x

f
c
a
O
x

ý

a
O
x

ý
f
x

3
0
-

x 0 ö
c

x ^

1 tý,
i

ýý

4

f:

,
ýý

U
.. u
v

.ý O
L

a.

In Figure 7.4.1, thick, black solid lines represent extremely significant associations (i. e.
P: 50.001). Solid black lines represent very significant associations (i. e. P: 50.01). Broken

black lines represent significant associations (i. e. P<_0.05). Grey, broken lines represent

non-significant associations. Names of process areas that are emboldened and capitalised

represent those process areas with an extremely significant number of references. Names

of process areas that are emboldened represent those process areas with a very significant

number of references. Names of process areas that are in normal text represent those

process areas with a significant number of references. Names of process areas that are in

grey text are not significant.

Figure 7.4.1 indicates that there is little similarity between the two projects, in terms of

the significant process areas and their significant types of progress. Note, however, that

with both projects the design/code and test process areas exhibit the most variability in

their progress. Also, note that the design/code and test process areas are the only process

areas to report poor progress.

7.5 The causes of poor and good progress

Minutes of status meetings also provide an opportunity to establish causal links between

events in the projects. For example, with the following item of evidence it is possible to

identify the cause of the poor progress:

"Performance: No progress on [feature F07] due to outstanding sev 1 problem. "

This provides insights at two levels. First, at a lower level, one can identify what has

caused a particular type of progress. In this instant, an outstanding severity one problem

prevents progress. Second, at a more general level, one can use these statements to

support the logic relating waiting, poor progress and outstanding work. This example
indicates that there is a link between poor progress and outstanding work.

Due to practical constraints on this research project, only Project B has been analysed in

this way.

113

Table 7.5.1 Factors contributing to poor progress on Project B

Factor No progress
Type of progress

Slow progress Poor progress
Absence 1 0 1

Defect/Fix 4 6 10
Units of code for Build 1 0 1
Prep of Skills Transfer 1 1 2

Sickness 1 0 1
System reliability problems 2 4 6

Total 10 11 21

Table 7.5.1 breaks down the causes of poor progress identified for Project B. From 32

references to poor progress (see, for example, Table 7.4.2), it has been possible to

identify the cause of poor progress for 21 references. It is clear from the table that the

most salient cause of poor progress is Defects/Fixes, with System reliability problems also

salient.

Table 7.5.2 Factors contributing to good progress on Project B

Factor Count
Defects/Fixes 2

Developer started mission pay I

Table 7.5.2 breaks down the causes of good progress identified for Project B. From 11

references to good progress (see, for example, Table 7.4.2), it has been possible to
identify the cause of poor progress for three references. It is clear from the table that the

most salient cause of good progress is Defects/Fixes. This is consistent with Table 7.5.1

viz. defects without fixes are preventing progress, whilst fixes to defects enable progress.
`Mission pay' is a method for improving progress by increasing effort on the project
(though not necessarily increasing productivity4).

4 Unpaid overtime has a subtle effect of appearing to increase productivity because the increased effort is
not recorded but the increased output is.

114

7.6 Summary

This chapter has presented and discussed the analysis of progress evidence for Projects B

and C. A number of insights have emerged from this analysis:

1. The reporting of progress does not appear to be only a function of progress itself.

" The presence of major milestones (internal or external milestones) may influence

the reporting of progress.

" Similarly, the increase in project activity may influence the reporting of progress.

" It might be that progress is not reported in the early stages of the projects because

it is difficult to assess progress during these stages.

" Managers may only report exceptions.

" While managers may report all progress, it may be that only poor progress is

recorded in the minutes of the status meetings.
2. For the process areas of the project, reports of poor progress are more prevalent

during the end (the test phase) of the project than during the middle (the design/code

phase) of the project.
3. The two projects are similar in their reporting of progress:

" There is more reporting of poor progress (and this reporting is substantial) than

good or reasonable progress.

" There is some suggestion for a bi-modal distribution of reporting good or poor
progress but not reporting reasonable progress.

" There is some suggestion that reports of any kind of progress tend to occur during

periods of poor progress.

" Only the design/code and test process areas report poor progress.
4. While other process areas report progress, the design/code and test process areas

make the most reports of progress (whether poor, reasonable or good).
5. Defect/Fixes is the only factor that clearly affects progress, with the absence of a fix

contributing to poor progress and the presence of a fix contributing to good progress.

115

Chapter 8 Outstanding work
8.1 Introduction

This chapter presents and discusses the analysis of the outstanding work evidence for

Projects B and C. The evidence is used in three ways. First, to provide insights into the

nature of process areas within a project. Second, to provide evidence relating to the

model of capability (recall from chapter four that the presence of outstanding work is

assumed to be caused by poor progress, and is also assumed to result in waiting and a threat

to subsequent capability). Third, to provide evidence to test Bradac et al. 's conjecture
that waiting is more prevalent during the end of the project than during the middle of the

project.

The specific questions investigated in this chapter are:

0 What is the frequency of references to outstanding work?

" What is the prevalence of outstanding work over the duration of the project?
This is a complementary test of Bradac et al. 's conjecture that waiting is more
prevalent during the end of the project than during the middle of the project.

" What are the different types of outstanding work, and what are their frequencies?

" What is the breakdown of the types of outstanding work against process areas of
the project?

Details on the methods used to collect, organise and analyse the outstanding work
evidence are provided in chapter three.

116

8.2 The frequency and prevalence of outstanding work

The frequency of outstanding work

10
9

ü^8

cu
7

0

4

3
2

1
0

Figure 8.2.1 References to outstanding work for Project B

10 9
eý8

7
vö6

öy
T

Lw4 '3 3
'1±

NNN
00 M

cn
M 00 NV ýt le

Project week

-M r-
V) Vi V)

Figure 8.2.2 References to outstanding work for Project C

Table 8.2.1 Summary statistics for the frequency of outstanding work

Project Weeks Mean Median Mode Min Max Range Total
B
C

49
37

1.4
1.6

1
1

0
0

0
0

7
9

7
9

68
59

Figures 8.2.1 and 8.2.2 present lineplots of the frequency of references to outstanding

work for Projects B and C. The plots include a smoother, calculated as a moving average

over a range of nine datapoints. (Precise values are presented in Appendix B6.) Only the

117

ir1 00 CO) ýO C'. N ý10 O IT t- Om %D C' N 00
. -. .., ý. NN en en Cn aY ýY ý7 ýt vl %n

Project week

weeks for which a status meeting occurred are included in the plots. Table 8.2.1 presents

summary statistics to accompany Figures 8.2.1 and 8.2.2.

The table and the figures indicate that there is a good degree of similarity between the two

projects, with the median and mode identical for the two projects and the mean slightly
larger for Project C. The maximum number of references to outstanding work is greater
for Project C (nine compared to seven), but the total number of references is greater for

Project B (68 compared to 59). This is probably partly due to a greater number of status

meetings for Project B (49 compared to 37). For both projects it is clear that the number

of references to outstanding work fluctuate over the weeks of the projects. Nevertheless,

the presence of outstanding work throughout the duration of the project suggests frequent

poor progress (cf. chapter seven).

For Project B, there is a noticeable spike in week 41, the week the decision was made to

remain committed to the original plan (see chapter five for more information). The

sudden incline of the smoother at week 36 occurs during the period that the design/code

phase actually finished. In Figure 5.3.3, from week 36 there is a noticeable increase in the

indicators of project activity. Chapter five has suggested that the indicators of project

activity may also be examples of the tactics of management, and as such they suggest

that the project's management are responding to perceived imbalances between workload

and capability.

For Project C, there are noticeable spikes at week 45 and week 51. There are no obvious

events that occurred during week 45, but in week 51 the third re-plan occurred. The

`bump' in the smoother between weeks 46 and 51 is `artificially' caused by the spikes at

weeks 45 and 51. Unlike Project B, a pattern of project activity relating to the frequency

of outstanding work is not apparent for Project C.

118

The prevalence of outstanding work

The previous two chapters have tested the prevalence of reporting waiting and the poor

progress of work during the middle and end of the projects. A similar test can be

conducted for the prevalence of outstanding work. Explicitly:

H3E,; p For the process areas of the project, outstanding work is more prevalent
during the end of the project than during the middle of the project

Table 8.2.2 Results of the Mann Whitney U tests of hypothesis H3Exp

Project p °Z N
B 0.0197 0.05 46
C 0.0004 0.05 33

Table 8.2.3 Summary statistics for the prevalence of outstanding work

Project Project stage Weeks Median Min Max Range
B Middle 17 1 0 4 4

End 29 2 0 7 7
C Middle 13 0 0 3 3

End 20 2 0 9 9

Table 8.2.2 presents the results of the Mann Whitney U tests of hypothesis H3EXP for the

two projects. Tied values were included in the test. Details on the test are provided in

Appendix B6. Table 8.2.3 provides summary statistics. Both tests reject the null
hypothesis and retain the experimental hypothesis, at an alpha-level of 0.05. Thus, the

reporting of outstanding work is more prevalent during the end of the project than during

the middle of the project. Based on the logic presented in chapter four, that outstanding

work leads to waiting, the two tests of hypothesis H3E,, P support Bradac et al. 's conjecture
that waiting is more prevalent during the end of the project than during the middle of the

project. The Mann Whitney U tests also suggest that imbalances between capability and

workload are more prevalent during the end of the project than during the middle of the

project.

119

8.3 Types of outstanding work, and their frequencies

Table 8.3.1 Types of outstanding work

Type of
outstanding work

Project B
Count %

Project C
% Count

Design/Code 0 0 28.8 17
Decision 9 13

.
21 0 0

Defects/Fixes 37 54.4 18.6 11
Tests 7 10.3 17.0 10
Problem 8 11.8 13.6 8
Publications 2 2.9 10.2 6
Other 4 5.9 8.4 5
Unknown 1 1.5 3.4 2

Total 68 100 100 59

100

90

80-

70 ±
aJ 60 "

O Project B
50

 Project C
w 40 .

30

20 iA
A

=1 7m r -!!!! =
p

I

, . . - . -- , 0,

n 0.

Types of outstanding work

Figure 8.3.1 Types of outstanding work

Table 8.3.1 and Figure 8.3.1 break down the types of outstanding work for the two

projects. For Project B, Defect/Fixes clearly dominate. In addition to Defects/Fixes,

Decisions, Problems and Tests are also salient types of outstanding work. Problems may

be yet-to-be identified Defects.

The percentage of outstanding Defects/Fixes suggests a strong relationship between the

test process area, who typically identify the defects, and the design/code process area,

who typically provide the fixes. The percentage of outstanding Tests may also be an
indicator of this relationship. If Problems are yet-to-be identified Defects, then the

presence of outstanding Problems would further indicate the strong relationship between

120

the design/code process area and the test process area. This relationship is also supported
by the analysis of the waiting evidence and the progress of work evidence (see chapters

six and seven respectively). Overall, this suggests that imbalances in the design/code

process area results in outstanding work; work that the test process area is waiting on, and

which threaten the capability of the test process area.

For Project C, Design/Code, Defects/Fixes, Tests, Problems and Publications are all

salient types of outstanding work. The relatively high percentage of outstanding
Design/Code work may be explained by the fact that the minutes of the design/code/test

status meetings were used in the analysis of Project C, whereas the minutes of project

status meetings were used in the analysis of Project B. Like Project B, the percentages of
Defect/Fixes, Tests and Problems (together, perhaps, with the percentages of
Design/Code) all suggest a strong relationship between the design/code process area and
the test process area.

Comparing the two projects, Project C has no references to outstanding Decisions.

Consistent with this, Project C exhibits little waiting on entities that were external to the

project but internal to the organisation (see the analysis of types of waiting and the

analysis of source and dependent process areas in chapter six). Project B has no
references to outstanding Design/Code work. As already explained, this may be due to the
different types of status meetings for Project B and C. Finally, the percentage of
Defects/Fixes is very high for Project B, in contrast to Project C.

Two key points emerge from the analysis of types of outstanding work. First, that for
Projects B and C, the most salient types of outstanding work are those that relate to
design/code-oriented issues and test-oriented issues (i. e. the Defects/Fixes, Design/Code,
Tests and Problems types). This suggests the prominence of the design/code and test

process areas within these two software development projects. Second, that there may be

a strong relationship (dependency) between the test process area and the design/code

process area.

8.4 Process areas reporting outstanding work

Table 8.4.2 breaks down outstanding work per process area for the two projects. Cells
with no value indicate situations where the process area or type of outstanding work was
not referenced in that project, but was referenced in the other project. Figure 8.4.1
provides a visual representation of Table 8.4.2. For Project B, the Defect Screen Team
was created at the beginning of the project to manage the allocation of defects to
developers. The Defect Screen Team changed from weekly meetings to daily meetings in

121

week 38, two weeks after the completion of the design/code phase (see chapter five for

more information). Typically, a Defect Screen Team would be formed later in a project

at this organisation (perhaps around the time that the design/code phase completes and
the test phase commences). It is not clear whether a Defect Screen Team actually existed
for Project C. Outstanding work by the Defect Screen Team can be related to the

outstanding Defects/Fixes and outstanding Tests, because the Defect Screen Team decide

the priority of the defect and allocate that defect to a fixer. While the Defect Screen

Team may help to manage defect fixing, it also acts as a potential bottleneck in the
defect fixing process.

Table 8.4.1 Significant values in Table 8.4.2

Project
Groups
of cells

Number
of cells

Total
count Mean P: 50.05 P: 50.01 P: 50.001

B `Internal' cells 36 56 1.6 7 8 9
B Row totals 6 56 9.3 17 19 21
B Column totals 6 56 9.3 17 19 21
C `Internal' cells 36 48 1.3 7 8 9
C Row totals 6 48 8 16 17 z18
C Column Totals 6 48 8 16 17 19

Table 8.4.1 presents the probability thresholds at which values in Table 8.4.2 become

significant. Probabilities were calculated to a 95% confidence interval. A full explanation
of how the probabilities were calculated is provided in Appendix AO. The Number of cells
and Total count recorded in Table 8.4.1 is smaller than the actual number of cells and
actual total count in Table 8.4.2 because the Unknown category has been removed from

the calculations.

For Figure 8.4.2, thick, black solid lines represent extremely significant associations (i. e.
P: 50.001). Solid black lines represent very significant associations (i. e. P: 50.01). Broken
black lines represent significant associations (i. e. P<_0.05). Grey, broken lines represent

non-significant associations. Names of process areas that are emboldened and capitalised
represent those process areas with an extremely significant number of references. Names

of process areas that are emboldened represent those process areas with a very significant
number of references. Names of process areas that are in normal text represent those
process areas with a significant number of references. Names of process areas that are in

grey text are not significant.

122

w 0 HN

ö

aR

L
L

ßäL
L IO
yL

äi Woý
L ++

Ld Z'

A

ee
Lö gL
Ov

41 w

oL

4. ý

aL
ww
ZH

ho G CD ̂.
O "ýV

oA

Nw

QGc ý Hw
(ý ö

r- - CD 00 %0 kn r9

ý cý t-l- oON - ý--M

110 OOOO0-0

I1'^ -o- ooo

"-- 000000!

I

O 00 O0OO OI

rn V's

00 INO

rl-

N

00

Flo 00CD 0CD 0CD I00

0000-00I-

ý1"1- OOONOO

ýýO -00000

c>rnr-N0CD CD

A c> [-l-�CO-. -"

1, ýo

N

N
N

2O 1,0 (n VI -- - 00

) c> NO -- ONO %ei

O ti ý
CÖko
ouiz
; 3. bA F pv +' ýÖ

QQ p., ýýý

L
r

C

f
..
ö

c
z
ö
ti
ü
L

L

J
it

v

i.

:e v i
C

u
0

rr
0ö
L

ýi

ýi
ýý =1
ýý
Cl

..

eat
LI

:C
ýI
ýI
ýI
vl

L

M

r. d

v
y

ýc
L

.. .r

U
Gý
X
:ý

Eý
J
W
w
W
.. r

I

ý I
I

1
tl

/
/ 1I
1

I
ýI:

t
ý

II

I I,
/ 1t

/II

1 tý1

1/
:11 1/

/ý
1I
IJ

tI ý

1 !
1 I

/ II

I

r II

II
1

1
ý 1 I

II II

y
ý

`I
I1

: -1

rý\
Fr
I'Y

J

z
r
U
L

 . r

/
/ I
/ I

I` ! 't

/,
I ý l ft
I t rr f1

1! I 11 f1
1 !

p tf Ir
1 ! t

I
t t

I tt 11
t

1 J S, f

t
1

t !
I .

ý

1

I
I
4

.J

/

O
J

J

J
u

O
L

it

..

It is clear from Figure 8.4.2 that there is little similarity between the two projects in

terms of the process areas reporting outstanding work. Note, however, that for both

projects the design/code and test process areas report the most number of different types

of outstanding work. This is consistent with the design/code and test process areas

reporting poor progress (see chapter seven for more information). For Project B,

outstanding Defect/Fixes seem to be reported by a relatively large number of different

process areas.

8.5 Summary

A number of research questions were investigated with regards to outstanding work for

Projects B and C. The main insights from this analysis are:

1. The presence of outstanding work throughout the durations of the two projects

suggests frequent imbalances between actual capability and actual workload.
2. For the process areas of the project, outstanding work is more prevalent during the

end (the test phase) of the project than during the middle (the design/code phase) of

the project.
3. The most salient types of outstanding work are those that relate to design/code

oriented issues and test oriented issues.

4. For both projects, the design/code and test process areas most frequently report

outstanding work.
5. For Project B, outstanding Defect/Fixes seem to be reported by a relatively large

number of different process areas.

125

Chapter 9 Integrating the analyses
9.1 Introduction

A considerable amount of evidence and complex analyses have been presented in the

preceding five chapters. This chapter completes this analyses. Specifically it:

1. Provides a summary of the various insights gained into the two projects.
2. Relates these insights to:

0 Bradac et al. 's research

" The model of capability

" The model of software project schedule behaviour.

3. Seeks support for these insights from previous research.
4. Generalises these insights to other projects.

9.2 A summary of the various insights into Projects B and C

Table 9.2.1 summarises the insights gained into the behaviours of Project B and Project
C. It is clear from the table that there are many insights common to the two projects,
although there are also some notable differences, particularly with regards to the socio-
technical contexts of the two projects.

The Project Leaders of Project B and Project C both consider their projects to be

successful. Unsurprisingly, their assessment of the success of their respective projects is
based on a combined set of technical and business criteria (cf. [36]). An assessment of the
success of Project B and Project C based on the integrated model of project schedule
behaviour and capability would focus on only two criteria:

1. An assessment of whether the actual elapsed time to product delivery matched the
originally planned elapsed time to product delivery.

126

2. An assessment of whether the actual elapsed time for the entire project matched the

originally planned elapsed time for the entire projects.

For both criteria, Project B is successful, because it delivered the product when originally

planned and completed the project when planned (see insights #1.1 and #1.2 in Table

9.2.1). For both criteria, Project C is unsuccessful because it delivered the product later

than originally planned and completed the project later than originally planned (again,

see insights #1.1 and #1.2 in Table 9.2.1). The integrated model of schedule behaviour

and capability should explain why Project B was successful and why Project C was

unsuccessful. Surprisingly, despite the differences in the success of the two projects, the

behaviour of the two projects appears to be very similar, with the exception of their

socio-technical contexts. This would suggest that, based on the integrated model, the

socio-technical contexts principally account for the schedule success of Project B and the

schedule ̀ failure' of Project C. (There may, of course, be factors that are not represented
by the integrated model that account for the schedule success of Project B and the

schedule ̀ failure' of Project C.)

sA more accurate assessment would assess the degree to which the actual elapsed time to product delivery matched the planned elapsed time to product delivery, and the degree to which the actual elapsed
time for the entire project matched the planned elapsed time for the entire project.

127

Table 9.2.1 A summary of the insights into Project B and Project C

Insight Project

1 Project-level schedule
1.1 Actual elapsed time for the entire project was:

" As originally planned B
" Longer than originally planned C

1.2 Actual elapsed time to deliver the product was:
" As originally planned B
" Longer than originally planned C

2 Phase-level schedule (the actual progress of phases)
2.1 Phases were originally planned to occur sequentially but actually

occurred concurrently B&C
2.2 The plan phase completed later than planned B&C
2.3 The design/code phase started when planned B&C
2.4 The design/code phase completed later than planned B&C
2.5 The test phase started when planned B&C
2.6 The test phase completed later than planned B&C
2.7 The design/code phase and test phase progressed concurrently B&C
2.8 Overall, the project's phases did not actually progress according to

the original plan B&C

3 Actual workload
3.1 The project experienced significant explicit increases in workload

(i. e. new features or design changes) B&C
3.2 The project experienced significant implicit increases in workload

(i. e. design rework) B&C
3.3 The project experienced implicit decreases in workload (see the

tactics of management below) B&C
3.4 Overall, the project's actual workload was not as originally planned,

and was actually more than planned B&C

4 Actual capability
4.1 The project experienced overt increases in capability B&C
4.2 The project experienced covert increases in capability (see the

tactics of management below) B&C

128

Table 91.1 A summary of the insights into Project B and Project C (continued)

Insight Project

5 Waiting, progress of work and outstanding work
5.1 The project recorded more reports of poor progress than of good

progress B&C
5.2 The project recorded very few reports of reasonable progress B&C
5.3 Only the design/code and test process areas reported poor progress B&C
5.4 The design/code and test process areas reported the most progress B&C
5.5 Waiting, poor progress and outstanding work were more prevalent

during the end (the test phase) of the project than during the middle
(the design/code phase) of the project B&C

5.6 Reports of waiting, poor progress and outstanding work related
principally to the design/code and test process areas
" They were the most frequently referenced process areas within

each set of evidence B&C
" They were the most frequently referenced process areas across

all sets of evidence B&C
5.7 In terms of waiting and outstanding work, the most references were

to:
" The Defect/Fixes type of work B
" The Design/Code type of work C
" The Decisions type of work B

5.8 The principal causes of poor progress and good progress were
Defects/Fixes. (This was only investigated for Project B.) B

5.9 Reports of waiting, progress of work and outstanding work referred
to external process areas (cf. #6.11 and #7.5 below) B

6 Tactics of management
6.1 The project re-planned the internal schedule in order to maintain

external commitments B&C
6.2 The project found covert ways to increase its capability B&C
6.3 The project found covert ways to reduce its workload B&C
6.4 A number of internal re-plans occurred B&C
6.5 One or more external re-plans occurred (cf. #1.1 and 41.2) C
6.6 Re-plans (whether internal or external) only started to occur after

the design/code phase was planned to complete. B&C
6.7 The internal re-plans focused on manipulating the phases of the

project, rather than the workload or capability B&C
6.8 The external re-plans focused on manipulating the phases of the

project, rather than the workload or capability C
6.9 The re-planning processes were considerably shorter than the

original planning process B&C
6.10 The expression of the internal re-plans did not appear to be

communicated formally B&C
6.11 Re-plans responded to:

" Changes in expected and planned events B&C
" Changes in unexpected and unplanned events C
" Internal events B&C
" External events (cf. #7.5 below) C

129

Table 9.2.1 A summary of the insights into Project B and Project C (continued)

Insight Project

7 Socio-technical context
7.1 The project was end-date driven, due to: B&C

" Marketing considerations B
" Funding constraints C

7.2 The strategic value of the product to the organisation was:
" Higher and long-term B
" Lower and short-term C

7.3 The product was:
"A legacy, middle-ware, mission-critical mainframe software B

system
"A legacy, middle-ware workstation and desktop software system C

7.4 The purpose of the project was:
" Enhancing the existing product B
" Porting the product to a new platform C

7.5 For the project, the presence of:
" External dependencies was significant B
" External dependencies was not significant C

7.6 Project status meetings occurred?
" Yes B
" No (but design/code/test status meetings) C

7.7 The project was managed with a multi-functional management team B&C
7.8 The role(s) of the Project Leader were:

" The Project Leader's sole role was Project Leader B
" The Project Leader was also Development Manager and Support

Manager C
7.9 The project had:

" Distinct development and support teams B
" Development and support work allocated across the

development and support teams C

130

A closer inspection of Table 9.2.1 indicates a substantial number of insights referring to
design/code-related and test-related issues. Both the design/code and test phases completed
later than planned and progress concurrently with each other (see insights #2.4, #2.6 and
#2.7). Only the design/code and test process areas reported poor progress (see insight

#5.3). Reports of waiting, poor progress and outstanding work related principally to the
design/code and test process areas (see insight #5.6). The most references, within the

waiting and outstanding work evidence, were to design/code and test types of work (see

insight # 5.7). The principle causes of poor progress and good progress were Defects/Fixes

(see insight #5.8), a type of work involving both the design/code and test process areas.
Re-plans did not start to occur until the completion of the design/code phase and the start

of the test phase (see insight #6.6).

Also, external events were referred to by a number of insights, but there is more

complexity with these references. For Project B only, reports of waiting, progress of

work and outstanding work all refer to external process areas (see insight #5.9). For

Project C only, re-plans respond to changes in external events (see insight #6.11). For

Project C, the presence of external dependencies are not significant, but external

dependencies are significant for Project B (see insight #7.5). This suggests that from the

beginning of the project, and throughout the project, Project B is aware of and must

manage relationships with external process areas (e. g. other projects within the

corporation). Project B is also able to manage these relationships effectively; they are

expected and effectively planned for. By contrast, from the beginning of the project, and

throughout much of the project, Project C does not have external dependencies. The

external re-plan is in response to an unexpected and unplanned for external event i. e. the
introduction of new year-2000 requirements.

9.3 Relating the insights to Bradac et al. 's research

The prevalence of waiting, poor progress and outstanding work during the end of the

project (the test phase) rather than during the middle of the project (the design/code

phase) individually and collectively provide evidence to support the conjecture of Bradac

et al. that waiting is more prevalent during the end of the project than during the middle
of the project. The evidence and analyses presented in this thesis complements, rather
than replicates, Bradac et al. 's work because this evidence relates to process areas, in
contrast to Bradac et al. 's investigation of an individual designer.

In chapter two, the point was made that two subsequent studies (i. e. [5,34]) have
assumed Bradac et al. 's conjecture to be valid. The evidence and analysis presented here
not only strengthens the validity of Bradac et al. 's conjecture, but also strengthens the

131

validity of the subsequent studies, because this study has tested the assumptions made by

those two studies.

The analyses presented in this thesis also indicates, however, that the dominant type of

waiting is `Waiting on software' (see chapter six for more information). This contrasts

with the work of Bradac et al., who observed that the dominant type of waiting was
`Waiting on other'. Further investigation of the Waiting on software category has

distinguished between waiting on code and waiting on fixes to defects in the code. Chapter

six considered why there should be differences between the findings of Bradac et al. and

the findings of this study. Broadly, this may be due to differences in the focus of the two

studies, with Bradac et al. investigating an individual designer and this study investigating

process areas. (Chapter three identifies a number of differences in the designs of the two

studies, which might account for the difference in the two studies' findings.)

Chapter two identified two reasons for the unexpected use of time. The first reason,

waiting, is based on Bradac et al. 's analysis. The second reason, implicit within Bradac et

al. 's work, is that designers are unexpectedly reassigned to higher priority projects. In

both Projects B and C, the reassignment of resource is apparent. For Project B, resource
is retained by Project B rather than reassigned (when planned) to the succeeding project.
In Project C, resource assigned to support is reassigned to new development. Once again,
this provides complementary support to the work of Bradac et al. Unlike Bradac et al. 's

work, however, it has not been possible to examine the relative frequencies of waiting and
the reassignment of resource in this thesis.

Taking a broader perspective than just waiting, the analysis conducted as part of this
investigation complements the studies of time usage presented and discussed in chapter
two. This investigation provides insights into how process areas and projects actually use
time. These insights are more abstract than the studies of how individual designers use
their time.

132

9.4 Relating the insights to the model of capability

Given the fact that the waiting, poor progress and outstanding work evidence all have a

similar prevalence (i. e. being more prevalent during the end of the project than during the

middle of the project), this provides a further opportunity to explore the model of

capability.

5-

U 4 "' Waiting

00

Outs ding
k

/` .. -
"ý.

-" z
1 wor i

Poor
N-.. - progress

0
N v1 Co M ID ON N%0 It t- 0M %ýD ON N 00

^N NMMMV 'Cf

Project week

Figure 9.4.1 Smoothed frequency of the reporting evidence for Project B

5T

41 Outstanding

work

öö Poor
S2 progress //- -'

Waiting

z 1%
0 N-4

.. r .r
~NNNN 00 0 en tn 00 (14 W) r- *%

MMMM 11 Rr -t RT
In

In
In

Project week

Figure 9.4.2 Smoothed frequency of the reporting evidence for Project C

Figures 9.4.1 and 9.4.2 provide a comparison of the smoothed frequencies of waiting,
poor progress and outstanding work for the two projects. The smoothers are taken from
figures presented in chapters six through eight, and are calculated as moving averages with
a range of nine datapoints. Only the weeks where status meetings occur are included in the
two figures. The weekly references are not cumulative.

133

For Project B, there is a similar pattern of frequencies between poor progress and

outstanding work, with two `waves' of reporting; one approximately between weeks 2 and
30 and one approximately between weeks 34 and 58. The similar pattern lends support to

the logic that poor progress leads to outstanding work. A potential difficulty with this

logic, however, is that some outstanding work is reported before poor progress is reported
i. e. between weeks 3 and 14. This discrepancy might be explained by: the feedback

relationship in the model; the tactics of management used to compensate for poor

progress; and the possibility that the reporting of poor progress and outstanding work

may not just be functions of the actual occurrence of poor progress and outstanding work.

The pattern of frequencies between outstanding work and waiting are not similar,

primarily because of the `bump' in the waiting evidence between weeks 18 and 39. In

chapter five, Figure 5.3.1 shows that most of the increases in the number of design

changes on Project B occurred between weeks 18 and 39. Also, there is a long period,
between weeks 22 and 36, where there are no increases in design changes, and then in

week 37 two further design changes are added to the project. The 'bump' in the frequency

of waiting in Figure 9.4.1 might reflect a situation were the project is waiting on decisions

regarding the acceptance of additional design changes. Chapter five also explains that at

every status meeting for Project B the first item on the meeting agenda is to review the
design changes. Consequently, it might be that the reporting of waiting on design changes
bias the overall references to waiting. If one excludes the `bump' in waiting then there is a

similar pattern of frequencies between outstanding work and waiting, and this lends

support to the logic that outstanding work leads to waiting.

Similarly, if one again excludes the `bump' in the waiting evidence, then there is a similar
pattern of frequencies between waiting and poor progress. This lends support to the logic

that waiting threatens poor progress (via affecting capability). If one includes the `bump'

in the waiting evidence, the dissimilarities between the frequencies of waiting and poor

progress (and outstanding work and waiting) might be explained by the possible influences

of feedback; the tactics of management; and the fact that reports of waiting may not
only be a function of waiting. There is also the issue that waiting threatens capability
rather than always reducing capability. This is because time spent waiting in one activity
may be effectively directed at another independent activity ([34]). Also, poor progress is
defined as an imbalance between workload and capability. Consequently, poor progress
might be due to an increase in workload rather than a reduction in capability. Chapter five

shows clear increases in workload for Project B.

For Project C, there is a similar pattern of frequencies between poor progress and
outstanding work, with some ̀ lag' between poor progress and outstanding work. (Compare

134

the fluctuation at week 30 for poor progress with week 38 for outstanding work; the

peaks between weeks 42 and 45 for poor progress with weeks 48 and 49 for outstanding

work; and the decline in outstanding work from weeks 49 through 57, which follows the
decline in poor progress from weeks 48 through 54). There are also similar patterns of
frequencies between outstanding work and waiting, and between waiting and poor progress.

For both projects, there is a general tendency for all three sets of evidence to increase, to

plateau, and then to decline in the final weeks of the projects. This provides more detail

to complement the results of the Mann Whitney U tests of the prevalence of waiting,

poor progress and outstanding work.

Given the fact that feedback systems tend to behave counter-intuitively, and that a
feedback loop is present in the model of capability, then the obvious patterns in the

evidence might be surprising. The lack of counter-intuitive behaviour might be explained
by the granularity of the evidence, caused by the frequency of the meeting minutes. For

example, if one observes waiting, poor progress and outstanding work on a daily basis one

might find more complex, and counter-intuitive, behaviour. The fact that status meetings

occur weekly (and sometimes fortnightly) might simplify the relationships between

waiting, poor progress and outstanding work because these three phenomena are all
reported at the same time.

As noted in section 9.2, the frequency of references to the design/code and test process

areas across all sets of evidence suggests that a validation of the model for only the
design/code and test process areas might be effective. The frequency of references to the
Defects/Fixes type of work across all sets of evidence suggests that a validation of the
model using only the evidence referring to Defects/Fixes might also be effective. These
two tests stand as opportunities for further research.

Overall, and excepting the caveat regarding feedback, the analysis conducted above lends

additional support to the claim that the model of capability possesses descriptive and
explanatory value.

135

9.5 Relating the insights to the model of software project schedule behaviour

-duration

ad Capability

ting

Poor

Figure 9.5.1 An integrated model of schedule behaviour and capability

Figure 9.5.1 re-presents the integrated model of schedule behaviour and capability. The

model indicates how the behaviour of poor progress, outstanding work and waiting affect

a project's remaining duration:

1. The prevalence of poor progress towards the end of the project suggests that the
imbalance between workload and capability is more common during the end of the

project (but note that reports of progress do not appear to be only a function of

progress itself). Evidence from chapter five shows that workload explicitly and
implicitly increases during the middle (the design/code) and the end (the test phase) of

the project, and evidence from chapter eight shows that workload implicitly increases

through outstanding work (work that should have been completed but has not been).

An alternative perspective is that the imbalance between workload and capability may

occur throughout the project, but that its effect is not apparent until the end (the test

phase) of the project. This relates back to a point made in chapter four i. e. that the

model of software project schedule behaviour does not distinguish between actual,

planned, desired and perceived values of the constructs. Also, this is evidence for the
`90% syndrome' i. e. that actual progress is not accurately understood until the work is

planned to almost complete.

136

2. The prevalence of waiting toward the end of the project suggests both a reason for

the poor progress toward the end of the project, and an effect of this poor progress.
The delays in completing work earlier in the project prevent effort being directed at

subsequent work, and capability reduces leading to poor progress. Outstanding work

results, and waiting occurs. The waiting subsequently affects capability, during the end

of the project. This relates back to a point first recognised in chapter four i. e. the
feedback relationships present within the integrated model (and the individual

models).
3. The prominence of the design/code and test process areas suggest where the

relationships between progress, outstanding work and waiting are most sensitively felt

within the two projects. Recall, however, that Project B is more influenced by

external process areas than Project C. Also, note that the planning and requirements-

gathering phases of the projects has not been investigated.

4. Consistent with the design/code and test process areas being both the most `sensitive'

and the largest process areas of the project, the most frequently reported types of

work in the two projects relate to these two process areas. This suggests something of
the content of the integrated model i. e. that:

" It is the design and test workload that is more likely to increase.

" It is the design and test capability that is more likely to reduce.

" Waiting is more likely in the design and test process areas.

" Outstanding work is more likely in the design and test process areas.

" Poor progress is more likely in the design and test process areas.

Recall, however, that a frequently reported type of work for Project B was decision-

making, a type of work not frequently reported for Project C. Also, recall that
Project B is often influenced by external process areas, an influence not experienced
by Project C (with the exception of the year-2000 requirements).

5. An increase in workload, through the introduction of new features or design changes,
not only leads to attempts to increase capability, but also leads to attempts to
decrease workload (for example, through reducing the number of testcases, and
through prioritising and categorising defects and only fixing a subset of all defects).

9.6 Other studies of actual progress

Actual progress of phases

Watson ([134]) reports on the use of COCOMO ([13,14] see also, more recently, [12])

as a schedule prognosis and validation tool for a software development project also at
IBM Hursley Park. At three points in the progress of the project, the project's

137

management used COCOMO to estimate the duration of the project and its phases.
Unlike Projects B and C, Watson's project completed very much later than planned.

The project in Watson's study is comparable to Projects B and C. The projects come
from the same organisation, although Watson's project is slightly larger in terms of code

size (original estimate was 81KLOC; actual was 125KLOC) and larger in terms of effort
(original estimate was 2592 person-months; actual was 3232 person-months). The

Project Leader's opinion of his project is not recorded, but using the joint criteria of

project duration and product delivery the project would be judged as unsuccessful, because

the project completed very much later than originally planned (planned duration was

approximately two years; actual duration was approximately three years.)

The actual progress of the phases in Watson's project are, in some respects, similar to

the actual progress of the phases in Projects B and C. Originally the phases of Watson's

project were planned as discrete, sequential phases but actually occurred as concurrent

phases. The plan phase overlapped with the design/code phase; the design/code phase

overlapped with the functional verification and system test phases; the functional

verification phase overlapped with the system test phase. All of these phases also actually
took much longer than originally planned.

Where Watson's project differs from Projects B and C, in terms of actual progress, is that
the test phases (i. e. functional verification and system test) could not start when

originally planned. This suggests that the design/code phase was experiencing particularly
difficult problems; problems more challenging than those experienced by Projects B and
C. For Projects B and C, although the design/code phases were not completed when
planned, a sufficient amount of work was completed to allow the test phase to

commence. Project C provides a particularly good example: as part of the first internal

re-plan, the work within the design/code phase was deliberately re-ordered so that some
work (the OS/2 and DOS work) would be completed in time for the planned start of the
test phase.

Watson identified a number of factors that may account for the difference between the
three COCOMO estimates. These may also account for some of the apparent problems
within the design/code phase:

1. As the project milestones slipped, some of the initial requirements became invalid and
some function was changed. Projects B and C (both much shorter in duration) both
experienced an increase in workload. Although some of the minor requirements for
the two projects became out-dated, none of the major requirements became out-dated.

138

2. The complexity of some parts of the project were underestimated and some parts had

to be completely rewritten. In both Projects B and C, there are indications of
significant re-designs.

3. The development of the product was dependent on an operating system, which was
itself still under development. The project developing the operating system
completed late and this affected the progress of Watson's project. Project B was
dependent on the delivery of software from another project, but unlike Watson's

project this software was delivered when planned.
4. Turnaround time for compilations was assumed to be almost instantaneous when they

actually took three to four hours. This is an example of a low-level process affecting
the higher-level processes and implies support for the arguments of Bradac et al.
x[18])"

Watson's study appears to be the only study that has described the actual progress of
software projects at the phase-level. Similar patterns of work are available at a lower level

of the project. Van Genuchten ([128]), for example, has found a large proportion of
activities complete late, and that the late completion is due to the introduction of

unplanned activities (i. e. increased workload) and the unavailability of designers (reduced

capability). (See chapter two for more detail.)

Rodrigues and Bowers ([103]) use system dynamics models to explore the behaviour of
projects. They write:

"... parallel activities typically have implicit inter relationships which tend to increase
the activities' durations, prompting a revision of the plan to incorporate yet more
parallelism in an attempt to avoid an overrun. " ([103], p. 215)

This relates to the concurrency of phases and the possible effect of this concurrency on
the subsequent progress of a project. It might also help to explain the prevalence of
waiting, poor progress and outstanding work in projects, where the prevalence of waiting
etc. during the end of the project reflects the build-up of parallelism over the duration of
the project.

It is particularly unfortunate that there are no appropriate studies of successful projects
because these might strengthen the explanation provided above, as well as the wider
applicability of these explanations. Phan et al. ([96]), for example, report on the
development of OS/400, an IBM mid-range operating system. The development was
considered an outstanding success, but unfortunately for this study Phan et al. did not

139

present information on phases and process areas. The lack of studies of successful

projects relates back to an observation made by Carmel, and first quoted in chapter one:

"It should be noted that nowhere does the software engineering literature make

any causal claims regarding cycle time. Instead, the variables are normative and

prescribed for 'successful development'. " ([20], p. 112)

Appropriate studies of successful projects would allow causal claims of both unsuccessful

and successful development, even if these claims were speculative and required subsequent

validation.

Actual workload

There is a large body of research that can be related to the concept of workload. Much of

this research uses lines of code (e. g. (129]) or function points (e. g. [4]) as measures of

workload, although features (e. g. [121)) and modules ([69]), amongst others, are also

used. In addition, much of this research is concerned with developing and/or validating

predictive systems, where product size tends to be the main predictor (e. g. [29,50,60,

122,129]). Other studies have sought to provide descriptions and explanations of specific

projects. Kornreich and Smith Parker ([63]) report on a case study of the development of

a large software system that examined the impact of 127 requirements changes on project
duration. They found that the additional requirements account for several additional

months of work. Mouakket et al. ([80]) report on a case study of the development of a

small software system, again examining the impact of requirements changes. They found

that many of the original requirements were not implemented in the final product, being

replaced by requirements that evolved during the duration of the project.

All of these studies use some concept of workload, and a logic that changes in workload
impact the duration of a project. (There are differences of opinion, across these studies,
as to the exact relationships between workload and duration.)

Actual capability

The premise of software process modelling and improvement is that improving the way
the software is developed (the process) will improve the performance of the project (e. g.
cost, effort, duration) and the quality of its output (i. e. the software system produced).
Based on this premise, software process modelling and improvement is directly concerned
with capability and improving capability. The Capability Maturity Model (e. g. [88-90])

140

and the People Capability Maturity Model (e. g. [30]) are well-known examples in this

area.

Chapter one excluded much of this research, relying on Rodden et al. ([102]) to argue
that there was a tendency to develop abstract models of processes (models that may be

too abstract), with a lack of real attention directed at actual processes. The evidence and

analysis presented in this thesis is an example of the kind of work that is typically not

conducted by software process research. The implication is that much of the body of

software process research is difficult to relate to the research reported on here. The

terminology, notations and models being developed by software process research might,
however, be usefully applied to analysing actual process and the evidence presented in this

thesis. This stands as an opportunity for further research.

Watson's study ([134]), discussed earlier, hints at capability issues but does not consider
them explicitly (recall that Watson identified dependencies with another project and poor

compiler turnaround time as factors which, in this context, are capability issues).

Watson's study serves as an example that studies do detect process inefficiencies or

process problems, but do not model them explicitly as capability issues.

9.7 Other studies of the characteristics of process areas

Much of the available research on waiting has already been reviewed in chapter two and

related to the current investigation in section 9.3. With regards to the analysis of reports
of poor progress and reports of outstanding work, there appears to be little, if any,
relevant research previously conducted within the software engineering research
community. Bradac et al. ([18]) and Perry et al. ([92]) express an interest in the progress
of work, but do not pursue that interest. Also, research on the `90% syndrome' might be

related to evidence on poor progress.

9.8 Other studies of the tactics of management

Although not explicitly drawing on empirical evidence, Rodden et al. ([102]) argue that:

"All organisational life involves `cutting corners', informal `bending of rules' and
so forth. In most instances, organisational managements are aware that such work
goes on, if not in detail, and allow it precisely because it is a means by which the
work can be done. " ([102], p. 61; emphasis added)

141

Tactics of management are means by which the work gets done. They are essentially

pragmatic and informal because they respond to unpredictable contingencies,
interruptions and problems which arise as work is undertaken in practice ([118]). It is

clear from this quotation that Rodden et al. consider this kind of behaviour to occur in all

organisations and, by implication, in many if not all projects. As already stated, however,

they do not provide explicit empirical evidence to support their claim. In a subsequent

paper, Sommerville and Rodden ([118]) report on two case studies, making observations

that are more directly comparable to the tactics of Projects B and C. They write:

"... the practical reality is that the actual work done and the way in which it is

done is continually re-negotiated at a very detailed level by the participants

themselves. " ([118]; p. 6)

and in so doing they echo the words of Project C's Project Leader:

"We are constantly juggling work assignments to even the workload. " [Interview

C. 007. CP]

Similar observations are made by Waterson et al. ([133]) who conduct a case study of the

impact of cognitive and organisational factors upon the work of a commercial software

development project. Waterson et al. observe that workload fluctuated and that teams

would be temporarily restructured (with staff being drafted in from other teams in the

project if the workload became too demanding) to ensure that project milestones and
deadlines were met. Furthermore, Waterson et al. conclude that one of the major

successes of the project is its ability to reallocate and re-negotiate tasks and

responsibilities. This supports an argument made earlier in this thesis i. e. that the socio-

technical context of a project might delimit the scope within which tactics of

management can be effectively employed. In Waterson et al. 's study, tactics of

management could be successfully employed because the project was not (too) restricted.

As explained in chapter two, Perry et al. ([92]) recognise that developers may be

reassigned to higher priority projects, and for them the reassignment of developers to

other work reflects the fact that the organisation of large-scale software development

projects is extremely dynamic. Also reviewed in chapter two, van Genuchten ([128])
found that delays and overruns to activities increased toward the end of the project, but
he uses this observation to discourage the use of tactics of management later in the
project.

142

McKeen ([76]) investigates the development profiles of 32 software projects, all
developing business applications, across five organisations. He recognises that completion
deadlines are subject to some "manipulation" (McKeen's phrase); a behaviour clearly

observed in Projects B and C. McKeen also observed that similar manipulations are not

possible for cost and effort, because the time reporting systems in these organisations

make it difficult to arbitrarily adjust the actual effort and therefore the actual cost. Such

constraints do not appear to apply to Projects B and C. For example, because of the

costing approach for Project B (where Project B is costed together with three other

projects), some resource is drawn away from the subsequent project to support Project B.

Similarly, with Project C, although much of the resource (and hence cost) is allocated to

support work, that resource is assigned to new development work. The manipulation of

phases, resource allocation and cost are all examples of tactics of management.

To summarise, the tactics of management are pragmatic, informal and often `hidden'

methods for getting work done on projects, and are concerned with `re-shaping' work and

process. They may be constrained in their application by the project's surrounding socio-

technical context.

9.9 Other studies of the socio-technical contexts of projects

The significance of organisational influences on the progress of a project is widely

recognised by both researchers and practitioners. Sommerville and Monk ([116]) consider

that the response of a software development manager and software engineers to some

event within their project is not only determined by the problem but by wider

organisational factors. Block ([11]) argues that the external component of a project is

the major contributor to that project failing. Quintas ([98]) argues that the adoption of

software engineering is mediated and resisted by social, organizational, cultural, and
institutional factors. Also, some research into software estimation argues that prediction

systems must be calibrated to the environments in which they will be used (e. g. [29,56]).

Thamhain and Wilemon ([123]) have looked at the problems that make projects difficult

to control and from those they provide some recommendations for controlling projects.
One particular recommendation is to assure continuous senior management involvement,

endorsement and support of the project. The strategic value of Projects B and C relate to
this issue. Because of the higher value of Product B, it appears that Project B has the

support of senior management. Project C did not appear to be supported to the same
degree. (Since the completion of Project C, Product C has been moved into a new business
division of the organisation and is now receiving more support from their new senior
management.)

143

Research is also recognising the need to distinguish different types of development for

different types of product. For example, Jackson (e. g. [52-54]) and others (e. g. [109])

argue that just as the more traditional disciplines of engineering are distinct professions
(e. g. civil engineering, electronic engineering, mechanical engineering), so software

engineering will evolve into distinct areas of specialist knowledge, based on distinct and

well-defined problem domains. These different problem domains, by definition, present

their own intellectual and technological issues.

Similarly, some prediction systems identify types of product and types of project as

`drivers' in the estimation models (e. g. [13] and more recently [12]). Also, some surveys
distinguish different types of product and project (e. g. [35]).

9.10 Applying the insights to a wider `population' of projects

A recurring concern throughout this thesis has been the degree to which one may apply

the findings of case study research to a broader set of projects. Paraphrasing Wolcott

([1371, p. 173)6 as a guideline for generalising:

Every software project is in certain aspects:

a. like all other software projects

b. like some other software projects

c. like no other software project

In generalising the findings from this investigation, a clear distinction should be made
between the three models and the numerous insights. The models provide a framework

within which the insights have been drawn and organised. Because of the intended

flexibility of these models, one would expect them to apply to a wide range of (if not all)

software projects. The models propose a small number of generic relationships which are
intuitively sensible, and for which there is supporting empirical evidence (e. g. the brief

review of supporting research in chapter four, the behaviours of Project B and C, and the

review of previous research in sections 9.6 through 9.9). While the relationships are

causal, and so form the basis for prediction, the models (in their current form) are not

6 Wolcott ([137], p. 173) actually writes:
Every man is in certain aspects:
a. like all other men,
b. like some other men,
c. like no other man.

This aphorism was first used by Kluckhohn and Murray ([62]).

144

intended as predictive systems. The relationships appear to apply to all software projects,

although they might require (substantial) calibration to particular software projects.

Project B, Project C and Watson's project appear to lie along a continuum of the degree

to which a project's actual duration matches the originally planned duration. The actual

project duration for Project B is the same as the planned duration. The actual project
duration for Project C is slightly longer (a few weeks) than the planned duration. The

actual duration for Watson's project is very much longer than the planned duration.

Despite these differences, all three projects exhibit similar schedule behaviour, with

various phases completing later than planned and progressing concurrently with one

another. This suggests that it is common for the schedules of software projects to actually
behave differently from that planned, and that project's internally re-plan their schedules
in response to changes internal and external to the project.

Combining the insights from Projects B and C with the various empirical studies reviewed

suggests that project managers often employ various tactics of management in order to

get the work done. Also, the presence and frequency of waiting is common across

projects.

A number of differences between Projects B and C immediately suggest parameters for

distinguishing populations viz. the strategic value of a product, the type of product, the

type of project, the nature and structure of project management, and the degree of

expected and unexpected external influence.

Overall, the three models, the behaviour of project schedules, the tactics of management

and some characteristics of waiting appear to have wide applicability. Elements of the

socio-technical contexts provide parameters for distinguishing different types of software

project. Certain other characteristics, such as poor progress and outstanding work, lack a

sufficient body of accumulated evidence with which to make a judgement on their

applicability.

145

Chapter 10 A summary of the thesis
10.1 Introduction

This thesis opened with the argument that there is an industrial need for a better

understanding of the actual behaviour of software projects and, more particularly, of their

schedule behaviour. Software project schedule behaviour was defined as the dynamic

structure of time and work on the project. Clearly, the general behaviour of the project

will affect the project's schedule behaviour.

The thesis then drew upon Eisenhardt to argue that explanations of actual behaviour

require an intimate connection with empirical reality. An intimate connection with

empirical reality necessarily requires a close and solid connection with the actual

processes of particular, real-world software development projects.

The thesis then reviewed studies of actual time usage on software development, as these

provide the most direct connection with intervals of time and instantaneous events. This

review noted that previous research has concentrated on the lower-level processes of

software projects, and that there are few studies that have investigated higher-level

processes, related the lower-level processes to the higher-level processes, or related these

combined processes to schedule behaviour. These gaps in extant research formed the basis

for the subsequent empirical component of this investigation.

Two case studies of real-world software development projects at IBM Hursley Park were

conducted (Projects B and C). A large volume of evidence was collected and analysed.
Because the general behaviour of the project will affect its more specific schedule
behaviour, the case studies took a broad perspective in investigating the projects,

considering aspects of the projects that might not immediately relate to the project's

schedule behaviour.

The remainder of this chapter summarises the various empirical analyses conducted as
part of this investigation; the main conclusions that emerge from these analyses; the

recommendations, for research and industry, that follow from the conclusions; the threats
to, and limitations of, the investigation; and the opportunities for further research. The

chapter concludes with a review of the aims and objectives of this investigation (as

outlined in chapters one and two respectively).

146

10.2 A summary of the components of the empirical analyses

Project level characteristics

Socio-technical contexts

Process area characteristics

Waiting

Tactics of management

Actual progress

Outstanding work

Poor progress

'Sn, JIer' Wh l1sis

'Harder' antt4, sii

Model of software
project schedule Model of capability

behaviour

Integrated model of
schedule and

capability

Figure 10.2.1 The components of the empirical analyses

Figure 10.2.1 illustrates the various empirical analyses that were conducted as part of this

investigation. The figure distinguishes two bodies of empirical insights and three

conceptual models, and indicates how these five components relate to each other. The

two bodies of empirical insights are the analysis of characteristics of the project and the

analysis of the characteristics of process areas within the project. The three conceptual

models are the model of software project schedule behaviour, the model of capability, and

the integrated model of schedule behaviour and capability. The figure also suggests two

`modes' of analyses: a `softer' analysis, where the evidence has been related to each

other, but without an explicit model for the comparisons; and a `harder' analysis, where

the evidence has been compared, using the three models as a vehicle for the comparison.
The empirical insights have been drawn from both Projects B and C. The three models
have each been applied to both Projects B and C. Previous research has been related to

the empirical insights and the models.

147

103 Conclusions and implications

Before discussing the conclusions and implications to be drawn from this investigation, it

should first be emphasised that while the concept of a project as a distinct entity seems
reasonable and is used in both research and industry, the actual boundaries of a project in

an organisation's `space-time' are ambiguous and very difficult to properly define.

Projects B and C both provide examples of ambiguity in defining a project.

Conclusions

The first conclusion from this investigation is that projects which complete according to

their originally planned duration exhibit internal behaviour, and not just internal schedule
behaviour, similar to projects that complete later than- their originally planned duration.

More specifically, for both types of projects:

0 The internal schedules are similar:

" Phases complete later than planned.

" Phases occur concurrently when they were planned to occur sequentially.

" The major milestones occur toward the end of the project.

" There are explicit and implicit increases in workload.

0 There are implicit decreases in workload.

" There are implicit increases in capability.

" There are similar tactics of management.

" There are similar characteristics of waiting, poor progress and outstanding work.

There are notable differences in the socio-technical contexts of the two types of projects,
particularly:

" The (relative) strategic value of the product.

" The type of product.

" The type of project.

" The methods of managing the project, in terms of.

" The structure and purpose of status meetings.

" Some strategies for managing the project.

It may be that although both types of project experience explicit and implicit increases in
workload, projects that complete according to their originally planned duration are better
able to implicitly decrease workload and/or to implicitly increase capability. (Waterson et
al. [133] drew a similar observation from their case study.) The ability to respond to

148

changes in workload is conjectured as being affected by aspects of the socio-technical

context of the project (as delimited above). As an example, Project B was costed as part

of a set of four projects. As the resource is funded across four projects, it might be easier
to `borrow' some of that resource from an associated project, because there is no change
in the overall cost of either project. This tactic might further be justified with the

argument that Project B is delivering some work originally intended to be delivered with

the subsequent project (see chapter five for more detail) and so is `justified' in borrowing

resource from that project.

A second conclusion is a strengthened confidence in Bradac et al. 's conjecture that

waiting is more prevalent during the end of the project than during the middle of the

project. The characteristics of waiting, poor progress and outstanding work all support
this conjecture. In addition to strengthening the confidence one may place in Bradac et
al. 's research, there is also a strengthened confidence in the studies that build upon Bradac

et al. 's research (i. e. [5,34]) because this investigation has tested assumptions made by

those subsequent studies.

A third conclusion is that the three models appear to be useful for describing and
explaining the behaviour of software projects in general and software project schedules in

particular. With further research, these models might evolve into theories and/or
predictive systems.

Fourth, this investigation also provides complementary evidence regarding actual time

usage within projects. In contrast to a number of previous studies that have focused on
the lower-level use of time (e. g. how individuals use their time), this investigation has

studied the use of time at higher-levels of the process (i. e. how process areas and the

project itself uses time).

Finally, empirical support from a number of other studies complement the insights gained
in this investigation and increase the confidence with which one can apply some of these
insights to other projects. Specifically:

" The three models, the project's schedule behaviour, the tactics of management and
some characteristics of waiting appear to have wider applicability.

" Elements of the socio-technical contexts provide potential parameters for
distinguishing different types of software project.

149

Certain other insights, however, such as those referring to the characteristics of poor

progress and outstanding work, lack a sufficient body of accumulated evidence with which
to make a judgement on their wider applicability.

Implications

Two main implications can be drawn from the above conclusions. First, despite the

approach taken in this investigation (i. e. the collection of a large volume of evidence and

the analyses of a wide variety of factors using a very broad perspective), this

investigation has been unable to pinpoint definite causes to explain why a project will or

will not complete according to its original plan. The only `hint' of an explanation are the
differences between the socio-technical contexts of the two projects and, related to this,

the fact that tactics of management may be constrained by a project's socio-technical

context.

The second implication is that this research re-directs attention toward the investigation

of those processes that surround a project and not just those processes that occur within
the project. (Section 9.9 identifies some studies that have looked at processes broader

than just the project.) This relates back to the issue of the ambiguity of defining a

project. It may be that those things that make a project difficult to distinguish from its

surrounding organisation are precisely those things that explain the progress of that

project. This seems to be apparent in the fact that the tactics of management either

exploit such ambiguity or at least work within it e. g. Project B borrowing resource
budgeted to Project B+1.

150

10.4 Recommendations

Table 10.4.1 A summary of recommendations for industry

Recommendation
I Model and improve the processes within and between the design/code and test

process areas, as these appear to be the most sensitive and largest process areas
within a software project.

2 Model and improve the processes relating to design/code and test work as these
appear to be the most significant types of work within a software project. (cf.
recommendation #6)

3 Distinguish different types of process models (and perhaps plans) and process
improvement programmes based on elements of the socio-technical contexts,
particularly:
" The type of product.
" The type of project.
" The strategic value of the product.
" The structure of the status meetings.

4 Focus improvement on the planning process, particularly on the role of the
plan during the execution of the project.

5 Model and improve the internal re-planning process.
6 Focus process improvement on inter-project processes and not just intra-

project processes. In particular, focus on inter-project processes relating to the
design/code and test process areas and the design/code and test types of work.
(cf. recommendation #2)

7 Model the dependencies between activities, within and between projects, as
these are sources of waiting, and may threaten capability.

8 Model the dependencies of activities on resource as these are sources of
waiting, and may threaten capability.

9 Improve the methods of reporting progress, particularly during the design/code
phase, through:
" metrics.
" structured status meetings.

10 Introduce effective milestones during the design/code phase. This is dependent
on the introduction of effective reporting of progress (cf. recommendation
#9).

11 Identify and communicate tactics of management and the circumstances within
which a tactic is applicable.

Table 10.4.1 presents some recommendations for practitioners, based on the insights

gained during this investigation. Most of the insights refer to modelling and improving

the software production and management processes of software projects.

Recommendation #2 is distinct from recommendation #1 because processes relating to
design/code and test work may not just occur within the design/code and test process
areas. As is clear with Project B, dependencies exist with other projects due to design/code

and test work (see recommendation #6).

151

Table 10.4.2 A summary of recommendations for research

Recommendation
I Conduct research into actual process, considering:

" Processes at a variety of levels of the project.
" Processes within and between a variety of process areas, particularly the

design/code and test process areas.
" The interaction between processes at various levels.
" The short-term and long-term effects of processes.
" Both the production process and the management process.

2 Investigate the development and application of different types of process
models and process improvement programmes for different types of project,
product and socio-technical context.

3 Investigate mechanisms for reporting progress, whether these be improved
metrics or more structured methods of reporting.

4 Investigate the actual flow of work through a project, particularly relating to
the design/code and test process areas.

Tables 10.4.2 presents some recommendations for the focus of research, based on the
insights gained from this investigation. These recommendations are distinct from

recommendations on how to conduct research (cf. the heuristics presented in chapter
three). Also, the recommendations presented in Table 10.4.2 are more general

recommendations, in contrast to more specific recommendations presented in Table

10.6.1

10.5 A critical review of the investigation

Table 10.5.1 A summary of threats to the investigation

Threat Chapter
1 The review of research has concentrated on research within Two

the software engineering community. This may exclude
valuable studies from other areas of research.

2 It is difficult to generalise from case study research: Three
" Practical constraints limit the depth of inquiry (in terms

of the degree to which each case can be investigated) and
the breadth of inquiry (in terms of the number of cases
that can be considered)

This may distort the applicability of the insights and models
to other projects.

3 The status meeting minutes may not provide a reasonable Three
representation of the progress of the project. Also:
" Meeting minutes were simplifications.
" Meeting minutes did not occur for every week of the

project (cf. 1113).
This may distort the test of Bradac et al. 's conjecture, the
insights drawn about the characteristics of waiting, and the
value of the model of capability.

4 The status meeting minutes for Project B were from the Three
project status meetings, but for Project C the minutes were
from the design/code/test status meetings. This may distort
the comparisons between the two projects.

152

Table 10.5.1 A summary of threats to the investigation (continued)

Threat Chapter
5 The definitions of the beginning, middle and end of a project Three

may not match the definitions used by Bradac et al. This
may prevent a proper replication of Bradac et al. 's work.

6 There was no investigation of the requirements and planning Three
phase of the project. This prevents a complete replication
of Bradac et al. Also the success of the project may be
influenced by the progress of the planning phase.

7 With regards to the analysis of waiting, the evidence was Three
only analysed for references to waiting and not for
references to working or not working. This might interfere
with a proper replication of Bradac et al. 's work.

8 The phrases used in the searches for references to waiting, Three
progress of work and outstanding work were not exhaustive,
in that they did not contain all of the different kinds of
terms that could refer to waiting, progress of work and
outstanding work. This may interfere with the evidence
representing the phenomena of interest i. e. waiting, progress
and outstanding work.

9 There was no measurement of the size of the effect of poor Three
progress, outstanding work and waiting in the model of
capability.

10 The model of software project schedule behaviour has not Four
been formally validated. This might distort the value of the
model for explaining behaviour, and potentially predicting
behaviour.

11 The model of capability has not been formally validated. Four
Again, this might distort the value of the model for
explaining behaviour, and potentially predicting behaviour.

12 The complexity of the behaviour of the projects threatens Five
the valid description and explanation of their behaviour.

13 The lack of weekly status meetings threatens the six
consistency of the waiting, progress of work and outstanding
work evidence (c f. #3).

14 Reports of waiting, progress and outstanding work may not six
be representative of actual waiting, progress and outstanding
work. This may interfere with the evidence representing the
phenomena of interest, and subsequently the validity of the
insights drawn from the evidence.

15 There is a methodological difference between Bradac et al. 's Six
study and this study, in terms of what behaviour could be
observed. Bradac et al. 's study consisted of direct
observations of behaviour, whereas this study observed
behaviour indirectly through the meeting minutes. This
methodological difference may prevent a proper comparison
of the two studies.

16 The influence of the tactics of management, possible time Nine
delays between cause and effect, and the influence of
feedback, threaten the value of the models for explaining
behaviour

Table 10.6.1 presents a summary of the threats to, and limitations of, the investigation.
The table also indicates the primary chapter that the threat relates to.

153

10.6 Opportunities for further research

Table 10.6.1 A summary of the opportunities for further research

Opportunity

0 Overall
0.1 Replicate this investigation.
0.2 Conduct complementary investigations:

" Surveys would address concerns of wider applicability.
" Experiments would formally validate (in terms of hypothesis-testing)

aspects of the models and the findings.
0.3 Investigate the relationship between the design and test process areas.

4 Arising from chanter four
4.1 Develop the model of software project schedule behaviour:

" Distinguish degrees of change in workload, capability and remaining-
duration.

" Identify and model the processes that impact workload and capability.
" Distinguish between actual, desired, planned and perceived values of

remaining-duration, workload and capability.
" Apply the model to various aspects of a project e. g. at the project level,

at the process-area level, to a particular feature, for a particular team.
" Develop the model as a feedback system.

4.2 Validate the model of software project schedule behaviour:
" Through additional empirical studies.
" Through comparison with existing empirical evidence.

4.3 Develop the model of capability.
4.4 Validate the model of capability:

" Through additional empirical studies.
" Through comparison with existing empirical evidence.

5 Arising from chapter five
5.1 Investigate the nature of the socio-technical contexts of projects, and the

effects these contexts have on workload, capability and remaining-duration.
5.2 Investigate the internal behaviour of successful and unsuccessful projects.
5.3 Investigate the tactics of management.

6 Arising from chapter six
6.1 Investigate the effect of concurrent phases on the prevalence/frequency of

waiting.
6.2 Investigate the knock-on ('second-order') effects of source and dependent

process areas.
6.3 Investigate the feedback relationships between source and process areas.

7 Arising from chapter seven
7.1 Investigate the effect of concurrent phases on the progress of work

9 Arising, from chapter nine
9.1 Investigate the frequency of waiting, poor progress and outstanding work

per process area per week.

Table 10.6.1 summarises the opportunities for further research that have been identified
in this thesis. The summary is organised according to the chapter in which the
opportunity was identified. As is clear from the table, there are a considerable number of

154

directions in which subsequent research on software project schedule behaviour may

progress.

A particularly important direction for further research would be to further investigate

both successful and unsuccessful projects. Furthermore, such investigations should

examine the actual behaviour of the projects, and examine that behaviour in detail. This

would naturally suggest the conduct of further case studies, but the careful design and

administration of survey studies might also provide valuable evidence. Survey studies

would be particularly valuable if they could provide evidence across a relatively large

number of cases; a necessary pre-requisite for generalising these conclusions.

10.7 A review of the aims and objectives of this investigation

Chapter one presented four aims to this investigation, and chapter two presented three

specific objectives. These aims and objectives are re-presented here, together with brief

comments on the degree to which they were satisfied in this investigation. The aims are

(specific objectives are included as part of the third and fourth aims):

1. To consider the degree to which existing empirical studies within the software

engineering research community identify, describe or explain relationships between

the actual processes of software development and the schedule behaviour of software

projects.

Chapter one and the opening sections of chapter two argued that there is a lack of

- research, within the software engineering community, that seeks to generate
explanations of software project behaviour in general, and software project schedule
behaviour in particular. Five bodies of research were briefly considered in making this

argument:

" Surveys of practitioners' opinions of the software process.

" The development and validation of system dynamic models of software
development projects.

" The development and validation of prediction systems of characteristics of
software projects e. g. effort, cost, quality and duration.

" The development and validation of software process models.
Investigations of actual process.

Studies of actual time usage in software development projects were identified as the
most likely sources of research to identify, describe and explain how actual processes

155

relate to software project schedule behaviour. This is because these studies explore
both `visible' and `invisible' work, and because they provide the most direct

connection with intervals of time and instantaneous events in a software project.

2. To identify gaps within the existing research that prevent, or limit, the development of

a theory.

The review in chapter two concluded that there are a lack of studies of higher-level

processes, of the interaction between lower-level and higher-level processes, and of

the effect of these two sets of processes on software project schedule behaviour. The

chapter also concluded that empirical and theoretical knowledge within this area has

not developed to the extent that one can forward a valid, testable and relevant theory

of software project schedule behaviour.

3. To identify the opportunities for a contribution in this area of research, and to select

one or more of these opportunities as specific objectives for the empirical component

of this research.

Chapter two identified three specific objectives for the empirical component of this

investigation. They are:

" To replicate parts of Bradac et al. 's study.
Bradac et al. 's conjecture that waiting is more prevalent during the end of the

project than during the middle of the project was tested with six sets of evidence,
three sets from each of the two projects. Furthermore, Bradac et al. 's

observations of types of waiting were also explored, but this investigation found a
different set of types of waiting to those identified by Bradac et al.

" To investigate actual time usage at higher-levels of the project.
The two case studies explored the socio-technical contexts, the actual progress,
and the tactics of management of projects, and the waiting, progress of work and
outstanding work characteristics of process areas.

" To investigate the relationships between the lower-level and higher-level

processes, and their relationships to schedule behaviour.

The two case studies sought to relate the characteristics of the project to the
characteristics of process areas (see chapter nine). Also, the model of software
project schedule behaviour, a model of higher-level processes, was integrated with

156

the model of capability, a model of lower-level processes. The integrated model

was also related to the studies of actual time usage reviewed in chapter two.

4. To conduct empirical inquiry, so as to contribute to the body of research on software

engineering in general and software project schedule behaviour in particular.

Broadly, four contributions were made:

1. The development of three models i. e. the model of software project schedule
behaviour, the model of capability and the model of schedule behaviour and

capability.
2. The drawing of a number of insights concerning software project behaviour in

general and software project schedule behaviour in particular. These insights refer
to the socio-technical contexts, the actual progress, and the tactics of

management of projects, and the waiting, progress of work and outstanding work

characteristics of process areas.
3. The drawing of a number of more general conclusions and implications

concerning software project behaviour. These conclusions principally refer to the
difficulty in distinguishing between the behaviours of successful and unsuccessful

projects.
4. The generalisation of these insights to other projects, through:

"A review of previous research in light of the insights drawn from the case

studies.

" An independent test of a conjecture of Bradac et al. 's.

157

Glossary
Term Definition

Beginning of the project The period between the start of the planning phase

and the start of the design/code phase of a project.
See chapter three for more information.

Capability Broadly, the ability to complete the work in the

project. A more technical definition of capability is

the ability to complete n units of work per unit time,

at time t of the project. See chapter four for more
information.

Defect screen team A team that categorises, prioritises and allocates
defects to defect-fixers.

Design changes A set of market requirements of a piece of software

which typically involve changes and additions to

multiple software subsystems. (See also features.)

End of the project The period between the start of the test phase of the

project and the end of the project.
Feature A set of market requirements of a piece of software

which typically involve changes and additions to

multiple software subsystems. Features and design

changes are conceptually similar. Features tend to be

design work that is recognised and planned for during

the initial planning phase. Design changes tend to be

work that is introduced as the project progresses.
Global process See higher-level process

Higher-level process A process occurring:

" within a process area

" between process areas

" between projects, or

" between the project and the organisation.

KLOC An acronym for thousands of lines of (software)

code, a measure of the size of a software product.
Laboratory Except where indicated otherwise, this term refers to

IBM Hursley Park.

Lower-level process A process occurring within an 'individual (e. g.
cognitive processes), between individuals (e. g.
communications, such as emails), or between teams.

158

Term Definition

Middle of the project The period between the start of the design/code

phase and the start of the test phase.
Organisation Except where indicated otherwise, this refers to IBM

Corporation.

Outstanding work Work that should have been completed but which
has not been. See chapter four for more detail.

Plan A project plan defines: the project objectives, the

necessary work to achieve those objectives, when
and by whom this work will be performed, the

methods to be employed, how long the project will
take, and how much it will cost. (taken from [75],

chapter 27 page 27)

Process area A `production unit' of the project, such as the
Design/Code process area (which produces the
designs and software code) or the Test process area
(which tests the designs and software code).

Product area The management and production areas concerned
with the development and subsequent support of a
product. The product area is `wider' than the

project. Project B, for example, is one project
within Product B's product area.

Progress of work An indicator of the `imbalance' between workload
and capability, such that the workload may not be

completed with the current capability in the duration

planned. See chapter four for more information.

Project Assistant The Project Assistant assists the Project Leader and
the project management team in managing the

project. The Project Assistant is primarily an
administrative role.

Project Leader The most senior individual (the individual with the
highest authority) within the project. The Project
Leader heads the project management team of the

project.
Project management team A multi-functional management team, consisting of

representatives from all the (important) process
areas of a project.

159

Term Definition

Remaining duration Technically, the amount of time remaining on the

project, at time t of the project. (See the model of

software project schedule behaviour in chapter four.)

Software project schedule The dynamic structure of time and work on a
behaviour project. See chapter one for more detail.

Waiting Waiting occurs where one process area is waiting on

another process area for the delivery of some

resource (e. g. code, or the availability of personnel).
See chapter four for more information.

Work breakdown structure A product-oriented task hierarchy of all the work to
(WBS) be performed to accomplish the project contractual

objectives. The products may be elements of
software, hardware, documents, tests, reports,
support services, or other quantified elements of the

objectives. (Taken from [75], chapter 27 page 20)

Workload Broadly, workload is the amount of work to be done

on the project. Technically, workload is the number
of units of work remaining to be completed, at time t
of the project. See chapter four for more
information.

160

Appendix AO Deciding meaningful
associations between entities
AO. 1 Introduction

A number of tables in the main body of the thesis have been used to draw conclusions

about the meaningfulness of associations between entities. For example, in chapter six,

Table 6.5.2 was used to draw conclusions about the associations between `source' process

areas and `dependent' process areas.

The first method considered to determine meaningful associations between entities was to

use a Poisson distribution to calculate the probabilities of random allocations of items to

cells in a table. Those allocations which were unlikely to occur randomly where

considered to be meaningful. A fundamental problem with this procedure, however, is that

to use a Poisson distribution one must be able to reasonably assume that the allocation of

each item occurs independently of the allocation of each and every other item. For each

table in this thesis, however, there is a finite number of items that can be distributed

between the cells of that table. Consequently, once an item is assigned to a cell, it affects

the probabilities of randomly assigning the remaining items to cells. (The simplest

example is a situation where one has two cells and one item to assign to those cells. If the
item is assigned to the first cell, it cannot be assigned to the second.) Thus, one cannot

reasonably make the assumption of independence, and so one cannot employ a Poisson

distribution.

Section AO. 2 documents this first procedure. Equation 4 cannot be retained because of the
inability to assume independence. Because the logic of the first procedure is still valuable,
it was used as a basis to develop a second procedure. The second procedure comprised a

number of computer simulations, conducted to calculate the probabilities, of randomly

assigning items to cells of a table, where each assignment is not independent of previous

assignments. This procedure is described in section AO. 3

A0.2 Using a Poisson distribution to decide meaningful associations

In a Poisson distribution, ? (lambda) is the mean number of occurrences per `grouping'.

Typically, X is the mean number of occurrences per interval of time, but a Poisson

distribution can also be used for other kinds of processes ([64]). In this thesis, X is the

mean number of associations between two entities e. g. the mean number of associations
between `source' process areas and `dependent' process areas in Table 6.5.2.

161

The following procedure can be used to calculate the probabilities of assigning n items, or
higher, to a cell in table where the probabilities of assigning each item are independent of

other assignments:

1. Calculate X:

ý_T
C

[Equation 1]

where T is the total count of all the items in the table and C is the total number of

cells for that table, excluding items and cells related to `Unknown' categories (see

section AO. 5 for further information).

2. Calculate the probability, P(n), of n items occurring in a cell (formulae taken from

[72]):

one-x
P(n) = [Equation 2]

n.

3. Calculate the probability, P(<n), of less than n items occurring in a cell:

P(< n) = 10 P(n) [Equation 3]

4. Calculate the probability, P(<N), of less than n items occurring in all cells in the table:

P(< N) = (10 1 P(n))c [Equation 4]

5. Calculate the probability, P(>_N), of one or more cells having at least n items:

P(>_ N) =1- (a I P(n))c [Equation 5]

6. If P(>M is less than or equal to 0.05 then the value is considered significant and any

associations, with a value of x or greater, between entities are considered meaningful.
If P(? N) is less than or equal to 0.01 then the value is considered very significant and
any associations, with a value of x or greater, between entities are considered
meaningful. If P(? N) is less than or equal to 0.001 then the value is considered

162

extremely significant and any associations, with a value of x or greater, between

entities are considered meaningful.

AO. 3 Using a series of computer simulations to decide meaningful associations

As already noted, a number of computer simulations were conducted to estimate the

probabilities for the random assignment of items amongst a number of cells in a table.
Because meaningful associations were being estimated for a number of tables, and each

table had a different number of items to allocate and a different number of cells, a number

of computer simulations were conducted. Each simulation consisted of running 20 sets of
50,000 runs, where each run made one estimate of the probabilities of each allocation

occurring. For each set of 50,000, the probabilities were averaged. The final averages for

each of the 20 sets were then used to calculate a mean probability, and a standard
deviation from the mean. The standard deviation was used to set the confidence level, ±2

standard deviations, for the mean estimates. Figure A0.3.1 presents a copy of the source

code for the computer program used to simulate the distributions. (Sincere thanks to
Colin Kirsopp for writing and testing this program.) Parameters input to the program are

presented and discussed in section A0.4.

Table AO. 3.1 Input parameters to the program

Parameter Comment
Label A text description of the simulation. For referencing purposes.

CeliCount The number of cells to which items can be randomly allocated.
ItemCount The number of items to randomly allocate amongst the cells.
RunCount The number of runs of the allocation. Each run will randomly allocate

all the items to the cells.
SetCount The number of sets of runs. Using a number of sets allows one to

estimate a confidence interval for the calculation of probabilities.
MaxValue The highest value to calculate and record the probability for.

Probabilities are calculated and recorded for values between 0 and
MaxValue.

The source code for the C++ program used to simulate the random allocation of items to

cells in a table is listed below. The program receives six inputs which are identified and
described in Table AO. 3.1. Each input should be on a separate line of the input file.
Section AO. 4 presents a full list of the inputs for all of the simulations.

Figure AO. 3.1 Source code for the computer program used to simulate the
distributions

#pragma hdrstop
#include <condefs. h>
#include <stdlib. h>

163

#include <stdio. h>
#include <iostream>
#include <fstream>

// ---
#pragma argsused

int main(int argc, char **argv)
{

int cellCount, itemCount, setCount, maxValue;
long runCount;
long* cells;
long* lessThanX;
char* inputBuffer = new char[202];

if(argc != 2)
{

cout « "Usage: " « endl;
cout « "PoissonTest datafile" « endl;
exit(1);

}
ifstream fin(argv[1]);
while(! fin. eof())
{

randomize();
fin. get(inputBuffer, 200, '\n'); fin » ws;
char* label = new char[strlen(inputBuffer)+1];
strncpy(label, inputBuffer, strlen(inputBuffer));
fin. get(inputBuffer, 100, '\n'); fin » ws
cellCount = atoi(inputBuffer);
fin. get(inputBuffer, 100, '\n'); fin » ws ;
itemCount = atoi(inputBuffer);
fin. get(inputBuffer, 100, '\n'); fin » ws
runCount = atol(inputBuffer);
fin. get(inputBuffer, 100, '\n'); fin » ws ;
setCount = atoi(inputBuffer);
fin. get(inputBuffer, 100, '\n'); fin » ws
maxValue = atoi(inputBuffer);

cout « endl << "********************" « end].;
cout « label « endl;
cout « "cellCount -" « cellCount « endl;
cout « "itemCount -" « itemCount « endl;
cout « "runCount -" « runCount « endl;
cout « "maxValue -" « maxValue « endl;
cout « "************* *******~ « endl;
cout « "set\t";

cells = new long[cellCount];
for(int i=0; i< cellCount; i++)
{

cells(ij = 0;
}
lessThanX = new long[itemCount+l);
for(int i=0; i< itemCount+l; i++)
{

}
lessThanX[i] = 0;

164

for(int i=0; i<=maxValue; i++)
{

cout «i« "\t";
}
cout « endl;
for(int j=0; j< setCount; j++)
{

for(int run=1; run <= runCount; run++)
{

for(int i=0; i<itemCount; i++)
{

int celiNo = random(cellCount);
cells[celiNo]++;

}
int maxVal = 0;
for(int i=0; i<cellCount; i++)
{

if(cells[i] > maxVal)
{

maxVal = cells[i];
}

}
for(int i=0; i<= maxVal; i++)
{

lessThanX[i]++;
}
for(int i=0; i<cellCount; i++)
{

cells[i] = 0;
}

}
cout « 0+1) « "\t";
for(int i=0; i<=maxValue; i++)
{

cout « ((double)lessThanX[i])/runCount « "\t";
lessThanX[i] = 0;

}
cout « endl;

}
delete[] lessThanX;
delete[] cells;

]
fin. close();
return 0;

}

165

AO. 4 Parameters for the simulations

Table AO. 4.1 Parameters for the simulations

Label
Cell

Count
Item

Count
Run

Count
Set

Count
Max
Value

ale 6.5.2 Project B Internal cells 56 82 50000 20 16
Table 6.5.2 Project B Row totals 8 82 50000 20 33
Table 6.5.2 Project B Column totals 7 82 50000 20 32
Table 6.5.2 Project C Internal cells 56 31 50000 20 10
Table 6.5.2 Project C Row totals 8 31 50000 20 20
Table 6.5.2 Project C Column totals 7 31 50000 20 19
Table 6.6.3 Project B Internal cells 40 83 50000
Table 6.6.3 Project B Row totals 5 83 50000 20 44
Table 6.6.3 Project B Column totals 8 83 50000 20 33
Table 6.6.3 Project C Internal cells 40 25 50000 20 9
Table 6.6.3 Project C Row totals 5 25 50000 20 14
Table 6.6.3 Project C Column totals 8 25 50000 20 20

Table 6.6.4 Project B Row totals
Table 6.6.4 Project B Column totals
Table 6.6.4 Project C Internal cells
Table 6.6.4 Project C Row totals
Table 6.6.4 Project C Column totals

5
7

35
5
7

92
92
28
28
28

50000
50000
50000
50000
50000

20
20
20
20
20

44
36
12
14
19

able 7.4.2 Project B Internal cells 20 51 50000 20 12
Table 7.4.2 Project B Row totals 4 51 50000 20 19
Table 7.4.2 Project B Column totals 5 51 50000 20 35
Table 7.4.2 Project B Poor progress 15 51 50000 20 20
Table 7.4.2 Project C Internal cells 20 71 50000 20 17
Table 7.4.2 Project C Row totals 4 71 50000 20 24
Table 7.4.2 Project C Column totals 5 71 50000 20 41
Table 7.4.2 Project C Poor progress 15 71 50000 20 25

-Table 8.4.2 Project B Internal cells 36 56 50000
Table 8.4.2 Project B Row totals 6 56 50000 20 37
Table 8.4.2 Project B Column totals 6 56 50000 20 22
Table 8.4.2 Project C Internal cells 36 48 50000 20 16
Table 8.4.2 Project C Row totals 6 48 50000 20 17
Table 8.4.2 Project C Column totals 6 48 50000 20 38

Table AO. 4.1 summarises the parameters that were used for each simulation. See Table

AO. 3.1 for an explanation of each parameter, and the order in which they were input into

the program.

AO. 5 Additional assumptions for the simulations

Three additional assumptions were made for the simulations:

A number of the tables include `Unknown' categories. These categories were

excluded from the calculations because it is not clear what information these

categories communicate. For example, an Unknown category might `hide' within
it an additional process area.

166

2. References categorised as Unknown occur randomly within the evidence.

3. Classifications were typically generated separately for Projects B and C, and then

merged. Because the classifications were generated separately for the two projects,

categories existed in one classification that didn't exist in the other. For example,

with Table 7.4.2, Build, Other projects, Early market support and Project

management were not identified as a `source' process areas for Project C.

Although certain categories were not identified in the classification, typically

these categories did exist for the two projects. So, again with Table 7.4.2,

although Build was not identified as a process area it did actually exist with Project

C.

167,

Appendix B1 The selection of projects for
case study
B1.1 Introduction

This appendix describes the generation of an initial set of candidate projects, the criteria
for selecting cases from that candidate list, and the practical problems that reduced the

initial set of five cases to a final set of two. This appendix complements chapter three.

B1.2 The selection of projects for case studies

Table B1.2.1 A summary of the candidate projects

Project Purpose Platform Type of software Status
A New version Mainframe Global, real-time, Pre-plan

middleware
B New version Mainframe Global, real-time, Just completed

middleware planning phase
C Porting product Desktop Local, real-time, Just completed

middleware planning phase
D New version Mainframe Message queueing Project

completed
E Porting product Mainframe Message queueing Post-plan
F New product Other Internet In planning

phase
G New version Mainframe Message queueing In planning

phase
H New version Other Digital telephone Post-plan

services
I New version Other Digital telephone Project

services completed
J New version Other Message queueing Post-plan
K New version Mainframe Message queueing Project

completed
L New version Mainframe Global, real-time, Project

middleware completed
M New version Desktop / Global, real-time, Post-plan

Workstation middleware
Ni New version Other Digital telephone Project

services completed
N2 New version Workstation Digital telephone Project

services completed
0 New version Workstation Global, real-time, Post-plan

middleware

Table B1.2.1 provides summary descriptions of the candidate projects for the case studies.
The descriptions of the projects include the purpose of the project (i. e. to produce a new
product, a new version, or a port of the product to a 'new platform), the platform on
which the product would operate (i. e. mainframe, workstation, desktop, other), the type

168

of product (i. e. middleware, message queueing, digital telephone services), and the status

of the project at the time the project was considered as a candidate for a case study (i. e.

pre-plan, in the planning phase, just completed the planning phase, post-plan, and project

completed).

The term `global' refers to a system that is designed to operate across an entire

organisation, even where the organisation is distributed across a number of physical sites.
By contrast, a `local' system is designed to operate within one site, similar in concept to

a local area network (LAN). Middleware systems are designed to operate `between' the

operating system and the applications. Thus, middleware relies on the operating system in

order to function and provides additional functionality to applications which the

operating system cannot (or does not) provide.

All projects were taken from IBM Hursley Park, and were chosen as candidates through
informal discussions with a `co-ordinator' at that laboratory. The informal criteria for

candidate projects were that the projects should be currently occurring or have completed

recently, and that the project leaders would be available (i. e. they were still at the
laboratory) and likely to be willing for their projects to be studied.

Table B1.2.2 Criteria for selecting projects for case study

Criterion Value of criterion
1 Select five projects for case Satisfies the advice provided by Eisenhardt

studies and Orlikowski (see chapter three)
2 Projects that were planned to This would allow an exploration of whether

complete within the next 12 the project actually completed according to
months. the planned schedule.

3 Projects that had recently exited Planning information would be easier to
their plan phase. gather. Interviews on the plan would be

closer to the plan phase, and thus might
reveal more information. This would also
allow investigations of some of the earlier
processes in a project, such as high-level
design. It might also reveal some
information on `plan-chum' and
`requirements-chum'

4 Projects that progressed through . Again, this would allow an investigation of
more stages of the project. more processes and more varied processes in

the project.
5 Projects that were There are various `parameters' that one

representative of the laboratory might consider. Table B1.2.1 presents some
of these.

6 Projects that were not
representative of the laboratory

The heuristics presented in chapter three were used to establish criteria for selecting
candidate projects as case studies. Table B1.2.2 summarises these criteria. Criteria 2,3 and

169

4 imply that projects whose post-plan duration was 12 months were preferred. This

naturally biases this investigation to shorter projects. For example, some projects at the

laboratory are planned to take 18 months to two years, and in unusual circumstances

longer. A perspective of shorter projects not only made the research feasible but also

allowed an investigation of the life-cycle of a project.

Criteria 4 and 5 deliberately contradict each other. Clearly, representative projects are

desireable because they support the development of a theory with wider applicability.

Unrepresentative projects are also desireable because they define the limits of

applicability. These two criteria are consistent with positions taken by Yin ([140]) and

Eisenhardt ([39])

As explained in chapter three, five projects were initially selected for case studies

(Projects A, B, C, E and F). It quickly became clear, however, that there would be

difficulties with gaining frequent access to project members for Projects E and F. These

two projects were dropped as case studies and Project G was introduced to compensate for

the reduction in the number of case studies.

As the collection of evidence progressed, it became clear that it was extremely demanding

to collect evidence for four projects (particularly when one considers attempts to
interview project members regularly, and to record the details of these interviews). It was

also clear that the analysis of the evidence (which was growing enormously) would also be

extremely demanding. Consequently, the selection of case studies was further revised,

reducing the number of projects to two (Projects B and C). Two case studies was

considered to be the minimum number of acceptable projects, as two projects would allow

cross-case comparison (see heuristic #2 in Table 3.3.1). Projects A and G were dropped

because both projects were experiencing difficulties in completing their plan phases. (In

addition, Project A was not originally planned to complete within the 12 month time-
frame for the data collection.) The problems that these two projects were experiencing

would be very interesting with regards to project schedule. The delay in completing the

plan phases, however, meant that less project time would be spent on other project

phases within the time-frame set for the evidence collection. Other researchers have
documented the problems they experienced with long, intensive, qualitative case studies
(i. e. [78])

170

Table B1.2.3 A summary of the final status of the candidate projects

Number
Status Cases of cases

Main cases with data collected and analysed B&C 2
Main cases with data collected but not analysed A&G2
Secondary cases with data collected but not analysed H, K&M3
Secondary cases with no data collected but data I, L, NI & N2 4
available
Cases deferred D, E, F&J4
Cases where project manager did not respond 0l

Total 16

Table B1.2.3 summarises the status of the candidate projects at the time the evidence-

collection period was completed. Two projects (Projects B and C) remain as main case

studies, with the opportunity for analysis of evidence from a further five case studies
(projects A, G, H, K, M). Due to practical constraints, the additional cases were not

analysed.

171

Appendix B2 An explanation of the figures
used in chapter five
B2.1 Introduction

Given the complexity of the figures presented in chapter five, some explanation of their

structure and notation is appropriate. This appendix provides an explanation of the

purpose, structure and notation used in the figures.

B2.2 Explanation of the purpose, structure and notation of the diagrams

The main purpose of the figures was to communicate a large volume of evidence from a
variety of sources in the most efficient way. Miles and Huberman ([79]) suggest numerous
techniques for organising qualitative evidence. One set of their techniques concerns
organising multiple sources and types of evidence according to time. Also, the

visualisation of evidence from a number of different sources (by placing that evidence

within the same figure) may reveal subtle relationships between aspects of the project
([124,125]). The visualisation of evidence in chapters five through eight permits
comparisons of different types of evidence across those chapters e. g. comparison of the
frequencies of waiting presented in chapter six with the project-level behaviour presented
in chapter five.

Event ---------- - . 11 I1

Phase
_

, Sections
Phare
with -i-

veviation

Event
with '

varicaion

Phase with
unknown

completion ; Project

week
numbers

Project week

Figure B2.2.1 A simplified example of a figure used in chapter five

172

Figure B2.2.1 presents a simplified example of one of the figures used in chapter five.

The figure indicates the following:

" All information presented in the diagrams is positioned according to a project week

number. Project week numbers are identified on the x axis of every diagram.

" The vertical double-line at week 52 for Project B and weeks 48 and 59 for Project C

indicate the planned delivery of the product.

" Each diagram is vertically organised into a number of sections, with each section

containing information of a certain type (e. g. schedule information, defect

information).

" With graphs, the y-axis is used to represent a quantity of some unit. For example, the

y-axis on the Defect section on Figure 5.3.5 refers to the number of defects in the
Open, Accepted and Answered states.

" Small black squares represent the occurrence of some event. An event might be a
planned or actual milestone (also known as a Decision Checkpoint), or a reference to

something that has happened in the project. For example, in Figure 5.3.1, the black

square, at week 18, with the text `DCR cutoff is an event. In the re-plans sections,
small black squares represent the occurrence of an internal milestone and small black

circles represent the occurrence of an external milestone.

" Long, horizontal thin black bars represent some planned variation in the start or
completion of a phase or the occurrence of a milestone. For example, in Figure 5.3.1

the planning phase of Project B was planned to complete between week -3 and week -
1. Concomitant with the planned completion of the plan phase, the planned
occurrence of the Plan DCP had a planned variation between week -3 and -1.

" Long, horizontal medium-sized black bars represent the planned or actual occurrence
of a phase. For example, in Figure 5.3.1 the planned design phase lasts from week I
through week 19.

" Long, horizontal broken medium-sized bars indicates that a phase has formally

completed, but work relating to the phase continues.

"A question mark is used to indicate some doubt as to the exact week that some event
occurred or some phase started or completed. For example, there is doubt as to when
the 6th re-plan occurred for Project B (see Figure 5.3.2).

" Particular features are identified through abbreviations. For example, the third feature
on Project B is identified as F03 (see Figure 5.3.2).

"A number of acronyms are used in the diagrams: DCP refers to a decision checkpoint;
FV refers to functional verification; 00 refers to object-oriented; ST refers to system
test; Y2K refers to year-2000.

173

Appendix B3
behaviour
B3.1 Introduction

Evidence on project

This appendix provides detailed evidence to support the evidence and analyses presented

and discussed in chapter five. Section B3.2 provides details on Project B. Section B3.3

provides details on Project C. For reasons of confidentiality, certain information is either
disguised or not disclosed.

B3.2 Evidence from Project B

Table B3.2.1 Resource breakdown per month

Month Week Staff-level
Aug Year 1 -12 through -9 28
Sep -8 through -4 37
Oct -3 through 1 38.5
Nov 2 through 5 40.5
Dec 6 through 9 44
Jan Year 2 10 through 14 52.5
Feb 15 through 18 52.5
Mar 19 through 22 52.5
Apr 23 through 26 57.5
May 27 through 31 54.5
Jun 32 through 35 56.5
Jul 36 through 39 60.5
Aug 40 through 44 54.5
Sep 45 through 48 31
Oct 49 through 53 29
Nov 54 through 57 24
Total 713

174

Table B3.2.2 Resource breakdown per process area

Year 1 Year 2
Resource area < Week 10 Week 10+ Total

Management 17 46 63 8.00
Product B Development 86.5 146 232.5 29.5

Product BS Development 0 38 38 4.8
`Dots' Development 10 14 24 3.1

System Test 20 131 151 19.2
InformationDevelopment 35 81 116 14.7

Performance 9 23 32 4.1
Support Management 9 30 39 4.9

Build 14 28 42 5.3
Library Control System 18 32 50 6.4

Total 218.5 569 787.5 100

Note:

1. `Dots' development refers to the work required to update version numbers etc.
2. `Product BS' refers to a companion product that was `bundled' with Project B

Table B3.2.3 The planned occurrence of key project milestones

Milestone/Phase
Concept decision checkpoint

Plan decision checkpoint
Design, code & unit test complete
Availability decision checkpoint

System test complete
Announce decision checkpoint

Integration test complete
General availability of the product

Planned weeks
-12 through -9
-4 through 1
19 through 23
37 through 40
41 through 44
45 through 49
50 through 53
50 through 53

Table B3.2.4 The planned occurrence of project milestones at week 33

Milestone Planned week
Design, code and unit test complete 31

Functional verification complete 36
Announce 46

General availability 52

Table B3.2.5 The actual occurrence of key project milestones

Milestone Actual week
System test complete 58

`Ship' to manufacturing 49
General availability of the product 52

'75

Table B3.2.6 The original plan and the subsequent re-plans

Plan /
Re-plan Week Contents of re-plan

Ist Plan -2 1. Original plan accepted at the Plan Decision
Checkpoint

1st re-plan 20 1. F03's functional verification completion revised to
week 36.

2. Caused by slow progress of F03 design/code phase
2nd re-plan 24 1. Rewriting test plan to move F07 testing to back of

plan.
2. Caused by slow progress on testing F07.

3rd re-plan 27 1. F02's functional verification completion revised to
week 34.

2. Caused by slippage in F02 design/code phase.
4th re-plan? 35 1. Recognised that F03's functional verification will not

complete week 36 due to delay in design/code phase.
5th re-plan 42 1. F02 team feel that they can complete functional

verification testing by week 44.
6th re-plan ?? 1. F02's System Test completion revised to week 47
7th re-plan 46 1. F02's System Test completion revised to week 49

2. F03's System Test completion revised from week 49

Table B3.2.7 Events concerning the increase in activity

Planned events
Week of

occurrence
Building of weekly increments starts 22

Week of
Unplanned events occurrence

Testers are working shifts and weekends 27
Designer starts "mission pay" 37

Daily defect Screen Team meetings start 38
Major concerns re project schedule ... 39 through

41

... with decision to retain current schedule 41
Designer prioritising defects so that it is clear which defects 41

must be fixed.
Request for twice-weekly builds. 42

Categorising defects to determine which ones can be passed 43
to Project B+1, and which ones should be prioritised.
Push to get as many defects through in order to make 45

manufacturing build
Development meet with system test to determine any other 49

specific areas that are stopping test.

176

Table B3.2.8 Summary of functional verification status

%A = Percentage attempted %F = Percentage failed

Week
F02

%A %F
F03

%A

Feature
F07

%F %A %F
F09

%A %F

-3 to 28
29 53 4 45 1 100 4
30 58 5 50 1 100 4 0 0
31
32 58 5 66 3 100 4 0 0
33
34 58 5 75 3 100 4 0 0
35 58 5 77 3 100 4
36 72 5 80 2 100 0 0 0
37 72 5 85 5 100 0
38 72 5 86 5 100 0
39 72 5 87 4 100 0
40 72 5 87 4 100 0
41 80 7 94 3 100 0 100 0
42 77 5 95 3 100 0 100 0
43 80 6 96 3 100 0 100 0
44 80 4 98 3 100 0 100 0
45 88 6 99 3 100 0 100 0
46 88 6 99 3 100 0 100 0
47 87 5 99 2 100 0 100 0
48 87 5 99 2 100 0 100 0
49 87 3 99 1 100 0 100 0
50 87 3 99 1 100 0 100 0
51 89 4 99 1 100 0 100 0
52 91 4 99 1 100 0 100 0
53
54 92 4 99 1 100 0 100 0
55
56 99 2 99 1 100 0 100 0
57
58 99 2 99 1 100 0 100 0
59

177

B3.3 Evidence from Project C

Table B33.1 Feature status

Week Total Open Design Size Commit Complete
3 19 8 8 3
5 19 8 5 6
8 19 7 5 7
11 19 5 7 7
13 20 4 9 7
15 20 4 9 7
19 21 3 8 10
21 21 2 9 10
24 24 1 2 8 12 1
25 23 2 8 12 1
26 23 2 8 12 1
27 23 2 8 12 1
28 23 2 8 12 1
29 23 2 8 12 1
30 27 3 6 17 1
32 27 3 3 19 2
33 30 6 2 20 2

Table B3.3.2 Product sizings (thousands of lines of code)

Platform Re-used New
KLOC

Changed Ported Total
DOS 245 5 250
OS/2 225 3 2 230

NewO. S. 15 55 70
Common 148 1 1 150

Total 618 19 8 55 700

178

Table B3.3.3 Resource plan

Process area 1Q 2Q 3Q 4Q
Support 12 12 12 13
Level3 3 3 3 3
New product (O. S.) development

Development 3 3 2
Information Planning 1 1 1 1
System Test 2 2

Total development 19 21 20 16
Total 'development ' for year: 19 person years.
Marketing 1 1 1 1
Technical Planning 1 1
Product Planning 0.5 0.5 0.5

Table B3.3.4 The original plan and the subsequent re-plans

Plan /
Re-elan Week Comments
1st Plan 3&81. Original plan accepted at the Plan DCPs

1st Re-plan 22 1. Re-plan following Interim Commit Checkpoint
2. Extend the duration of the DCUT phase
3. Staged-entry into Acceptance Test and System Test

2nd Re-plan 39 1. Formal plan change, accepted by senior management
2. Introduction of new Year-2000 requirements
3. Introduction of JAVA feature
4. Re-schedule the product delivery date

3rd Re-plan 51 1. Extend the duration of the System Test phase
2. Compress the Manufacturing phase
3. Compress the Gold Code Production phase

4th Re-plan 54 1. Extend the duration of the System Test phase
2. Compress the Manufacturing phase
3. Compress the Gold Code Production phase

179

Appendix B4 The waiting evidence
B4.1 Introduction

This appendix provides detailed evidence to support the analysis presented in chapter six.
The following information is included:

" The classification of each item of waiting evidence.
" The results of the Mann Whitney U tests of the prevalence for waiting during the end

of the project rather than during the middle of the project, for the two projects.

" Adjustments to Bradac et al. 's ([18]) data.

B4.2 The classifications of items of waiting evidence

Tables B4.2.1 and B4.2.2 present the `raw' waiting evidence for Projects B and C

respectively. Each item is labelled with the week in which it occurred in the status

meetings. Due to the sensitivity of the information, the entire text for each reference

cannot be presented.

180

w u

L

cn

Ca

y

Cý

c
vý

EI
LC

qi

b
vý aý

w c
G
G
6>
A

v i.
0
0

_. eý w
"ý t
ý-, '.

N2 0) 0 4) 00N
S.

0
L. L. CO L. L, i. RS CC ý" i.. L ý,,, t-, s. i. L. 1., L L. s. 4.

0 aý aý 300 aý 3 gw-.
o"Eg

gw

C oCOýýo000V0c0c000o00ýoW0000 000000

1-. e, L3
ö ö k. ööOOä

e, c, oo ý
2* s_ 000

ýooo 0CC0CC 000000 o VJ -a t: y Ti *V ,V Ri
U U...... p....., U

'3 stn ývj ý! ý p......., m .(.(.7 .f"
ln

ý

OUOO 0 ai ai A A QÄAA AAÄ 4 týAAA AAAALIA

cc

OOO ccOr CF--0-o

ÄÄÄwää Ae 0U

a. a

(U G) 9) 9) 9) u n. U m. ai

g> (U

eV cc3

N0 9) 0 9) 9)A
s131 bU

cý °CMC to > CAD

c ýF" c °° 3ccw3.. 3 aj

öcý
UU r- U

3%' ööö00öö
,o2 ,o

12-4 $2.4 Z. 4 c6.4 lze iz. a
rn y

N

"C
N

^G 000 'p0 1-
-s% p"ý CL C C"" O.

r_ C) CCo

OAO70C
býA

O
CSU

a: OO

u CA
ÜO 4)

L) Q Ü0 0
"-ý LY CÖ 0 3V

C
3 .-G.

Ö.
2

°'ö°cc °c °"öö

ý Cý Lr "N % aý ýC Cý

O A p Ö ö

0

cn CA (A

ö öý öý
o. 3 a., 9 a. 9

CZ M el U,

O O c m c

O O O

,ý aý L3ö
aý

cM
.ývv 'ý .ý 'ý ý

'ý "y
O O öööö00

VO r- r
:j ýj E. 'U O

Gý Q%

aýV

NNb

"° v
. Ny iý

N. ýw
cd

0 " " DN in N

äh ýýä
'y 'h 'N 'in ". Nn ".

-ýä
E: a AA Z Z .N A ÄA c2 nn AAACA ý

0 p =
b-

E A

C%
to22'� OAWtoL., to to b4 "totA bA to to to to

to to to bl) M 3 "_ C0CCCEc pq. S E- C= .E-Cc E- G CO
===

C4
=

3
cqs CIS 33 '330

MNM ýt In 00 OO--. NNNNN of ýt N v1 v1 iýO %0 NNNNNNNNNNNNNNNNNNNNNN

q

w v aý 'ö
L a
L

40.
V

co

3
N

`rf

aý

H

A

r "ir LLLLLLLLLLLLLLLLLLLCLLLL
CC G) Q) C) Q> U Q) Q) G) U C) Q) Q) U Q> U G) Q> Q) C) Q) Q) U G)
Vw

r'ý-+ _ rý-+ "_`+ rs. + "º+ aý+ ws. +
''

+.
C.
+

ýr+ w
+:. + , y' �' +'ý. +

f_

4-. --+ '-+.. + + yam.. -(,+ 7000OOOOOO(o0000ý0 o0000ýoOO o0Oý000c0
L CC
qv

öýý=
c cý cc a"X aý ccccccc ý"x cý ý yr003000000 l*

"p 'O "o
Oy c)

'o
00

'o
c,

'o 'p% ,po0L0p Cv : in 'in p 'in 'in 'in 'in 'ý 'i y vv n 'L7 ayý "y y "C3 yy- 'in L3 O 'y O
0 ý'_ 0)

"0)
0) 0) a0i a0i 0) 0) ý4- CC) C) C) a0i UU°0 a0i a0i U 0) a0i c4: 0) C)

ÜC "z; Ü
C.: ýAAAAAAAAAQAAAA AAAA AAÄAA u; A

ü

ä. ä. 0) ä,
00) c0i 0Oi aCi 0) C)

C)

y ci y yý w+
Cl v0UpE

.2vyy
fin

i bA bA U bA U Tý bA U bQ 'ý to b4 bQ OýOO R% 0 f-ý p Cl> Cl p CU O ca p Cd AQ'
cc 's as HVý%E. ýVýv cv n

c. ý
ý. onE, onE

ý,
oU ýonooE

yLÜ
'YO Ü00Ü 0>,

0Ü0Ü Ü- ÜNV
Cl)

VNi..
cýcýAcýczzw eurnCZ uca Aa>asa> Aa>AA
öE 'ö E 'ö 'o E 'o 'ö E 'ö 'ö o LLLLLLLLLLLL

Z
40. a

co a
,.
o aaZ. a

moo, P. a a, a
C Cl =CO

OOO
9)

uOO
LO

OL
C) 'ß 9) &- &- 0

'O gi &- -0
0

4) "O -O
OU L0

^-, "--, LS. LL"^ý"^ý Cl. C. "" 0 "-ý"^-o - Cl. mp ." Cl. 0 Lý "-, et2 p, 17

,AC,

Cl Cl G. " UMZ3OO 00 OL OOOO0U0
ö

r-
öööö °'0 0 °'c °'ä'0 ö °,

= äö-a ö 22- öß
0Q 'i+

iic5y,
++ ++ L"WLL' ý+ w+ {. bQ L ++ CQ r+" OA L]

+ to
92 V bA vii

=v
Cl) ;: 0) 0 u-, a? a) vii

y 9) Un UUyyU U) UC in C1 a) yQ eC

OC 0 00Cý0011111.1.1.11 O00mmOAOmo ZcA
Ö 00 00 00 00Ö

öööööööö
,ö0,

ö
. 2.2 .2 C)

00p
"ö

ö0C,
V .N".

gyn. in `n in v_' in 'C 0 'ý "ý m

C
"ý "y "y "ý "y "y "ý ÖU0UU0pUUUUUUU0, "Uv00Z; 0

''" 22 AAýAAAAAAä. AAAAAAAAAAAAAU 4)
v

y o4 oA bA b4 to o0 pp oD G4 eU to ¢"
vCCOac=. E toto EýC= OA bA '-b dA Z bA bA CD b4 öp

.
Ei

�LZ',
Q" RS GCS RS ýG ý' RS CC cu ei RS ' ftS RS RS "ýý

,
"ýr "" "'"" "

C, 3y333 3° 333333333ä33333

C)
NNNN0',

NNNN r1MMMMtte le le t"%AgAl/b\pý, pt, r-
C. '
r- r, 00 y NNNNNr1rýMMC"yMMMý..

ýý., ýMMMMC1MMCýIMMMMfr1f"1c+'1
3

q

w

bD

.. n
rr

h

C= C

d

Q, =2
F, c

e
= '<

aý

=`

w a

a
d cs.
A

v
L
"ý
O

wc
!

0--4 L

LLLLLLLLLLLLL
fti Cý Cý3 Cý fý Cý Cý Cý LL R3 RS Cd ftS CCS L

0000000000000000 cn Gn Gn MU) Cv2 CD CGn UD VD Ul

^C M
.XXXy iC

KXX_
k

LL yýLt. LL Q) g) LE2 Ofi, LL Li. LLfJ., t
OODUO Ja c) UUUU ._ wUwwUUww 1 (Di t2 w42C

.?
5

42 Q 4) cu 0 C) q>

oc

Ny

"ý
H

In
H0

fý/f RS
ýVi v

(A f/1 --

g) JX a> = a) aý au c a> aý a) 0c E- eo F- pý Fý E-ý E-ý x E- Eo E- . °q E- E-ý .I c c. , NN

>,
_äoA

.. r w... UUUUU

00 OOOOO
t. L- U

a. Q. "0
LLLL., m LLLLL y+
U G) UUUUUU Uý

0000 0 ZOOOOö

0
ice. iý+

LL
4ý.. Lý. i ice-. II"

"ý" Gi

Cý cc Cý I- L'CC Ri L+ C! CC 4-. Cd

00000000000
VV CI FBv °n

U
0
A

XXxxok ýe öx
ý is. o o i* %

"ý"y-oý"v, °vý eC

C) C)
ýC)

C)
8U `"cri ahi u wcýi

ö

MccccQ AA A ýCa
I-

4-

aCC C a0
cC

VO
C

w0c
rSE"'E'" rz CL) E- =F

ß wä Z
a
°o v

0 o E
CL n4 to

c

y N

vvvON
m .

ý. ý 0 4- C -0
O
N.

OO
O 'ß 'C

Mfý"_Q"m M &"C) bi)

ööö o öAo z ö
0

,0 kxx "y " ' R+ 0 LL Z Lt, UA UU
y 'v Lz+ Q) 'D U o C r-*

oÄ
yö k. LL.

s0
k_ in vkýx

k'ci 0! Z k;
rxA AA o s" a iV U a, U

, ý Uý AA Aý
U

C. a en ao a on on on on ou cn an o4 ý-o aýýýcýcccccononSý
'' ti =====': _cýC. c C. C.

m Q, tccu cZcecuca'cý =vö: 'vöö 33. l33333333ýyyy

to U tz

ýýe: ýý5.
a

(A Cli Cis Co m>
00 00 Cll ON as CN 00OOO "-" "; NNM (4) en en (n en m IT IT It Itt "T -t -e v" -e " vý vi tn %0 %. 0 %e %0 et vve vvvvv -ýT-e vv

p
w

'ö

b0

ef'

yýC
=00 12 CD o 'Z *Z

Rj
LLLLL

for
L2

CC CC CC CU 0 C' C' 0 CC

yea ý
Cý

ýv°°°OOV°)V) 1 C/DC#D 0
L00
pý AA

c"öö" cc _"? X
:ro CZ. : '. ý. Ltr a> a> 00y [Z,

o CZ. UC

aÜÜ cri aui
Ü w" 9)

ý SAA c =A AA AAÖ Ä
U

cc

cCi
p,

UU (iý
Ußm0 mý 'L3 "C3 wUR 'V 'ý

=L IP-1

vi
yam�"ý"ý. L

r_
wwofýCL1 coF'. 5Zof1ýCL1

ALääýý ww Aä,
oEEý,

ccW

0
yv rn UUo

u ---n r-
2. .CC c= cC00 a"

o- ci
o :.. y

v
{� -x ,

bD
"bA

Cp b4 bU 1y b[I to aG M
U ý'"

5
!n to G Ln " V1 :+=

c�
eý =y:: w

L -'AAAAAAý ýý
C) p ýApA

Q) U
wÜÜ 0ÜÄV

3°3333333333° 3

C t-NS000ý, C\C\Cý, o-N '. o "0= '' mot 'mot of ne ee -q- hvs'. n 'r iti

U
w U aý 'ö
L.

cw

L.
w

U
C

"C

C
w

3
N
N

Irt q
aý

Fý

a) 4; aý oo aý o aý aý 03 03
a> U

CZ Cd Cu Cm

O 00 oo äw0 00 00 o000
00 000 00 o0 oo cn r) Wx vD v) vn vl wW rn CO) r.

CA

C
t

v
ee

RS

Ca

N t)

7D iz öýX x öö ö. k sek
NOt. Cs. ti, OLL t. LL "y0i'. i LL s.

dv g) Ö ýÖ ö ýÖ ýQ ýÖÖÖ ýÖ ö Ei
-CD

ö ýÖVÖ
öQQ=Z Gam Ucc =Z ZZ
z0 --

c

rA

u

a
0

w
u

.ý
H ß v

:r

(U
-0

>o aw sz. 0
926 0

ýý ýýQA 0¢U

pC 123 O O'ý 0 "ý O :+O3V

0> º- rx

EEEE
Q) týIý can y O" c2. CS. Mw

.M In y -N + .O w+ ý. + -y- a+
OO04.0-

r-+ CCCrFCCFN to N G) 0yNNyNN
(U 0 IV (IJ, yý y 0, - 0 9) >> iN 0> Lý d

EEEEFE"'3FEaý:. EEc) - FFa)a) a) rE"Cý3FF
aMw ööööaýirz

eiö
ýöö

)"
EE ESAXEE

a) '7 i '7 NNN% c26
,>>

Ilý N bid (n yöö i'+" öyN:: r-

ZÄÖGýLIvýcn ýnp¢zLäCä¢ýnö n ýtn'ý ýci N ýr NN

nýn

4° t 0. w to.

el
L

Q

h

V
E
i

a
w

N

u t) 0

Üý_ýý Ö" ýCýý 6ýi ýýýýCýCCy yýj QýCýyCýý

c. ä. ßäa. ° g)
0 c. ä, ää. ä n, äöo00co

92- -
>' E

ox o"°--e =o0o ao 00cöccö ö= ö= Eö0 ä) in U 9) äM=0 C) u¢500 ''e " ''e ''a -" , ýe - -ýe u- -4-

zQ QQ m QQCaZQQQ Q QQ Q WC cm
0

ec
L

a

C

== t0 -v to u to = auei bp op oo cn on on cn. b ý oA to toto U -p pp eo an
.

E- ccccc.
_ a=ucc

r- a a.
=

E. E. cE_
' cv cc cc cc cý cý -o

v
es ee 'äs vvvv

-ý "= "" = '= :Z
33 ötuminCd. 2 -0

Z=: Zejclcu00iz-ý03 3CUZD-0 i. ä. ä

Q
ß i

.C Cr

--cý - Rt! o ýNMMýi'NV1N V) V' CV MM VyN Vn\o\oýCi-I-nl- ^NNNNMMMMMMcn MMfit''ege me et -e .: r -e -e 'lt e
aý

U
w U
6)
Ö
L

L

t12

V

bD
C

ýä+

3
N
N

t7'

d

CAS
H

21
'

L h L VL
r"i i rl I-.

me %. L. i Cd M RS ei ß. 6" M &- a)
>

CD X

qü

a)
ö Ler_ rxaex2e==Lcö-

52 = . cii

p4 Q m e A 0AAAA A =A
" z

ei

ea cq c)==

muS C) yyOO
v Ö" V ÖÖ Ö

(9
V

c) Ö ai ai i K
Na N¢;; Na Qy y" 0 G: r

) A AAýýAýýö ¢ 0Xx
zw'w

y n. C vnv y= ti CCC

r= EEEE 91 0« r= CZ CD. CZ.

= rn Z to vD vý cn Gn AA

a)
a)
L 00

1A =' COO N^ y

.
r= t0 "'" E E- EOOO eC O .b
cz. 9: 1. Cl. cz. c2. O t1. OO O=

c2. ý'
O

ý" O
- Z. ()Qm uC Cl) äi a`) - Cl) M QEä

ei .C

UZ ZZZ COO 1- o

,v -0

a,
333333333

0 - CU CZ ce ce00ce 0. a0 0Ci

^" NNNMM l-
ýY et ýt ýt vý V1 V) vl V1 VI N V1

3

B43 The Mann Whitney U tests of the prevalence of waiting

Presented below are the results of the Mann Whitney U tests of the prevalence for

waiting during the end of the project rather than during the middle of the project, for

Projects B and C. The results are taken directly from Data Desk v6.0, a data analysis

software package for the Apple Macintosh.

Mann Whitney U test for Project B

Ho: Median 1= Median2 Ha: Median 1> Median2
Individual Alpha Level 0.00100
Ties Included

End: Yes - Middle: Yes :
Test Ho: Median(End: Yes) = Median(Middle: Yes) vs Ha: Median(End: Yes) > Median(Middle: Yes)

Rank Totals Cases Mean Rank
End: Yes 818 29 28.19
Middle: Yes 264 17 15.50
Total 1760 46 38.26
Ties Between Groups 679 34 19.97

U-Statistic: 382
U-prime: 110
Sets of ties between all included observations: 7
Variance: 1930.9
Adjustment To Variance For Ties: -65.376
Expected Value: 246.50

z-Statistic: 3.1487
p=0.0008
Reject Ho at Alpha = 0.00100

Mann Whitney U test for Project C
Individual Alpha Level 0.0100
Ho: Median1= Median2 Ha: Median1 > Median2
Ties Included

End: Yes - Middle: Yes :
Test Ho: Median(End: Yes) = Median(Middle: Yes) vs Ha: Median(End: Yes) > Median(Middle: Yes)

Rank Totals Cases Mean Rank
End: Yes 415 20 20.75
Middle: Yes 146 13 11.23
Total 939 33 28.45
Ties Between Groups 378 27 14

U-Statistic: 205
U-prime: 55
Sets of ties between all included observations: 5
Variance: 736.67
Adjustment To Variance For Ties: -59.337
Expected Value: 130
z-Statistic: 2.8818
p=0.0020
Reject Ho at Alpha = 0.0100

187

B4.4 Adjustments to Bradac et al. 's data

As explained in chapter five, the evidence collected from Projects B and C only include

references to waiting, whereas Bradac et al. included references to working the process as
well as references to waiting on blocked work. Bradac et al. 's percentages of waiting were
adjusted in chapter five, for the purposes of comparison, by removing the influence of
working the process.

Table B4.4.1 Comparison of types of waiting with Bradac et al. 's classification

Category
Project B

Count % total
Bradac et al.

% waiting % time
Project C

Count % total
Other 53 51.4 66.7 40.7 18 42.9
Review 0 0 15.1 9.2 2 4.8
Expert 1 1.0 5.1 3.1 2 4.8

Laboratory 0 0 4.5 2.7 0 0
Documentation 3 2.9 3.9 2.4 0 0

Software 45 43.7 3.1 1.9 19 45.2
Hardware 1 1.0 1.6 1 1 2.3

Total 103 100 100 61 42 100

Table B4.4.1 presents a more detailed version of Table 3.7.2. Bradac et al. 's original
percentages are shown in the `% time' column. This indicates that of all the different

states that the lead engineer was in, 61% were spent waiting and, by implication, 39%

were spent working the process. Within the waiting states, however, waiting on other
accounted for about 67% of the waiting. In the current investigation, there was no firm
foundation for establishing the ratio of waiting to working the process, so the
investigation concentrated on the breakdown of waiting only.

188

Appendix B5 The progress of work
evidence
B5.1 Introduction

This appendix provides detailed evidence to support the analysis presented in chapter

seven. The following information is included:

" The classification of each item of progress of work evidence.

" The results of the Mann Whitney U tests of the prevalence for poor progress during

the end of the project rather than during the middle of the project, for the two

projects.

B5.2 The classifications of items of progress evidence

Tables B5.2.1 and B5.2.2 present the `raw' progress of work evidence for Projects B and
C respectively. Each item is labelled with the week in which it occurred in the status
meetings. Due to the sensitivity of the information, the entire text for each reference
cannot be presented.

189

Cý
, wo

L

d

L

O

O
y

L
bD

N

kn

L 4;

OOO

O '
Owl- O__ 'ý Oaý

_ _ 0 -0 . 25 r- l> («s
ý ~Q Fý1

C"m 0
ýLL Lý Q

u
r+ a+ w

C

L' CC

y
y

O

O
bA C.

4) 4)

Lý O L"

M OA GO bA
Cdr ý

c0 ",
O^.

Zc
g-

cý
w

,O > C)
C)) 0)

0) ON
ýwru. 12F-wE-raw

rM
i

y
yN
NL
Ly V1 y V1 fA CQ y V)

QLLLLLO i"
yam.,

on
000 Q) L2 o

Qa

.La .c °-
C

aý 0)
a

Z CD.
ääu; ý^ýc a°'ýý ýýcý c° chi c°

°c
cý

Q
0öö: D öAAAq öa

ýz Ez z zz

cn
cn

'r Ön bIi

ýNEEoooE°AÖ°ncnöö=r-q3
`ý Ny . sG k . ýC 4i,

(A r. r-

yyNNN
N V1 Cl') Cl) y V)

L
I. Cl) i2..

yy
L

yam., NyfiN CA to N Vf N EI) yy0 (A VI yý ýn rn N to vn 9NVyy.. H to
to to 0 to 0 C. CD.. OA to O to t to 2 OA CU
yý ý LL LL OO2OO Oý Oo2O. 0O

iz JD ö"-"-o0öc co0 2c3.3.33
D3 (J ZZýc3 (A Ozz OO oýe oä o0 ms ci (A CO) V u) rn CU cn CU

i.
y3 y

y 2
y

y «s
O o 3

yyy ýO O 3= yy

y
cq
2

pp y o
y

0 Q)
O&. == 2y
V y /1 -OO

yy3Hß t
L L1

ýii
OOp. y ý+ y
VV OA

pp
L
tX

bA OO CL "b ö° ä `.
C

1
CU

y. DA VLO .U
r- EI u 1- °' y ° ': U. - L

N =
` ` to to ° °A ýC -° L .

o ßz3
Q yu

92. CD. to C. tz r i O a, w' =. b4 to C 6aß,
r

ýy
pOyO nC _ b)

y
OOE
a r'

0 OO... ,y
a

O C, UC
04 O pp 0

.. uy ¢' "
E

ihl
2 ý. + m

4 a
'=ö

=
y -

ö
N
2

.
tr

E E
2y

a o

NNNNN NMMNMM
V1 n\O

MM
\C'tG\O\O
CýMMM

[t-00 00 00 00 0ý0ý
MMMMM en en "1r,

as y

L

.:

a

aý aý
3

m
w v cu
0

V

V

L

rl

N

V

CC

H H

t2. 4u. 0
Gn CA

C C cad >G C C CC F'" C C cßä
F+ XXk

ý- r- äs ° ° .
cý cý

. ci Q
r-

Qd ýc Q
r-

c cc r- ý
ac

cc c¢ r_
r-ä

<c «c:,:
2 u

f-)
pc

<<

ööAö 0A AaAöö ö öööAAAA
zz z z ý z Z ZZ ,

c
0
v

L
0

3

:. Q
ý

to
to ena- ao en cA cn on

to0 c ... as
i , .) (A

Ny
Ný+ (ý! 1 NN fß/1 y- fA

3 3 L2 Q 3 ö N N
0 pp pp y "r

r r
oq 1,0 ..

_"
,E

. .
L1ý ' v ý wý = =wv ý ý °'G Ä G v , ý u ý F ý E E F ýwvýrnvý vý 1Caýi vivi

W
y
424

C

a

m co
i

N
VA fn H V1 u V1 CA

a, L ociý ch CA CA
i- CO O bA O. OOO bA bA bA GQ bA tz O bA OO b0 O4 i ý' Ö

LL C. G. C. OOOOOÖÖpG p° Ö

C. C. c0 a'
.a to to = c2. cz. cz. EL CD. 0- n. CL w. G, g 1-. a 1-. 0

o =3 öä, ýý3333313r.
to u CD.. to M. 926.

"
ä0ö303

z- °ýýý2oooooo2oýzý°Z°°Z° vD M Co Vm vý vý vý vý ýn V$V2>VV vý vi
x

w 0

aý 0i
tNA y V1

yN tyA

N
"C)

N= rnn rn O k. OA i' "C ß'L3 CA - rA C4 GO

0 CM cn o Z. 3 ice. aý bA Qý% C1Q s'. ' LL. % gy O
in L0 b4 ~Ll rn rn 3 Q% Q f3. :

c) 00 to to C)

J(du öäär`el ä ýý°ý" 3öc''am=r ä °=;:
.ýyÖ

¢'
rn

E bA Ö «s yý oA w0O. jY

° ýw Eo00
`' ac

d GA ea i

rlo

3
C5 C) ;;: -NNN rn en I",

-
vt tA V$ kn tn ýo I'D %ýo %0 Irl- tl- r- t- co Tr Tr 11*1 IT I'll lq*

MIT
qr 'IT 'IT "T 'RT IT ItT I: r Tr 'IT V RT V 14,4T

Ca
w u a>

,°

0

0

L
bA

tr

.a
ca

O ay OOON (D
ÜCk

m=
m 0m ýVC k

tyÖ '-2Cy0 p, 'Ö. CyfyLy

QC *4
jQr. QQQQQ

zz zzzzz

00000 00 ýý.. ýýýý
roj

ä,
0.

ä. c. ä ä, 0.0c. c, c, c. 0.
Oo0oOo0oOo00o

V C) 0N0C.) 9) Cu0 6> 0N Q) >>>>>>>>>>>>>
p, LýÄL ýÄ ÄA ÖÖÄQLýÄ

oa '_ '_ 'o 2 2"c r=
_

-, = ccr-vcres "o .o ''
a'

b0 OA OA CU C4 viiVVy
cn NN

+N Vf CC NN... NNNNy

Q >l >l G% Cý Qi rrA L&. fam. r= b.
L £+ Pr.

j M bA OA OA
L

Gn V1 WM CO ee = to-- to 00 O Oý O O, 04
VOONOOyNip, fy C, tl. 4

C. O, N O. Ll. N 91.3 G.

Irn ei m cu ei 0NN Cl) Cl, : +Q bA tAQ yw C% U1U Ci
L to

926
Qj

eO
i" i'n L tr. c2" ýFr ý4r Q1

Ö° a" °°yooL d_n c_n an on
u LL

LL pp O. O. "Z
.O

ty' a+
M- -0 E- -m -0 CC m CC 3

in
Z000000 yý C) -

=Z Co c) «s 'fl .. r
:.

"gy

'L
"H

93. W
:4 zi 931.1

N

0 V

y u2 6" 10
yy y^ >OQ U� QßCO

U k.
yQ LL C, i1.. 0 ÖZCO

'ý"1

O> ý_ w+ = v,
pa CA "O N bQ GU 0>O

CA^ O
O'

OCy .
_. "y

Nr
'N

... G OQO . _' >o"i. NHyN
cC sr .ý"i,

bO cC ßOO iý > ß. 0O *i 9) tin NyLy
a4N>c. 0an==aýE N0 b-Cli ä =ayio4Qtgooaý 0LWs. M0

0i
vOi 4>

_U ý' Cy ÖA Oti OA
to ß_

ä.: '
IM.

'C bA b0 y s. : to C' Z C)
W

3 :x : ýe ou e4 E ti3 -e 0mm

00 00 CC cý C> CD C> r, 1 ýt ýf ý1 [t e. v1 V1 vi V1 vi vý
,äy . -. .. -.

^MMM V1 0%

ý. 0

ee

Q

r

i

w 0

Q
L

P*

aý aý 3

L

w
CL)

L

ear
'j O r,

rA

bD

N
N

CCNHC v' CCQ f- CQCC aý a> a> a> aý c? aý a> aý a>
EEF"F"E E °E 0EEEE
ÖÖEEÖEÖÖyÖÖÖÖÖ
0000-0-
>>>>>; ¢. c) a) C) C)

QL1ýýGaýQCý 0 ÜLzQlzQ

4) CO
0M CA

CO CO
V) tol 10

CO N CO R
CO CO CO

CO L
1- {fir CO CO L CO

4) L2 L-
0

Q

to
O. 0. Q 0 C. O

S. 0.
C,

an c. Cn _p to '9: 6 an °' :SQ. cn rn N mCC
_G _c öcööö ýe 'x ön

cn to En to

LL
C6

b u

Cr- C QQ CC Cý G' CG

o. o, "- a o, o, 0. rý. 0. o. 0. rs. 0.0. 0000000000000
> >Eý >>>>>>>>>>>
ÄQ CÄÄGÄÖÄä>%äCÄ

y Cr
V] z 'O

L to fn yam.. Cl,
V1

Cl) Cl) !Uy
L

(ý, L=A=, uy ýA L
ice-. fam.

L ! /ý

c2 0
pp u� to L1. & c. Ll. " Ö,

Gn c2.

ENV
Cy ° °oA °Ü

an
a

CE E

.y ,N

bA
ce a. 'O

O b0 OA bA bA W vý y -' L+ ö'y äQ
!
yA O2

onto== -o ý än. vý/ o oV ° 4) 0 3ý °�ao y° LL tc o v, y 6ý c oy r. 4 'H Ö nc c2' to to to °. rä

0 w- '= L L" -f O 92... Q LOi CCS

ý.
O 'y

MLL .NO
"^:

CD. L
iF Q ON 926 Ö

°L' öö
aUi

~ an on dF on "r o iF Qi
°'

c -o Q)
ZmNYL. p

w0 .ý
to t% OC t" > rß/1 pý y ýO

OyyÖ0Ny cd
E

"_
Öe

"n .. r
OLM

Co
OL0 CL -a vý O

O Vj -. s.
ice. y (ý/J

L.. 0,,, 'Cý y to 20

Q3ä. aý rn to °o°Ae° o°c ýf"' Ö, LOE L"

oL Q- 92-.
° L
a..

v' v' hIn \O �0 4D �0 Co c, o' c, ooo NNNNNNNNNNNN
c" QMM

C> 00 NN NNen en Cn tnmgtetn MMM en en MMMMMMMMMM

Qocc000U
U=

U ai 00
0a5

aýi C CA v2 4n

0ööE
E~ E~ E- ý, öc °a° EEUEEEE. E E- 3EE

e0öNööyööööC. EEE> 1,1 4) 9) 0ca a> oo2U yý U ä) Z 4) 0 ä> "2 ... -. a> .. se 200U >>
0))

E" > >i >>>>>, >>> v2
v"ý`ý p AA ýA ý'AAAý AAS V CID

"0 "Ci 15 eC vi vi
yy

vi
A Cl) y ýn

äi
vý vý rn Cl) CJ yyL L'" c G) u s. LyyyLL0.) Cl) 2

LO. Cl) Vl 0 fA
yU

Cl) yyyU (D
CA Gn U, CA CA 1- 0v aý

ÖÖ pq to aÖ Ö=
b0 pq ÖÖÖ

ö4
ÖÖ'. v 4y) ö ö" Cl. 0° "-

o- o. o° 2 ä. c. s, ä. to
to ,-

en ö1ööö
to ö4 to ö

n. aý -�0 N =''Q-on oncu°'anbn°'&y
p ýýaäö.

Z 00

r22ö WX33ý"coö
-2

:xö0W. 0° e'°ö00
Ci. 9Z6

. ýG ýG O ýL Y0öO .1 3C
.C

M
0Qö CU MM CO CU °A to o yranyy _to - EE 2EEri°y

0)
=

.-

oA
=Uy

60
10

.aeO `- 'ý yyy
6> ý++ Lý rA CyyNNyyy

ýy tÜ
-90 Qy] G.) ry: Ly

iO
"C O CU > &- bA by-i i" rn vý C bA rn

bA4
vý

ß' Qyy

Gý

-fl GO. C bD

iQ ja s- 0O0000"
Cn "^

&-
° CQ Ci

a"

CC aa

ry�ý q4 G) : 3.
O

t1' aa bD i1. aa bA bD L pA y to QLQ ^+ .ýQ "-" w par., .ý ý+ y OL
öö LO

OL "QLyLyM.
2 JE -0 y: e r_

L,..
ar m, öQý°'_ N23°"ß, ýNöc`ýi

L ý+" i, CC O
ý. y0yaO00

bb. U. 2
li OyOywQ ^Y

L3 ýºr

O `° Uyy
Cl) oaöcao c4 E U= =' "0 °' .0aäN

N
t' ö

Ny
V7

Q 4n kA #A \o 00 00 00 00 0000oOONNNNNMMM
c"ý M yý

:sy MMMMMMMMMýi
t7 Ctn. 'ý7 ý7 et e. t7 ctý -e xt -mai e -e -e`t H3

U

0

61

i
O

O

L

.Z

ýýi

i
Q'ý eE~ -c 3F= EE~E" E EE"E' EF~F- totü= 33 toi " to ccc öý °c ö Eöö ýöEE'ý'ý 000

0

Z tor
dui

Zc ci ZZ tn cnZ tnrn
ýýý ý

Q

y
H
6ý
u
L

44

0

rA
CC

C. %

N u2
t,

V1
Z- VI MN V1 V1

CA Ul
NNLL

Gn

yy
!A Vl cn u2

yHL
V1 cn LyL V1 y

yam. Vy1 V1

sue- to to L f°5. yy L- yLL to 0 D= L bO y= GO LL
Cq L0O0 to to LL tm cl s. to to OLL0tOLOO to = 0 to '- OOöÖOtOOp =to 04 to ä. Ö. OO
Q. LLa. CL LLrä. G1. G, LL0. Q 0. on cn a. a. a. c cn a. ss. cn en a, to cn -v ca -c M -v

=
-m -v cc -c aa c= Ts

0
Co G°

OO00GC0öC
to

°00 Obn 9 OO=

:r
.ý
ý,

y
N
L y

N

c) yy
yy0 V1 b. N
N Cn yL=0

V1 fA
ON

y
cn
(A

cm
Q) fA

O
y

bQ aý Mz ý' 'pC to pp pp
-

L G U IU i p CD L
CA

Cn
COJ o" to 0O "

ORZ `- cn OO 0
as O

vý O N' k. p4

`+ ZO
ÖAbAa

a
91. - Cl to >

,
&- ' 8-. RR p,

LR LU

CU
0

R , Op bpU
Ö U j O.

Z
Ö

i
pq = to 0 to

O vý
R

G)
O . t1 p = UU ^ b0 4- 0

C O CU 'ý' U NÖUC Op4 C7. ß
RSC

vý

. fl
h ÖUU

,ý pC bA G ti O

L
t
r-4

aý
3

00 00 00 00 Co Oý Oý O . "", . -r .. + r ..,. i V* "T V ýPýItýtýYýr ,: I, q. v. tnvlvývyýnvývývNyNNNNN

B5.3 The Mann Whitney U tests of the prevalence for outstanding work

Presented below are the results of the Mann Whitney U tests of the prevalence for

outstanding work during the end of the project rather than during the middle of the

project, for Projects B and C. The results are taken directly from Data Desk v6.0, a data

analysis software package for the Apple Macintosh.

Mann Whitney U test for Project B

Individual Alpha Level 0.01
Ho: Median 1= Median2 Ha: Median 1> Median2
Ties Included

End: No+Slow progress - Middle: No+Slow progress:
Test Ho: Median(End: No+Slow progress) = Median(Middle: No+Slow progress) vs Ha:
Median(End: No+Slow progress) > Median(Middle: No+Slow progress)

Rank Totals Cases Mean Rank
End: No+Slow progress 773.50000 29 26.67
Middle: No+Slow progress 307.50000 17 18.09
Total 2071 46 45.02
Ties Between Groups 990 44 22.50

U-Statistic: 338
U-prime: 154
Sets of ties between all included observations: 4
Variance: 1930.9
Adjustment To Variance For Ties: -414.52
Expected Value: 246.50
z-Statistic: 2.3626
p=0.0091
Reject Ho at Alpha = 0.01

Mann Whitney U test for Project C
Individual Alpha Level 0.05
Ho: Median 1= Median2 Ha: Median 1> Median2
Ties Included

End: Required+lmpacted+No+Slow - Middle: Required+Impacted+No+Slow :
Test Ho: Median(End: Required+Impacted+No+Slow) = Median(Middle: Required+Impacted+No+S1ow)
vs Ha: Median(End: Required+Impacted+No+Slow) > Median(Middle: Required+Impacted+No+Slow)

Rank Totals Cases Mean Rank
End: Required+Impacted+No+Slow 392 20 19.60
Middle: Required+Impacted+No+Slow 169 13 13
Total 1001 33 30.33
Ties Between Groups 440 28 15.71

U-Statistic: 182
U-prime: 78
Sets of ties between all included observations: 6
Variance: 736.67
Adjustment To Variance For Ties: -47.150 Expected Value: 130
z-Statistic: 1.9803
p=0.0238
Reject Ho at Alpha = 0.05

196

Appendix B6 The outstanding work
evidence
B6.1 Introduction

This appendix provides detailed evidence to support the analysis presented in chapter

eight. The following information is included:

" The classification of each item of outstanding work evidence.

" The results of the Mann Whitney U tests of the prevalence for outstanding work

during the end of the project rather than during the middle of the project, for the two

projects.

B6.2 The classifications of items of outstanding work evidence

Tables B6.2.1 and B6.2.2 present the `raw' outstanding work evidence for Projects B and

C respectively. Each item is labelled with the week in which it occurred in the status

meetings. Due to the sensitivity of the information, the entire text for each reference

cannot be presented.

Table B6.2.1 Outstanding work evidence for Project B

Week Phrase Process Area Types of outstanding work
6 backlog Other project Defects/Fixes

12 outstanding Test Performance
13 backlog Defect Screen Team Defects/Fixes
14 backlog Defect Screen Team Defects/Fixes
14 backlog Defect Screen Team Defects/Fixes
15 backlog Defect Screen Team Defects/Fixes
16 backlog" Defect Screen Team Defects/Fixes
19 outstanding Development Design changes
19 outstanding Test Defects/Fixes
19 outstanding Test Defects/Fixes
19 outstanding Defect Screen Team Defects/Fixes
21 outstanding Test Problem
22 outstanding Test Defects/Fixes
22 outstanding Other project Defects/Fixes
22 backlog Defect Screen Team Defects/Fixes
24 backlog Defect Screen Team Defects/Fixes
26 outstanding Development Resource
27 backlog Other project Defects/Fixes
29 outstanding Test Defects/Fixes
29 backlog Other project Defects/Fixes
33 outstanding Unknown Action
34 outstanding Test Tests
35 outstanding Test Tests

197

Table B6.2.1 Outstanding work evidence for Project B

Week Phrase Process Area Ty pes of outstanding work
36 outstanding Test Problem
38 outstanding Test Unknown
38 outstanding Service, NLS Decision
39 outstanding Test Defects/Fixes
39 outstanding Service, NLS Decision
39 backlog Development Defects/Fixes
40 outstanding Development Defects/Fixes
40 outstanding Information development Publication items
40 outstanding Service, NLS Decision
41 outstanding Test Defects/Fixes
41 outstanding Build Defects/Fixes
41 outstanding Information development Publication items
41 outstanding Service, NLS Decision
41 outstanding Test Defects/Fixes
41 outstanding Development Defects/Fixes
41 backlog Development Defects/Fixes
42 outstanding Service, NLS Decision
42 outstanding Other project Defects/Fixes
42 backlog Other project Defects/Fixes
43 outstanding Development Defects/Fixes
43 backlog Other project Defects/Fixes
44 outstanding Test Problem
45 outstanding Development Problem
45 outstanding Information development Decision
45 outstanding Test Tests
45 backlog Other project Defects/Fixes
47 outstanding Information development Decision
47 outstanding Test Problem
47 backlog Development Defects/Fixes
48 outstanding Information development Decision
48 backlog Development Defects/Fixes
48 backlog Development Defects/Fixes
49 outstanding Information development Decision
49 backlog Development Defects/Fixes
50 outstanding Test Problem
50 outstanding Test Problem
50 backlog Development Defects/Fixes
51 outstanding Early Marketing Support Problem
51 outstanding Test Tests
51 backlog Development Defects/Fixes
52 outstanding Test Tests
54 outstanding Test Tests
54 outstanding Development Defects/Fixes
56 outstanding Test Tests
56 outstanding Other project Defects/Fixes

198

Table B6.2.2 Outstanding work evidence for Project C

Week Phrase Process areas
Type of

outstanding work
8 outstanding Development Development work
21 outstanding Development Development work
26 outstanding Development Development work
27 outstanding Development Testing
27 outstanding Development Secondary changes
27 outstanding Development Development work
29 outstanding External to development Development work

30
32
32
32
33
33
33
34
35
35
36
36
38
43
43
45
45
45
45
45
45
45
45
45
46
46
46
47
47
47
48
48
49
49
49
50
50
50
51
51
51
51
51
51
51

backlog
outstanding
outstanding
outstanding
outstanding
outstanding
outstanding
outstanding
outstanding
outstanding
outstanding
outstanding
outstanding
outstanding
outstanding
outstanding
outstanding
outstanding
outstanding
outstanding
outstanding
outstanding
outstanding

backlog
outstanding
outstanding

backlog
outstanding
outstanding
outstanding
outstanding
outstanding
outstanding
outstanding

backlog
outstanding
outstanding
outstanding
outstanding
outstanding
outstanding
outstanding

backlog
backlog
backlog

team
Unknown

Development
Development
Development
Development
Development
Development
Development
Development

Test
Test

Development
Development

Test
Development
Development

Test
Test
Test
Test

Development
Unknown

Development
Test

Development
Development
Development
Development

Information development
Development
Development

Unknown
Development
Development

Test
Development
Development

Unknown
Development

Test
Development

Unknown
Unknown
Unknown

Development

Service PMRs
Development work
Development work

Problems
Problems
Testing

Development work
Testing

Publications
Defects

Problems
Development work

Documentation
Defects

Unknown
Development work

Testing
Testing
Testing
Testing

Publications
Unknown
Defects

Problems
Publications
Publications

Development work
Development work

Publications
Documentation

Development work
Publications

Development work
Development work

Fixes
Defects

Problems
Problems
Defects
Testing

Problems
Language translation

Defects
Defects

Problems

199

Table B6.2.2 Outstanding work evidence for Project C

Week Phrase Process areas
Type of

outstanding work
52 outstanding Development Development work
52 outstanding Test Testing
52 outstanding Development Defects
53 outstanding Development Defects
53 outstanding Test Testing
57 outstanding Development Defects
57 outstanding Development Development work

200

B6.3 The Mann Whitney U tests of the prevalence of outstanding work

Presented below are the results of the Mann Whitney U tests of the prevalence for

outstanding work during the end of the project rather than during the middle of the

project, for Projects B and C. The results are taken directly from Data Desk v6.0, a data

analysis software package for the Apple Macintosh.

Mann Whitney U test for Project B

Individual Alpha Level 0.0500
Ho: Median I= Median2 Ha: Median 1> Median2
Ties Included

End: Number of references - Middle: Number of references :
Test Ho: Median(End: Number of references) = Median(Middle: Number of refere nces) vs Ha:
Median(End: Number of references) > Median(Middle: Number of references)

Rank Totals Cases Mean Rank
End: Number of references 769 29 26.52
Middle: Number of references 312 17 18.35
Total 2116 46 46
Ties Between Groups 1035 45 23

U-Statistic: 334
U-prime: 159
Sets of ties between all included observations: 5
Variance: 1930.9
Adjustment To Variance For Ties: -126.82
Expected Value: 246.50

z-Statistic: 2.0601
p=0.0197
Reject Ho at Alpha = 0.0500

Mann Whitney U test for Project C
Individual Alpha Level 0.001
Ho: Median 1= Median2 Ha: MedianI > Median2
Ties Included

End: Number of references per week - Middle: Number of references per week :
Test Ho: Median(End: Number of references per week) = Median(Middle: Number of references per week)
vs Ha: Median(End: Number of references per week) > Median(Middle: Number of references per week)

Rank Totals Cases Mean Rank
End: Number of references per week 427.50000 20 21.38
Middle: Number of references per week 133.50000 13 10.27
Total 934 33 28.30
Ties Between Groups 373 25 14.92

U-Statistic: 218
U-prime: 42.5
Sets of ties between all included observations: 4
Variance: 736.67
Adjustment To Variance For Ties: -46.042
Expected Value: 130
z-Statistic: 3.3296

p=0.0004
Reject Ho at Alpha = 0.001

201

Appendix B7 Evidence from the feedback

workshops
B7.1 Introduction

This appendix complements chapter three, by providing further information on the

design and conduct of the feedback workshops.

B7.2 Methodology

As explained in chapter three, the feedback workshops were conducted approximately

one year after the completion of the two projects. For Project B, one workshop was

conducted (this lasted two hours). For Project C, two workshops were conducted, the

second workshop addressing outstanding issues from the first (each of these workshops

lasted two hours). For both projects, the respective Project Leader and Project Assistant

were present at the workshops.

There were three objectives to the workshops:

" To provide the Project Leaders and Project Assistants with independent assessments

of their projects.

" To validate the findings with the Project Leaders and Project Assistants. This

primarily consisted of confirming whether the Project Leader and Project Assistant

agreed with the findings, and if they did not agree, why they did not agree. Often,

Project Leaders and Project Assistants simply wished to provide further information.

" To collect additional information and clarify certain outstanding issues in the

research.

Prior to each workshop, the researcher compiled a report of the insights gained for the

project, and developed a questionnaire to be filled in by the Project Leader and Project

Assistant. The report and the questionnaire complemented each other. The questionnaire

provided a method for the Project Leader and Project Assistant to record their opinions

of the findings presented in the report. Together, the report and questionnaire provided a

structured mechanism for the workshops. In addition to the questionnaire, the three

workshops were recorded. This provided a further mechanism for recording information

that could not be easily recorded using the questionnaire. It also ensured that the

researcher could focus on managing the workshop (e. g. guiding the discussion) rather than
taking notes.

202

The original intention was for the Project Leader and Project Assistant to separately fill

in the questionnaires, but the Project Leader and Project Assistant preferred to discuss

their answers and supply only one `aggregated' answer to each of the questions. This was

actually an effective approach, because it encouraged the Project Leader and Project

Assistant to discuss issues and this provided further useful information for the researcher
(which, of course, was recorded on tape).

The reports presented findings in three ways:

" As earlier versions of some of the figures presented in chapter five.

" As earlier versions of some of the figures presented in chapters six through eight.

" As earlier versions of some of the insights summarised in chapter nine.

Overall , the workshops proved to be very effective, satisfying all three of the objectives.
The Project Leaders and Project Assistants agreed with most of the findings of the

research, wishing to provide additional information rather than correct `faults' in the
findings.

203

References
[1] Abdel-Hamid, T. K., 'Understanding the "90% Syndrome" in software project

management: A simulation-based case study', Journal of Systems and Software, 8,

pp. 319-330,1988.

[2] Abdel-Hamid, T. K. and Madnick, S. E., 'Lessons learned from modeling the

dynamics of software development', Communications of the ACM, 32(12), pp.

1426-1438,1989.

[3] Abdel-Hamid, T. K., Sengupta, K., and Ronan, D., 'Software project control: an

experimental investigation of judgement with fallible information', IEEE

Transactions on Software Engineering, 19(6), pp. 603-612,1993.

[4] Abran, A. and Robillard, P. N., 'Function points: A study of their measurement

process and scale transformations', Journal of Systems and Software, 25(3), pp.
171-184,1994.

[5] Ballman, K. and Votta, L. G., 'Organizational congestion in large-scale software

development', in Proc. Third International Conference on Software Process.

Reston, Virginia, USA, October: IEEE Computer Society Press, 1994.

[6] Benbasat, I., An analysis of research methodologies, in The Information Systems

Research Challenge, McFarlan, F. W., Editor, Harvard Business School Press:

Boston, Massachusetts, 1984.

[7] Benbasat, I., Goldstein, D. K., and Mead, M., 'The case research strategy in studies

of information systems', MIS Quarterly, 11(3), pp. 369-386,1987.

[8] Beynon-Davies, P., 'Information systems 'failure': The case of the London

Ambulance Service's Computer Aided Despatch project', European Journal of
Information Systems, 4(3), pp. 171-184,1995.

[9] Blackburn, J. D., Hoedemaker, G., and Van Wassenhove, L. N., 'Concurrent

engineering: prospects and pitfalls', IEEE Transactions on Engineering

Management, 43(2), pp. 179-188,1996.

[10] Blackburn, J. D., Scudder, G. D., and Van Wassenhove, L. N., 'Improving speed and

productivity of software development: A global survey of software developers',

IEEE Transactions on Software Engineering, 22(12), pp. 875-885,1996.

[11] Block, R., The Politics of Projects. Yourdon Press: New York, 1983.

[12] Boehm, B., Clark, B., Horowitz, E., Westland, C., Madachy, R., and Selby, R.,
'Cost models for future software life cycle processes: COCOMO 2.0', Annals of
Software Engineering, 1, pp. 57-94,1995.

[13] Boehm, B. W., Software Engineering Economics. Prentice-Hall: Englewood Cliffs,
N. J., 1981.

[14] Boehm, B. W., -'Software engineering economics', IEEE Transactions on Software
Engineering, SE-10(1), pp. 4-21,1984.

204

[15] Bonoma, T. V., 'Case research in marketing: Opportunities, problems, and

process', Journal of Marketing Research, 22(2), pp. 199-208,1985.

[16] Botting, R. J., 'On the economics of mass-marketed software, in Proc. 19th

International Conference on Software Engineering (ICSE19). Boston,

Massachusetts, May 17-23: 1997.

[171 Bradac, M. G., Perry, D. E., and Votta, L. G., 'Prototyping a process monitoring

experiment', in Proc. 15th International Conference on Software Engineering.

IEEE Computer Society Press, 1993.

[181 Bradac, M. G., Perry, D. E., and Votta, L. G., 'Prototyping a process monitoring

experiment', IEEE Transactions on Software Engineering, 20(10), pp. 774-784,

1994.

[19] Brooks, J., F. P., The Mythical Man-Month. Anniversary Edition. Addison-Wesley

Publishing Company: Reading, Massachusetts, 1995.

[20] Carmel, E., 'Cycle time in packaged software firms', Journal of Product

Innovation Management, 12(2), pp. 110-123,1995.

[21] Carmel, E., 'Time-to-completion factors in packaged software development',

Information and Software Technology, 37(9), pp. 515-520,1995.

[22] Carr, D. and Koestler, R., 'System dynamics models of software developments', in

Proc. 5th International Software Process Workshop. Kennebunkport, Maine, USA:

IEEE Computer Society Press, 1990.

[23] Cavaye, A. L. M., 'Advice on case studies, for PhD Research (Personal

communication)', 6th November 1996.

[24] Cavaye, A. L. M., 'Case study research: A multi-faceted research approach to IS',

Information Systems Journal, 6(3), pp. 227-242,1996.

[25] Cook, J. E., Votta, L. G., and Wolf, A. L., 'Cost-effective analysis of in-place

software processes', IEEE Transactions on Software Engineering, 24(8), pp. 650-

663,1997.

[26] Cook, J. E. and Wolf, A. L., Discovering models of software processes from event-
based data. Technical Report No. CU-CS-819-96, Software Engineering Research

Laboratory, Department of Computer Science, University of Colorado, 1996.

[27] Cooper, K. G., 'The $2,000 hour: how managers influence project performance
through the rework cycle', Project Management Journal, 25(1), pp. 11-24,1994.

[28] Cooper, K. G., 'System dynamics methods in complex project management', in
Proc. NATO Advanced Research Workshop on Managing and Modelling Complex
Projects. Kiev, Ukraine, November 13th-15th: Kluwer Academic Publishers,
1996.

[29] Cuelenaere, A. M. E., van Genuchten, MJ. I. M., and Heemstra, F. J., Calibrating a
software cost-estimation model: Why and how, in The Economics of Information

205

Systems and Software, Veryard, R., Editor, Butterworth-Heinemann: Oxford, UK,

1991.

[30] Curtis, B., Hefley, W. E., and Miller, S., People capability maturity model (P-

CMM). Technical Report No. CMU/SEI-95-MM-02, Carnegie Mellon

University/Software Engineering Institute, 1995.

[31] Curtis, B., Krasner, H., and Iscoe, N., 'A field study of the software design process

for large systems', Communications of the ACM, 31(11), pp. 1268-1287,1988.

[32] Curtis, B., Walz, D., and Elam, J., 'Studying the process of software design teams',

in Proc. 5th International Software Process Workshop. Kennebunkport, Maine,

USA: IEEE Computer Society Press, 1990.

[33] Dandekar, A., Perry, D. E., and Votta, L. G., 'A study in process simplification', in

Proc. 4th International Conference on Software Process. Brighton UK: 1996.

[34] Dandekar, A., Perry, D. E., and Votta, L. G., 'A study in process simplification',
Software Process: Improvement and Practice, 3(2), pp. 87-104,1997.

[35] Deephouse, C., Mukhopadhyay, T., Goldenson, D. R., and Kellner, M. I., 'Software

processes and project performance', Journal of Management Information

Systems, 12(3), pp. 187-205,1996.

[36] Deutsch, M. S., 'An exploratory analysis relating the software project management

process to project success', IEEE Transactions on Engineering Management,

38(4), pp. 365-375,1991.

[37] Dutoit, A. H. and Bruegge, B., 'Communication metrics for software
development', IEEE Transactions on Software Engineering, 24(8), pp. 615-628,

1998.

[38] Dutta, S., Kulandaiswamy, S., and Van Wassenhove, L. N., Benchmarking
European software management best practices. Working Paper No. 96/45/TM,
INSEAD, Fontainebleau, France, 1996.

[39] Eisenhardt, K. M., 'Building theories from case study research', Academy of
Management Review, 14(4), pp. 532-550,1989.

[40] Fenton, N., Pfleeger, S. L., and Glass, R. L., 'Science and substance: A challenge to

software engineers', IEEE Software, 11(4), pp. 86-95,1994.

[41] Ford, D. N. and Sterman, J. D., 'Dynamic modeling of product development

processes', System Dynamics Review, 14(1), pp. 31-68,1998.
[42] Gable, G. G., 'Integrating case study and survey research methods: An example in

information systems', European Journal of Information Systems, 3(2), pp. 112-
126,1994.

[43] Gasson, S., 'Process modelling of design. (Personal communication)', 25th
November 1996.

206

[44] Gasson, S., 'Process modelling of design. (Personal communication)', 22nd

November 1996.

[45] Glaser, B. G. and Strauss, A. L., The Discovery of Grounded Theory: Strategies for

Qualitative Research. Weidenfield and Nicholson: London, 1967.

[46] Glass, R. L., Vessey, I., and Conger, S. A., 'Software tasks: Intellectual or clerical?,
Information and Management, 23(4), pp. 183-191,1992.

[47] Goodhew, P., Ensuring profitable investment in software process improvement -
IBM survey results. European Software Process Improvement Foundation, 1996.

[48] Guindon, R., 'Designing the design process: Exploiting opportunistic thought',

Human-Computer Interaction, 5(2-3), pp. 305-344,1990.

[49] Guindon, R., 'Knowledge exploited by experts during software system design',

International Journal of Man-Machine Studies, 33(3), pp. 279-304,1990.

[50] Heemstra, F. J., 'Software cost estimation', Information and Software Technology,

34(10), pp. 627-639,1992.

[51] Humphrey, W. S., Snyder, T. R., and Willis, R. R., 'Software process improvement

at Hughes Aircraft', IEEE Software, 8(4), pp. 11-23,1991.

[521 Jackson, M., 'Problems, methods, and specialisation', Software Engineering

Journal, 9(6), pp. 249-255,1994.

[53] Jackson, M., 'Problems, methods, and specialization', IEEE Software, 11(6), pp.
57-62,1994.

[54] Jackson, M., Software requirements & specification. Addison-Wesley: 1995.
[55] Jarvenpaa, S. L., 'The importance of laboratory experimentation in IS research',

Communications of the ACM, 31(12), pp. 1502-1505,1988.

[56] Jeffery, D. R. and Low, G., 'Calibrating estimation tools for software
development', Software Engineering Journal, 5(4), pp. 215-221,1990. -

[57] Jenkins, A. M., Naumann, J. D., and Wetherbe, J. C., 'Empirical investigation of
systems development practices and results', Information & Management, 7, pp.
73-82,1984.

[58] Kaplan, R. S., The role of empirical research in management accounting. Working
Paper No. 9-785-001, Division of Research, Harvard Business School, Boston,
Massachusetts, 1985.

[59] Kelly, J. R. and McGrath, J. E., On Time and Method. SAGE publications: Newbury,
CA, 1988.

[601 Kemerer, C. F., 'An empirical validation of software cost estimation models',
Communications of the ACM, 30(5), pp. 416-429,1987.

[611 Kitchenham, B. A., 'Empirical studies of assumptions that underlie software cost-
estimation models', Information and Software Technology, 34(4), pp. 211-218,
1992.

207

[62] Kluckhohn, C. and Murray, H. A., ed. Personality in Nature, Society, and Culture.

Alfred A Knopf: New York, 1948.

[63] Kornreich, T. R. and Smith Parker, S., 'The impact of requirements changes on a

large automated information system project: A case study', Large Scale Systems,

12(3), pp. 249-256,1987.

[64] Lapin, L. L., Statistics for Modern Business Decisions. Sixth edition. The Dryden

Press: Orlando, 1993.

[65] Lederer, A. L. and Prasad, J., 'Information systems software cost estimating: A

current assessment, Journal of Information Technology, 8(1), pp. 22-33,1993.

[66] Lee, A. S., 'A scientific methodology for MIS case studies', MIS Quarterly, 13(1),

pp. 33-50,1989.

[67] Lee, A. S., 'Advice on case studies, for PhD Research (Personal communication)',

5th November 1996.

[68] Lehman, M. M., Process improvement - the way forward (Revised version of

1995 paper). Report No. MML565, Department of Computing, Imperial College,

1997.

[69] Lehman, M. M., Perry, D. E., and Ramil, J. F., 'Implications of evolution metrics

on software maintenance', in Proc. International Conference on Software

Maintenance. Bethesda, Maryland 16th-20th November: IEEE Computer Society,

1998.

[70] Lehman, M. M., Perry, D. E., and Turski, W. M., Metrics and laws of software

evolution - the nineties view. Report No. MML568, Department of Computing,

Imperial College of Science, Technology and Medicine, 1997.

[71] Lethbridge, T. and Singer, J., 'Understanding software maintenance tools: some

empirical research', in Proc. Workshop of empirical studies of software

maintenance. Bari, Italy, October: 1997.

[72] Levin, R. I. and Rubin, D. S., Statistics for Management. Seventh edition. Prentice-

Hall International, Inc.: London, 1998.

[73] MacDonell, S. G., 'Comparative review of functional complexity assessment

methods for effort estimation', Software Engineering Journal, 9(3), pp. 107-116,

1994.

[74] Maxwell, K., Wassenhove, L. v., and Dutta, S., 'Software development

productivity of European space, military and industrial applications', IEEE
Transactions on Software Engineering, 22(10), pp. 706-718,1996.

[75] McDermid, J., Software Engineer's Reference Book. Butterworth-Heineman:
1991.

[76] McKeen, J. D., 'Successful development strategies for business application
systems', MIS Quarterly, 7(3), pp. 47-65,1983.

208

[77] Merton, R. K., Social theory and social structure. Enlarged Edition. The Free

Press: New York, 1968.

[78] Miles, M. B., 'Qualitative data as an attractive nuisance: The problem of analysis',

Administrative Science Quarterly, 24, pp. 590-601,1979.

[79] Miles, M. B. and Huberman, A. M., Qualitative Data Analysis. 2nd. SAGE

Publications: Thousand Oaks, CA, 1994.

[80] Mouakket, S., Sillince, J. A. A., and Fretwell-Downing, F. A., 'Information

requirements determination in the software industry: A case study', European

Journal of Information Systems, 3(2), pp. 101-111,1994.

[81] Myers, M., 'Advice on case studies, for PhD Research (Personal communication)',

6th November 1996.

[82] Nardi, B. A. and Engestrom, Y., 'A web on the wind: the structure of invisible

work', Computer Supported Cooperative Work, 8(1-2), pp. 1-174,1999.

[83] Olsen, N. C., 'The software rush hour', IEEE Software, 10(5), pp. 29-37,1993.

[84] Olsen, N. C., 'Survival of the fastest: Improving service velocity', IEEE Software,

12(5), pp. 28-38,1995.

[85] Olson, G. M., Olson, J. S., Carter, M. R., and Storrosten, M., 'Small group design

meetings: An analysis of collaboration', Human-Computer Interaction, 7(4), pp.
347-374,1992.

[86] Orlikowski, W., 'Seeking advice on design of case studies (Personal

communication)', 8th November 1996.

[87] Orlikowski, W. J., 'CASE tools as organizational change: Investigating incremental

and radical changes in systems development', MIS Quarterly, 17(3), pp. 309-340,

1993.

[881 Paulk, M., Curtis, B., Chrissis, M., and Weber, C., Capability maturity model for

software (version 1.1). Technical Report No. CMU/SEI-93-TR-024, Carnegie

Mellon University/Software Engineering Institute, 1993.

1891 Paulk, M., Weber, C., Garcia, S., Chrissis, M. B., and Bush, M., Key practices for

the capability maturity model (version 1.1). Technical Report No. CMU/SEI-93-

TR-025, Carnegie Mellon University/Software Engineering Institute, 1993.

1901 Paulk, M. C., Curtis, B., Chrissis, M. B., and Weber, C. V., 'Capability maturity
model, version 1.1', IEEE Software, 10(4), pp. 18-27,1993.

[91) Perry, D. E., Staudenmayer, N. A., and Votta Jr., J. G., Understanding and
improving time usage in software development, in Trends in software: software
process, Fuggetta, A. and Wolf, A. L., Editor, John Wiley and Sons Ltd: 1995.

[921 Perry, D. E., Staudenmayer, N. A., and Votta, L. G., 'People, organizations, and
process improvement, IEEE Software, 11(4), pp. 36-45,1994.

[931 Perry, D. E. and Votta, L. G., The planning number 2.5 +, -. 5. Technical Report
No. BLO112650-930930-28TM, AT&T Bell Laboratories, Murray, NJ, 1993.

209

[94J Pettigrew, A. M., 'Longitudinal field research on change: Theory and practice,
Organization Science, 1(3), pp. 267-292,1990.

[95] Phalp, K., An evaluation of software modelling in practice. Doctoral thesis,
Bournemouth University, 1995.

[96] Phan, D. D., Vogel, D. R., and Nunamaker Jr., J. F., 'Empirical studies in software
development projects: Field survey and OS/400 study', Information and
Management, 28(4), pp. 271-280,1995.

[97] Putnam, L. H., 'A general empirical solution to the macro software sizing and

estimating problem', IEEE Transactions of Software Engineering, SE-4(4), pp.
345-361,1978.

[98] Quintas, P., 'Engineering solutions to software problems: some institutional and

social factors shaping change', Technology Analysis and Strategic Management,

3(4), pp. 359-376,1991.

[99] Rainer, A. and Shepperd, M. J., A framework for investigating software project
schedule behaviour. Technical Report No. ESERG: TR98-003, Bournemouth

University, 1998.

[100] Rainer, A. W., M. J., An empirical investigation into waiting in software
development projects. Technical Report No. ESERG TR98-008, Bournemouth

University, 1998.
[1011 Remenyi, D. and Williams, B., 'Some aspects of methodology for research in

information systems', Journal of Information Technology, 10(3), pp. 191-201,
1995.

[102] Rodden, T., King, V., Hughes, J., and Sommerville, I., 'Process modelling and
development practice', in Proc. Third European Workshop on Software Process
Technology (EWSPT'94). Villard de Lans, France: Springer-Verlag, 1994.

[103] Rodrigues, A. and Bowers, J., 'The role of system dynamics in project
management', International Journal of Project Management, 14(4), pp. 213-220,
1996.

[104] Rodrigues, A. and Bowers, J., 'System dynamics in project management: a
comparative analysis with traditional methods', System Dynamics Review, 12(2),
pp. 121-139,1996.

[105] Rodrigues, A. G. and Williams, T. M., System dynamics in software project
management: towards the development of a formal integrated framework.
Theory, Method and Practical Science No. 96/5, Department of Management
Science, University of Strathclyde, 1996.

[1061 Schofield, C., An empirical investigation into software estimation by analogy.
Doctoral thesis, Bournemouth University, 1998.

210

[107] Schriber, J. B. and Gutek, B. A., 'Some time dimensions of work: measurement of

an underlying aspect of organization culture', Journal of Applied Psychology,

72(4), pp. 642-650,1987.

[108] Sengupta, K. and Abdel-Hamid, T. K., 'The impact of unreliable information on

the management of software projects: A dynamic decision perspective. ', IEEE

Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans,

26(2), pp. 177-189,1996.

[109] Shaw, M., 'Prospects for an engineering discipline of software', IEEE Software,

7(6), pp. 15-24,1990.

[110] Shepperd, M., 'Products, processes and metrics', Information and software

technology, 34(10), pp. 674-680,1992.

[111] Shepperd, M., Schofield, C., and Kitchenham, B., 'Effort estimation using

analogy', in Proc. 18th International Conference on Software Engineering (ICSE-

18). Berlin, Germany, March 25-29: 1996.

[112] Singer, J., 'Practices of software maintenance', in Proc. International Conference

on Software Maintenance. Bethesda, Maryland 16th-20th November: IEEE

Computer Society, 1998.

[113] Singer, J., Lethbridge, T., Vinson, N., and Anquetil, N., 'An examination of

software engineering work practices', in Proc. Centre for Advanced Studies
Conference (CASCON'97). Toronto, November: 1997.

[114] Smith, P. G. and Reinertsen, D. G., Developing products in half the time. Updated

paperback edition. International Thomson Publishing Inc.: New York, 1995.

[115] Soloway, E. and Iyengar, S., Empirical studies of programmers. Schneiderman, B.

(Ed.) Ablex Publishing Corporation: Norwood, New Jersey, 1986.
- [116] Sommerville, I. and Monk, S., 'Supporting informality in the software process', in

Proc. Third European Workshop on Software Process Technology (EWSPT'94).

Villard de Lans, France: Springer-Verlag, 1994.

[117] Sommerville, I. and Rodden, T., 'Understanding the software process as a social
process', in Proc. Second European Workshop on Software Process Technology
(EWSPT'92). Trondheim, Norway: Springer-Verlag, 1992.

[118] Sommerville, I. and Rodden, T., Human, social and organisational influences on
the software process. Technical Report No. CSEG/2/1995, Lancaster University,
1995.

[119] Stone, E., Research Methods in Organizational Behaviour. Scott, Foreman, and
Company: Glenview, Illinois, 1978.

[120] Strauss, A. and Corbin, J., Basics of Qualitative Research: Grounded Theory
Procedures and Techniques. SAGE Publications: Newbury Park, California, 1990.

211

[121] Taff, L. M., Borchering, J. W., and Hudgins Jr., W. R., 'Estimeetings: Development

estimates and a front-end process for a large project', IEEE Transactions on
Software Engineering, 17(8), pp. 839-849,1991.

[122] Tate, G. and Verner, J., Software Costing in Practice, in The Economics of
Information Systems and Software, Veryard, R., Editor, Butterworth-Heinemann:

Oxford, UK, 1991.

[123] Thamhain, H. J. and Wilemon, D. L., 'Criteria for controlling projects according to

plan', Project Management Journal, 17(2), pp. 75-81,1986.

[124] Tufte, Envisioning Information. Graphics Press: 1991.

[125] Tufte, E. R., The Visual Display of Quantitative Information. Graphics Press:

1983.

[126] Tvedt, J. D., An extensible model for evaluating the impact of process
improvements on software development cycle time. Doctoral thesis, Arizona

State University, 1996.

[127] Tvedt, J. D. and Collofello, J. S., 'Evaluating the effectiveness of process
improvements on software development cycle time via system dynamics

modeling', in Proc. International Computer Software and Applications

Conference (CompSAC'95). 1995.

[128] van Genuchten, M., 'Why is software late? An empirical study of reasons for

delay in software development', IEEE Transactions on Software Engineering,

17(6), pp. 582-590,1991.

[129] Verner, J. and Tate, G., 'A software size model', IEEE Transactions on Software

Engineering, 18(4), pp. 265-278,1992.

[130] Waeselynck, H. and Pfahl, D., 'System dynamics applied to the modelling of
software projects', Software - Concept and Tools, 15(4), pp. 162-176,1994.

[131] Walsham, G., 'Interpretive case studies in IS research: Nature and method',
European Journal of Information Systems, 4(2), pp. 74-81,1995.

[132] Walz, D. B., Elam, J. J., and Curtis, B., 'Inside a software design team: Knowledge

acquisition, sharing, and integration', Communications of the ACM, 36(10), pp.
63-77,1993.

[133] Waterson, P. E., Clegg, C. W., and Axtell, C. M., 'The dynamics of work
organisation, knowledge, and technology during software development',
International Journal of Human-Computer Studies, 46(1), pp. 79-101,1997.

[134] Watson, K. I., 'COCOMO as a schedule prognosis and validation tool: a case study,
Software Quality Journal, 1(4), pp. 193-208,1992.

[135] Wohlin, C. and Ahlgren, M., 'Soft factors and their impact on time to market',
Software Quality Journal, 4(3), pp. 189-205,1995.

212

[136] Wohlwend, H. and Rosenbaum, S., 'Schlumberger's software improvement

program', IEEE Transactions on Software Engineering, 20(11), pp. 833-839,
1994.

[137] Wolcott, H. F., The Art of Fieldwork. Altimira Press: Walnut Creek, California,
1995.

[138] Wolf, A. L. and Rosenblum, D. S., 'A Study in Software Process Data Capture and
Analysis. ', in Proc. Second International Conference on The Software Process.

Berlin, Germany.: IEEE Computer Society Press, Los Alamitos, California, 1993.

[139] Yin, R. K., Case Study Research, Design and Methods. 1st edition. SAGE

Publications: Beverly Hills, CA, 1984.

[140] Yin, R. K., Case Study Research: Design and Methods. 2nd edition. SAGE

Publications: 1994.

[1411 Ziman, J., Reliable Knowledge: An Exploration of the Grounds for Belief in
Science. Cambridge University Press: 1978/1991.

213

