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ABSTRACT Breast cancer is one of the most prevalent cancers in women. In recent years, many studies have
been conducted in the breast cancer domain. Previous studies have confirmed that timely and accurate breast
cancer detection allows patients to undergo early treatment. Recently, Generative Adversarial Networks
have been applied in the medical domain to synthetically generate image and non-image data for diagnosis.
However, the development of an effective classification model in healthcare is difficult owing to the limited
datasets. To address this challenge, we propose a novel K-CGAN method trained in different settings to
generate synthetic data. This study applied five classification methods and feature selection to non-image
Wisconsin Breast Cancer data of 357 malignant and 212 benign cases for evaluation. Moreover, we used
recall, precision, accuracy, and F1 Score on the synthetic data generated by the K-CGANmodel to verify the
classification performance of our proposed K-CGAN. The empirical study shows that K-CGAN performed
well with the highest stability compared to the other GAN variants. Hence, our findings indicate that the
synthetic data generated by K-CGAN accurately represent the original data.

INDEX TERMS Data augmentation, diagnosis, breast cancer, GANs.

I. INTRODUCTION
Breast cancer is among the most common cancers found
in women worldwide [1], [2]. According to recent stud-
ies [3], [4], breast cancer is the second most common form of
cancer, after lung cancer. Therefore, it is a leadingmalignancy
in both the developing and developed countries. This form
of cancer occurs when strong cells change in size and begin
to evolve chaotically. As a result, a mass of cells known
as a tumor develops. There is a dire need for early stage
preventive measures to save patients’ lives. However, it is
imperative to mention that there is a high chance of inaccurate
diagnoses owing to human errors and a lack of resources.
In recent years, technological advancements in deep learning
and computer vision have assisted in automating the means
of segregating benign instances from malignant ones with
cancerous cells [5].

To detect breast cancer at the initial stage, researchers
have introduced mammography. According to previous
studies [6], [7], mammography reduces mortality by
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approximately 40%. However, mammography also has sev-
eral limitations. Among these limitations, false positive
(cancer not present) and under-diagnosed prognostic breast
cancer are significant concerns [8]. To overcome these chal-
lenges, scientists have used multiple techniques to improve
the performance of mammography screening. These tech-
niques include noting two views per breast, double reading,
analysis of previous mammograms, and yearly interval
screening. However, manual detection using traditional tech-
niques results in high economic costs and strain in a limited
number of breast imaging radiologist employees [9].

In addition, regular mammograph screening can assist in
the early detection of breast cancer. Nevertheless, common
issues such as incorrect negatives, low screening rates, and
unnecessary biopsies are observed [10].To deal with these
shortcomings, deep learning is a promising option to obtain
screening accuracy, lower numbers of incorrect negatives,
and unnecessary biopsies. Deep learning models can learn
hidden features and correlations that cannot be observed with
the naked eye [11].

Recently, the massive success of deep learning in computer
vision has been owing to the ease of use of large-scale and
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labelled training datasets [12], [13]. However, in various
medical imaging fields, the availability of such data is dif-
ficult and sometimes impossible owing to privacy reasons.
Furthermore, the imbalanced class issue naturally occurs
in the medical field, as normal images outnumber those
with findings. A common method for dealing with over-
fitting is to synthetically increase the data size via data
augmentation [14].

There are various limitations to biomedical datasets,
including; their imbalanced nature. The class imbalance
issue occurs because of the uneven distribution of instances
associated with noncancerous and cancerous cells. Vari-
ous approaches have been introduced to address this issue,
including under-sampling, oversampling, and hybrid sam-
pling methods [15]. In addition, the general approach of data
augmentation has been used in previous studies on computer
vision to achieve better performance and class distribution of
the model [16]. Many recent studies have applied Generative
Adversarial Network (GAN) based data augmentation [17],
[18], [19], [20], [21]. Previous studies [22], [23], [24] have
shown that the data augmentation method using GANs adapts
the training distribution and enhances the performance of
classifiers on breast cancer datasets.

In recent years, GANs [17] have been used in the medical
domain to synthetically generate computed images. In addi-
tion, GANs have been applied to non-image data areas,
such as transcriptome data for cancer diagnosis, subtyp-
ing, and staging. GAN-based data augmentation has seen
rapid progress in the synthetic generation of highly realis-
tic samples [18]. Researchers have implemented GANs in
medical imaging, such as computed tomography and mag-
netic resonance imaging [19], [20]. In addition, GANs have
been applied to retinal fundi [21], chest radiography [22],
histopathology [23] and liver lesions [24] for data augmenta-
tion. In addition to these domains, another important domain
is where GANs can be highly successful for the augmentation
of data in breast cancer detection in mammograms [25].

In our study, we used Generative Adversarial Networks
to synthetically generate breast cancer data to enhance the
classification of malignant cases. It is imperative to men-
tion that GANs are a generative method with the concept
of game theory, where the Generator and Discriminator try
to outperform each other. The role of the Generator is to
puzzle the Discriminator. Moreover, on the other hand, the
Discriminator acts to discriminate the instances it receives
from the original dataset and the Generator. We aimed to
generate sufficient synthetically malignant cases to balance
the original dataset. We also compared other GAN variants
with the proposed method.

This study utilized multiple GAN variants for data aug-
mentation to demonstrate how classification methods work
with small tabular medical datasets. The study proposed
the Novelty Kullback-Leibler Divergence Conditional GAN
(K-CGAN) technique for data augmentation and compared
it with other state-of-the-art GAN frameworks (LS-GANs,
WGANs, NS-GANs, and SDGs-GANs). We use these GAN

frameworks to generate artificial training data to avoid the
need for large quantities of medical data. The motivation
of our study was to address the limited data training issue
in the medical field, which makes it difficult to develop
a highly efficient classification framework. Moreover, this
study aimed to demonstrate the capability of GANs to
improve the performance of classification frameworks in the
medical field by offering a novel method for data augmenta-
tion in small healthcare datasets.

A. GENERATIVE ADVERSARIAL NETWORKS (GANs) IN
BREAST CANCER DOMAIN
Strategies such as under-sampling, over-sampling, and fea-
ture selection can deal with the adverse effects that
occur from imbalanced source data. In recent years, novel
data-augmentation strategies such as Generative Adversarial
Networks (GANs) have been used to artificially generate
additional data [26]. Generally, GANs are employed to image
data and comprise two sub-networks: Generator and Dis-
criminator. The role of the Generator is to generate synthetic
samples, whereas the Discriminator is designed to discrimi-
nate between fake and real samples [34]. In other words, the
function of the Generator is to produce samples with features
that the Discriminator cannot separate from real samples, thus
enriching the original dataset. Compared to other generative
approaches, GANs have a higher computational speed and
enhanced sample quality. Therefore, GANs are considered
superior to other methods [27].

Additionally, GANs show a lower possibility of overfit-
ting classifier risk and are less vulnerable to the impacts of
non-pertinent sample features [28]. Data augmentation using
generative models is highly effective because only a specific
patch of the entire sample needs to be augmented. The appli-
cability of GANs in mammograms has potential for many
reasons. For instance, GANs can overcome the unavailability
of significant original datasets. Additionally, public datasets
comprise only a small proportion of malignant samples in the
general population. Another reason for the applicability of
GAN is that they’re advantageous and may improve cancer
detection that could be used in screening programmes. In gen-
eral, GANs can help cancer screening programs in many
ways. For example, generating synthetic images that can be
used to train and validate cancer detection algorithms, identi-
fying anomalies in images that may not show obvious signs of
cancer, and generating personalized cancer screening images
for each patient. These methods have been shown to be effec-
tive in detecting breast cancer, prostate cancer, and other types
of cancer. Overall, GANs have the potential to significantly
improve the accuracy and effectiveness of cancer screening
programs [18].

II. RELATED WORK
In this section, we explore recent studies on machine
learning-based data augmentation techniques for breast can-
cer classification.
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The summary of some recent studies is shown below:
In [29], an augmentation framework based on a GAN

was proposed. Their study applied feature selection and
employed five classification algorithms to medical dataset
that were augmented using the least-squares GAN (LS-GAN)
method. Empirical research has demonstrated that support
vector machines (SVM) perform better than other methods
by effectively classifying the data. Their LS-GAN-based
data augmentation approach offered an effective solution for
improving the performance of classification models in the
medical field.

The study [30] introduced an Enhanced Generative Adver-
sarial Network (E-GAN) to solve the imbalanced class
challenge. The main objective of their study was to clas-
sify non-balanced datasets, such as the Wisconsin breast
cancer dataset, with great accuracy. This study converted
imbalanced data into balanced data in the pre-processing pro-
cedure for this purpose. The pre-processing process consists
of data cleaning, normalisation, and transformation using the
radius synthetic minority oversampling (R-SMOTE) tech-
nique. Moreover, a Deep Convolutional GAN was employed
to balance the dataset, generating extra samples under the
training dataset. The performance of the proposed method
was verified using three datasets, and the performance met-
rics were examined to verify the capability of the proposed
framework. The findings demonstrated that the Breast Cancer
Wisconsin dataset attained the highest maximum geometric
mean of 08.68, 02.93, and 05.41% and a higher Matthews’s
correlation coefficient (MCC) than the other methods.

The study [31] used five popular GANmethods to synthet-
ically generate data to train binary classifiers and compared
the performance of these classifiers in terms of accuracy
with scenarios where only real data are focused. According
to this study, GAN-generated data are highly applicable for
two reasons: the non-availability of medical data and data
privacy regulations. The main objective of this study was
to examine how GAN-generated data can enhance the clas-
sification accuracy, particularly when the dataset is small.
For this purpose, this article introduces a framework that
considers an extended dataset with real and synthetic data.
The findings revealed that the data generated with advanced
GAN methods, such as WGAN-GP, offer better binary clas-
sification accuracy with larger and smaller data quantities.

The study in [32] argues that imbalanced class challenges
can bias the classifier towards the majority class. This sce-
nario causes a problem for deep learning frameworks, which
require diverse and copious data to learn patterns. In this
study, the authors used GANs to correct the imbalance class
issue in tabular datasets. This study surveyed different studies
and investigated the experimental methodologies that have
attained machine learning efficacy. The authors of this study
noticed that GANs successfully rebalanced tabular datasets.

Similarly, research [33] has examined the scope of deep
learning models, such as the conditional generative network
(CTGAN) and tabular variational autoencoder (TVAE) to

synthetically generate tabular data of breast cancer and assist
in its diagnosis of breast cancer. Moreover, their research
work also introduced an integrated deep learning model,
which comprises the generation of breast cancer data that
leads to the classification of breast cancer by employing
at deep attention-based model (TabNet). The benchmark
breast cancer datasets were used to validate the findings. The
empirical findings show that the TVAE model performed
exceptionally well. In addition, the TabNet framework per-
formed better than the other deep learning classifiers, with
accuracy scores of 96.66% and 82.83% in diagnosis and
prognosis, respectively.

In their study, [34] emphasized that biomedical data are
difficult to acquire and that obtaining a sufficient sample
size is also complex and time-consuming. To solve this
problem, they proposed Conditional Generative Adversarial
Network (CGAN) based feature generation to synthesize
sample datasets with class separability. CGAN was trained
on 25% of the five datasets, including the Breast Cancer
Wisconsin dataset. The findings confirmed that the synthet-
ically generated datasets had better classification than the
real-world datasets. The CGAN-based feature space method
generated datasets with the desired class distribution and a
higher success rate of the classification algorithms.

In their research, [10] implemented various machine learn-
ing classifiers to determine the form of breast cancer in
potential patients, and the Wisconsin Breast Cancer Dataset
was used to understand the usefulness of these models.
Furthermore, they used classification methods, including
Decision Tree, Naïve Bayes, KNN, RandomForest, SVM and
Logistic Regression, to classify benign and malignant breast
cancer. Their findings showed that Random Forest and SVM
offer the highest accuracy. However, the authors are required
to use a larger dataset in future studies.

According to [35], deep learning has demonstrated promis-
ing advancements in cancer classification in mammog-
raphy. However, issues such as imbalanced classes and
scarcity of data are the most prominent barriers to fur-
ther advances. To address this issue, [35] GANs have been
used as a data augmentation method for classification net-
works. They employed a U-Net-based framework with semi
supervised learning. The authors synthesized lesions onto
normal-appearing mammogram patches and removed the
lesions from the patches where they were present. Their study
revealed that considering augmented mammogram patches
enhanced the overall performance of the model. Furthermore,
they demonstrated that the augmented GAN-based regime
yielded an AUC of 0.846, which was superior to the baseline.

Another study, [7] attempted to solve the issue of limited
labelled data in breast cancer mammographic image classi-
fication. To do so, they selected a limited labelled dataset.
The authors introduced a method using DC-GAN to synthet-
ically generate images and augment them with real images to
enhance the classification accuracy via a deep Convolutional
Neural Network (CNN) algorithm. For this purpose, they
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used a dataset consisting of 213 normal and 74 cancerous
images. The GAN-based training was conducted with batch
size of 32 and 4. They synthetically generated 25 images with
32 batch sizes. According to their study, when comparing the
accuracy of synthetically generated 25 images in batch sizes
of 4 and 32, the batch size of 32 produced better results, with
the accuracy of 87%. To validate themodel, three experiments
were performed. These experiments were CNN-based perfor-
mance evaluations with and without DC-GAN, a similarity
study, and visual turing testing. The findings of these exper-
iments demonstrate that GAN is a suitable option and offers
better solutions to limited dataset challenges.

A DiaGRAM learning solution has been proposed [2] for
breast cancer screening and diagnosis. This model uses two
main frameworks to attain efficient mammogram diagnosis:
(a) the model amalgamates a GAN with a deep classifier
to learn traits that advantage both, and (b) transfer learning
is employed to acclimatize the model trained with one type
of data to another. The authors conducted empirical studies
using the INbreast and DDSM datasets. The findings con-
firmed the excellent performance of DiaGRAM in terms of
AUC and accuracy measures compared to previous studies.
The proposed method, DiaGRAM, showed transfer learning
ability similar to the method trained on the DDSM dataset,
and the INbreast dataset demonstrated better performance.

In their study, Wu et al. [18] argued that deep learning
frameworks have shown excellent results for breast cancer
detection in mammograms. Nevertheless, limited data chal-
lenges have constrained the effective performance of these
models. To address this challenge, [18] GANs have been
used to augment mammogram datasets synthetically. They
trained a class conditional GAN to perform contextual infill-
ing for this purpose. Subsequently, the authors synthesized
lesions from healthy screening mammograms. The authors-
demonstrated that GANs can generate high-quality synthetic
mammogram patches. Furthermore, their empirical study
evaluated an augmented dataset to enhance breast cancer
classification performance. Their study demonstrated that
the trained classifier trained with augmented GAN-based
training data achieved a superior AUROC compared to the
frameworks trained with traditionally augmented datasets.

Furthermore, [36] argued that the poor performance of
the classifier model is due to an imbalanced class problem
caused by the biased classification of the malignant (major-
ity) class. To address this issue, [36] introduced a novel deep
learning-based framework to classify breast cancer imbal-
anced datasets. The study also investigated the impact of the
DC-GAN and the effect of batch normalization on the effec-
tiveness of their transfer network framework. The authors
used a DC-GAN for data augmentation of the minority class
in the initial phase. The rebalanced dataset with the class
distribution was then applied as an input to the proposed
deep transfer network. The statistical findings of their study
confirmed the validity of the proposed architecture, as it

achieved a higher score when compared with other state-of-
the-art deep networks.

In addition, [37] they evaluated the performance of two
machine learning techniques. The first technique is based on
CNNs for classifying histological images into malignant and
benign classes to detect breast cancer. The other framework
they used was based on extracting handcrafted traits encoded
by coding models and trained using SVM. The findings of
their study confirmed that CNNs performed better than hand-
crafted trait-based classifiers.

In another study, [29] proposed applying Generative
Adversarial Networks (GANs) as data augmentation method
in the medical domain. The objective of the study was to
improve the performance, stability and precision of classifier
by generating synthetic data that acts as real data. For the said
purpose, their study utilized feature selection and used five
classification techniques to thirteen datasets. Furthermore,
the study augmented these datasets using the Least Square
GAN. The assessment of generated instances showed that
the SVM model performed better than other data augmen-
tation methods. The proposed method using GAN offers a
promising way to improve the performance of classification
techniques in the medical domain.

A recent study by [38] proposed a novel technique called
Sparse CounteRGAN (SCGAN) to generate counterfactual
instances to develop causal association between Clinical
Information and Molecular (ICM) features and the treatment
responses after Neoadjuvant Systematic Therapy (NST).
Their generative framework spots the distribution of orig-
inal cases and thus, makes sure that the generated cases
are realistic. In addition, the study introduced a loss func-
tion that regularizes the counterfactual to lessen the distance
between the counterfactuals and original cases and the dis-
tances among the produced counterfactuals to encourage
diversity. Moreover, the study evaluated the proposed model
on two benchmark datasets and compared their performance
on several methods. The findings of their study show that the
SCGAN produces realistic counterfactual cases with minor
changes in only few features, thus making it an effective
method for meaningful understanding about the causal rela-
tion between treatment response and ICM features.

A more recent study by [39] introduced a novel hybrid
feature selection method. Their model was aimed to develop
an effective feature selection technique and to efficiently
classify breast lesions. The study combined relied and Binary
Harris Hawk Optimization hybrid method for feature selec-
tion. Moreover, techniques such as KNN, SVM, Naïve Bayes
and Logistic Regression were selected for the classification.
The proposed model was tested on three benchmark dataset:
MBCD, WDBC and WBCD. The empirical findings suggest
that the proposed hybrid model enhances the performance
of all classification techniques on the benchmark datasets.
In addition, the hybrid model attained superior results than
other methods. This experimental study using hybrid model
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achieved better results when compared with other recent
studies.

Moreover, [40] introduced a multi-round transfer
learning and modified Generative Adversarial Network
(MTL-MGAN) for cancer detection. The MTL transfers the
information between the source domains and target domains
to avoid fatigue search of dataset prioritization between
numerous datasets. The process allows maximizing the trans-
ferability with a multi-round transfer learning procedure and
without negative transfer through customization of loss func-
tions. By doing so, the MGAN produces additional training
data and creates intermediate domains to bridge the target
domains and source domains. The study utilized ten popular
datasets for analysis and evaluation of MTL-MGAN. The
findings suggest that the MTL-MGAN method has achieved
considerable accuracy compared to previous studies. For all
the components of MTL-MGAN, ablations were performed
to check the performance of the MTL, the prioritization
method, the MGAN and the negative transfer avoidance. The
ablation studies also provided remarkable findings to confirm
the significance of the components of the method in terms
of multiple transfer learning, features, instances, customized
loss functions and MGAN.

According to [41], GANs have the ability to learn from
training data and produce synthetic data with the same traits
as the training data. Based on traits of GAN, the study
presented GAN’s ability as a method of disease prognosis
prediction and developed a prognostic model, Preg-GAN,
which is based on conditional GAN (CGAN). The objective
of this study was to use Preg-GAN to produce the prognosis
prediction outcomes on the basis of patient data. The pro-
posed algorithm added the data as conditions to the training
phase. Moreover, conditions were utilized as the input to
the generator with noises. Furthermore, the study used the
gradient penalty approach and Wasserstein distance to avoid
mode collapse during training of the Preg-GAN. The study’s
findings suggest that Preg-GAN attained good scores with the
Area under Curve (AUC) of 0.946 and the average accuracy
(ACC) of 90.6%. The experimental findings on the breast
cancer dataset demonstrate that the proposed method is a
consistent prognosis prediction model.

III. METHODOLOGY
In this section, we present the background of GAN-based
classification and a comprehensive introduction toGANs [17],
WGAN [42], NS-GAN [43], LS GAN [44], SDG GAN [45]
and our proposed K-CGAN model. In addition, this section
presents the key procedures for our experimental model.

A. GANS
The Generator G is denoted as G: Z → X, where Z is the
noise space and X is the data space. The Generator attempts
to capture real data distribution. Discriminative model D is
denoted by D: X → [0, 1]. The Discriminator approximates
the probability that the samples are generated by the Genera-
tor or from the real data distribution. Both the Generator and

the Discriminator models compete with each other in a mini-
max game. The value function of the GAN is:

minGmaxDV (D,G) = Ex∼pr (x)[logD (x)]

+ Ez∼pz(Z )[log(1 − D (G (z)))] (1)

The ‘‘pz’’ in eq. 1 is the distribution of data over noise input
‘‘z’’. Whereas pr the data distribution over real data ‘‘x’’.
In the training phase, we have to make sure that D’s actions
over real data are precise by maximizing the first term
of eq.1. ‘‘Ex∼pr (x)[logD (x)].’’ On the other hand, when
G(z) is fake sample, the D is likely to output a probabil-
ity D (G (z)), near to zero by maximizing the second term
in eq. 1, Ez∼pz(Z )[log(1 − D (G (z)))]. Meanwhile, the G is
tasked to increase the probability of D for producing high
chances for fake cases, hence the G is trained to minimize
Ez∼pz(Z )[log(1 − D (G (z)))].
In this way, both the D and G play a mini-max game.

B. WASSERSTEIN GAN
In their study, [42] Wasserstein GAN was proposed to mini-
mize the Earth Mover (EM) distance. The authors used EM
distance to learn the probabilistic distributions of a real-world
dataset. Their study demonstrated that WGANs can solve the
training issues present in traditional GANs.
Wasserstein GAN is a substitute of traditional GAN train-

ing. In this novel method, the WGAN paper demonstrated
that the stability of learning can be improved and problems
such as mode collapse can be avoided. Therefore, in this
novel method, the authors provided consequential learning
curves helpful for hyperparameter searches and debugging.
Moreover, the study provided extensive theoretical efforts
focusing the deep associations to various distances between
distributions.
The simple GAN extensively utilized Jansen-Shannon

divergence (commonly known as GAN loss). The WGAN
paper introduced Wasserstein metric as it is smoother value
space than Jansen-Shannon divergence. The GAN method
has several limitations while running with gradients which
can cause training instability. For that reason, Wasserstein
distance was used in WGAN paper to address these recurring
problems. The WGAN loss function is a smart transfor-
mational formula on the basis of Kantorovich-Rubenstein
duality.
The loss functions for training the Wasserstein GAN is:

W (Pr ,Pg) =
sup

∥f ∥L ≤ 1
Ex∼Pr [f (x)] − Ex∼P∅

[f (x)] (2)

Here, ‘‘sup’’ means supremum, which measures the upper
bound, or simple the maximum values and f is 1-Lipschitz
function.
Note here that if we replace ‘‘∥f ∥L ≤ 1’’ for ‘‘∥f ∥L ≤ K ’’

(K is a constant, let’s consider it K-Lipschitz), then we can
attain K .W (pr , pz). Consequently, if we include a parameter
function family {fw}wϵW which areK- Lipschitz for a constant
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K then the new form of Wasserstein metric can be:

W (pr , pg) =
max
wϵW

Ex∼pr [fw (x)] − Ez∼pz [fw(gθ (z))] (3)

The above process yield us to calculating W (pr , pθ ) to a
multiplicative constant. The modified function of WGAN,
the discriminator is employed to learn ‘‘w’’ to locate a bet-
ter ‘‘fw’’. On the other hand, the loss function is arranged to
measure the Wasserstein distance between pr and pg.
Figure 1 shows the WGAN’s Generator Network, which

consists of a series of layers, each of which play a crucial role
in the process. Figure 2 presents the WGAN’s Discriminator
Network, which consists of multiple layers.

FIGURE 1. The generator network of Wasserstein GAN architecture.

In WGAN, the Discriminator is an opponent network, as it
only reports the data distribution that the Generator acquires
and does not assess the accuracy of the data. Moreover,
weight clipping ensures that the weight of the Generator
adheres to the Lipschitz restrictions.

C. NON SATURATING GAN
NS-GAN loss is an alteration of the Generator loss to solve
the saturation issue. It is a modification that entails the gen-
erator to maximize the log of the Discriminator probabilities
in order to generate instances as an alternative of minimizing
the log of inverted discriminator probabilities for generated
instances.

To get more insight about NS-GAN, we have to understand
GAN loss function discussed by [17]. In the standard loss
function, the Generator attempt to minimize the function.
On the other hand, the Discriminator attempts to maximize

FIGURE 2. The discriminator network of Wasserstein GAN architecture.

the function. Conversely, it saturates the Generator. In other
words, the Generator may end training if it is unable to catch
with the Discriminator.

In order to solve the issue of saturation, a subtle variation
of the conventional loss function is utilized. In this varia-
tion, the Generator maximizes the log of the Discriminator
probabilities -log (D (G (z))).
Figures 3 and 4 present the NS-GAN’s Generator and

Discriminator architectures, respectively.
This modification is aimed to frame the issue from a view-

point, where the Generator tries to maximize the probability
of instances being real, as a replacement of minimizing the
probability of an instance being non-real. This process shuns
the saturation of generator through a stable weight update
mechanism.

Non-saturating GANs are alternatives to GANs such
as, WGANs and f-GANs. The empirical work by [43]
showed that the non-saturating model approximately mini-
mizes the f-divergence KL, which the authors named softened
reverse KL. The empirical study conducted by [33] confirms
that softened reverse KL has a steeper slope in the left tail and
slightly changes the behaviour of the right tail.

J (G)(G) = −Ez∼pzlogD(G(z)) (4)

Here, G is the model for probability distribution p(x).

D. LEAST SQUARE GAN
The study [44] argues that issues such as vanishing gradi-
ents may arise during training owing to loss of functions.
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FIGURE 3. The generator network of non-saturating GAN architecture.

FIGURE 4. The discriminator network of non-saturating GAN architecture.

To address this challenge, they proposed the least square
GANs (LS-GAN), which incorporates the least square loss
function for the Discriminator [34]. Their empirical study
confirmed that minimizing the objective function of the
LS-GAN can minimize Pearson χ2 divergence.

Figures 5 and 6 presents the Generator and Discriminator
architectures of LS-GAN, respectively.

FIGURE 5. The generator network of least-square GAN architecture.

FIGURE 6. The discriminator network of least-square GAN architecture.

In GANs, the learning process is to train the Generator
and the Discriminator at the same time. The objective of
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Generator is to learn the distribution Pg over data ‘‘x’’. The
sampling of input variables ‘‘z’’ is dome of the Generator
from a uniform distribution Pz (z). Moreover, the Generator
guides the input variable ‘‘z’’ to data space G(z; ⊖g) via a
differentiable network. At the same time, the Discrimina-
tor network is a classifier that tries to identify whether the
instance is from the Generator or from real data.

Mathematical representation of loss functions of LS-GAN:

minDVLSGAN (D) =
1
2
Ex∼pdata(x)[

(
D (x) − b)2

]
+

1
2
Ez∼pz(Z )[(D (G (z)) − a)2]. (5)

minGVLSGAN (G) =
1
2
Ez∼pz(Z )[(D (G (z)) − c)2] (6)

where, G is the Generator, D is the Discriminator, ‘‘a’’ is
the label for fake data, ‘‘b’’ are the labels for real data and
‘‘c’’ is the value that the Generator wants the Discriminator
to perceive as fake data.

E. SYNTHETIC DATA GENERATION GAN
In their study, [45] the proposed synthetic data generation
GAN, or SDG GAN, was used to generate artificial data to
train a supervised classifier. Their empirical study showed
that the SDG GAN can perform better than density-based
oversampling models and improves dataset classification.

The Discriminator and Generator of SDG-GAN are feed-
forward networks with MLP framework. In SDG-GAN
feature matching (FM) loss is utilized instead of regular loss.
The FM loss is used to improve the training process of GAN.
Moreover, SDG-GAN is developed on conditional GANs.
The SDG-GAN paper utilized FM method for training the
Generator. The objective of FM method is to change the cost
function of the Generator to reduce the difference between
the features of the produced data and real data. The objective
function of FM loss is given below:

FM = ∥Ex∼pdataf (x) − Ez∼Pz(z)f (G(z))∥
2
2 (7)

The f (x) in FM loss is the feature vector extracted by a layer
in the Discriminator. The objective of FM is to address the
instability of GANs via giving new objective to the Generator
which averts it from over-training.

Additionally, the SDG-GAN paper utilized a conditional
GAN (cGAN) structure for estimation of conditional distri-
bution, pxy . This process allowed sampling of minority class
label, Xnew = G(z, y).

The objective function of the SDG GAN is:

minGmaxD∥Ez∼pdataf
(
x/
y
)

− E
z∼pz

(z/y)f (G (z)) ∥
2
2

+ Ex∼pdata[log
(
D

(
x
/
y
))
] (8)

Moreover, Figures 7 and 8 present theGenerator andDiscrim-
inator architectures of SDG GAN.

FIGURE 7. The discriminator network of SDG GAN architecture.

FIGURE 8. The discriminator network of SDG GAN architecture.

F. PROPOSED METHOD: NOVELTY K-CGAN
Our proposed algorithm, Novelty K-CGAN, comprises two
main sub-networks: Generator and Discriminator.

The initial stage of training the K-CGAN involves gener-
ating Random Noise with batch size and latent dimension,
where the batch size is the size of the input batch of data and
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the latent dimension is the dimension of the noise. Afterwards
the Generator generates fake data. The Generator of novelty
K-CGAN transforms the random noise and labels into fake
data. On the other hand, the Discriminator links both the
real data and the generated synthetic data with their labels to
shape the combined labels and combined data. Our proposed
framework then prepares target labels to form a binary label
that discriminates real data from fake data. The next phase of
K-CGAN involves training the Discriminator. In this phase,
the Discriminator is used to classify the combined labels and
data to minimize the Discriminator loss, defined by the loss
function between the predictions and true labels.

Moreover, the gradients of the loss with respect to the
Discriminator’s trainable weights were computed and used
to update the parameters of the Discriminator. The Discrim-
inator’s loss was calculated in the next stage of training.
The Discriminator loss is the binary cross-entropy between
misleading labels and prediction. Furthermore, the gradients
and update weights were calculated. This process is known
as back-propagation, in which the gradients of the loss with
respect to the weights are calculated. The optimizer was
then utilized to update the weights, ultimately leading to the
minimum possible loss. The next steps of training novelty
K-CGAN involve the preparation of data and the start of the
Generator training. In this training phase, the Generator is
trained to transform the noise and real labels into fake data,
and uses theDiscriminator to classify these fake data samples.
Moreover, the Generator aims to maximize the loss defined
by the loss function between the misleading labels and the
Discriminator’s predictions of the fake data.

The Generator loss was calculated after the Discrimina-
tor loss. The Generator loss consists of two terms: binary
cross-entropy between true labels and predicted labels by
the Discriminator, and KL Divergence between the orig-
inal data and fake data generated by the Generator. The
Kullback-Leibler (KL) divergence is a measure of the differ-
ence between two probability distributions. This is used to
optimize the parameters of the Discriminator model based on
the difference between the original data distribution and the
fake data distribution of the Generator model. The next stage
of training the K-CGAN is referred to as backpropagation,
where the gradients of the loss with respect to the weights
are calculated. The optimizer was then utilized to update the
weights, ultimately leading to the minimum possible loss.
In the last step of training, tracking of the Discriminator
and the Generator loss is performed using the Generator loss
tracker and Discriminator loss tracker objects, returning these
losses as a dictionary. The diagrammatical representation of
our proposed model is given below:

Figure 9 shows the basis architecture of K-CGAN. We can
see that the Discriminator is the binary cross-entropy between
misleading labels and prediction.Whereas, the Generator loss
is comprised of two terms: binary cross-entropy between true
labels and predicted labels by the Discriminator, and KL
Divergence between the original data and fake data generated
by the Generator.

FIGURE 9. Basic architecture of K-CGAN approach.

G. NOVELTY K-CGAN LOSS FUNCTION
In this study, we defined a new novelty loss function that
adds the KL divergence loss to ensure that both distributions
are close to each other. Furthermore, the study performed
hyperparameter tuning to determine the optimal weight for
the KL divergence loss.

K-CGAN Discriminator Loss:
TheDiscriminator loss of experimental K-CGAN is Binary

Cross Entropy.

Discriminator Loss = −
1

output size

∑output size

i=1
yi. log ŷi

+

(
1 − ŷi

)
. log (1−ŷi) (9)

The Discriminator loss of K-CGAN has two parts: the
binary cross-entropy loss for the real data and the binary
cross-entropy from the generated data. The first part deals
with the accuracy of the Discriminator to identify real data.
The Discriminator takes in the original data and creates a
prediction, which is compared to the true label. The objective
is to lessen the loss term. Moreover, the second term, binary
cross-entropy for generated data, measures the efficiency of
the Discriminator network to discriminate real and generated
data. The objective is to lessen the loss term.

Figure 10 shows the Discriminator network of K-CGAN.
K-CGAN Generator Loss:
The Generator loss of the experimental K-CGAN com-

bines the binary cross-entropy and KL divergence.

Generator Loss

= −
1

output size

(
1 − ŷi

)
+

∑outputsize

i=1
yi.logŷi+

(
1 − ŷi

)
.log

∑
pi(x)log(

pi(x)
qi(x)

)

(10)

Like the Discriminator loss, the Generator loss has two parts:
the binary cross-entropy loss and the KL divergence. The
binary cross-entropy loss measures the ability of the Gener-
ator to trick the Discriminator. The purpose of the Generator
is to take in a noise vector and generate artificial data. The
binary cross-entropy loss compares the resulting prediction

71602 VOLUME 11, 2023



E. Strelcenia, S. Prakoonwit: Improving Cancer Detection Classification Performance Using GANs

FIGURE 10. The discriminator network of K-CGAN GAN architecture.

with the real label. The objective here is to maximize the
loss term. In other words, the Generator should produce
artificial data that should be difficult for the Discriminator
to distinguish from the original data.

On the other hand, the KL divergence term in the Generator
loss computes the difference between the distributions of the
generated data and real data. The objective is to lessen the
loss term. By minimizing the KL divergence, the Generator
learns to generate artificial data resembling real data.

Binary Cross Entropy and KL Divergence impacts training
by providing a balance between generating high-quality sam-
ples and ensuring that the generated samples match the target
distribution.

Figure 11 show the Generator network of proposed
K-CGAN method.

H. ADVERSARIAL TRAINING OF NOVELTY K-CGAN
In this section, we explained the framework of the proposed
model.

The Generator loss consists of two terms: (a) binary
cross-entropy between true labels and predicted labels by the
Discriminator, and, (b) KL divergence between the original
data and false data generated by the Generator.

Binary cross-entropy (BCE) is the negative average of the
log of corrected predicted probabilities. It compares the pre-
dicted probabilities to actual class output. Moreover, based on
the distance from the expected values, binary cross-entropy
measures the score that penalizes the probabilities. By doing
so, it computes the distance from actual value. The mathe-
matical representation of BCE is given in below equation:

BCE = −

(
1/
N

) (
ypredicted

)
+

∑
y_true log (1 − ytrue) ∗ log(1 − y_predicted)

(11)

FIGURE 11. The generator network of K-CGAN GAN architecture.

In the above equation, ‘‘y’’ is the label and ‘‘p(y)’’ is
the predicted probability of point being positive for each
‘‘output size’’ points. Moreover, for each ‘‘y’’, it adds
‘‘log(y_predicted)’’ to the loss- chances of the point being
true. On the other hand, log (1 − y_predicted) is the chance
of being negative, for every negative point ‘‘y=0’’.

The mathematical representation of KL divergence is
shown in the below equation:

KL
(
originaldata∥fakedata

)
=

∑
originaldata ∗ log(Original_data

/
fake_data) (12)

In the above KL divergence equation, there are two
probability distributions, ‘‘Original_data’’ and ‘‘Fake_data’’
distributions.

In our proposed novelty K-CGAN approach, the KL diver-
gence is utilized to minimize the difference between the
distribution of the generated data using GAN and the distribu-
tion of the real data. By doing so, the K-CGAN is encouraged
to generated data that closely resemble the traits of the real
data

The study utilized the Wisconsin Breast Cancer Dataset.
The following steps were taken to train the K-CGAN network
using the novelty Loss function.

The K-CGAN training procedures can be briefly presented
as follows:

IV. EXPERIMENTAL SETUP
This study utilized multiple GAN variants for data aug-
mentation to demonstrate how classification methods work
with small tabular medical datasets. The study proposed a
K-CGAN technique for data augmentation and compared
it with other state-of-the-art GAN frameworks (LS-GAN,
WGAN, NS-GAN, and SDGs-GAN).
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Algorithm 1 Training Procedure Using K-CGAN
1: Generate Random noise (noiseD)
2: With Shape (batch_size, 2:self.latent_dim),
3: (batch_size)= size of the Input Batch of Data
4: (latent_dim) = dimension of the Noise.
5: Generate fake data
6: #using the Generator to Transform the Random
7: noise(noise) and (real_labels) Into Fake Data.
8: Data preparation for the Discriminator
9: Training phase
10: #The real data (real_data) and generated fake data
11: (generated_data) Along With Their labels
12: (real_labels) to form (combined_data) and
13: (combined_labels)
14: Target labels are prepared
15: Binary labels (labels) are formed
16: Use discriminator to classify combined_data and
17: combined_labels
18: The goal is minimize the loss (d_loss)
19: Prepare data for generator training
20: Generator training during training
21: Random noise (noiseG) is generated with
22: (batch_size,Self.latent_dim) to train the
23: generator
24: Uses generator
25: #transform noise (noiseG) and labels
26: (real_labels) into (fake_data)
27: Use discriminator to classify these fake data.
28: #the generator aims to maximize the loss (g_loss)
29:
30: #the generator loss is equal to BCE + KL
31: Calculations
32: #Backpropagation process: gradients of the loss with
33: Respect to the weights are calculated
34: Goal is minimum Loss
35: Tracking step
36: (g_loss) and (gen_loss) tracking using
37: (gen_loss_tracker) and (disc_loss_tracker)
38: #Returns these losses as dictionary

A. DESCRIPTION ABOUT THE DATASET
In this study, we used the well-known Breast Cancer Wis-
consin (Diagnostic) Data Set (WBCD), which can be easily
accessed online [46]. This dataset was comprehensively used
for the model-based classification. The Wisconsin Breast
Cancer dataset was used to evaluate the performance of the
algorithms. The breast cancer dataset was selected to test
the strategies at multiple levels of complexity. Moreover, this
study used a breast cancer dataset to verify the accuracy of the
algorithms with augmentation techniques and authenticate
the proposed GAN-based method.

The dataset contains 31 columns, and the column number
is the first column. The dataset comprised 569 patients with
breast tumours, of which 357 were negative (0) and 212 were

positive (1).These tumour cases were characterized by 32 fea-
tures, including area, texture, radius, perimeter, concavity,
compactness, smoothness, fractal dimension, and symmetry.
Moreover, each of the 32 features was characterized by the:
worst value, mean, and standard error. The worst value repre-
sents the outlier in measurements, that is, values that are not
in the medically specified range. Additionally, all instances
are identified by a pseudonym and labelled as benign or
malignant. Table 1 summarizes the breast cancer datasets
used in this study. Figure 12 shows the class distribution into
the minority and majority classes in the breast cancer dataset.

TABLE 1. Basic information about dataset.

FIGURE 12. Class distribution of breast cancer dataset. This figure
indicates the WDBC classification into benign and malignant cases.

B. PERFORMANCE MEASUREMENT
To quantitatively analyze the performance of our proposed
method in the breast cancer domain, we used the fol-
lowing performance metrics: precision, F1 Score, recall,
and accuracy. These performance metrics are widely used
for classification problems. In our cancer detection model,
we calculated the following metrics:

Accuracy =
TP+ TN

N
(13)

F1 Score =
2 × precision× recall
precision+ recall

(14)

Recall =
TP

TP+ FN
(15)

Precision =
TP

TP+ FP
(16)

The values of precision can vary between 0 and 1.
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Here, N is the sum of the samples and TP is the number of
fault samples S, which are classified correctly. On the other
hand, FP is the number of other category samples predicted
incorrectly to be in sample S. FN is the number of current
fault samples classified incorrectly as other categories.

Moreover, we used classifiers with their default setting
values to train on the original dataset and then used it to
calculate the performance metrics on the synthetic data gen-
erated by the GAN model containing equal class distribution
of 357 benign and 357 malignant samples. A high value
indicates that the synthetic data generated by the GANmodel
accurately represents the original data.

C. MACHINE LEARNING ALGORITHMS
Machine learning methods employ an inference principle
known as induction, which indicates that conclusions can be
drawn from a small set of examples. Supervised learning is
typically used for induction. In supervised learning, a dataset
of inputs and required outputs is employed to signify the
modelled problem. For new inputs, the machine learning
algorithm uses this information representation extracted from
the examples to create the output. For instance, if there are n
examples in an equation (Xi;Yi), where Xi signifies the input
and Yi indicates the output. Here, we can view the obtained
classifier as a function f. The function obtains input X and
returns output Y [47].

This section presents a general review of machine learning
methods used in this study. All techniques used in this study
have a distinctive approach, and we selected these techniques
as promising examples from different types of learning.

The Random Forest (RF) is an ensemble classification
technique in which each model comprises decision trees that
are trained randomly to lessen the association. Random For-
est is easy to train and provides precise output predictions.
It also makes rational estimates of the feature importance.
When compared with a Decision Tree, Random Forest can
be more difficult to implement owing to the greater number
of parameters [48].

The logistic Regression classifier is a statistical model
that explicates the chances of the occurrence of a class by
fitting a logistic curve to the dataset [49]. Logistic Regression
classifiers are also known as logit, maximumentropy, and
logistic model classifiers. These models are extensively used
in statistics.

The Extreme Gradient Boosting (XGBoost) classifier is
a learning method that combines the predictions of several
weak models to generate stronger predictions. XGBoost is
one of the most admired and commonly used machine learn-
ing methods because of its capability to achieve excellent
performance in multiple tasks, such as regression and clas-
sification [50].

The KNN is a basic yet vital classification method used
in machine learning. It can be used in real-life exam-
ples, as it does not make underlying conjectures about data
distribution [51].

In addition to the above machine learning algorithms, this
study also used the Multilayer Perceptron (MLP) algorithm.
MLPs have the ability to train on a set of input-output pairs
and learn to model the dependencies or correlations of the
inputs and outputs [52]. The training of the MLP included
adjusting the parameters to reduce errors.

D. FEATURES AND TARGET COLUMN
Weused the feature column to prepare the dataset for training.
In addition, the target ‘Diagnosis’ column is used for the
prediction label.

1) FEATURES COLUMNS
We applied normalization to scale feature values between
0 and 1.Min-MaxScaler is a pre-processing technique used in
machine learning to scale the features of a dataset to a specific
range. The purpose of scaling the features is to ensure that all
features have a similar impact on the model and to prevent
certain features from dominating the model because of their
large values.

The method can be summarized as follows:

Algorithm 2 Feature Selection Procedures
1: Epochs: 10000
2: Batch_size = 64
3 #How Many Data in one Batch
4:HP_NOISE = 100
5: #Lengh of Noise Vector
6: HP_DROPOUT = 0.2
7: #Dropout to Be Used in the Neural Network
8: HP_WEIGHTS_INIT = ‘glorot_uniform’
9: #Weight Initialization
10: HP_DISCRIMINATOR_LAYERS = ‘2, -20, 10’
11: # Defined three possibilities of hidden layers.
12: HP_GENERATOR_LAYERS = ‘2, -128, 64’
13: #Here we have defined three possibilities of hidden
layers for the generator model.
14: SAMPLES_COUNT = 400
15: #How many fake samples to be generated while calcu-
lating F1 Score
16: EARLY_STOPPER_PATIENCE = 50
17: #Stop training if accuracy doesn’t improved for con-
tinuous n epochs.

V. RESULTS
In this study, five classifiers were used. We synthetically
generated a dataset using a saved Generator model. After
using the trained classifier, we calculated the F1 Score on
the synthetic dataset and compared it with that of the original
dataset. Furthermore, we checked both Generator and Dis-
criminator losses. The results of different GAN variants in
terms of Discriminator and the Generator losses are presented
in this section.

A. TRAINING AND TESTING
For our proposed method, we selected multiple hyperparam-
eters to achieve the maximum performance. After checking

VOLUME 11, 2023 71605



E. Strelcenia, S. Prakoonwit: Improving Cancer Detection Classification Performance Using GANs

multiple hyperparameters, we chose the hyperparameters
below to achieve better results.

Table 2 and Table 3 list our selected settings, where
Table 2 presents the hyperparameter settings for Gen-
erator and Table 3 presents hyperparameter settings for
Discriminator.

TABLE 2. This table shows the generator hyperparameter settings.

TABLE 3. This table shows the discriminator hyperparameter settings
At10000 epochs.

We used a learning rate of 0.0001 and hidden layers of 2,
-128, 64, and 2, -20, 10 for the Generator and Discriminator,
respectively, as shown in Table 2 and Table 3. We set the
dropout ratio at 0.1 on the Generators and Discriminators
hidden layers. Furthermore, the random noise vector for
the Generator is 100. For training, we selected the Adam
output optimizer. Similarly, in terms of the activation func-
tion, we used a learning rate of 0.0001 and hidden layers
of 2, -128, 64, and 2, -20, 10 for the Generator and Discrim-
inator, respectively, as shown in Table 2 and Table 3. We set
the dropout ratio at 0.1 on the Generators and Discriminators
hidden layers. Furthermore, the random noise vector for the
Generator is 100. For training, we selected the Adam out-
put optimizer. Similarly, in terms of the activation function,
we used a rectified linear unit (ReLU) as the hidden layer

optimizer. Moreover, for the Discriminator, we used binary
cross-entropy loss functions; for the Generator, we used the
Trained Discriminator Loss + KL Divergence as the loss
function.

B. EXPERIMENTAL K-CGAN
Figures 13 and 14 show the Loss of K-CGAN (Generator loss
and Discriminator loss).

FIGURE 13. EXPERIMENTAL K-CGAN’s generator loss.

FIGURE 14. EXPERIMENTAL K-CGAN’s discriminator loss.

Initially, the Discriminator loss was unstable;however,after
a few epochs, the Discriminator loss was stable and
oscillating.

The Generator and Discriminator loss shows that our
K-CGAN’ Discriminator loss is very smooth and oscillates
around a very small number between 0.2 and 0.3.

In addition, the Generator loss of K-CGAN was unstable
at the initial stage but after few epochs the Generator loss
becomes smooth and stable. The experimental observations
suggest that K-CGAN method performed very well on breast
cancer dataset.

71606 VOLUME 11, 2023



E. Strelcenia, S. Prakoonwit: Improving Cancer Detection Classification Performance Using GANs

FIGURE 15. This figure shows the ROC curve using the K-CGAN.

FIGURE 16. This figure shows the F1 Score using the K-CGAN.

On the other hand, Figures 15 and 16 show the ROC
curve using Novelty Loss and F1 Score of Novel K-CGAN
method, respectively. We can see that the F1 Score improved
very smoothly, and after 2000 epochs, it was 0.99+. After
every 100 epochs, we calculated the F1 Score and plotted its
results of the F1 Score. In addition, the total epoch run was
10,000 epochs.

On the other hand, Figure 17 presents the Numerical Cor-
relation (Real Data) and Numerical Correlation (Synthetic
Data) using K-CGAN.

In addition, the Table 4 shows the classification perfor-
mance of K-CGAN method. The performance was evaluated
on the basis of Recall, Precision, Accuracy values and
F1-Scores. The values illustrates that the K-CGAN method
performed well than other GAN methods.

Moreover, the Table 9 presents a detailed comparison of
K-CGANmethod with five well known GAN variants. When
compared with other methods, the experimental K-CGAN
performed the best with the Breast Cancer Dataset, and the
NS GAN performed the 2nd best performing one.

C. LEAST SQUARE GAN (LS GAN)
The Generator loss of Least Squares Generative Adversarial
Network (LS-GAN) was highly unstable during the initial

FIGURE 17. Numerical correlation (real data) and numerical correlation
using K-CGAN (synthetic data).

TABLE 4. Classification performance of K-CGAN.

phase of training. Over 1700 epochs, the training stabil-
ity gradually improved but still remained far from smooth.
Figure 18 illustrates this behavior for the Generator loss
over time. Notably, the loss fluctuated between 0.08 and
0.18 before gradually stabilizing. These results demonstrate
the difficulty of training LS-GAN and suggest that alternative
approaches may be necessary for more robust performance.
Nevertheless, the study highlights the potential of generative
adversarial networks in producing state-of-the-art results.

In contrast, the Discriminator loss of LS-GANwas remark-
ably unstable at the initial phase of training. Yet, after
1500 epochs, it became considerably stable with some oscil-
lations. However, there were multiple patches of instability
between 4500 to 7500 epochs as seen in Figure 19. This
means that overall, the Discriminator loss of LS-GAN shows
stability in few areas but not consistently throughout its range,
oscillating between 0.11 and 0.13. These results suggest
that while LS-GAN shows promise as a generative learning
technique, there is still much work to be done in terms of
improving the stability of its training process. As such, further
research into improving the stability of LS-GAN should be
conducted in order to maximize its potential as a powerful
generative deep learning technique.
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FIGURE 18. The generator loss of LS GAN.

FIGURE 19. The discriminator loss of LS GAN.

FIGURE 20. This figure shows the F1 Score using the least square GAN.

Figures 18 and 19 present the Generator loss and Discrim-
inator losses of LS GAN, respectively. On the other hand,
Figure 20 shows the F1 score using LS GAN.

To test the significance of the LS-GAN, we compared the
F1 Score of LS-GAN and our K-CGAN model on the breast
cancer dataset. The F1 Score using LS-GAN, as shown in
Figure 20 indicates that the LS-GAN method cannot perform
well on breast cancer dataset. However, the F1 Score was
more stable than was expected.

In the experimental study, we noticed that sometimes the
Generator generated synthetic data that were similar to the
original dataset. Hence, from empirical evidence, the least
square GAN did not perform very well. Figure 21 shows
the ROC curve using LS GAN method. Moreover, Figure 22
presents the Numerical Correlation (Real Data) and Numeri-
cal Correlation (Synthetic Data) using LS GAN.

FIGURE 21. This figure shows the ROC curve using the least square GAN.

FIGURE 22. Numerical correlation (real data) and numerical correlation
(synthetic data) using LS GAN.

Moreover, Table 5 presents the classification performance
of LS-GAN.We evaluated the performance of LS-GAN using
five classification methods. When compared with our pro-
posed K-CGAN, the LS-GAN performed poorly.

D. WASSERSTEIN GAN
Our study usedWGAN to check its applicability to the breast
cancer dataset. It was observed that the WGAN could not
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TABLE 5. Classification performance of least square GAN.

learn at approximately 8000 epochs, and its performance
declined after 8000 epochs. Furthermore, the Discriminator
loss did not perform well, and remained at 0.00.

Figure 23 shows the Generator loss of WGAN. We noted
that the Generator loss of LS-GANwas extremely unstable at
oscillated between 0.08 and 0.18. TheGenerator loss suggests
that WGAN performs poorly on breast cancer dataset.

FIGURE 23. The generator loss of WGAN.

Figure 24 presents the Discriminator loss ofWGAN. It was
observed that the Discriminator loss of WGAN did not per-
form well. Moreover, Figures 25 and 26 present the ROC
curve and the F1 Score using the WGAN method, respec-
tively. Initially, the F1-Score remained low and considerably
stable. The F1-Score remained low till 4000 epochs, but after
4000 epochs it became extremely unstable and high. From
the experimental observations we can say that the WGAN
method is not a suitable method for the breast cancer dataset
used in our study. Overall, the F1-Score was very low at the
initial stage but at the later stage it became high.

Further, Figure 27 shows the Numerical Correlation (Real
Data) and Numerical Correlation (Synthetic Data) using
WGAN. The Table 6 shows the classification performance
of WGAN method. When compared with the proposed
K-CGANmethod, the WGAN performed poorly on the basis

FIGURE 24. The discriminator loss of WGAN.

FIGURE 25. This figure shows the ROC curve using the WGAN.

FIGURE 26. This figure shows the F1 Score using the WGAN.

of recall, accuracy, precision values and F1-score. For that
reason, we can say that WGAN method do not perform well
on breast cancer dataset.

E. NON-SATURATING GANs
In another study, [33] argued that when compared with the
saturating training schemes related to the Jensen-Shannon
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FIGURE 27. Numerical correlation (real data) and numerical correlation
(synthetic data) using WGAN.

TABLE 6. Classification performance of wasserstein GAN.

divergence, the non-saturating schemes provide much better
gradients at the early stage of training. To verify the perfor-
mance of NS-GANs, we used them in our study on the breast
cancer dataset.

Moreover, the Figure 28 shows the Discriminator loss
using NS-GAN. It was observed that the NS-GAN performed
poorly in terms of the Discriminator loss.

Figure 29 shows the Generator loss of NS-GAN. We noted
that the Generator loss of NS-GAN remained highly unsta-
ble in the initial phase of training. After 1700 epochs the
Generator loss recovered considerably. However, the loss
was not smooth and remained unstable from time to time.
Compared to our proposed –K-CGANmethod, the Generator
of NS-GAN remained unstable as it oscillates around a high
number.

Figures 30 and 31 shows the ROC curve and the F1 score
using NS-GAN. The results confirm that the F1 Score using
NS-GANs is more than 80% but is neither still nor stable.

We observed that both the losses were stable after
1000 epochs. Moreover, the F1 Score was greater than 80%,
but it could be more stable. Figure 31 shows that the F1
Score is approximately 0.85 at times, but usually reaches 1.

FIGURE 28. The discriminator loss using NS-GAN.

FIGURE 29. The generator loss of non-saturating GAN.

FIGURE 30. The ROC curve using NS-GAN.

Nevertheless, the Non-Saturating GAN performed reason-
ably well with the breast cancer dataset compared to the
other GANs used in our experiment. However, the K-CGAN
attained better and more stable results than the NS-GAN.
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FIGURE 31. This figure shows the F1 Score using the non-saturating GAN.

FIGURE 32. Numerical correlation (real data) and numerical correlation
(synthetic data) using NS-GAN.

In addition, Figure 32 shows the numerical correlation (real
and synthetic data) using LS-GAN.

In addition, Table 7 shows the classification performance
of NS-GAN on the basis of Recall, Precision, Accuracy and
F1 score.

F. SYNTHETIC DATA GENERATION GANs
Our empirical study shows that the SDG GAN model per-
forms poorly for breast cancer datasets.

Figure 33 shows the Discriminator loss of SDG-GAN.
We noted that theGenerator loss of SDG-GANwas extremely
unstable throughout the experiment. The loss oscillates
between 0.04 and 4. Our experimental study confirmed that
the SDG-GAN performs poorly on breast cancer dataset.

Figure 34 presents the Generator loss of SDG-GAN. It was
observed that the Generator loss of SDG-GAN was stable
at initial phase. However, after 8000 epochs, we observed

TABLE 7. Classification performance of non-saturating GAN.

FIGURE 33. The discriminator loss of SDG GAN.

instability in theGenerator loss and oscillated between 1 and 6.
These observations confirmed that the SDG-GAN do not
perform well on the breast cancer dataset.

Moreover, Figure 35 shows the ROC curve using SDG-
GAN. Figure 36 shows the F1-Score using SDG-GAN. It was
observed that there are many fluctuations in the F1 Score. The
empirical findings suggest that F1-Score using SDG-GAN is
highly unstable at every epoch.

Moreover, Figure 37 presents the numerical correlations
(real and synthetic data) using SDG GAN.

In addition, the Table 8 presents the classification perfor-
mance of SDG-GAN. The performance was evaluated on the
basis of Recall, Precision, Accuracy values and F1-Score.
The values confirmed that SDG-GAN performed poor when
compared to K-CGAN and LS-GAN.

VI. DISCUSSION
This section presents a detailed discussion of the perfor-
mance of our proposed method, K-CGAN. Our proposed
method is based on a conditional GAN (cGAN) framework
with the custom loss function of a generator. The study uti-
lized the Kullback-Leibler divergence. Hence, we named our
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FIGURE 34. The generator loss of SDG GAN.

FIGURE 35. This figure shows the ROC curve using SDG GAN.

FIGURE 36. This figure shows the F1 Score using the SDG GAN.

proposed method Kullback-Leibler divergence Conditional
GAN (K-CGAN) composed of two sub-networks: the Gen-
erator and the Discriminator. As mentioned in the previous

FIGURE 37. Numerical correlation (real data) and numerical correlation
(synthetic data) using SDG GAN.

sections, we used K-CGAN to generate synthetic breast can-
cer data to improve the classification of malignant cases. The
aim was to generate enough synthetic malignant cases to
balance the original dataset. Moreover, the study compared
our proposed method with other GAN variants.

One of the aims of this study was to generate synthetic data
to avoid the need for large and complex datasets. In this way,
the study was intended to deal with the issue of limited train-
ing data in the breast cancer domain. In this regard, the study
implemented the WDBC dataset. Moreover, we synthetically
generated a dataset utilizing a saved generator. After that,
we calculated precision, recall, accuracy, and F1-score values
on the generated dataset.

In this study, we analyzed the performance of K-CGAN on
the breast cancer dataset and compared it with other LS-GAN,
NS-GAN,WGAN, and SDG-GAN. The classification perfor-
mance of K-CGANwas evaluated based on four performance
metrics - Precision, Recall, F1 Score, and Accuracy.

To compare the performance of these GANs, we exam-
ined the results in Tables 4, 5, 6, 7, and 8, which display
the classification performance of each model in terms of
precision, recall, F1 score, and accuracy. Table 4 shows
the performance of K-CGAN when applied to the breast
cancer dataset. Regarding K-CGAN, we can see its clas-
sification performance is impressive, with high precision,
recall, F1 score, and accuracy values across all mod-
els. XGBoost, Random Forest, Nearest Neighbor, MLP,
and Logistic Regression all show high precision, recall,
F1 score, and accuracy levels, each exceeding 97%. Specif-
ically for the MLP model, K-CGAN has obtained almost
perfect scores with a precision of 0.985222, recall of 1.0,
F1 Score of 0.992556, and accuracy of 0.99250. These high
scores demonstrate the efficacy of K-CGAN in detecting and
diagnosing breast cancer with high accuracy. Based on these
results, it is clear that K-CGAN is a powerful technique for
breast cancer classification, performing consistently with all
models.
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TABLE 8. Classification performance of SDG GAN.

On the other hand, compared to the performance of
K-CGAN, LS GAN, WGAN, NS GAN, and SDG GAN do
not demonstrate the same level of success in breast cancer
classification based on their respective classification perfor-
mance tables.

On the other hand, Table 5 shows the findings of LS
GAN. However, the results show lower scores compared to
K-CGAN, indicating the inferior performance of LS-GAN.
For example, LS-GAN has achieved a precision score of
0.770677 for the XGBoost model, whereas K-CGAN has
achieved a score of 0.982801 for the same model. Simi-
larly, LS-GAN has obtained a recall score of 0.966981 for
XGBoost, while K-CGAN has achieved a perfect recall score
of 1.0. These results indicate that LS-GAN is less accu-
rate in detecting and diagnosing breast cancer compared to
K-CGAN. Moreover, the XGBoost model for LS GAN
reached a recall value of 96.6%, the precision,
f1-score and accuracy values were below 90%, indicating
the model’s inability to accurately classify breast cancer
samples.

Similarly, Table 6 shows the performance of WGAN when
applied on breast cancer dataset. Although the performance of
theWGAN’s MLPmodel was high with a precision of 96.6%
and an accuracy of 96.4%, the remainingmodels’ values were
less impressive, and the WGAN’s overall performance was
poorer to K-CGAN.

Similarly, Table 7 shows the findings of NS GAN on
breast cancer dataset. When evaluating the performance of
these models on the breast cancer dataset, K-CGAN out-
performed NS GAN in all metrics considered. K-CGAN
achieved XGBoost’s accuracy of 99.125%, which indicates
that the model was able to correctly classify 99.125% of the
cases in the dataset. In contrast, NS GAN had an accuracy
of 89.99.03% on XGBoost, which is considerably lower than
K-CGAN. Additionally, K-CGAN achieved high precision,
recall, and F1 score values, indicating that it was better at
correctly classifying both positive and negative cases in the
dataset. Furthermore, when looking at the performance of
each individual model used in the analysis, it is clear that

K-CGAN performed consistently well across all models,
achieving a precision score of at least 0.977995 for all models.
On the other hand, NS GAN had varied performances across
different models. For instance, MLP achieved the highest
F1 score of 0.918033 among all NS GAN models, while
MLP achieved the highest accuracy score of 0.988489. The
K-CGAN and NS GAN are useful machine learning models
for breast cancer classification, but K-CGAN outperformed
NS GAN in terms of classification accuracy and consis-
tency across different models. These results demonstrate
the potential of machine learning models based on GANs
for improving the accuracy and reliability of breast cancer
diagnosis.

Table 8 shows the performance of SDGGANwhen applied
on the same dataset. When comparing the accuracy scores
of the two models, K-CGAN shows better performance.
The accuracy score of K-CGAN ranges from 0.98875 to
0.99250 for all models, while the accuracy score of SDG
GAN ranges from 0.724077 to 0.910369. This indicates that
K-CGAN is a more accurate and reliable model for breast
cancer classification. Secondly, when comparing the F1 Score
of both models, K-CGAN has a higher F1 score range
between 0.988875 to 0.992556, while SDG GAN F1 score
ranges from 0.645367 to 0.868841. Moreover, the K-CGAN
also outperformed SDGGAN in terms of better precision and
recall values. K-CGAN indicates a more precise prediction of
positive cancer diagnosis as well as better handling of false
positives.

Overall, based on the classification performance of each
GAN model, K-CGAN demonstrates superior classification
performance compared to other GANs applied to breast can-
cer data. While other GANs illustrated promising results in
some models, no other technique showed the same level of
consistent success as K-CGAN. Therefore, K-CGAN can be
a recommended technique for accurate and reliable breast
cancer classification.

From Table 9, it is evident that the performance of
K-CGAN outweighs that of the other models by a much
higher F1 score.

TABLE 9. Multiple models F1 Score results comparison.
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Table 9 show a brief comparison of GAN frameworks. The
F1 scores of K-CGAN are higher than those of LS GAN,
WS GAN, NS GAN, and SDG GAN. The K-CGAN model
yielded high-quality results in terms of its F1 score across
all the classifiers. MLP achieved an F1 score of 0.991326,
while Random Forest and Logistic Regression both scored
0.988875. Nearest neighbor and XGBoost performed equally
well, with F1 scores of 0.991326 and 0.991326, respectively.
These results demonstrate the effectiveness of K-CGAN in
achieving high scores across a range of classifiers.

In addition, Table 10 compares the precision values of each
method.

TABLE 10. Multiple models precision results comparison.

As seen from the Table 10, the precision values for the
K-CGAN method are improved when compared with other
GAN methods. The classification performance was checked
on popular classification methods. The precision scores for
the K-CGANmethodwere higher than the precision values of
LSGAN, WDGAN, NSGAN and SDGGAN. The K-CGAN
method attained higher values in terms of its precision values
for all the classifiers. MLP classifier performed the best for
K-CGAN. The MLP classifier was followed by XGBoost
and Nearest Neighbor as both had a same precision value of
0.982801. The third best precision values were achieved by
Random Forest and Logistic Regression at precision value
of 0.977995.

In this study, we suggested a K-CGAN trained to produce
synthetic data to address insufficient dataset problems in
the medical domain.This study used numerical data from
569 patients, of which 212 have malignant tumors and
357 have benign tumors.

VII. CONCLUSION
Furthermore, it was aimed to develop a model that could
yield exceptional results in the breast cancer domain. Using
the Generator model, we created synthetic data and then
compared the data with the original breast cancer dataset. Our
empirical findings show that the proposed K-CGAN method
performed better than other GANs in terms of classification
performance, and the Non-Saturating GAN also achieved
good results. We evaluated the classification performance

of our proposed GAN using recall, precision, accuracy, and
F1 scores on synthetically generated data.

The empirical investigation demonstrated that, when com-
pared to other GAN versions, the K-CGAN performed well
and had the highest stability.
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