An empirical investigation of
software project schedule behaviour

Austen William Rainer

A thesis submitted in partial fulfilment of the requirements of
Bournemouth University for the degree ot Doctor of Philosophy

July 1999

Bournemouth University

1n collaboration with
IBM Hursley Park

Abstract

Two intensive, longitudinal case studies were conducted at IBM Hursley Park. There were
several objectives to these case studies: first, to Investigate the actual behaviour of the
two projects in depth; second, to develop conceptual structures relating the lower-level
processes of each project to the higher-level processes; third, to relate the lower-level and
higher-level processes to project duration; fourth, to test a conjecture forwarded by

Bradac et al i.e. that waiting is more prevalent during the end of a project than during the
middle of a project.

A large volume of qualitative and quantitative evidence was collected and analysed for
each project. This evidence included minutes of status meetings, interviews, project

schedules, and information from feedback workshops (which were conducted several

months after the completion of the projects).

The analysis generated three models and numerous insights into software project
behaviour. The models concerned software project schedule behaviour, capability and an
integration of schedule behaviour and capability. The insights concerned characteristics of
a project (i.e. the actual progress of phases and milestones, the amount of workload on
the project, the degree of capability of the project, tactics of management, and the socio-
technical aspects of a project) and characteristics of process areas within a project (i.e.

waiting, poor progress and outstanding work). Support for the models and the insights was

sought, with some success, from previous research.

Despite the approach taken in this investigation (i.e. the collection of a large volume of
evidence and the analyses of a wide variety of factors using a very broad perspective), this

investigation has been unable to pinpoint definite causes to explain why a project will or
will not complete according to its original plan. One ‘hint’ of an explanation are the
differences between the socio-technical contexts of the two projects and, related to this,
the fact that tactics of management may be constrained by a project’s socio-technical
context. Furthermore, while the concept of a project as a distinct entity seems
reasonable, the actual boundaries of a project in an organisation’s ‘space-time’ are
ambiguous and very difficult to properly define. Therefore, it may be that those things

that make a project difficult to distinguish from its surrounding organisation are

interwoven with the socio-technical contexts of a project, and may be precisely those

things that explain the progress of that project.

Recommendations, based on the models, the insights and the conclusions, are provided for
industry and research.

Overview

Abstract 11
Overview 111
Contents v
List of figures Viil
List of tables X
Acknowledgements X
Chapter 1 Introduction 1
Chapter 2 Actual time usage in software projects 6
Chapter 3 Methodology 19
Chapter 4 Three analytic models 38
Chapter 5 Project-level behaviour 47
Chapter 6 Waiting 81
Chapter 7 The progress of work 102
Chapter 8 Outstanding work 116
Chapter 9 Integrating the analyses 126
Chapter 10 A summary of the thesis 146
Glossary 158
Appendices 161

References 204

111

Contents

Abstract 1
Overview 11
Contents 1V
List of figures viil
List of tables X
Acknowledgements X
Chapter 1 Introduction l
1.1 Statement of the problem 1
1.2 A definition of ‘software project schedule behaviour’ 3
1.3 Aims of the inquiry 3
1.4 Scope of the inquiry 4
1.5 Structure of the thesis 4
Chapter 2 Actual time usage in software projects 6
2.1 Introduction 6
2.2 A brief review of five areas of software engineering research 6
2.3 Studies of actual time usage in software projects 3

Bradac, Perry and Votta’s ‘prototype experiment’ 8

Subsequent research to Bradac et al.’s study 11

Van Genuchten's investigation of activities 13

Summary of research into time usage 16
2.4 Opportunities and objectives for this research 17

Opportunities 17

Objectives 18
Chapter 3 Methodology 19
3.1 Introduction 19
3.2 An appropriate research strategy 19
3.3 Heuristics for the design and conduct of case studies 21
3.4 The selection of projects for case studies 25
3.5 Summary of the evidence collected 26
3.6 Methods for analysing the evidence 30

A method for developing descriptions and explanations of behaviour 30

A method for testing Bradac et al.’s conjecture 32
3.7 Operational details of the investigation 33

Organising the evidence relating to process areas 33

Additional analyses for the waiting evidence 35

Adjusting Bradac et al.’s waiting evidence 35
Mapping phases of Projects B and C to Bradac et al.’s study 36

1V

Chapter 4 Three analytic models
4.1 Introduction

4.2 A simple model of software project schedule behaviour
Examples of the logic of the model
Support for the model
Caveats to the model
Problems with the model
4.3 A model of capability
4.4 Integrating the models
4.5 Alternative models
4.6 Summary

Chapter 5 Project-level behaviour
5.1 Introduction

5.2 The socio-technical contexts of Projects B and C
Project B
Project C

Similarities and differences between Projects B and C
5.3 The actual progress of Project B

5.4 The actual progress of Project C
5.5 Tactics to manage the projects
5.6 Summary

The socio-technical contexts of the two projects

The actual progress of the two projects
The tactics of management for the two projects

Chapter 6 Waiting
6.1 Introduction
6.2 A description of the evidence

6.3 The frequency and prevalence of waiting
The frequency of waiting
The prevalence of waiting

Explanations for the frequency and prevalence of waiting

6.4 The types of waiting and their frequencies

Comparnison of the types of waiting using Bradac et al.’s classification
Comparison of the types of waiting using the alternative classification

6.5 The ‘source’ and ‘dependent’ process areas
6.6 Process areas and types of waiting
6.7 Summary

Chapter 7 The progress of work
7.1 Introduction

7.2 The frequency and prevalence of progress of work

The frequency of progress of work
The prevalence of the poor progress of work

Explanations for the frequency and prevalence of progress
7.3 The different types of progress of work, and their frequencies

7.4 Process areas reporting the progress of work

1.5 The causes of poor and good progress
7.6 Summary

38
38
38

39
40
41
42
43

435

47
47
47
47
50
54
56
68
77
77
78
79
80

81
81
83
83
83
86
87
88
88
90
92
96
100

102
102
103
103
105
106
108
110
113
115

Chapter 8 Outstanding work
8.1 Introduction

8.2 The frequency and prevalence of outstanding work
The frequency of outstanding work
The prevalence of outstanding work

8.3 Types of outstanding work, and their frequencies
8.4 Process areas reporting outstanding work
8.5 Summary

Chapter 9 Integrating the analyses
9.1 Introduction

9.2 A summary of the various insights into Projects B and C
9.3 Relating the insights to Bradac ef al.’s research
9.4 Relating the insights to the model of capability

9.5 Relating the insights to the model of software project schedule behaviour
9.6 Other studies of actual progress

Actual progress of phases
Actual workload

Actual capability
0.7 Other studies of the characteristics of process areas
0.8 Other studies of the tactics of management
0.9 Other studies of the socio-technical contexts of projects
9.10 Applying the insights to a wider ‘population’ of projects

Chapter 10 A summary of the thesis
10.1 Introduction

10.2 A summary of the components of the empirical analyses
10.3 Conclusions and implications

Conclusions

Implications
10.4 Recommendations
10.5 A critical review of the investigation
10.6 Opportunities for further research

10.7 A review of the aims and objectives of this investigation

Glossary

Appendix A0 Deciding meaningful associations between entities
AQ.1 Introduction

A0.2 Using a Poisson distribution to decide meaningful associations

A0.3 Using a series of computer simulations to decide meaningful associations
A0.4 Parameters for the simulations

A0.5 Additional assumptions for the simulations

Appendix B1 The selection of projects
B1.1 Introduction

B1.2 The selection of projects for case studies

Appendix B2 Diagram structure and notation
B2.1 Introduction

B2.2 Explanation of the purpose, structure and notation of the diagrams

Appendix B3 Raw evidence from Projects B and C
B3.1 Introduction

B3.2 Evidence from Project B
B3.3 Evidence from Project C

Vi

116
116
117
117
119
120
121
125

126
126
126
131
133
136
137
137
140
140
141
141
143
144

146
146
147
148
148
150
151
152
154
155

158

161
161
161
163
166

166

168
168
168

172
172
172

174
174
174
178

Appendix B4 The waiting evidence
B4.1 Introduction

B4.2 The classifications of items of waiting evidence
B4.3 The Mann Whitney U tests of the prevalence of waiting

B4.4 Adjustments to Bradac ef al.’s data

Appendix BS The progress of work evidence

B5.1 Introduction

B5.2 The classifications of items of progress evidence
B5.3 The Mann Whitney U tests of the prevalence for outstanding work

Appendix B6 The outstanding work evidence

B6.1 Introduction

B6.2 The classifications of items of outstanding work evidence
B6.3 The Mann Whitney U tests of the prevalence of outstanding work

Appendix B7 Feedback workshop questionnaire

B7.1 Introduction
B7.2 Methodology

References

Vil

180
180
180
187
138

189
189
189
196

197
197
197
201

202
202
202

204

Figure

3.6.1

4.2.1
4,3.1
4.4.1
5.2.1
5.3.1

5.3.2

5.3.3
5.3.4

2.3.9
>.4.1
5.4.2
5.4.3
6.2.1
6.3.1
6.3.2
6.4.1
6.4.2
6.5.1
6.6.1
6.6.2
1.2.1
7.2.2
723
7.2.4
7.3.1
7.4.1
8.2.1
8.2.2
8.3.1
8.4.1

9.4.1
9.4.2
9.5.1

10.2.1

List of figures

A method for developing descriptions and explanations of software
project behaviour

A simple model of software project schedule behaviour
A model of capability

An integrated model of schedule behaviour and capability
The relationship between three releases of Product B

Planned and actual project schedule, project workload and project
staffing for Project B

Actual feature schedule for two features of Project B

Internal re-plans and indicators of project activity for Project B

The status of functional verification testcases for four features in
Project B

Status of defects in Project B

Project-level schedule, workload and capability for Project C
Re-plans and indicators of project activity for Project C

Re-plans and phase-level schedules for Project C

Frequency of status meetings for Projects B and C

Frequency of references to waiting for Project B

Frequency of references to waiting for Project C

Comparison of types of waiting (using Bradac ez al.’s classification)
Comparison of types of waiting (using the alternative classification)
Associations between the ‘source’ and ‘dependent’ process areas
Types of waiting and ‘source’ process areas

Types of waiting and ‘dependent’ process areas

References to the progress of work for Project B
References to the progress of work for Project C
Frequency of poor progress for Project B
Frequency of poor progress for Project C

Types of progress of work for Projects B and C

Types of progress per process area
References to outstanding work for Project B

References to outstanding work for Project C
Types of outstanding work

Process areas and their relationships with outstanding work
Smoothed frequency of the reporting evidence for Project B
Smoothed frequency of the reporting evidence for Project C
An integrated model of schedule behaviour and capability
The components of the empirical analyses

Vil

Page

30
38
43
44
43

57
60
62

64
67
69
73
76
82
83
84
89
91
94
98
99
103
103
105
105
108
112
117
117
120
124
133
133
136
147

Table

2.3.1
2.3.2
2.3.3
3.2.1
3.3.1
3.3.2
3.3.3
3.5.1
3.5.2
3.6.1
3.6.2
3.7.1
3.7.2
3.7.3
5.2.1
5.2.2
y.4.1

5.5.1
6.3.1
6.3.2
6.3.3
6.4.1
6.4.2
6.5.1
6.5.2
6.6.1
6.6.2
6.6.3
6.6.4
7.2.1

7.2.2
7.2.3
7.3.1
7.4.1
7.4.2
7.5.1
7.5.2
8.2.1
8.2.2
8.2.3
8.3.1
8.4.1
8.4.2
9.2.1

104.1
10.4.2

10.5.1
10.6.1

List of tables

Bradac et al.’s frequency of states

Van Genuchten's classification of reasons
Summary of studies that investigate time usage
Benbasat ef al.’s characteristics of a case study
Heunistics for the number of cases to use
Heuristics for designing the method to be used
Heuristics for building theory

Summary of the evidence collected

Summary of the interviews

Summary of the types of analysis conducted

Comparison of Bradac et al.’s research design with this investigation
Phrases for searching the minutes of status meetings

Adjusted percentages from Bradac et al.’s study

‘Mapping’ Bradac et al.’s tasks to the phases of Projects B and C
Differences between Project B and Project C

Similarities across Project B and Project C
The effect of certain events on development workload, capability and

Page

3
14
16
20
22
23
24
26
28
31
33
34
36
36
35
93

schedule for Project C 70
A summary of some tactics used by the projects’ managements 77
Summary statistics for the frequency of waiting 34
Mann Whitney U tests of hypothesis Hlg,;, 86
Summary statistics for the middle and end of the project 87
Comparison of types of waiting (using Bradac et al.’s classification) 88
Comparison of types of waiting (using the alternative classification) 90
Significant values in Table 6.5.2 92
Breakdown of the ‘source’ and ‘dependent’ process areas 03
Significant values in Table 6.6.3 96
Significant values in Table 6.6.4 96
Types of waiting and ‘source’ process areas 97
Types of waiting and ‘dependent’ process areas 97
Summary statistics for the frequency of progress of work 103
Results of the Mann Whitney U tests of hypothesis H2g,, 106
Summary statistics for the tests of poor progress of work 106
Types of progress of work for Projects B and C 108
Significant values for Table 7.4.2 110
Types of progress per process area 111
Factors contributing to poor progress on Project B 114
Factors contributing to good progress on Project B 114
Summary statistics for the frequency of outstanding work 117
Results of the Mann Whitney U tests of hypothesis H3g,, 119
Summary statistics for the prevalence of outstanding work 119
Types of outstanding work 120
Significant values in Table 8.4.2 122
Relationships between types of outstanding work and process areas 123
A summary of the insights into Project B and Project C 128-130
A summary of recommendations for industry 151
A summary of recommendations for research 152
A summary of threats to the investigation 152-153

A summary of opportunities for further research

1X

154

Acknowledgements

I should like to express my sincere thanks to Prof. Martin Shepperd for all of his support
(intellectual and otherwise) throughout the duration of my research. Similarly, sincere

thanks to John Allan for his support during the period of full-time research at IBM
Hursley Park, and my regular visits since.

I should also like to thank Paul Gibson and Prof. Sa’ad Medhat for laying the foundations

between IBM Hursley Park and Bournemouth University which ‘bore fruit® with this
research project.

Also, I am deeply grateful to the many people at IBM Hursley Park (who for reasons of
confidentiality must unfortunately remain anonymous) for allowing their projects to be
studied (or at least be candidates for study!) and for willingly making time to openly

discuss their opinions of their projects and of my interpretations of their projects. This
research really would not have been possible without them.

Thanks to Dr. Frank Milsom and Colin Kirsopp for their advice on my research,

particularly to Colin for his contributions to the statistical analysis discussed in Appendix
AOQ.

Fally, thanks to Glyn, Si, Tom, Emma, Pete and Min for their friendship over the last
four years.

Chapter 1 Introduction

1.1 Statement of the problem

A software product that is delivered to the market earlier than its competitors typically
enjoys several advantages over those competitors: the product is seldom obsolete any

sooner, has an increased share of the market and a higher profit margin ([84, 114])'.

At the same time, there 1s a substantial amount of research to show that software
development projects are frequently completed later than planned. Some of this research
surveys a broad range of projects (see, for example, [10, 21, 35, 57, 123]) whilst other
research concentrates on particular projects (e.g. [63, 80, 95, 134]), some of these

projects being of high public interest, such as the London Ambulance Service’s Computer
Aided Dispatch System (e.g. [8]).

The frequency of poorly performing software projects suggests that project managers

have great difficulty both planning and executing their projects. This may be for a
number of reasons, such as:

e Project managers may lack a comprehensive and widely-applicable understanding of

the behaviour of software projects. Their lack of understanding is increasingly likely
as products become increasingly complex and as they address new, increasingly

complex requirements. Obvious examples are projects that are involved with rapidly
developing technologies, such as the World Wide Web.

Events beyond the control of the project prevent these projects completing
according to plan.

The goals of the project, particularly the product’s requirements, cannot be stabilised,

with the result that the project either completes later than planned or may even be
abandoned.

¢ The demand for new products, and the competition between products within a

market, creates ‘pressure’ for increasingly shorter project durations. This may cause
project managers to take increasing risks with their projects, with the consequence

that projects are increasingly likely to complete later than planned.

Two fundamental goals of research are first to explain, and then to communicate that
explanation, so that practitioners may make better informed decisions and take better

informed actions. Software engineering research has yet to provide a comprehensive

' Not all products first to the market are, however, the eventual ‘winners’ (e.g. [16)).

explanation of the behaviour of software development projects and, more particularly,

the factors affecting project duration. For example, Carmel ([20]) writes:

"It should be noted that nowhere does the software engineering literature make

any causal claims regarding cycle time. Instead, the variables are normative and

prescribed for 'successful development.” ({20], p. 112)

Taking a broader perspective, Olsen ([84]) complements the opinion of Carmel. Olsen
writes:

"Not only does engineering literature rarely address time-to-market as the central
goal, but management often embrace the short-sighted view that the most
important goal is to control software labor and capital budgets, without
considering the effect on time-to-market. This is often because information
engineers cannot persuasively show how cost factors affect time-to-market; they

typically have few tools and case histories to back up their recommendations -
whereas budget costs are all too clear." ([84], p. 30)

Abdel-Hamid and Madnick ([2]) argue that the software engineering research community
still lacks a fundamental understanding of software development processes. In a related

field to software engineering research, that of information systems (IS) research,

Remenyi and Williams ([101]) argue that there is no established theory, and Jarvenpaa

([55]) argues that the lack of theory development, rather than appropriate research
methodologies, is the real problem for IS research.

On the subject of the development of theory, Eisenhardt ([39]) draws upon Glaser and
Strauss ([45]) to argue that:

&6

it 1s the Intimate connection with empirical reality that permits the
development of a testable, relevant, and valid theory.” ([39], p. 532)

Thus, a testable, relevant and valid explanation of software project schedule behaviour is
one founded on a close, solid connection with the actual processes of software
development and the processes of managing that development. This necessarily requires a
focus on particular projects, so that the subtleties, nuances and complexities of actual
process may be best understood. (A focus on particular projects raises the problem of
applying the findings drawn from these projects to a broader set of projects. This problem
is brietly considered in section 1.4, and then considered in more depth in chapters three

and nine.) Given that Carmel and Olsen are correct in their assessment of a lack of

research explaining software project cycle-time, then one fundamental reason would
appear to be a lack of research that seeks to generate these explanations i.e. a lack of
studies that intimately connect with empirical reality. There are a number of bodies of
research, within the software engineering community, that are potentially relevant to the

development of theory. These bodies of research and the issue of generating theory are
discussed in more depth in chapter two.

Overall, there 1s a need for explanations of software project behaviour and, more

specifically, software project schedule behaviour, and while empirical evidence and
conceptual structures do exist there is no established theory.

1.2 A definition of ‘software project schedule behaviour’

The term ‘software project schedule behaviour’ is meant to convey the following:

e The duration of a project from its initiation to completion.
e The duration of a project from its initiation to the delivery of its product (the
product may be delivered before the project 1s completed).

e How those durations are structured and associated with work i.e. the project schedule.

These structures and associations consist primarily of intervals of time (i.e. phases)

and instantaneous events (i.e. milestones).

* How those structures and associations change during the project i.e. the dynamics of
the schedule.

How those dynamic structures and associations are interwoven with the wider
behaviour of the project.

1.3 Aims of the inquiry

Given the need for, and lack of, explanation this inquiry has the following aims:

1. To consider the degree to which existing empirical studies within the software

engineering research community identify, describe or explain relationships between

the actual processes of software development and the schedule behaviour of software

projects.

2. To identify gaps within the existing research that prevent, of limit, the development
of a theory.

3.

To 1dentify the opportunities for a contribution in this area of research, and to select

one or more of these opportunities as specific objectives for the empirical
component of this research.

4. To conduct empirical inquiry, so as to contribute to the body of research on software

engineering in general and software project schedule behaviour in particular.

1.4 Scope of the inquiry

In order to make this inquiry feasible, the inquiry is bounded in a two ways. First, as
already suggested, this inquiry concentrates on extant knowledge within software
engineering research. This is recognised as a potential limitation to this inquiry, and as a
result some attention is directed outside of software engineering research. (This attention
is mainly directed, however, at methodological 1ssues.)

Second, this inquiry places particular value on Eisenhardt’s requirement for an intimate
connection with empirical reality. This has two implications. First, some potentially
valuable research, such as experts’ anecdotal accounts of software projects (e.g. [S1] and
[136]), are excluded because they do not communicate systematic and detailed evidence
on actual processes. (In this context, anecdotal accounts are distinguished from the
narrative accounts provided by ethnographic studies.) Second, and as noted previously, an

emphasis on particular processes introduces the problem of applying findings to other
projects. This investigation seeks to overcome this problem in two ways. First, having
conducted the empirical component of this inquiry, attention is re-directed at previous
research to determine whether other studies have independently drawn similar insights.
Second, part of the empirical component of this inquiry seeks to test a conjecture made

by Bradac e al. ([18]) and thus strengthen the applicability of that conjecture to a wider
set of projects.

1.5 Structure of the thesis

The remainder of this thesis 1s organised as follows. Chapters two and three lay the
theoretical and methodological foundations for the subsequent empirical inquiry. Chapter
two concentrates on the contribution of studies of actual time usage in software projects
for explaining software project schedule behaviour. This discussion includes a particular
consideration of the work of Bradac et al. ([18]) as part of his work is tested in the
subsequent empirical inquiry. Chapter two also identifies specific opportunities for further

research and appropriate objectives for the empirical investigation conducted as part of
this research.

Chapter three discussesa collection of methodological issues. The chapter identifies the
appropriate research strategy (the case study research strategy) to achieve the objectives

identified in chapter two, discusses the selection of cases, the volume of evidence

collected, the types of analyses conducted on that evidence, and various operational
details of the case studies.

Chapter four presents and discusses two models that were iteratively developed from the
evidence. The first model is a simple model of software project schedule behaviour. The
second model is a model of capability. The chapter shows how these two models can be
integrated into a third model, and how they can also be related to the studies of actual

time usage discussed in chapter two. Chapter four also discussesa number of caveats and

problems with the models, as well as potential alternatives to the models.

Chapters five through nine present and discuss the behaviour of the two projects that
were studied. Chapter five presents comprehensive analyses based around the model of
software project schedule behaviour. The scope of the inquiry is broad, considering the
socio-technical contexts of the two projects, the actual progress of the two projects, and
the management tactics used by the two projects. Chapters six through eight each
examine one characteristic of process areas of a project, usingthe model of capability.
Chapter six examines reports of waiting. Chapter seven examines reports of the progress
of work (and particularly the poor progress of work). Chapter eight examines reports of
outstanding work. (Chapter five provides a context within which the analysis of these
three characteristics can be better understood.) Chapters six through eight include a test

of Bradac et al.’s ([18]) conjecture that waiting is more prevalent during the end of a
project than during the middle of the project.

Chapter nine then brings together the various ‘threads’ of chapters two and four through
eight. The chapter relates the insights drawn from chapters five through eight with the
models presented in chapter four and the review of actual time usage presented in chapter

two. Chapter nine also presents a second review of previous research, this review focusing

on the specific insights gained from the empirical inquiry. Finally, chapter nine speculates
on the wider applicability of the insights.

Chapter ten then summarises the investigation, considering the components of the
empirical analyses, the main conclusions, some recommendations, threats to the validity
of the conclusions and opportunities for further research. Chapter ten also reviews the

aims of the inquiry and the degree to which they have been satisfied.

The appendices provide detailed empirical evidence on the two projects. For reasons of

confidentiality, transcripts of the interviews and the content of the minutes of status
meetings are not included.

Chapter 2 Actual time usage in software
projects

2.1 Introduction

As explained in chapter one, particular value is placed on Eisenhardt’s ([39]) argument

that the generation of explanation requires an intimate connection with empirical reality.
The argument was also made that there appears to be a lack of research, within the

software engineering community, that seeks to generate explanation.

This chapter first briefly reviews a number of bodies of research, within the software
engineering community, to support the argument that there is a lack of theory-generating
research. The chapter then concentrates on reviewing studies of actual time usage in
software development projects. In principle, studies of time usage are considered to be an
excellent method for an intimate connection with empirical reality because they
(potentially) explore both ‘visible’ and ‘invisible’ work ([82]). Also, studies of actual

time usage provide the most direct connection with intervals of time and instantaneous
events mn a software project.

2.2 A brief review of five areas of software engineering research

Besides research on time usage, five bodies of research have been identified as potentially

relevant to the development of explanations of software project behaviour and software
project schedule behaviour. These are:

e Surveys of practitioners’ opinions of the software process.

e The development and validation of system dynamic models of software development
projects.

¢ The development and validation of prediction systems of characteristics of software
projects e.g. effort, cost, quality and duration.

o The development and validation of software process models.
 Investigations of actual process.

Surveys (e.g. [9, 10, 21, 35, 38, 47, 74]) investigate tendencies but are not ideally suited
to explaining those tendencies.

System dynamics is a promising approach to both explaining and predicting the behaviour

of software development projects, but there appears to be little substantial empirical

work, within the field of software development, available to-date. The main empirical

research is provided by Abdel-Hamid (e.g. [2, 3, 108]) with more recent contributions by

Lehman ef al. (e.g. [68-70]) and Tvedt ([126, 127]). Other recent contributions appear
to be mainly theoretical in content (e.g. [22, 27, 28, 103-105, 130]).

Prediction systems (e.g. [50, 60, 61, 65, 73, 106, 110, 111, 129, 135]) develop
relationships between measured-attributes and predicted-attributes, but these relationships

are not prescribed as causal relationships, and are not assumed to provide explanation.

The development and validation of software process models is founded on the logic that
improving the processes of development will improve the outcomes of that development
e.g. reduced project cost, effort and duration, and increased product quality, functionality
and performance. In considering this area of research, Rodden et al. ([102]) first

characterise this research as being typically concemed with developing (or validating)

abstract descriptions that are to be instantiated for a particular (organisational) setting
before being enacted to manage the use of tools within an environment. Rodden et al.
then argue that these abstract descriptions are often oo abstract in that they no longer

(or, perhaps, at no time did) represent the actual nature of software development. (It

may be that software process research is first concerned with developing appropnate

technologies before using those technologies to inquire on the actual process.)

Although the tendency in software process research is toward the development of abstract

models of process, there are a number of studies of actual process. Many of these studies,

however, do not relate their findings explicitly to software project schedule behaviour.

Also, studies of actual process tend to investigate the lower-level processes, such as
individuals, teams and activities (e.g. [18, 25, 26, 32, 48, 49, 71, 85, 91, 92, 95, 112,
113, 115, 128, 132, 138]), rather than the higher-level processes, such as ‘functional
areas’ of the project, the project itself, and the organisation ‘surrounding’ the project. (It
may be that the focus on lower-level processes reflects difficulties with investigating
actual software development processes in-the-large.) Curtis et al.’s ([31]) seminal study of
large software systems is perhaps the only study that seeks to empirically investigate the
interactions between the various process levels of a project. Their study does not,
however, explicitly relate the effect of these interactions on software project schedule
behaviour. Watson ([134]) reports on the use of COCOMO (e.g. [13, 14] see also, more
recently, [12]) as a tool for validating estimates made though other methods. Implicit

within his study is an examination of processes at a high-level i.e. the major phases of the
project. Watson’s study is considered in depth in chapter nine.

The position taken in this thesis is that while all of these bodies of research are valuable
for the long-term development and validation of theory, they are currently not ideally
suited to generating the initial material for an explanation. (This is comparable with
Jarvenpaa’s [55] claim that the lack of theory development is the real problem for IS
research.) As already noted, the remainder of this chapter concentrates on reviewing
studies of actual time usage. Chapter nine complements the review in this chapter by

reviewing some of the research identified above in light of the insights gained from the
empirical component of this inquiry.

2.3 Studies of actual time usage in software projects

There appears to be few studies that specifically investigate the characteristics and effects

of time usage in software development projects. (i.e. [5, 18, 34, 92]). Of these, Bradac,

Perry and Votta’s study ([18]; an earlier version was published as [17]) appears to be the
first study conducted in this area.

Bradac, Perry and Votta’s ‘prototype experiment’

Bradac et al. ([17, 18]) conduct a study to investigate what people actually do when they

add features (features are sets of market requirements) to a large software system. Their
study 1s a prototype study, conducted as preparation for a more substantial subsequent
study ([92]) that consists of a time-diary study and a direct-observation study. The

findings of the prototype study and the subsequent study establish some assumptions that
inform two further studies ([5, 34}).

Table 2.3.1 Bradac er al.’s frequency of states

State % time

Working the process 19.6
Documentation 8.2
Reworking the process 7.0
Reworking the documentation 4.2
Waiting on the laboratory 2.7
Waiting on an expert 3.1
Waiting on a review 0.2
Waiting on hardware 1.0
Waiting on software 1.9
Waiting on documentation 2.4
Waiting on other 40.7

Total 100.0

Bradac ef al. initially characterise the software process in terms of fifteen tasks and

cleven states, with the states referring either to some type of progress or

to some type of
waiting. One of their “basic set of analyses” ([18], P.

781) is to investigate the frequency

of states, and the results of this analysis are reproduced here in Table 2.3.1. As the table
indicates, about 40% of the time spent in the process is spent being productive (the first
four states in the table) and 60% of the time appears to be spent waiting. The apparent
frequency of waiting is discussed below. Using the information presented in the table,
Bradac et al. form a conjecture that one important way of reducing the development
interval is to significantly reduce the number of days in blocking states. They add,
however, that the 40:60 ratio i1s dependent on the concurrency of processes. If the global
process (presumably, Bradac et al. mean the project-level process; they do not provide an

explicit definition) also experiences a 40:60 ratio (which would be affected by the

concurrency of processes) then significantly reducing the amount of time spent in

blocking states would significantly reduce project duration.

Table 2.3.1 indicates that the ‘Waiting on other’ state clearly dominates the frequency of
states, and 1t 1s the dominance of this state that raises the issue of whether waiting
actually occurs for 60% of the process. Bradac et al. recognise that the dominance of the
‘Waiting on other’ state reveals a weakness in their characterisation, and this leads them
to revise their characterisation so that their states refer either to some type of working,

to some type of waiting, or to some type of not working. The not working categories are:

e Not working, training
e Not working, reassigned
e Not working, vacation
¢ Not working, weekend

¢ Not workine. other

=2

Having revised their characterisation, it is unfortunate that Bradac ef al. do not then
present details of the frequency of their revised set of states, because their reworked
classification provides a different interpretation of their findings. This is discussed below.

(It 1s understandable that Bradac et al. do not report on their revised classification when

one considers that the revised characterisation is a result of their prototype study,

intended to be used in subsequent studies.) In Perry er al’s study ([92]), the subsequent

study to Bradac et al.’s study, it 1s clear that the five most prominent states of the revised
classification are, in descending order:

1. Not working, reassigned
2. Not working, weekend

3. Working the process

4. Not working, other

5. Reworking the process.

It is clear from Perry et al.’s evidence that the not working categories, and particularly
the ‘Not working, reassigned’ category, occur more f{requently than the waiting
categories. (It is difficult to establish accurate breakdowns from the information provided
by Perry et al.) This evidence suggests an alternative interpretation of Bradac er al.’s
evidence, viz. that the not working categories potentially have more affect on the process
than blocked work. The effect of vacations and weekends ought to be planned for, so this
leaves the effect of the ‘Not working, reassigned’ category as particularly interesting. It is
interesting because one of the techniques that management use to manage projects is to
reassign work. Waterson et al. ([133]) found, for example, that workload fluctuated and
that teams would be temporarily restructured (with staff being drafted in from other teams
in the project if the workload became too demanding) to ensure that project milestones

and deadlines were met. In principle, the reassignment of work may then cause problems

elsewhere 1n a project because resource is drawn away from those parts of the project.

The frequency of time spent in the ‘Not working, reassigned’ category in Perry ef al.’s

paper (and potentially Bradac ef al.’s paper) suggests that other parts of the project, or
other projects, are experiencing problems. Once again it is unfortunate, although entirely
understandable, that evidence on the project as a whole and the wider organisation is not
available from Bradac ef al.’s and Perry et al.’s papers. Despite this lack of evidence,
Perry et al. ([92]) recognise that developers may be reassigned to higher priority projects,

and for Perry et al. the reassignment of developers to other work reflects the fact that

large-scale software development projects are extremely dynamic.

The reassignment of developers to higher priority projects supports the argument that a
project is affected by factors external to the project (see, for example, [11]). The ‘twist’

here is that the effect consists of drawing away resources to external projects rather than

imposing requirements, or constraining the project through technical and strategic
dependencies with other projects.

In addition to their observation on the breakdown of states, Bradac et al. observe that:

“... blocking tends to be more prevalent at the beginning and at the end of the
process.” ([18], p. 783)

This observation leads Bradac ef al. to conclude that one should attack the blocking
factors in the requirements, high-level design and high level test phases of the process.

This also suggests that the requirements, high-level design and high-level test phases have

10

the most influence on software project schedule behaviour. Bradac et al. do not define
what parts of the project constitute the beginning and the end of a project (see chapter

three for more information). They do express an interest as to whether this conjecture is
valid for a wide variety of projects.

Subsequent research to Bradac ef al.’s study

Bradac et al. advise caution on how their findings should be treated. They write:

"We reiterate our caveat about this data: Though they are real data, they are
reconstructed data of only one instance of the process, with some blurring of
the accuracy because of retrospection. We feel, however, that there are some
intriguing conjectures about our feature development processes that we hope

to validate with subsequent experiments." ([18], p. 783; emphasis added)

Indications that these subsequent experiments occur are the publications by Perry er al.
(e.g. [92]) that report on the conduct of the time-diary study and the direct-observation
study, a publication by Ballman and Votta ([S]) that reports on simulations (rather than
investigations of actual behaviour) of meeting congestion, and two publications by

Dandekar ef al. ([33, 34]) that report on a process simplification exercise.

Perry et al.’s study ([92]; but see also [91, 93]) appears to confirm the 40:60 ratio, for a
designer, between being productive and waiting. Their evidence may also be used to

support the alternative interpretation raised above viz. that the ‘Not working, reassigned’

category potentially has more of an effect on the process than waiting. j

Ballman and Votta ([5]) develop a model which relates the average waiting time for a

meeting to the number of meetings in developers’ calendars. As the fraction of the
‘population’ of developers in the organisation required to attend the meeting increases,
and as the meeting generation rate increases, so the time between when the meeting was

arranged and when it can occur increases in a non-linear relationship. From this Ballman
and Votta argue that:

“A significant portion of an individual feature interval seems to consist of time lost
while developers wait for meetings” ([5], p. 123)

It must be emphasised, however, that Ballman and Votta simulate the effect of meeting

congestion on the time until a meeting actually occurs, and that they then use the results

of their simulations to imply that the time until a meeting occurs affects feature interval.

1]

Overall, Ballman and Votta’s investigation provides insights into the potential effects of
a lower process (i.e. scheduling meetings) on a higher process (i.e. the behaviour of a

feature’s development process) and so complements rather than validates the work of
Bradac et al. and Perry et al.

Dandekar et al. ([33]) also draw upon the work of Bradac et al. ([17]) and Perry et al.
([92]) when they write:

“One of the primary problems in large-scale software development is the
time spent waiting for resources, responses, meetings, etc. One may be able to
fill in the intervening time productively, but for a particular sequence of

activities there may be a significant difference between the actual time spent

and the time that elapses before completion... ” ([33], p. 3)

A closer examination of Bradac et al's paper indicates that Bradac et al. provide evidence
consisting of a time-line lasting 75 days for one developer, in which there were three
instances of waiting on reviews (lasting between four and seven days) and two instances of
waiting on experts (one lasting two days and the other lasting three days). While this
empirical evidence is intriguing, it does not seem to constitute a body of evidence that 1s
conclusive. Strictly speaking, Bradac et al. do not provide sufficient evidence from which
Dandekar et al. can claim that waiting is a primary problem in large-scale software
development. (It may be that because Bradac, Perry and Dandekar are all researching
within the same organisation, Dandekar er al. have access to evidence unpublished by

Bradac et al., perhaps unpublished for confidentiality reasons.) Rather than validating

Bradac et al.’s claims, Dandekar et al. assume those claims to be valid and use them to
direct their own research.

All four of the studies ([S, 18, 34, 92] reviewed here were conducted at Lucent

Technologies and, so far as this author is aware, there are no independent studies that
seek to corroborate the findings of these studies. Thus, there is no independent support
for their conclusions. With this in mind, it is particularly important to emphasise Bradac

et al.’s caution with regards the quality of their evidence and how it should be treated.

It 1s also important to re-iterate the distinction between the time-usage of an individual
designer and the time-usage of the project, and the caveat that the project’s time-usage
must exhibit the same 40:60 ratio as the designer’s time-usage for one (and possibly
more) of Bradac et al.’s conjectures to apply. Perry and his colleagues do not appear to

have subsequently investigated this caveat for the phenomenon of waiting, although

Ballman and Votta’s study provides some support for the caveat.

12

Van Genuchten's investigation of activities

Two years prior to the publication of Bradac et al.'s investigation, van Genuchten ([128])
published the findings of a related study. Whereas Bradac et al. focus principally on
intervals of time, and how those intervals of time are used (i.e. the states of working,
waiting or not working), van Genuchten focuses on activities and how much time they

use. Because of their contrasting perspectives, Bradac et al. are able to investigate

‘invisible’ tasks (cf. [82]) and visible tasks, whereas van Genuchten investigates only
visible tasks. Van Genuchten’s study complements Bradac et al’s study because both

studies investigate time usage, and the effect of waiting, but in different ways.

Van Genuchten ([128]) investigates reasons for why activities start later or earlier than
planned, why these activities last longer or shorter than planned, and why the effort
expended on activities 1s more or less than planned. Van Genuchten collects evidence on
160 activities across six representative projects in one software development department.
The average duration of an activity is four weeks and the average effort 1s approximately
100 person-hours. Van Genuchten discourages unjustified generalisations from his
findings, providing evidence from another department to demonstrate that the

distribution of reasons varies strongly for different software development departments.

Table 2.3.2 presents a simplified version of van Genuchten’s classification of reasons,

together with an interpretation of these reasons from the perspective of waiting. All six

categories used by van Genuchten are shown in the table, but only those relevant to this

discussion are elaborated. One should be cautious about interpreting van Genuchten's
reasons as types of waiting when his study was not conducted with that perspective.

13

Table 2.3.2 Van Genuchten's classification of reasons

Code
11

12
13
14
15
16

19

Code

31
32

33

34

35
36

39

Capacity-related
Reason

Capacity not available because of
overrun in previous activity
Capacity not available because of
overrun in other activity
Capacity not available because of
unplanned maintenance

Capacity not available because of
unplanned demonstration

Capacity not available because of
overrun in other unplanned activities

Capacity not available because of

overrun in other causes
Other

Personnel-related

reasons
From a blocked work perspective

Waiting on capacity to become
available

Waiting on capacity to become
available

Waiting on capacity to become
available

Waiting on capacity to become
available

Waiting on capacity to become
available

Waiting on capacity to become
available

Waiting on capacity to become
available

reasons

not elaborated

Input-related
Reason

Requirements late
Requirements of insufficient quality

(specifications of) delivered software
late

(specifications of) delivered software
of insufficient quality

(specifications of) hardware late

(specifications of) delivered hardware
of nsufficient quality

other

reasons
From a waiting perspective

Waiting for requirements
Waiting for requirements of
sufficient quality

Waiting for (specifications of)
delivered software

Waiting for (spectfications) of
delivered software of sufficient
quality

Waiting for (specifications of)
hardware

Waiting for (specifications of)
delivered hardware of sufficient
quality

M

Code
61

62

Product-related

Ircasons

not elaborated

m

Organization-related

reasons

not elaborated

W

Tools-related
Reason

development tools
inadequately available

too late

reasoins

From a waiting perspective

or Waiting on development tools

test tools too late or inadequately Waiting on test tools

available

“

Other

not elaborated

14

It 1s clear from van Genuchten's study that of those activities that start late,
approximately 80% of them start late for capacity-related reasons. Van Genuchten
explains that this was because many activities start late because of a delay in completing a
previous activity (i.e. reason 11). From a perspective of waiting, many activities start
late because they are waiting on a previous activity to complete, or waiting on resource to
become available from a previous activity. Van Genuchten also seems to suggest that
unplanned work, particularly unplanned maintenance work (i.e. reason 13), is an

important reason for activities starting later than planned. Clearly such unplanned

activities mean that resource becomes unavailable to conduct planned activities because

the resource 1s addressing unplanned activities.

For the remaining activities that start late, they- start late either because of input-related
reasons (approximately 15%) or because of tools-related reasons (approximately 5%). As
Table 2.3.2 indicates, all of the input-related and tools-related reasons can be interpreted

as types of waiting. The implication is that for those activities that start late, they all

start late because they are waiting on something.

With regards to the reasons for differences between the planned and the actual durations

of the activities, input-related reasons account for differences in 20% of the cases, and

capacity-related reasons account for differences in almost 40% of the cases. In total,

approximately 60% of the differences between planned and actual durations are due to

instances of waiting. Van Genuchten does not identify whether these differences were
'positive’ (i.e. the actual duration was greater than planned) or 'negative' (actual duration

was less than planned) but it seems unlikely that durations are shorter than planned
because of waiting.

With regards to the planned and actual effort, Van Genuchten finds a prevalence for when

in the project actual effort increased over the planned effort. He writes:

"... the relative differences between planned and actual efforts increased for
the subsequent phases of the projects..." ([128], p. 587)

and for the planned and actual starts and durations of activities, Van Genuchten writes:

"... the delays [to the start of activities] and overruns [in the duration of, and

the effort for, activities] increased toward the end of the project." ([128], p.
587)

15

This observation is consistent with Bradac et al's observation that waiting is more

prevalent at the beginning and at the end of a project.

Summary of research into time usage

Table 2.3.3 Summary of studies that investigate time usage

Unit of
Investigation analysis Cases Method

Bradac et al. time segment one developer time-diary
(17, 18]
Perry et el. time segment 13 developers time-diary & direct-
[91-93] across four observation

departments
Ballman & Votta meetings three artificial simulation
[5] 'projects'
Dandekar ef al. activities the inspection value added analysis,
[33, 34} process time usage,

alternatives analysis

van Genuchten activities siX projects in activity analysis
[128] one

department

Overall, it appears that only a small number of studies have investigated actual time usage

in software development projects. These studies are summarised in Table 2.3.3. The

studies concentrate on describing the use of time at the lower levels of a project. None of
the studies explain the effects of time usage on project duration, although some of the

studies speculate what the effects might be. The lack of explanation is significant because

these studies, and this thesis, assumes that explaining actual time usage is an important
foundation upon which to explain project duration.

All of the studies employ a case-based research strategy, focusing on one or a few cases.
This raises concerns as to the applicability of the findings to other projects; a concern
recognised by Bradac et al. when they advice caution on how their findings should be
treated. (Bradac et al. also express an interest as to whether their conjectures would apply

to a wider set of projects.) All of the studies employ a priori classifications or models to
analyse their evidence.

With regards to the content of these studies, the studies distinguish between working, not

working and waiting states. Bradac et al. find that waiting accounts for 60% of the time

spent 1n the process (at a low level). An alternative interpretation is that not workin

44
o

states, specifically the state of being reassigned to another project, may account for much

of this time. The frequency of time spent assigned to other projects then suggests that

16

external factors are an important influence on a project. Bradac er al. also investigate
when waiting 1s most prevalent, and suggest that reducing waiting during the requirements,
high-level design and high-level test phases are likely to be the most effective areas for

reducing project duration. Bradac et al. also outline the requirement for the project-level

processes to exhibit the same 40:60 ratio as the low-level processes for blocked work to
affect project duration.

With one exception, all of the studies were conducted at Lucent Technologies, and they
concentrate on the possible impacts of blocked work. Only van Genuchten’s study has
been conducted elsewhere and his study does not replicate, but rather complements, the
Lucent Technologies® studies. Furthermore, the Lucent Technologies’ studies subsequent
to Bradac et al.’s study do not validate the observations of Bradac et al. but rather assume

them to be valid, and conduct further research based on those assumptions. There is,

therefore, a clear need for independent replication of the above studies, or testing of the
conjectures from those studies.

2.4 Opportunities and objectives for this research

Opportunities

The summary presented at the conclusion of the preceding section suggests a number of
opportunities for subsequent investigations. The first opportunity is to partially or
completely replicate one or more of the studies reviewed. The most valuable study to
replicate would be Bradac ez gl.’s study as this is the first study in the area, has not been

replicated, and has established assumptions upon which subsequent studies are founded. A
successful replication would strengthen both the claims of Bradac e al.’s study and the
claims of the subsequent studies that have built on Bradac et al.

A second opportunity i1s the investigation of higher-level processes. All of the studies of
actual time usage have looked at the lower-level processes and there are no studies that
have looked at the higher-level processes within the context of schedule behaviour. With
studies of higher-level processes, the concept of ‘time usage’ becomes more abstract as

the inquiry is no longer concerned with how individual’s actually use their time, but rather
how teams, process areas and the project actually uses time.

A third opportunity is the investigation of the effects of the lower-level processes on

schedule behaviour. This would require a research design that investigated both the lower-

and higher-levels of the process. There appear to be no studies that have looked at lower-

17

and higher-levels of the process within the context of software project schedule
behaviour.

A fourth opportunity is the development of a theory of software project schedule
behaviour. As argued in chapter one, there 1s no established theory of software project
schedule behaviour, so the provision of a theory 1s desireable. The lack of studies of the
higher-level processes, and of the relationships between lower-level and higher-level

processes indicates that the development of a theory is premature,

Finally, given that the development of a theory of schedule behaviour is premature, there
Is the opportunity to develop °‘conceptual scaffolding” ([141]). As with physical
scaffolding, the purpose of conceptual scaffolding is to support ‘construction’, in this

case the construction of a theory. Conceptual scaffolding should not be confused with the

conceptual structure itself, and upon completion (or nearing completion) of the
conceptual structure, the scaffolding may be ‘thrown away’.

Objectives

Given the opportunities available for investigations in this area, the value placed on
Eisenhardt’s requirement for an intimate connection with empirical reality, and the desire

to contribute to the systematic accumulation of evidence, the objectives for the empirical
component of this investigation are:

To replicate parts of Bradac ef al.’s study. This will consist of a replication of the

types of waiting, and a test of Bradac et al.’s conjecture that waiting is more
prevalent during the end of the project than during the middle of the project.

2. To investigate actual time usage at higher-levels of the project, specifically at the
level of the whole project, and also at the level of process areas within the project.

3. To investigate the relationships between the lower-level and higher-level processes,
and their relationships to schedule behaviour.

The second two objectives will be addressed in two complementary ways. First, narrative
descriptions and explanations will be provided for both the characteristics of the project

and the process areas within the project. Second, more formal descriptions and
explanations, in the form of conceptual models, will be provided.

18

Chapter 3 Methodology

3.1 Introduction

This chapter discusses four methodological issues:

1. An appropriate research strategy for developing descriptions and explanations of
software projects and their schedules.

2. Heuristics for the design and conduct of case studies.

3. Some technical details relating to the selection of cases, the identification and
exploitation of appropriate sources of evidence, and the development of methods for
analysing the evidence in order to describe and explain behaviour,

4. Some operational details concerning the organisation of evidence relating to process

areas, and the replication of a part of Bradac ef al.’s study.

Points 3 and 4 concern detailed information that might normally be explained together
with the actual analysis of the evidence (i.e. in chapters four through eight). This
information, however, is common to all the subsequent chapters (and underpins much of

the empirical analyses) and consequently it is more efficiently explained once here.

3.2 An appropriate research strategy

Because of the desire to develop descriptions and explanations of actual behaviour,
particular value is placed on Eisenhardt’s ([39]) argument regarding the need for an
Intimate connection with empirical reality. From this argument follows a requirement for

the systematic study of actual processes and, by implication, the study of particular
processes.

Of the three broad strategies for collecting and analysing empirical evidence (i.e.

experimental study, survey study and case study) it is widely recognised that the case study

research strategy 1s most appropriate for investigating particular real-world settings.

Benbasat et al. ([7]) draw upon a number of previous researchers’ arguments and
definitions (i.e. [6, 15, 58, 119, 139]) to provide a useful summary of the characteristics
of a case study. These characteristics are presented here in Table 3.2.1. Simplifying the

points presented in the figure, a case study is an intensive Investigation of one or more
entities within their natural setting.

19

Table 3.2.1 Benbasat ef al.’s characteristics of a case study

Characteristic
Phenomenon is examined in a natural setting.
Data are collected by multiple means.
One or few entities are examined.

The complexity of the unit is studied intensively.

Case studies are more suitable for the exploration, classification and
hypothesis development stages of the knowledge building process; the
investigator should have a receptive attitude towards exploration.

No experimental controls or manipulation are involved.

The investigator need not specify the set of independent and dependent
variables in advance.

8 The results derived depend heavily on the integrative powers of the
iInvestigator.

9 Changes in site selection and data collection methods could take place as the
investigator develops new hypotheses.

10 Case research is useful in the study of 'why' and 'how' questions because these

deal with operational links to be traced over time rather than with frequency
of incidence.

11 The focus is on contemporary events.

D BN -

-1 O\

Benbaset ef al.’s characterisation of a case study clearly indicates the appropriateness of

the case study research strategy for investigating the objectives presented in chapter two
1.

A case study allows the exploration of previously unexplored aspects of a

phenomenon. (Yin [140] argues that all three of the research strategies may be used
for exploratory studies.)

e A case study is ideally suited to the study of the actual behaviour of a phenomenon,

because the phenomenon is examined within its natural setting.

A case study is oriented toward the intensive investigation of the complexity of the
phenomenon and so is ideally suited to developing an “intimate connection with
reality” ([39], p. 532). Accordingly, a case study should provide a solid empirical
foundation upon which subsequent investigations may develop theory.

A case study may be used to replicate the investigations of another study. Kelly and
McGrath ([59]), for example, argue that multiple research methods should be used to

examine a phenomenon, because the strengths of each method compensate for the
weaknesses inherent in the other methods.

An inherent weakness with case studies is the difficulty in generalising their findings to a

wider set of cases. This weakness is addressed in the next section and again in chapter
nine.

20

3.3 Heuristics for the design and conduct of case studies

A number of papers have been reviewed in order to establish heuristics for the design and
conduct of case studies (1.e. [7, 24, 39, 42, 66, 86, 94, 131]; a number of personal
communications with researchers were also conducted i.e. [23, 43, 44, 67, 81, 86]). The
heuristics derived from these papers were organised into three sets: advice on the number
of cases to use, advice on the design of the case study, and advice on the building of
theory. The heuristics are presented in Tables 3.3.1 through 3.3.3.

Cases from a single site strengthen the internal validity of a theory, but one would prefer
cases from several sites in order to strengthen the applicability of the theory to a broader
set of cases. Heuristic #17 indicates that theories built from case study research are
essentially theories of particular types of situation. Thus, the complexity of the
phenomenon being observed, the limitations on the number of cases investigated, and the

variety of sites from which these cases are drawn all influence the degree to which one
can explain the behaviour of a wider set of cases.

Exponents of case-based research methodologies (e.g. [39, 140]) argue that generalisation
1s not based on the findings of the case study but rather on the theory for which the case
1s an empirical example. One first demonstrates that the empirical evidence validates the
theory for a particular situation and then, through the use of replicated studies, that the

theory applies to other, specific settings. (This 1s why theories built from case study

research are essentially theories of particular types of situation.)

This investigation is not seeking to generate or test a theory, but it is seeking to provide
some degree of explanation. Because this investigation 1s not generating or testing a
theory, one might argue that not only is the investigation free from any obligation to
consider generalisability but would be inherently incapable of offering any findings that
do genecralise (because, without a theory, there is no basis on which to claim
generalisations, and empirical generalisations are not possible with such a small sample of
projects). The conceptual models developed through this investigation do, however,
provide a basis on which some generalisation may be made. Furthermore, attention in
chapter nine is re-directed back to previous studies in an effort (which is partially
successful) to identify other empirical studies whose findings complement those generated

in this investigation. Therefore, although a formal theory is not exploited in this

investigation, conceptual structures are exploited and do provide some basis on which
generalisations may be made.

21

"§S9008 gljerjosau Jo A}l[1qeqolc
a1} ISBAISUI pue SOJIS JO IOIOYD pauwojul asoul 1oy on (p
*Apnjs

Jopun euswoudyd ay) Jo S[3A9] dousuIddxa y3iy Joj on (o
's2dAy aejod 10j 00 (q
‘sewielp

[BIOOS pug Sjuspiosul |eoNLId ‘suolnen)is swanxs 10y on (e
:SOSIAPR OS|e MaIT1)19]

‘ejep aty)

Jo aswinjoA pue Apxapdwod ayl ypm 2dod 0) JnolJIp Sawo0d3q

Apjoinb 31 ‘sased ([uey) 210w YA\ "SurouiAuodun 3q 0} Aoy

st Suipunoad jeouiduid sy pue ‘Ajxo[dwod yonw yim A1091))

2JeISUIS 0} JNOIJJIP USJJO SI JI SISBO INOJ uey) JOMIJ I
SHUIWUO)

[v6] Mmal3ima

[L] 19osequag

[€2] adeae)

[op1] WA
[L] 1osequag

[1] 19seqUag
L8 981 PSMOJILIO

[6€] Iprequosiy
$)UIIIJINY

'2]qRAIISqO

Apuazedsuery s1 ssaidoad oy} a1dym sased ISO0Yd
Sy} Sased JO Joquinu jjews AjaAne[d1 Jo 3[3uls B uIyim
PaUIRIUOD 9q O} 9ABY PIAIISqo aq 03 eudwoudyd ayy J1 £
031} 3} JO AlpijeA [euldjul Ay} U I3UAS
(JUAWIUOJIAUY SnoaudZowWoY) 9)is 9[3uUlS B WOJj sase) 9
'AJO3) 3} JO SUI)S3) pue suIpjing
aY) 0} jew 0} Pajoadxa s ased oed uoHNQLIIUOD

JeUyA Jnoqge :udsoyod SI 9sed |oed Aym jnoqe Jed[oog ¢
"SI NSAL YOIB3SAI |BIDUDT

alow ppaIk Aoy} pue A103y} JO UOISUIIXD J} pue SisAjeue
9SEI-SS0Jd MO|B A3y} asneoaq “Bui)sal-A10ay) pue 3uipjing
-K103} ‘uonduosap 10j o|qesdjard ase sosed AN ¢
3l11)S9)-AJO3Y} JO Sa5B)S |eulj

o) ui Jo ‘uorjesoldxa Joj d[qejins jsow aIe SISLI JJ3UIS
'S3SBI OM] 3S()

N

"[]oM SIoM

Ajjensn | pue Jnoj usamjaq Jaquunu e ‘AI03Y} ¢ pjing
0} UOIyar WIOIJ $9SBO JO Jaguunu [eapl ou SI Iy SjIyM |
ONSLINOK H#

asn 0) SOSBI JO JIqUINU JY) X0] SIMISLIMIH [°C'€ dqelL

Indino Sy

JoJ saduaipne 3y pue ‘yndino siy) jo saduanbas 9y ndno
1[2183521 JO SanaLieA 9y} jnoqe 1121jdxs oq ‘ojdwiexa Jo,]
‘pPoUIR[dXd e SazULRD 9SI) MOY pue Ud3s aIe Sasueyd
Jeym JOJ 90uaIdjal JO dwiel) B §)as oun) “ojdwexa J10,]

‘SAIPN}S
oy Jo sagdejs sisAjeue ay) ui uonenguelny poddns jjIm siy],

'PAJIJ[|0I SI JBY] BJEp JO SPUIY) pue ‘opewl 3q ued
uey) suonesijesausd Jo spuny| ay) 9jepIp sisAjeue Jo syun

'[80113303Y) 9q Aew J] ‘[eIa)] 9q Jupaau uoneorday]

SUEITTU e

[v6]
M3131119]

[t6]
MBI

V6
MAITINI]

[1] 10sequog
L] 19sequagg

[L] 19sequog

[£] 19sequag

[L] 1osequog

[L] 19sequag
§ JIIUIIIJIY

'SISAjeue JO S[9AJ]

JUQIDJJIP 1B BIBp SIY) 393]|00 pur ‘[en)xajuod pue ‘[edl10)siy
“sijeanid “aAneredwos ‘enssasold si jeys gjep 109]10D 9]

‘yjodeasal oy Jo ndno ayj noqe J1o01jdxo off G|

JoIR3SAI 2} U0 SjuIe)ISUOD [edijoead oy} noge Jed[o ag |
'SOA1)09dSIad JUSIJJIP JOY)es

0} JopJo uI ‘ased yora uiynm 9jdoad JudIJJIp MIIAIU] €]

*SUOIISAND MIIAIUI DY) AJID3dS 7]

'Sjun 9soy} asoyd nok Aym pue ‘sisAjeue jo sjiun 3} 3§]

suonsanb yoieasal

o) saipnjs jeornndwid ay) JoJ ‘swie Jo ‘sjeod Ojul djejsue),
3Say) MOy pue SaA1399[qo yodeasar 3y} Jnoqge Jedjo g Q]

'Apnjs ot jeadal ued SIAYJO Jey) OS pue ‘ssuipulj

InoA 03 awed noA moy Jedjd st J1 .Yy} os ‘A3ojopoyiaw
sisA[eue pue uol}03][02 Bjep Y} UO [IR)OpP JUIOIYJNS splaocl] 6
‘0] PIJ0adX0 B AJAINS B JO JUIWIIIUXD
ue se jsnl ‘ainpasoid Jo sajnt 03 a1dype pjnoys Apnjs ased y

JSHINJLH

100

pasn aq o) poyjouwr dy) SUUSISAP J0J SIPSUNIHY Z°€€ dqeL

'Ssuipulj 3y} Jo Ajipijea pue Ajjiqetjal
oy} (Buifjuepo) Suiuayiduans Jo joadse juepodwi ue si SIy|,

'SaIpN}S [edrndwd 9yj JO Jonpuod pue usiIsap

Ay} J9)je pue ‘Fuunp a10jaq diysuoijejas siy) noqe Jes[d 3¢

SUOIOIpaId JY) Ul SSaUeIM) SII0Y]

yenonaed 03 syeasy} 3iy31y pue ‘suoneldididjul JUIIIJJIP

djedipur S31109Y) Furadwod 9y 9snedaq oJeasal Ino

ud)3ua)s ued aM ‘saLlody) Jo Jaquinu e Juipiemio} Yysnoay],

LL

UOLIDIN Aq paonponul 3siij jdodouod pue wus) e) A109y)

oguel-piul, v pajeIousd eaie SIY) Ul JIOM UMO S JpIeyuasiy
S UI0))

6¢] Iprequasiyg
[1] 19sequag

6€] IPIEqUISI
6¢1 IpJEuasly

[6€] Iprequasiy

[6€] 1pieyuasiyg

(199]) 907

[6€] Ipreyuasiy
$)IUIIIJIY

"UOIDIPRIJUOD JIOJdXY T
"JOJBISAI 3} JO Ssuipulj ay) 03
2InqINuod A3y} Aem 3y} pue s20IN0s elep o) 9quIdSIp AjJed]) €7
‘e)ep Y} SIIJ A[9SO[O JEY} AJO3ly] B plemo) djeldl] 7T
"2INSO[0 JOJ dledald [T
"SUOIJESI|RISUIS ISIY) d)yelu
0} 9sn 0) Spudjul duo sanbiuyoa) 9y pue ‘Ajew 03 Spudu]
auo uolesijesausd Jo spuly dy) moqe Jed[d aq ‘yoroidde
dn-wonoq e s1 yoJeasas ased Juisn Julp[ing-AI03y} Je) USAID (7
"AJOJ]) SUIISIXD

0} K1oay; Suiiswd ay) jJo diysuone[ds ay) noqe Jedjd 3¢ 6]

"SO1109Y)
gunodwod opdynui J9jjo uay) Alody) Juippng st duo J| gl

eudwouayd ar1oads jnoqe
SO1I09Y) AJJeljuassa die,, SAIpNIS ased wolj JIng SolIodYy] L]
I)SLINIY #

A109y) Suip[ing J10J SORSLIMI] €'€°E IqEL

With regards to the selection of cases, Pettigrew ([94]) suggests that one chooses polar
cases, extreme situations, critical incidents, and cases with high 'experience levels' (see
heuristic #7). In choosing such cases, however, one may select cases that are actually

quite unusual and therefore not particularly representative, consequently affecting one’s

ability to generalise with the case.

Pettigrew also recognises that practical constraints Imit the number of cases that can be
observed, the sites from which these cases can be drawn, and the time-frame within which
the cases can be investigated. For the current investigation, there is an approximately

twelve-month time-frame to conduct the evidence-gathering portion of the investigation,
and a further twelve-month time-frame to complete the analysis of the evidence.
Selecting projects that start and complete within the twelve-months of evidence-
gathering places a constraint on the kinds of project that can be investigated. This will

affect the potential applicability of a subsequent theory i.e. that the theory is applicable
to relatively short projects.

Fenton ([40]) provides some cautionary advice on the duration of an investigation:

"Sometimes research is designed and measured properly but just isn't carried out

long enough... the long-term view led to conclusions very different from the
short-term view." ([40]; p. 92)

and:

"Researchers must take a long-term view of practices that promise to have a

profound effect on development and maintenance, especially since the
resistance of personnel to new techniques and the problems inherent in making

radical changes quickly can mislead those who only take a short-term view."
([40]; p. 93)

Against these cautionary words, twelve-month projects are still of reasonable length and

it 1s not uncommon for commercial software development projects to last for such
durations.

3.4 The selection of projects for case studies

Five projects were initially selected for case studies from a candidate set of 16 projects, all
taken from IBM Hursley Park. Almost immediately, there were problems gaining regular

access to two of these projects, and these projects were dropped as case studies and

25

replaced by a sixth project. As the evidence collection period progressed, it became
increasingly clear that it would be impractical to maintain four case studies (because of the
demands of collecting and analysing evidence from four cases), so the number of cases was
further reduced to two, here called Project B and Project C. Appendix Bl provides a

description of the 16 candidate projects, the criteria for selecting the original five cases,

and more detail on the reduction of case studies from four to two.

3.5 Summary of the evidence collected

Table 3.5.1 Summary of evidence collected

Type of evidence Project B Project C
Interviews 8 9
Meeting minutes, of which: 51 76
- Project status meetings 49 N/A
- Design/Code/Test status meetings 0 37
- Feature commit and approval meetings N/A 34
- Senior management meetings 1 5
- Project review (post-mortem) 1 N/A
Researchers records of status meetings 2 N/A
Project schedules] 2
Projector overheads (from presentations)] 2
Project documents, of which: 6 7
- Plans 3 1
- Other documents 3 0
Risk assessments 2 2
Project ‘contract’]]
(including amendments for Project C)
Feedback workshop questionnaires] 2
Total number of ‘documents’ 73 101

Table 3.5.1 summarises the evidence collected for Projects B and C. As the table
indicates, naturally occurring evidence was supplemented by the conduct of interviews and
a feedback workshop following the completion of the project. ‘N/A’ indicates that
information was not available from the project. Also, the researcher attended two project
status meetings for Project B, with the purpose of evaluating the degree to which the
minutes of the status meetings represent the actual content of those meetings. The
‘learning curve’ required to understand the discussion at the meetings meant that this
approach was unfeasible, and consequently it was not pursued. The inability to assess the

representativeness of the minutes is recognised as a threat to validity of this
investigation.

The primary source of evidence used in the analyses was the minutes of status meetings
(project status meetings for Project B and design/code/test status meetings for Project C),

and these were supplemented by information from Interviews, project schedules and the
feedback workshop. The status meetings (whether project or design/code/test) are the

26

highest-level meetings within the respective projects, occur regularly (typically weekly or
fortnightly), are typically attended by representatives from process areas important to
the given project (e.g. design/code, test, marketing, finance, support; see below for a

clarification of this point) and are a naturally occurring phenomenon (so that the
researcher 1s not intruding on the project).

For Project B, project status meetings appear to typically last between 1.5 and two hours,
each producing about ten A4 pages of minutes. At every meeting, the first item on the
meeting agenda was a discussion of proposed additional design changes (each design
change is a set of requirements) for the project. Each design change was either rejected,
accepted or deferred for further investigation. The representatives of each process area
then reported on the progress of their area. Action Items were also recorded and their

progress monitored at each meeting. Overall, the minutes appeared to be structured

around the issues concerning the project.

For Project C, design/code/test status meetings appear to typically last between one and

1.5 hours, each producing about six A4 pages of minutes. The minutes were not structured
in a regular format like Project B. Proposals for new features were managed through the
feature commit and approval meetings (see Table 3.5.1; the minutes for these meetings

were very brief). Action Items and their progress were not recorded in the minutes.

Overall, the minutes appeared to be structured chronologically i.e. in the order of the
discussions that occurred at the meetings. Some recent research on the structure of

meetings, and their associated agendas and minutes ([37]), suggests that meetings, agendas

and minutes that are focused around issues, rather than chronologically, have a positive
effect on the outcome of a project.

Overall, the status minutes provide a broad view of the project over the duration of the
project. Naturally, minutes do not record all that was discussed at a meeting, or even
necessarily the most important issues, and such meetings are unlikely to discuss all the
1ssues occurring within the project at the time of the meeting. Consequently, there are at
least two levels of simplification with meeting minutes. First, in reporting the progress of
a process area, the representative of that process area may simplify the progress of that
area. Second, the minutes simplify the discussions that occurred at the meeting. Despite
these simplifications, the minutes provide a large volume of ‘rich’ information about the
project over the duration of the project, and this evidence appears rich enough to provide
a substantive, longitudinal view of the software development process. Furthermore, the
minutes provide a level of detail that is unlikely to be collected from other sources of

evidence. Conversely, these other sources provide useful Insights that are not provided by
the minutes.

27

One potential problem with analysing the minutes of the status meetings is that, as
already noted, Project B holds project status meetings, whilst Project C holds only
design/code/test status meetings. Project B is a larger project (see chapter five for more
information) with a larger number of distinct process areas, and representatives for each
of these areas. By contrast, Project C is a small project, with fewer distinct process areas.
The design/code/test meetings are attended by members of the design/code and test
process areas. It is likely that the content of the design/code/test meetings will be
different than the content of project status meetings. For the two projects, these two
types of meetings are still the highest-level meetings within the project. Status meetings

do not occur for every week of Project B or Project C. Section 6.2.2 presents more

information on the frequency of the status meetings for the two projects.

Interestingly, the minutes for both projects do not record any explicit comparisons
between the actual progress of the work and the planned progress, as represented in the
schedule and the work breakdown structure. It may be that these comparisons are made
but not recorded (note, however, that no such discussion occurred at the two meetings
attended by the researcher). Another possibility is that the comparisons occurred outside
the status meetings (which would be surprising because the status meetings for both

projects are an explicit mechanism for reporting the progress of each process area to the

rest of the project, and are the highest level meetings in the respective projects).

Table 3.5.2 Summary of interviews

Project Interview Id. Week Role of interviewee

Project B B.001 8 Project Leader
B.002 14 Business and Technical Strategy
B.003 14 Project Leader
B.004 15 Business and Technical Strategy
B.0035 16 Project Leader
B.006 17 Lead developer / Project Assistant
B.007 18 Lead developer / Project Assistant
B.003 28 Project Leader

Project C C.001 6 Project Leader
C.002 8 Project Leader
C.003 11 Project Assistant
C.004 13 Brand and Technical Planning
C.005 13 System Test Manager
C.006 16 Project Leader
C.007 25 Project Leader
C.008 34 Project Leader
C.009 39 Project Leader

Interviews were open-ended and semi-structured, and the questions prepared for the

interviews were dependent on recently analysed evidence (Le. there was no standard

28

template of questions). Table 3.5.2 provides a summary of the interviews. A number of
interviews were recorded (some interviewees asked not to be recorded) and notes were
taken at all interviews. It is important to record interviews in order to aid subsequent
analysts and to provide reliable evidence (e.g. verbatim quotes) where these are required to
support an argument (personal communications with researchers i.e. [23, 43, 44, 67, 81,
86]). It 1s not necessary that the recordings of interviews be transcribed (and they were

not in this investigation). For reasons of confidentiality, notes from interviews are not
included in the appendices to this thesis.

The feedback workshops were conducted approximately one year after the completion of
the two projects. For Project B, one workshop was conducted. For Project C, two
workshops were conducted (the second workshop addressed outstanding issues from the
first). For both projects, the respective Project Leader and Project Assistant were present
at the workshops. The workshops took the form of exploring the study’s findings with
the Project Leader and his assistant, so as to validate and clarify the findings. Van
Genuchten ([128]) adopted a similar approach in his study. In this way, the feedback
workshops provide one method of validation of the findings from this investigation. The

feedback workshops also provided additional information to help clarify and extend the
analysis in this investigation.

Conducting the workshops some time after the project’s completed was advantageous
because project members are likely to have a more objective perspective of their project.
Also, with the products in the market for about a year, the project members were able to

assess the success of the products. Against these advantages, project members were unable

to remember certain information, which meant that certain questions asked during the
workshops could not be answered.

29

3.6 Methods for analysing the evidence

Two methods for analysing the evidence were used in this investigation. The first method

1s concemed with developing descriptions and explanations of the behaviour of the

projects and their schedules. The second method is concerned with replicating part of
Bradac et al.’s investigation.

A method for developing descriptions and explanations of behaviour

Narrative description
and explanation

Project Process area

Project Process area

Formal description
and explanation

Figure 3.6.1 A method for developing descriptions and explanations of

software project behaviour

Descriptions and explanations of behaviour were developed through an iterative two-by-
two matrix of analysis, as shown in Figure 3.6.1. More specifically, narrative and formal
descriptions and explanations were developed for both the behaviour of the project as a
whole and the behaviour of the process areas within the project. The project and the

process area are the units of analysis for this set of methods (¢f. heuristic #11).

This kind of analysis is an intense manual process, which is also iterative and intuitive in
nature, requiring the researcher to constantly search and re-search the evidence for
particular items of evidence relevant to the respective descriptions and explanations.

This process has clear similarities with Benbaset et al.’s ([7]) eighth characteristic of a
case study (see Table 3.3.1) i.e.

“The results derived depend heavily on the integrative

powers of the
investigator.” ([7], p. 374)

30

4310 %
UdASS XIS

SUIN

INO,J

Ino,J

3o %
UDA3S XIS

OALd
J191deyH

sajnuIw gurpedwWw sneis
sosAjeue Jnoj

guipadasd oYy wouy syysisuj
SMIIAINU]

solnuIw Furpaul snieis

SMIIAIJU]
sajnuIw SUAIW SNJR)S

SMIIAINU]
sanuI upjedw snye)s

(s)doysjyiom M}oeqpas,]

sajnuiw Fugjaswl Iy

(s)1oenuod 303lo1g

(s)ajnpayos 303[01]

SMIIAIdJU]

soInuIwW SUjA3W SNJB)S
UIPIAY

BAIR $S9001(]
BaJE SS920.C
pue 303(01]

voJe SS3001]

103(01]

BOIR SS9001]

199l01]
193lou
JO JIAdT

‘Suiprem Jo sadA L
‘urjiem Jo 20uUd[eAdl]
SOIISIIDJORIBYD JAOQE
o) SSOIO® UoOWWOd SIY3Isu]
duniem “yiom
duipug)sino ‘ssaigord J00]
‘PEOPIIOM
‘Anjiqede)
‘uoljeinp SuruIeWY
ylom Suipueisin) e
MIOM JO SSAI301] e
Suijiep\ e
unim sdiysuotje|ol
pue ‘jo sadA) ‘sarouanbaiy
"UONBWIOJUI SRS e
SJUIAH o
suejd-0)] e

AyAnoe
109foid Jo siojedipu] e
oNPAYOS e
S|OAD]-90IN0SAY e
peOJION, o
:ssa1301d [enjoy
Juawddeusw Jo sonjoe]
'SJX9JU0D [BDIUYI3)-0100S

TR 2T

‘1D 12 depelgqg
woly sainyoaluod Junsay,
suorjeue|dxd 9AlnjeLIBU

pue Jewloj Jo uoljeidajuj
seale ssadoud

oy} jo uoneuejdxs jeuno

103load
oy} Jo uolnjeue[dxd [ewlao,]

Seale

ssacosd Jo uoneuejdxs
pue uondiIosop aAnelBN

j10ofoid 2y jo uoneuejdxs
pue uonduosap sAljelIBN
SISAjBuYy

oM I

uD
POYIIA

pajonpuod sisijeue Jo sad£y ay) jJo Arewwung J°9°¢ dqulL

This method of analysis satisfies some of the heuristics given in section 3.3 (i.e.

heuristics #16 and #23) but finds difficulty satisfying other heuristics given in that
section (1.e. heuristics #8 and #10). Benbaset et al. add:

“Using multiple methods of data collection, however, offers the opportunity for

triangulation and lends greater support to the researcher’s conclusions.” ([7], p.
374)

As explained in section 3.5, multiple sources of evidence were used in this investigation,

and so lend greater support to the conclusions from this investigation.

The formal explanations (i.e. models), resulting from this analysis, are presented and
discussed in chapter four. The narrative descriptions and explanations are presented and
discussed in chapters five through eight. The formal and narrative explanations are then

integrated in chapter nine. Table 3.6.1 provides more detail on the various analyses that
are conducted as part of this investigation.

A method for replicating Bradac ef al.
Bradac et al. ([18]) observed that, for the one designer they studied:

Waiting 1s more prevalent during the beginning and end of the project, rather
than during the middle of the project.

Three sets of evidence collected from Projects B and C provide an opportunity to test
this conjecture. The three sets of evidence are:

e Reports of waiting
e Reports of poor progress

e Reports of outstanding work

Reports of waiting most clearly relate to Bradac et al.’s investigation of waiting. Using

the model of capability, presented in chapter four, the other two sets of evidence can also
be used to test this conjecture.

The method for testing Bradac e al.’s conjecture consists of collecting evidence on the
frequency of waiting, poor progress and outstanding work per week, for the duration of

the project; to organise this evidence into three sets, representing the beginning, middle

and end of the project (see section 3.7 for a definition of the beginning, middle and end of

32

a project); and then to compare (using a Mann Whitney U test) the median frequencies of
reports for the middle and end of the project. If the median for the end of the project is
significantly greater than the median for the middle of the project then the waiting, poor
progress or outstanding work is considered to be more prevalent during the end of the
project than during the middle of the project (and Bradac ef al.’s conjecture is confirmed).
Mann Whitney U tests were chosen because it 1s not clear that the samples of reporting

evidence are drawn from populations with a Normal distribution.

Table 3.6.2 Comparison of Bradac ef al.’s research design with this
investigation

Feature of the

research design Bradac ef al.’s study This investigation
Focus of inquiry Local process (designer) Process areas
Duration of evidence 30 months Approx. 12 months per
project
Source evidence Designer’s actual behaviour Minutes of status meetings
Analysed evidence Designer’s recorded Evidence extracted from
behaviour source evidence
Amount of evidence All the evidence Waiting, poor progress and
collected that was outstanding work evidence
used
Application of Classification applied by Retrospective classification
Bradac et al.’s designer 1n ‘real-time’ of evidence by researcher
characterisation after the completion of the
project
Numbers of samples One sample from one Six samples, three from
project each project

Table 3.6.2 compares the designs of Bradac ef al.’s study and the current investigation.

Differences in results between Bradac er al.’s study and the current study may partly be
due to differences in the research designs.

3.7 Operational details of the investigation
Organising the evidence relating to process areas

In order to investigate the characteristics of waiting, outstanding work and the progress of
work (so as to replicate parts of Bradac et al.’s study and to investigate the behaviour of

process areas) the minutes of the status meetings were searched, using a text editor, for
particular phrases.

33

Table 3.7.1 Phrases for searching the minutes of status meetings

Evidence Phrase Denivatives (examples
Reports of waiting . wait waiting, awaiting, await
block blocked, blocking
held up
hold holding (holding up)
Reports of outstanding work outstanding
backlog
Reports of progress of work progress

A number of phrases were acceptable for each set of references. These phrases are
presented in Table 3.7.1. Each phrase also ‘encapsulates’ derivatives (e.g. stemmed
words) of that term. There were search options in the text editor” allowing a search on an
entire word (e.g. select only the term ‘wait’) or on embedded words (e.g. select such terms
as ‘await’ or ‘awaiting’). The terms presented in Table 3.7.1 are not exhaustive, in that
they do not contain all the different kinds of terms that could possibly represent

references to waiting, outstanding work or progress. The table is complete in that it lists
all of the terms that were used in the searches.

As the text editor could search across a series of text files, all of the text files for a
project were stored within the same directory, and the search was conducted across all
files within that directory. Thus, one search would search all of the evidence for one

project. For each project, three searches were conducted, one search for each of the three
sets of references.

Upon completion of each search, the text editor presented a list of each occurrence of a
term (or a derivative of that term), together with the text file within which that term

occurred. If there was more than one occurrence in a text file, the text editor would list

each of the occurrences of the term. This produced an initial set of all references. This
initial set was then refined based on three criteria:

1. Whether the term was in an appropriate context. For example, sometimes
occurrences of the term ‘block’ referred to design issues (e.g. a STATE block)
rather than process issues. Such occurrences were removed from the set.

2.

Whether there were duplicate terms within the same ‘chunk of meaning’ (e.g. a
sentence). For example, the phrase “work is held up because we are waiting on a

fix” would be selected twice by the text editor. These duplicate references were
removed.

p) .
The text editor that was used was BBEdir Lite version 4.1 f
.1 from Bare B
(http://web.barebones.com) ones software

34

3. Whether the term was identified within the context of an action item. For
Project B, Action items were recorded twice in the minutes of a meeting: first, at
the “pomt’ in the minutes where the action item was raised; second, in a separate
summary at the end of the minutes, where all action items (opened in the
meeting, outstanding from previous meetings and closed in the meeting) are

recorded. Duplicate references of this sort were also removed from the list.

Having refined the set of references, each of these references (together with their
surrounding ‘chunk of meaning’) was then copied into a separate text file and labelled
with the week number in which it occurred. Each item was then classified in various ways

(see chapters six through eight for more information on the classifications).

Additional analyses for the waiting evidence

With regards to the types of work on which a process area was waiting, two classifications
were used. The first classification was ‘inductive’ in that the types were first identified
from the items of evidence for each project, and then aggregated across the two projects
(so as to form a common classification system across the two projects). This first
classification was then mapped to Bradac et al.’s classification so that parts of Bradac et
al.’s study could be investigated. Appendix B3 provides information on the first
classification and their mappings to Bradac et al.’s classification. There were two reasons
for using two classifications. First, Bradac et al.’s classification may not be a useful

classification system for the evidence collected in this study. Second, the first

classification may provide opportunities for insights into the ‘Waiting on other’ category
of Bradac et al.’s classification.

Adjusting Bradac ef al’s waiting evidence

Because this study is only investigating references to waiting, whilst Bradac et al. studied
observations of working and waiting, some adjustments need to be made to their
percentages of time spent waiting. Rather than using percentages of types of waiting
relative to the total time (i.e. waiting time and working time), the evidence was adjusted

so that the analysis uses percentages of types of waiting relative only to the time spent
waiting (i.e. excluding working time).

49

Table 3.7.2 Adjusted percentages from Bradac et al.’s study

State % total time % waiting
Waiting on the laboratory 2.7 4.5
Waiting on an expert 3.1 5.1
Waiting on a review 9.2 15.1
Waiting on hardware 1.0 1.6
Waiting on software 1.9 3.1
Waiting on documentation 2.4 3.9
Waiting on other (also known as Other) 40.7 66.7

Total 61.0 100.0

Table 3.7.2 summaries the adjustments to the percentages of time spent waiting. The

middle column presents the original percentages. The column on the rnight presents the

adjustments to the percentages. With the adjusted percentages of waiting it now becomes

clear that almost 67% of the time spent waiting was spent in the ‘Waiting on other’
state.

Mapping phases of Projects B and C to Bradac et al.’s study

As explained in chapter two, Bradac et al. identified several tasks that the designer they
studied might be doing. In observing that waiting is more prevalent during the beginning
and end of a project, rather than during the middle of a project, Bradac et al. appear to
map their tasks to the beginning, middle and end of a project. Bradac et al. do not,

however, clearly define which tasks mapped to which phase of the project.

Table 3.7.3 ‘Mapping’ Bradac ef al.’s tasks to the phases of Projects B and C

Tasks in Phases of
Bradac et al.’s stud Part of the project Projects B and C
Estimate and Investigate Beginning Plan
Plan Development Beginning
Requirements Beginning
High Level Design Beginning
Low Level Design Middle Design/Code
Write Test Plans Middle Functional verification
Code Middle
Inspections and Walk-throughs Middle
Low Level Test Middle
High Level Test End System test
Customer Documentation End
Support End
Project Retrospect End

Table 3.7.3 presents the tasks identified in Bradac er al.’s study, together with an
Interpretation of which tasks, in Bradac et al.’s study, and which phases, of Projects B and

C, ‘map’ to the beginning, middle or end of the project. The table indicates that, for

36

Projects B and C, the plan phase maps to the beginning of the project, the design/code
and functional verification phases map to the middle of the project, and the system test
phase maps to the end of the project. Although the plan phase maps to the beginning of

the project, this is not to say that planning does not occur throughout the duration of the

project. For example, Rook writes:
“While the major effort on planning is required during the project initiation

phase, planning continues from phase to phase, as further details become

apparent, and as changes are introduced.” (see [75], chapter 27 page 19)

37

Chapter 4 Three analytic models

4,1 Introduction

During the collection and preliminary analysis of the evidence from Projects B and C,
two models were developed to help subsequently organise and analyse the evidence. The
first model, a simple model of software project schedule behaviour, is used to describe and
analyse characteristics of the project, at the level of the project. This model is used
primarily in chapters five and nine. The second model, a model of capability, is used to
describe and analyse characteristics of the process areas within the project. This model is
used primarily in chapters six through nine. The two models have been integrated into a

third model, the integrated model of schedule behaviour and capability. This model is used
in chapter nine.

4.2 A simple model of software project schedule behaviour

Remaining
duration

Workload Capability

Figure 4.2.1 A simple model of software project schedule behaviour

Figure 4.2.1 presents a simple model of software project schedule behaviour, consisting of
relationships between three constructs. Remaining-duration is defined as the period of
time for which the remainder of the project will last, at time ¢ of the project. Workload is
defined as the number of units of work remaining to be completed, at time ¢ of the
project. (There are a number of potential measures of units of work, e.g. lines of code,
modules, function points, features etc., and there are benefits, such as triangulation, in
exploiting these different measures.) Capability is defined as the ability to complete »

units of work per unit time, at time ¢ of the project. Capability Incorporates concepts of
productivity and resource.

38

The logic of the model is that a change in one of the constructs will affect a change in

one or both of the other constructs. The relationships of particular interest to the current
Investigation are:

e An increase in workload will lead to a proportional iIncrease in remaining-

duration, unless there is a proportional increase in capability. Examples of an

increase in workload are the introduction of new requirements and rework.

e A decrease in capability will lead to a proportional increase in remaining-duration,

unless there is a proportional decrease in workload. An example of a decrease In

capability is skilled personnel leaving the project.

The stability of the project’s schedule is dependent on the ‘balancing’ of the project’s
capability and workload. Within the context of this model, the difficulty in managing

projects is recognising what changes need to be made to capability or workload in order to
maintain the stability of the schedule.

In principle, the model can be applied to various aspects of the project e.g. to the project
as a whole, to a particular process area such as design, or to a particular part of the

product such as a feature. Three of these aspects are explored in chapter five, but the
applicability of the model to wvarious aspects of a project still requires further

investigation. The development of the model has been documented elsewhere ([99, 100]).

Examples of the logic of the model

Two brief examples of the logic of the model are examined. In the first exXample,

workload increases. In the second example, capability reduces.

1. Consider a project with 12 units of work and a planned project duration of 12
months. The mean capability for the project 1s one unit per month. If, after the end
of six months, an additional unit of work is added to the project (for example,

through new requirements, rework or undiscovered work) then the project has 7 units

of workload, and will need to increase its mean capability to 7/6“‘ (1.e. 1:167) units per

month to complete the work in six months time.

Consider, again, a project with 12 units of work and a planned project duration of 12

months. The mean capability for the project is, again, one unit per month. If, after

the end of six months, capability reduces by '/¢™ (1.e. 0-167) units per month (for

example, because of the departure of personnel to another project) then the project

39

would need to reduce its workload from six units to five units in order to complete the
work in six months time.

Support for the model

Some support for the model of schedule behaviour i1s available from previous research.
Olsen ([83]) distinguishes between change demand (comparable to workload) and change
service (comparable to capability) and uses a theoretical metric, the change point, as a

measure of change demand rate and change service rate. Schriber and Gutek ([107]) define
pace, a concept similar to capability, as:

“... the rate at which activities can be accomplished (i.e. the speed of activity or

the number of activities that can be done within a given deadline).” ([107]; p.
643).

Blackburn et al. ([10]) distinguish between development speed and productivity, and they
argue:

“Development speed and productivity are not the same because low productivity

organizations can be quicker to market by throwing human resource - armies of

programmers - at the project.” ([10], p. 876)

For two projects with the same workload that complete within the same duration, but one

that is more productive and one that has more resource, both projects have the same

capability. (It is likely that the more productive project will incur less costs.)

Rook’s (see [75]) definition of a work breakdown structure is also closely related to the
concept of workload. McDermid writes:

“The work breakdown structure (WBS) is a product-oriented task hierarchy of all

the work to be performed to accomplish the project contractual objectives. The
products may be elements of software, hardware, documents, tests, reports,

support services, or other quantified elements of the objectives.” ([75], chapter
27 page 20)

As noted by McDermid, a work breakdown structure identifies all quantified elements of
the project’s contractual objectives. In contrast to a work breakdown structure, the

concept of workload incorporates qualitative elements and non-contractual objectives

(which still introduce work into the project). The concept of workload also Incorporates

40

invisible work. Nardi and Engestrom ([82]) edit a special issue of the journal Computer

Supported Cooperative Work that investigates the nature and structure of invisible work.
They write:

(14

. invisible work takes many guises: as tacit and contextual knowledge, as

informal social networks, as expertise acquired by old hands, as long-term
teamwork.” ([82], p. 2)

The model also finds some implicit support from project managers at IBM Hursley Park.
For example, the Project Leader of Project A states:

'First determine the work to be done; then determine our ability to do that work;
then build a plan from these.' [Interview A.003.AR]

Caveats to the model

As already explained, the model was developed during the collection and preliminary
analysis of the evidence. This has both advantages and disadvantages. Yin ([140]), for
example, would disagree with this approach, arguing that the model should be developed n
some form prior to the collection of the evidence. By contrast, Strauss and Corbin
([120]), as another example, would favour the general approach taken here, but they
might disagree with the specific approach, arguing that it is not sufficiently ‘grounded’ in
the evidence. These two examples indicate that the method by which the model was
developed is a source for debate. Subsequent analysis and discussion (see chapters five
through nine) indicate that the model is useful for describing, organising, explaining and
communicating the behaviour of Projects B and C. The important issue is to recognise
the model as a conceptual tool with both strengths and weaknesses, and with
opportunities and requirements for subsequent development and validation.

Distinct from the methodological concerns, practical constraints meant that evidence had

to be collected (because the projects had started) before a priori models could be fully
developed (cf. heuristic #14 in Table 3.3.2). Also, 1t was considered important to develop

a model to which practitioners could relate, because this would increase the likelihood that

the model would reflect empirical reality, and be useful to practitioners. This necessarily
requires that one collect and analyse evidence before developing a model.

Although the logic of the model relates the changes in one construct to the changes in

the other two constructs, there is no explicit recognition of how a construct would change

In the first place. Other, sometimes more subtle, processes are assumed to cause an initial

41

change. The model of capability identifies some of the subtler processes for the capability
construct.

Whilst the model recognises relationships between workload, capability and remaining-
duration, it is not able to distinguish the degrees of change within each construct.
Consequently, proportional changes between constructs cannot be assessed. In one respect
this is accepted as a limitation of the model imposed by the kinds of evidence that are
naturally available from the project. This limitation is overcome, to some degree, by the

collection and analyses of various sources of evidence from the project, such as summary

status reports of the progress of features. In another respect, however, a model that only
represents precise and specific changes would exclude much, if not most, of the qualitative
evidence that has been collected. This is undesirable. Consequently, a degree of rigour is
sacrificed in the model to improve its utility. In this way, the model is more tolerant of

the qualitative evidence and, consequently, the volume and content of the qualitative
evidence can be better exploited.

Finally, no distinction is made, at this stage, between the actual, desired, planned and
perceived values of remaining-duration, workload, and capability. As indicated above, and
within the context of the model, the difficulty in managing projects is recognising what

changes need to be made to capability or workload in order to maintain the stability of

the schedule. This is a ‘conflict’ between the planned, actual, desired and perceived values
of the three constructs.

Problems with the model

The concepts represented in the model, in particular workload and capability, and the
relationships between these concepts are extremely difficult to formalise effectively. For
example, certain events in a project (such as the automation of a task) may be treated as
a reduction in workload or an increase in capability. Also, there are many different types
of work. Design work, considered an intellectually intensive task, appears to be very
different from controlling a test library, which is considered a clerical task (cf. [46]). A
common measure of the workload involved with different types of task appears to be
impossible to define (which is presumably why Olsen settled for a theoretical metric).
Such problems do not prevent the investigation of these constructs, but they do limit the
kinds of insights that one can derive from such investigations. For example, because of

the difficulty in formalising these constructs, reliable prediction systems are extremely
difficult to develop.

42

4.3 A model of capability

In addition to the model of software project schedule behaviour, a second model emerged

from the preliminary analysis of the evidence. This model represents three constructs

relating to capability. The model is an attempt to relate previous research reviewed in

chapter two to the evidence collected from Projects B and C.

. — — Capability € — ___

— T
~ ™~
d N
/ \
| A
Poor progress Waiting
Outstanding work

Figure 4.3.1 A model of capability

Figure 4.3.1 presents the model of capability. The main relationships are shown with solid

lines. The broken lines suggest possible relationships. The model has the following logic:

1.

2.

Two types of imbalance between workload and capability (workload is not shown 1n

Figure 4.3.1) lead to the poor progress of work. The two types of imbalance are those
identified in section 4.2 1.e.

e An increase in workload without a proportional increase in capability.

e A decrease in capability without a proportional decrease in workload.

Poor progress leads to outstanding work.

QOutstanding work leads to waiting elsewhere in the project (either within the same
process area or in another process area). This is because some output has not been
produced when it was planned or because resource was reassigned. With the model,

waiting points to subsequent threats to capability, and reflects preceding imbalances
between workload and capability.

. Because another part of the project has not received an input (or resource) when

planned, it must wait on that input (or resource). The waiting threatens the capability
of that other part of the project i.e. there is the potential for a reduction in capability
because another part of the project is unable to progress.

43

5. Lower actual capability leads to an imbalance between workload and capability. This

then causes poor progress, and the logic returns to point 1 above. (See section 4.4 for

a discussion of the circularity of the logic of the model.)

4.4 Integrating the models

Remaining

duration t\

Workload Capability

Waiting

Poor progress {‘E
i
i
H

Outstanding work Time usage

Ficure 4.4.1 An integrated model of schedule behaviour and capability

Figure 4.4.1 integrates the model of software project schedule behaviour with the model

of capability. It also indicates where studies of actual time usage (reviewed in chapter two)

are relevant. In the figure, the integrated model explicitly indicates that poor progress is a
function of workload and capability.

The integrated model partially satisfies one of the objectives of this inquiry (see chapter
two), by relating lower-level processes (i.c. relationships within and between process
areas) with higher-level processes (i.e. relationships at the project-level), and through this
integration suggesting the possible effects of lower-level processes on software project

schedule behaviour. The objective is only partially satisfied, however, because these
models have yet to be formally validated.

With the integration of the model of capability and the model of schedule behaviour, the

constructs of the model of capability must also be defined dynamically i.e. poor progress

becomes poor progress occurring at time ¢ in the project, outstanding work becomes

44

outstanding work occurring at time ¢ in the project, and waiting becomes waiting occurring
at time ¢ in the project.

The effect of waiting may also be influenced by the level of the process and hence the
granularity of the work. Bradac et al. focused on a designer waiting on, for example,
designs to be delivered from the library. In such an example, the units of work cannot
easily be further divided. By contrast, chapter five shows that when the design/code phase
actually completes late, both projects start their test phases when planned. At the phase-
level, work can be further divided: some of the design/code work will have been completed
and this can be passed to the test phase. Phrased another way, work at the phase-level 1is
not discrete in the way that work at the individual level is. This will affect the impact of

waiting, as Bradac et al. recognised with their requirement for the global process to be
‘consonant’ with the local process.

It is clear from Figure 4.4.1 (but also Figures 4.2.1 and 4.3.1) that the model consists of
two sets of circular relationships: one involving the workload, capability and remaining-
duration constructs; the other involving the poor progress, outstanding work and waiting

constructs. These circular relationships may be modelled as feedback systems in system
dynamic models (e.g. [2, 41]). The feedback relationships may have delays between the

cause and effect. Modelling the feedback relationships is beyond the scope of this thesis
and stands as an opportunity for further research.

4.5 Alternative models

Some attention was directed at the development of alternative models of schedule
behaviour and capability. These included mathematical models using differential
equations, system dynamics models (which also involve, at their core, differential
equations) and queueing models. While all of these types of models are interesting, and
may provide valuable insights, the rigour of these models means that they would demand
types of evidence (i.e. well-defined, quantitative evidence) that is not readily available

from Projects B and C. This relates back to a point made earlier i.e. that a certain amount
of rigour is sacrificed to improve utility.

Also, some of the constructs presented in the model of schedule behaviour and the model
of capability may be defined differently. In particular, the ‘outstanding work® construct
may not just refer to work that should have been completed but hasn’t been completed,
but may also refer to work that is yer to be done. As a manager approaches a deadline,
they may consider all of the work that they have left to do, some of which may be work

that should have been completed by that stage, and some of which is work that was

45

planned to be completed in the remaining period leading up to the deadline. With this
definition, references to outstanding work become indicators of a manager evaluating
their ability (and probability) to achieve their goal. Similarly, the poor progress construct

may be more directly related to only capability, rather than a ratio of workload and
capability.

These alternative models and definitions of constructs reflect the complexity of the

phenomena being observed and the difficulty in properly representing that complexity.

The alternative models and definitions stand as opportunities for further research.

4.6 Summary

Two separate models have been developed to help organise, analyse and communicate the
behaviour of Projects B and C. These models have also been integrated, in order to show
how lower-level processes might affect higher-level processes and the schedule behaviour
of a project. The two models were related to previous research, and they will be used to

explain behaviour at the level of the project and the level of process areas.

46

Chapter 5 Project-level behaviour

5.1 Introduction

This chapter describes and explains the project-level behaviour of Projects B and C. The

model of software project schedule behaviour is used as a basis for these descriptions and
explanations, and is applied from three different perspectives:

e The socio-technical contexts of each project (i.e. considering the

social/organisational and technical issues, and how these 1ssues interact).
e The actual progress of each project.

e The tactics used to manage each project.

Chapter nine relates the analyses presented in this chapter with the analyses presented in
chapters six through eight.

The figures presented in this chapter attempt to efficiently communicate a large volume
of qualitative and quantitative evidence from a variety of different sources. The figures
are based on Miles and Huberman’s ([79]) advice to organise multiple sources and types of
qualitative evidence according to time. Also, the visualisation of evidence from a number

of different sources (by placing that evidence within the same figure) may reveal subtle

relationships between aspects of a project ([124, 125]). A complete explanation of the
structure and notation used in the figures is presented in Appendix B2.

5.2 The socio-technical contexts of Projects B and C

Project B

Project B is one release of a middleware transaction processing system (here known as
Product B) that operates on mainframe computers. Other versions within the ‘family’
operate on mid-range machines and workstations. The release preceding Project B,
release B-1, introduced new transaction logging functionality that required specific
hardware to operate; hardware that was not commonly used by customers. Project B-1

was also a re-packaging of the middleware product with a systems management product

(here known as Product BS) that manages the concurrent operation of multiple instances
of the middleware product.

47

Order of project initiation

Project B-1 Project B+1 Project B

T~

Release B-1 Release B Release B+1

Order of delivery of release

Figure 5.2.1 The relationship between three releases of Product B

The product area recognised that the requirements of specific hardware for transaction
logging restricted the product’s market, and they needed to correct this issue quickly.
Because major releases of the product typically occur in a rhythmic cycle of
approximately 18 to 24 months (¢f. [20]), a minor release was required to deliver a

software alternative to the hardware-based functionality. The primary purpose of Project
B was to deliver this software alternative. In addition, Project B also provided an

opportunity to deliver some functionality that should have been delivered in release B-1

and some functionality that was planned to be delivered in release B+1. Note that Project

B+1 actually started before Project B. Figure 5.2.1 illustrates the relationships between
the three projects.

Project B recognised that 1t was more effective for the software transaction logging

functionality to be provided via the operating system rather than within Product B itself.
This was because the functionality would be more efficient to develop, but also because

the product would perform more efficiently when in operation. The operating system is
maintained and developed by a product area external to IBM Hursley Park but within the
corporation. The external product area designed and coded the transaction logging
function and Project B tested it. Project B is also one of four successive projects which

are costed as a group. This arrangement might affect the planned staff levels for Project
B.

Overall, Project B was considered a success and, as one criterion of this success, the
release was delivered when originally planned. Closer inspection of the project indicates

that at two features were not delivered with the product, and that the quality of one of

these features was lower than desired when it was finally delivered to the market (via the
World Wide Web) some weeks later.

Certain elements of the project’s socio-technical context clearly relate to workload and

capability. With regards to workload, the strategy adopted by the Project Leader was to

48

limit the changes that might occur on the project. The Project Leader, ‘BM’, described

the strategy he adopted for managing the project:

“.. my stance is that I'm accepting no ... [design changes] - those are the words 1
use. Minimum change on this project is the most important thing. So, for
example I'm running a... [Defect Screen Team]... from day one. And the first

topic of my weekly status meetings is [design changes], where I reject them all...”
[Interview B.001.BM]

And, in the same tone:

“When I did the concept I said if anything impacts the base of the code it will be
rejected... All the team leaders have done their most to minimise the impact to

the base... I'm minimising my risk yet again...” [Interview B.001.BM]

But the Project Leader conceded that:

“There are some... [design changes] we have to do. But I am accepting no more
... [design changes].” [Interview B.001.BM]

With regards to capability, the structure of the project’s management team helps to
reduce communication and co-ordination overheads. During the progress of Project B

(and Project C), a new set of business processes were introduced across the laboratory.

The Project Assistant, ‘BF’, explained some of the beneficial effects of this new process:

“IThe new business process 1s]... good because 1t made individuals more

accountable... If people are not accountable, then the project will drift. With
[Product B], there is a real knock-on effect. If development slips, then
[functional verification] will slip, then system test, etc. [With the new business
process], we're more of a team. Barriers are being broken down. Now, strategy,

finance, system test etc. - everyone is at the same meeting, working together,

communicating with each other, co-ordinating.” [Interview B.006.BF]

With the new business process, the project management teams are multi-functional teams

comprising representatives from each of the significant process areas of the project. The

Project Leader takes a much broader view than any of the particular representatives. The
Project Leader gave his interpretation of his role:

49

“As a [Project Leader] my role is not just development. I'm concerned with a

much broader set of things. [BW] is development... so am I worried about

development? No, not really, that's [BW’s] problem. I've got enough problems
on a grander scale.” [Interview B.001.BM]

There is also a close resourcing relationship between Project B and Project B+1 which

potentially affects the capability of both projects. A senior member of the project
explained:

“... resource issues cross the boundaries of [Project B] and [Project B+1] because

the two projects/products are closely linked. If [Project B] is impacted by
resource, then this will affect [Project B+1].” [Interview B.002.BA]

This is consistent with a comment made by the Project Leader:

“My view is to deliver on a date, so as to release resources for [Project B+1], but

also to maintain quality, and provide some functionality.” [Interview B.001.BM]

Resourcing clearly leads to the inter-dependence of projects, and indicates how project

schedule slippage has affects within the organisation as well as affects on sales etc. to

customers. There are similarities here with Perry et al.’s ([92]) recognition that designers

may not be working on their planned work because they are assigned to a higher priority
project (see chapter two for more information).

Project C

Product C 1s a ‘local’, cross-platform, middleware transaction processing system that is
used primarily in the ‘front office’ of banks. (By contrast, Product B might be used in the
‘back office’ of banks. Product C is not the workstation equivalent of Product B.)

Product C runs on the DOS, OS/2 and AIX platforms. Project C is an investment to
protect the product. The Project Leader, ‘CP’, explained:

“What we're trying to propose is the right level of investment that maximises

the revenue, and keeps the product going as long as possible.” [Interview
C.001.CP]

The objective of Project C wasto port the existing product to run on a new operating

system (which is developed and maintained by another organisation), and to provide some
additional functionality for the DOS and OS/2 versions.

S0

Overall, the Project Leader considered Project C to be a success. This was despite the fact

that the schedule was re-planned, and that some of the functionality was delivered via the
World Wide Web rather than with the product.

Like Project B, there are a number of elements of the socio-technical contexts of Project

C that relate to workload, capability and duration. With regards to duration, the Project
Leader explained how the product delivery date was determined:

“[The product delivery date]... is really driven by the 19 person-years effort, to a
certain extent... I need to bring on some extra people earlier in the year, so I've

oot to take them off later in the year to make the 19 person-years fit.”
[Interview C.001.CP]

This is a clear example of how duration and capability are fixed, with the implication that

the workload will need to be determined accordingly. The Project Leader implies such a
situation:

“I would have to say that the planning has been done somewhat backwards here,
as we have the schedule and man-power constraints, and we've been trying to fit

the work into that, rather than asking people how long it will take them, and
building the schedule from that.” [Interview C.001.CP]

These constraints then affect the planning process:

“The basic process was to get the people who would pick those feature up to do

the sizings, factor in the service estimates, and then adjust from there to try and

make it fit to the [design] phase we thought we would need to meet [our product
delivery date]l.” [C.001.CP]

From Olsen’s ([84]) arguments, it would appear that Project C’s planning process is
common in software projects:

“In practice, software engineers are often given a fixed deadline and expected to
develop a schedule that meets that goal. This fixation on time is not an

aberration or the result of misguided management, but the foremost customer

requirement and the primary force behind profit. As such time dominates all
factors of the software-engineering process.” ([84], p. 28/29)

51

As already noted, the workload will need to be adjusted to balance the capability of the
project. The Project Leader explained how the workload looked impossible given the
planned schedule, but how he justified that the work could be done:

“And its actually frightening if you look at.. [the workload]... in terms of the
productivity that’s needed to get this product out of the door. However, the
counter argument is that there is very little new function. If you look at the lines
of code for... [the new product]... its something like 55 KLOC, and I'm trying to
do that with three person years, which looks impossible. However, that is reusing
code, its porting code. Where we're writing new code its usually with existing
design, where the architecture is already there. I can justify it to myself that its

do-able... Its not writing new code, its not using old code without change, its
somewhere between those two.” [Interview C.001.CP]

The funding constraints, mentioned above, constrain the capability of the project. The
Project Leader explained:

“So we had a resource funding constraint.... I asked can we spend any more on
development, and the answer was very much no. This 19 person years is fixed...

But its a good business case. Even if we don't develop... [a version of the product

to run on a new operating system]..., then 1 still have to spend 15 person years
on service.” [Interview C.001.CP]

This is an example of a factor, cost, that is not modelled in the model of schedule

behaviour but does affect the constructs within the model (see chapter four for more
information).

The resource constraints also affect the organisation of the new development and support

teams. Unlike Project B, Project C has a combined development and support team. The
Project Leader explained:

“In an ideal world, one would have... separate... [support]... and development

teams, but this would probably be inefficient... You have to remember we've got 19
people here and we're trying to support three products, not one product, and we're

trying to develop a new product. And we're actually trying to do an awful lot with
very little resource.” [Interview C.001.CP]

32

The combined team means that each person has development and support
responsibilities:

“..each developer has responsibility for some number of components in the

product. So its not a case of having three people doing development for the...
[new]... product. Each person will have a mix of... [support]... and development
responsibility, so it really depends...” [Interview C.001.CP]

“There's about 9 people who have responsibilities for... [the new product]... but
that obviously is not their full-time job. We plan for the service work, which
comes in fits and starts. A high severity problem can take a person out for a

month. The... [support]... take priority to the development work.. ” [Interview
C.001.CP]

The funding constraints also affect the composition of the testing team. The Project
Leader explained some of the risks for Project C:

“I can see high risk areas. I've already mentioned service workload. System test is
fairly high risk, because of the resource constraints... We've only got funding for
two system testers for six months which isn't sufficient to do a good job basically.
They're starting later than I want them to start. So already I'm trying to get extra

help. Someone from marketing and some people from... [support]. So I'm trying
to sort that out 'through back door methods' in terms of getting some extra help

for free. Cos [sic] I can't guarantee three system testers.” [Interview C.001.CP]

and:

“A major constraint 1s actually can we get them [the features] tested, rather than

can we develop them. It all boils down to can we get the right skills.” [Interview
C.001.CP]

The Project Assistant also recognised system test as a concern:

“Biggest concern 1s testing. We have one junior person leading an inexperienced
test team.” [Interview C.003.CG]

Finally, the Project Leader had to fulfil a number of roles (unlike the Project Leader of

Project B) and he explained the difficulties these multiple roles might cause:

>3

“One of the problems I have as [Project Leader] and Development manager is finding
the time to do both jobs as well as they need to be done. And actually finding the time
to devote as much time as I should to the project management side of it is going to be
a major challenge for me [think., Because its not only managing the new

development stuff, its the... [support]... stuff involved that actually takes a lot of the
time... service extensions and all that stuff.” [Interview C.001.CP]

This is even more pertinent, given the fact that while the Project Leader has considerable

experience in software development, prior to Project C he has not managed an entire

project as Project Leader. With the introduction of the new business process, the Project

Leader was promoted from design/code manager to Project Leader. He states:

“I haven't carried anything through the [entire] development process [until
now].” [Interview C.007.CP]

Similarities and differences between Projects B and C

In addition to the insights specific to the individual projects presented above, it is also

possible to 1dentify a number of characteristics that distinguish and unite the two projects.

Tables 5.2.1 and 5.2.2 present a number of characteristics, and contrast the two projects
according to these characteristics. Three entries in Table 5.2.1 require clarification. First,
the strategic value of the two products is relative to the two products. Although Product C

has a lower strategic value this is not to say that the product is not valued by the

organisation (if the product had a low value to the organisation it is unlikely it would be
maintained). Second, although design changes and additional features are unplanned, this is
not to say that such work 1s unexpected. Experienced Project Leaders recognise that the
workload for a project will probably increase. Third, the KLOC sizes of the two projects
might misleading suggest that Project C is very much more productive than Project B.
Product B 1s, however, a mission-critical product requiring very high levels of reliability.
In addition, much of the code for Product C is being ported from an existing version of

the product. The differences between the two products are recognised by Project C'’s
Project Leader:

“There are some [features]... but it may be artificial to compare these with

[Product B features]), because of the magnitude of [features], and what's
involved.” [Interview C.001.CP]

>4

Table 5.2.1 Differences between Project B and Project C

Characteristic
Size of support team

Size of planned
development team
Size of planned
management team
Assignment of work

between support team and
development team

Role(s) of Project Leader

Strategic value of product
Purpose of project
Type of product

Release sizes
Number of features/design
changes

Platforms
Project status meetings

Project duration (in weeks)
Product delivery week
Determination of project
duration

Project B

Support team of 50 people
(separate from Project B).

approx. 38 people
approx. 6 people

Developers are either
support or development
(but development may
support In critical
situations)

Project Leader

Higher; long-term

New functionality

Large, mission-critical,
middleware legacy system
36 KLOC

13 features (planned)

12 design changes
(unplanned)

Mainframe
Yes

57 (planned and actual)
52 (planned and actual)

Project C
Support team of 12 people
(part of Project C)
approx. 3 people

approx. 3 people

Developers ‘own’
components and both

develop and support those
components.

Project Leader,
Design/Code Manager,
Support Manager

Lower; mid- to short-term
Port to new platform

Large, middleware legacy
system

70 KLOC
19 features (planned) and
11 features (unplanned)

Workstation

No, but design/code/test
status meetings

48 (planned) 59 (actual)
48 (planned) 59 (actual)

Project end-date driven, due Project end-date driven, due

to market considerations

to resource funding
constraints

Table 5.2.2 Similarities across Project B and Project C

Characternistic

Comment
Business process Both projects partially used the new business process
Organisation Both projects were within the same laboratory

Composition of
management team

darca.

Project success

successful.

33

Both projects used multi-functional project management
teams, with representatives from each significant process

Both Project Leaders considered their projects to be

5.3 The actual progress of Project B

Figure 5.3.1 presents information on the schedule, workload and capability of Project B,

at the project-level, and shows how the actual progress of the project, with regards to
these three constructs, differs from the planned progress. (See Appendix B2 for an

explanation of the structure and notation of the figures in section 5.3 and 5.4.)

From the figure, it is clear that the plan, design/code and test phases (the three main
phases of the project) all complete later than planned, with the design/code and test
phases completing many weeks later than planned. In the case of the design/code phase,
the phase lasts at least 50% longer than planned, although the comment on the
completion of design change work in week 50 (see the ‘Events’ section of the figure)

suggests that the design/code phase may persist in some form for almost the remainder of
the project. Two design changes were also accepted, in week 37, after the actual

completion of the design/code phase. This is discussed in more detail below.

In the case of the test phase, Figure 5.3.1 indicates that the test phase continues until

week 58, six weeks after the product was actually delivered. This is because two features
are being tested and delivered, at a later date from the rest of the product, via the World
Wide Web. Note also that the design/code and test phases proceed concurrently for a

number of weeks, once again differing from the planned, sequential progress of the
project.

In addition to the differences between the planned and actual progress of phases, note the

frequency of planned milestones for the project. With only two exceptions, the design

complete milestone and the functional verification complete milestone, all milestones are
planned to occur during approximately the last quarter of the project. Two of these
milestones are project oriented (the system test and integration complete milestones)
whereas the other two milestones are business oriented (the availability and announce
checkpoints). Consequently, for long periods of the project there are no high-level
checks of how the project is progressing. This may be because progress in the design
phase is difficult to properly assess, and so even if there were milestones, these milestones
would be tneffective. Abdel-Hamid ([2]) argues that reports of actual progress often

simply reflect the planned progress because a more accurate assessment of actual progress
1s not possible.

56

q 3193foag a0y Suipyeys pdaload pue peopjroa 3adfoad ompayds 3dafoad jempoe pue pauue]d ['€S 21n31

XM pofoag

w W W W W NN NN
wgg.ﬁrz ﬁunﬁg.ﬂr

01
8
9
1%
[
{

bt bt s
N S o oo BN

14
ot
=

I
¥~ S

U&) ﬁw: E

N T T bbbl
ﬂ 153, sAS
I ====== — 2 ugisaq

Alajdibd va ::: .&. 221quaI [saf, hu..% “ L&HNE

_ k . e

13}dni03 Is ;E.. Ve E m& QD IS 1S, . 2 ¥l A

d D}, 5“% A ! b&u ’ 2121lju0p ug1sH \ A -
patiuejd) pnpaydS

Jjom m*«: iy uisaq

mdﬂm;m—

3

N ~ ___ E ﬁ_..: V

1110 Tr |3..|

I

NS

E

.

Q

e ———r
R 2 8 8 =
Zuyyels pauueyd AlreuiSuQ

-
I~

a_: §3y
..n at

2 u |

h w ﬁ b PP i} 213 AIS 01,

m J, 2 E mc (i1 Paao. C: ; 22
w i

n &..:E.E m: yaddilys .,,..z _c

nou
~= 03
; 5% u A @3UDYD ugISPP 1]

g

.

AP

Workload is represented, in the figure, in terms of features and design changes. (These are
measured using the scale on the right of the figure, with range zero to 14.) Broadly, both
features and design changes are sets of market requirements of a piece of software which
“... typically involve changes and additions to multiple [software] subsystems™ ([121], p.
840). Whilst, in principle, features refer to new functionality and design changes refer to
modifications to existing functionality, in practice there are no clear distinctions between
a feature and a design change. (In terms of code size, a design change may be larger than a

feature.) At the feedback workshop, the Project Leader provided more information on

features and design changes:

1. Features are the work that is planned at the beginning of the project.
2. Changes in workload, once the project starts, are managed as design changes.
3. Some of the design changes accepted on to the project were actually features, and

some of these are larger in size that the 13 features originally planned. (This indicates

how features and design changes are not effective measures of process size or product
size.)

4. There are two types of design changes:
e design changes that add function.
e design changes that remove function.
Both types involve work 1.e. they increase workload on the project. The first type

increases the size of the product. The second type reduces the size of the product.

5. A very low number of design changes were expected for Project B (almost zero).

Figure 5.3.1 indicates an increase in workload on the project, with the number of design
changes increasing from zero to 12. This is a near-100% increase in the combined
number of design changes and features, although this does not necessarily imply a 100%
increase In the actual amount of workload (because features and design changes are not
reliable measures of process size and product size). Recall, from section 5.2, that the

Project Leader has a policy of rejecting all design changes, although he concedes that
there are some design changes that the project will have to do.

In addition to the increase in the number of design changes, note the timing of these
increases. The intended last week for accepting design changes is week 18, close to the
planned completion of the design/code phase, but at this point only five of the eventual
12 design changes are accepted. (The remaining seven are being considered by week 18.)

Furthermore, note that some design changes are accepted after the actual completion of
the design/code phase. As discussed earlier, this indicates that the design/code phase may

actually progress for longer than represented in Figure 5.3.1. The increase in design

changes after the actual completion of the design/code phase also suggests that the

58

project is in multiple phases at any one time (cf. [92]) and that the plan does not
represent these multiple phases accurately.

Capability is represented, in the figure, in terms of weekly resource levels. (In the project
documents for Project B, planned resource levels are recorded on a monthly basis, so
these have been converted to weekly resource levels for Figure 5.3.1. The scale on the
left of the figure, with range zero t<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>