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Abstract: There has emerged substantial research in addressing single-view 3D reconstruction and
the majority of the state-of-the-art implicit methods employ CNNs as the backbone network. On
the other hand, transformers have shown remarkable performance in many vision tasks. However,
it is still unknown whether transformers are suitable for single-view implicit 3D reconstruction. In
this paper, we propose the first end-to-end single-view 3D reconstruction network based on the
Pyramid Vision Transformer (PVT), called ED2IF2-Net, which disentangles the reconstruction of an
implicit field into the reconstruction of topological structures and the recovery of surface details to
achieve high-fidelity shape reconstruction. ED2IF2-Net uses a Pyramid Vision Transformer encoder
to extract multi-scale hierarchical local features and a global vector of the input single image, which
are fed into three separate decoders. A coarse shape decoder reconstructs a coarse implicit field
based on the global vector, a deformation decoder iteratively refines the coarse implicit field using
the pixel-aligned local features to obtain a deformed implicit field through multiple implicit field
deformation blocks (IFDBs), and a surface detail decoder predicts an enhanced displacement field
using the local features with hybrid attention modules (HAMs). The final output is a fusion of
the deformed implicit field and the enhanced displacement field, with four loss terms applied to
reconstruct the coarse implicit field, structure details through a novel deformation loss, overall shape
after fusion, and surface details via a Laplacian loss. The quantitative results obtained from the
ShapeNet dataset validate the exceptional performance of ED2IF2-Net. Notably, ED2IF2-Net-L stands
out as the top-performing variant, exhibiting the highest mean IoU, CD, EMD, ECD-3D, and ECD-2D
scores, reaching impressive values of 61.1, 7.26, 2.51, 6.08, and 1.84, respectively. The extensive
experimental evaluations consistently demonstrate the state-of-the-art capabilities of ED2IF2-Net in
terms of reconstructing topological structures and recovering surface details, all while maintaining
competitive inference time.

Keywords: 3D reconstruction; single-view; deep learning; computer vision; transformer; implicit
field; signed distance function; displacement field

1. Introduction

Single-view 3D reconstruction aims to reconstruct object shapes from single-view RGB
images, which are widely used in areas such as robotics, VR, and autonomous driving. How-
ever, single-view 3D reconstruction faces challenges that stem from its intrinsic ill-posed
nature. A large number of single-view 3D reconstruction approaches have been presented
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recently. Among them, deep-learning-based methods [1–35] have yielded more advanced
results. Shape representations in deep-learning-based approaches can be classified into
explicit [1–17] and implicit [18–35] representations, and the latter ones are independent of
memories and resolutions, which can significantly improve the reconstruction performance.

The main ideas of the earlier data-driven implicit approaches [18–22] are to learn
latent vectors of the input images and the neural networks are applied to fit the mapping
relationship from the query points to a implicit scalar field. For example, DeepSDF [18]
introduces latent codes that are able to represent similar objects and output signed distance
functions (SDFs) approximating object shapes in combination with query point coordi-
nates. IM-Net [19] encodes a single input image to extract a latent vector, which is then
decoded together with the query point coordinates to generate an implicit scalar field value
representing the spatial relationship between the point and the object shape. Occupancy
Network [20] encodes different types of inputs into embeddings while converting query
points into point features, and the decoder incorporates all the information and outputs
a real number to indicate the occupancy probability of the query point. Littwin et al. [21]
use the encoding vector of the input image as the weight matrix in an MLP for binary
classification of query points, resulting in the generation of an implicit field. These methods
can only reconstruct the coarse shape but fail to reproduce the details of the object. Rather
than predicting a single global implicit field, PQ-NET [23] outputs a SDF for each intrinsic
structure of the object and fuses these implicit fields to generate the final SDF, producing
more promising reconstruction results.

Recently, several novel CNN-based models have been proposed [24–29]. DISN [24]
fuses global and local features of the input image with point features of query points to
obtain the fused SDF. MDISN [25] deforms a randomly generated SDF based on local
feature variations at the layer level to approximate the ground-truth SDF. Ladybird [26]
considers pixel-aligned local features of query points and their symmetry points, combining
them with global features to output the SDF. Ray-ONet [27] integrates global features,
local features, and scaling parameters to estimate the occupancy probability of spatial
query points along rays, reducing complexity and improving performance compared to
Occupancy Network [20]. Peng et al. [28] merge global and local features extracted by an
encoder, incorporate query points via linear interpolation, and use subsequent networks
to predict occupancy values. In contrast to earlier works [18–23], such methods [24–28]
can better capture structure details and recover finer shapes owing to the integration of
local features. However, details at the surface level such as depth, which are equally critical
for visual perception, are still poorly reconstructed. D2IM-Net [29] focuses on recovering
surface details, which often produces promising surface features, yet is unable to reconstruct
the correct topological structures. Furthermore, previous CNN-based approaches [24–29]
often encounter two inherent limitations associated with the convolutional layer. Firstly,
convolutional kernels treat all pixels equally, resulting in inefficiency when processing
images. This uniform treatment fails to capture the varying importance and dependencies
of different pixels within an image. Secondly, due to the local nature of convolution,
long-range pixel relationships are not effectively modeled. As a result, crucial contextual
information may be overlooked, hindering the ability to fully understand and exploit the
complex dependencies and interactions between pixels across the entire image. The PIFu
series [30–32] incorporates pixel-aligned local features and depth information into their
paradigm, with a primary focus on human reconstruction.

With the advent of the works like ViT [36] and DeiT [37], transformers have obtained
considerable attention in computer vision recently. Transformer-based vision models have
achieved state-of-the-art performance in several downstream tasks, such as DETR [38] for
object detection, SwinIR [39] for image restoration, Segmenter [40] for semantic segmen-
tation, and MViTv2 [41] for image classification. While transformers have demonstrated
preliminary success in many tasks including explicit 3D reconstruction [1–5,42], whether
they could be successfully employed to improve implicit 3D reconstruction is still unknown.
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To address the limitations of existing implicit methods that struggle to simultaneously
reconstruct the topological structure and surface details of objects, ED2IF2-Net is proposed
in this paper. Our approach utilizes transformers, specifically Pyramid Vision Transformer
(PVT), to enable end-to-end single-view implicit 3D reconstruction. By leveraging PVT,
we aim to mitigate the negative impacts of underlying convolutional layers in CNN-based
methods, allowing for comprehensive reconstruction of both topological structures and
surface details from a single image. For an input image, local features and a global vector
are extracted using a pre-trained Pyramid Vision Transformer encoder [43]. Subsequently,
a coarse shape decoder reconstructs a coarse implicit field based on the global vector.
A deformation decoder, incorporating symmetry priors that provide extra knowledge
about the object shape, predicts a deformed implicit field with finer-grained structure
details using pixel-aligned local features and multiple implicit field deformation blocks
(IFDBs). Finally, a surface detail decoder equipped with hybrid attention modules [44]
(HAMs) constructs an enhanced displacement field, enabling the recovery of enhanced
surface details from the local features. In order to facilitate the learning of the implicit
field deformation function, IFDB offers a lightweight and effective approach. It refines
the coarse implicit field by leveraging information from query points and pixel-aligned
local features at neighboring scales. Through simple iterations, multiple IFDBs efficiently
fit the deformation function, enabling the generation of the deformed implicit field that
captures the finer topological structure of the object. In contrast to CBAM [45], HAM is
a more novel and parameter-efficient module that significantly improves surface detail
recovery performance. The output of the proposed ED2IF2-Net is a fusion of the deformed
implicit field and the enhanced displacement field together. The main contributions of this
paper include:

1. A Pyramid-Vision-Transformer-based ED2IF2-Net is proposed for end-to-end single-
view implicit 3D reconstruction, which disentangles implicit field reconstruction
into accurate topological structures and enhanced surface details with competitive
inference time. To our knowledge, it is the first method to utilize transformers for
single-view implicit 3D reconstruction. Experimental results show superior perfor-
mance in both overall reconstruction and detail recovery.

2. The finer topological structural details of the object are achieved through iterative
refinement of the coarse implicit field using multiple IFDBs. IFDB deforms the implicit
field from coarse to fine based on query point and pixel-aligned local feature variations
at continuous scales. ED2IF2-Net also enhances surface detail representation at spatial
and channel levels.

3. A novel loss function consisting of four terms is proposed, where coarse shape loss
and overall shape loss allow the reconstruction of the coarse shape and the overall
shape after fusion, and novel deformation loss and Laplacian loss enable ED2IF2-Net
to reconstruct structure details and recover surface details, respectively.

2. Related Works

Since the proposed ED2IF2-Net is a single-view 3D reconstruction network based on
the Pyramid Vision Transformer, in this section, we review some related works as follows.

2.1. Shape Representations

The shape of an object can be represented by voxels [1–10], point clouds [11–14],
meshes [15–17], and implicit functions [18–35]. In this paper, with respect to shape rep-
resentations, we choose implicit functions, as they can process arbitrary topologies and
support multi-resolution representations in comparison to others.

2.2. Implicit Methods for Single-View 3D Reconstruction

Since the object shapes in this work are represented with implicit functions, this section
focuses on reviewing the implicit methods for single-view 3D reconstruction.
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There are mainly two popular forms of data in deep-learning-based single-view
implicit 3D reconstructions: occupancy probability and SDF. Specifically, the implicit
models learn the scalar value of each query point under the supervision of the ground-truth
occupancy probability or SDF. Earlier implicit methods, such as Occupancy Network [20]
and IM-Net [19], tend to adopt a straightforward idea. There, the latent vectors of the input
image are firstly extracted via an image encoder, and are subsequently combined with the
features or coordinates of the query points for the MLP inputs, and then the occupancy
probability or SDF for each query point can be predicted. Recently, a few novel CNN-based
implicit 3D reconstruction models [24–29] have been proposed that take into account local
features, resulting in more promising reconstruction performance.

The most relevant works to ours are DISN [24], MDISN [25], and D2IM-Net [29].
Specifically, both DISN and MDISN predict the camera parameters of the input image to
extract local features corresponding to each query point. In DISN, query point features
are concatenated with global and local features. Two concatenated features are decoded to
obtain two predicted values, which are summed to derive the final SDF. MDISN deforms
the randomly generated SDF for each query point from coarse resolutions to fine ones
depending on the variation of local features. D2IM-Net predicts the camera pose and de-
composes the reconstruction of the object’s implicit field into two parts: the reconstruction
of coarse shapes and the recovery of details. DISN and MDISN achieve better experimental
results than earlier approaches, yielding shapes with more structure details. However, they
still fail to recover the surface details of an object. While D2IM-Net is capable of recovering
good surface details, it often results in poor topological structures. Although a variant of
D2IM-Net, called D2IM-NetGL, uses both global and local features in the basic decoder, it
still struggles to reconstruct a satisfactory shape and even produces blurry surface details.

Compared to DISN, MDISN and D2IM-Net, ED2IF2-Net is the first to employ a trans-
former to solve single-view implicit 3D reconstruction, which alleviates the negative effects
brought by convolution in CNN-based models. This paper proposes a novel paradigm that
disentangles the reconstruction of an object into reconstruction of more accurate topological
structures and enhanced surface details. The finer-grained topological structure details and
enhanced surface details are obtained through iterative refinement of the coarse implicit
field using the multiple IFDBs, as well as enhancement of the surface detail features in both
spatial and channel dimensions using HAMs, as shown in Figure 1. The core difference
lies in the construction of individual specific loss terms for all learned fields, including
the coarse implicit field, deformed implicit field, and enhanced displacement field. This
disentanglement of the deformed implicit field, which contains most of the topological
structures, from the enhanced displacement field allows for better learning, resulting in
the recovery of enhanced surface details. Actually, a novel deformation loss for learning
structure details from ground truth is introduced in our combined loss function, while the
surface details can be learned from ground-truth normal maps by applying a Laplacian
loss. Extensive qualitative and quantitative comparisons conducted in the experimental
Section 4 unequivocally demonstrate the remarkable capabilities of our proposed ED2IF2-
Net. In stark contrast to the limitations observed in DISN and MDISN, where surface
detail recovery of objects is lacking, ED2IF2-Net successfully overcomes this challenge.
The reconstructed results exhibit significantly improved surface detail fidelity, showcasing
the effectiveness and superiority of our approach. Furthermore, our model solves the
problem of D2IM-Net and its variant D2IM-NetGL, which reconstruct the wrong topolog-
ical structures. ED2IF2-Net is capable of generating visually attractive and high-quality
3D shapes.
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Figure 1. The overall pipeline of the proposed ED2IF2-Net, where P is a 3D query point and
π(·) represents the operation of projecting a 3D spatial query point to an image. PVT Enc means
Pyramid Vision Transformer encoder. Coa Dec, Def Dec, and Sur Dec denote Coarse Shape Decoder,
Deformation Decoder, and Surface Detail Decoder, respectively. ED2IF2-Net first extracts a global
vector and the local features of the input image via a Pyramid Vision Transformer encoder. The global
vector is used in a coarse shape decoder to predict a coarse implicit field, which is then iteratively
refined by a deformation decoder to obtain a deformed implicit field with finer structure details using
multiple implicit field deformation blocks (IFDBs). A surface detail decoder with hybrid attention
modules (HAMs) uses local features to recover an enhanced displacement field. The final output
of ED2IF2-Net is a fusion of the deformed implicit field and the enhanced displacement field. Four
combined loss terms are applied to reconstruct the coarse implicit field, structure details, overall
shape, and surface details.

2.3. Laplacian Operators

Laplacian operators are frequently used to extract local variations in images and 3D
shapes. Further, Laplacian pyramids have so far been used extensively in neural models for
super-resolution image reconstruction [46,47] and generation [48] by extracting multi-scale
structures from images. Li et al. [49] propose a Laplacian loss for image synthesis, which
effectively preserves image details and eliminates artifacts. Recently, there have been some
works on single-view 3D reconstruction using Laplacian operators. Wang et al. [17] apply
Laplacian loss to meshes by minimizing the loss between Laplacian coordinates before
and after surface mesh deformation. Liu et al. [50] smooth the surface via a Laplacian
regularization, but it is prone to lose the surface details of the object. D2IM-Net [29] takes
the disentangled detail information as a displacement field, which recovers the surface
details well with Laplacian loss. In this work, we follow and improve D2IM-Net regarding
Laplacian loss. The key difference is that, in our acquisition of the displacement field, the
feature representation of surface details is enhanced using HAM [44], which effectively
overcomes the lack of surface details in D2IM-Net.

2.4. Transformers in Computer Vision

Transformers [51] originate from natural language processing whose core component is
multi-head self-attention. Recently, transformers have received much attention in computer
vision and have made a profound impact. For a comprehensive review of transformers
in vision, the readers are referred to [52]. For applications in vision, transformers have
achieved state-of-the-art performance in object detection [38], image classification [36],
image restoration [39], and multi-view 3D reconstruction [2]. In this work, a Pyramid
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Vision Transformer [43] is used to extract multi-scale hierarchical local features and a global
vector. PVT inherits the advantages of CNNs and transformers in that it can extract multi-
scale hierarchical local features from images without inductive bias. Ablation studies also
demonstrate that, when the Pyramid Vision Transformer is used as an encoder for ED2IF2-
Net, fewer artifacts and better performance can be achieved compared to ResNet18 [53].

3. Methodology
3.1. Overview

In this work, we aim at reconstructing high-fidelity 3D shapes with topological struc-
tures and surface details by means of a network that models the signed distance func-
tion (SDF) defined as g, given a single RGB image I ∈ RH×W×3 of the object and any
spatial query point P ∈ R3. The network outputs the signed distance function values
s = g(I, P), s ∈ R. The training data pair for ED2IF2-Net to learn the implicit function is
made up of single-view images of the object, spatial query points, and their corresponding
ground-truth SDF values, viz. (I, P, SDF(P)).

ED2IF2-Net disentangles the SDF of the shape T into the deformed implicit field with
structure details and the enhanced displacement field that allows the surface details of the
object to be reestablished. The pipeline of ED2IF2-Net is shown in Figure 1. ED2IF2-Net
extracts image features with a Pyramid Vision Transformer encoder followed by three
decoders reconstructing the coarse implicit field, the deformed implicit field, and the
enhanced displacement field, respectively. Then the latter two scalar fields are fused to
get the final SDF. Finally, the iso-surface with SDF = 0 can be extracted using Marching
Cubes [54] for visualization.

The following sections describe in detail how ED2IF2-Net disentangles the implicit
field, network architecture, and loss function.

3.2. Disentanglement Method

The variations of the detailed information around the surface of the object (i.e., surface
details) affect the Laplacian of the SDF [55]. Inspired by this, the surface details of an object
can be detected through Laplacian operators and the remaining topological structures can
be reconstructed according to an appropriate loss function, thus disentangling the implicit
field reconstruction into topological structure reconstruction and surface detail recovery.
As shown in Figure 2, the ground-truth SDF is disentangled into the deformed implicit
field with structure details and the enhanced displacement field containing surface details
of the object. The most similar work to ours is D2IM-Net [29], which only disentangles the
ground-truth SDF into the sum of a coarse implicit field and a displacement field. Unlike
D2IM-Net, our disentangled deformed implicit field is based on the coarse implicit field,
where the deformed implicit field contains most of the topological structures. Given a
query point P, our disentanglement solution can be denoted as:

SDF(P) = gsu(P) + gst(P), (1)

f : gco ∈ R 7→ gst ∈ R, (2)

where SDF denotes the ground-truth SDF, gsu, gst, and gco represent the enhanced displace-
ment field with surface details, the deformed implicit field containing most of topological
structures, and the coarse implicit field, respectively, and f defines the deformation function
from gco to gst.
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Figure 2. An illustrative description of our disentanglement. ED2IF2-Net disentangles the ground-
truth SDF of the chair into a deformed implicit field and an enhanced displacement field (visible
surface), where the deformed implicit field is obtained by refining the coarse implicit field of the
object. The red arrows in the deformed implicit field represent the deformation function f from the
coarse implicit field (green part) to the deformed implicit field (containing most of the topological
structures of the object).

Actually, we can suppose that the shape embedded in the deformed implicit field is
smooth and the reconstructed shape from the deformed implicit field can only approximate
the object surface. Therefore, the surface details can be further represented with the
enhanced displacement field. As the enhanced displacement field is attached onto the
smooth deformed implicit field near the iso-surface of the object, the Laplacian of the
enhanced displacement field is approximately equal to the Laplacian of SDF:

MSDF(P) =Mgsu(P). (3)

In order to accelerate the network training, Laplacian for only the sampling points,
whose minimum distance to the object shape T is less than a predefined threshold α, will
be taken into consideration.

Motivated by the works [29,31,56] related to inference on the visible and invisible
surfaces of objects, the forward and backward displacement maps are introduced for the
visible and occluded parts of the object, respectively. Our forward displacement map
recovers the visible surface details of the object based on a Laplacian loss and the backward
displacement map is used to fine-tune the deformed implicit field, further compensating
for unreconstructed structure details and fixing incorrect topological structures. In short,
we have

SDF(P) =

{
gst(P) + gsuF(p), i f P ∈ PV ,

gst(P) + gsuB(p), otherwise,
(4)

MgsuF(p) =MSDF(P), P ∈ PV , (5)

where gsuF and gsuB represent the forward and backward displacement maps, respectively.
p = π(P) is the projection of P on the single-view image. PV is the point set which consists
of points close to the visible surface of the object.

Indeed, 3D displacement fields are more direct and are also defined in 3D space.
However, displacement maps are applied instead of 3D displacement fields because they
enable alignment of the input image with the details, making it possible to calculate
the Laplacian loss term. Additionally, it is more intuitive for us to observe the detailed
information of the object in the displacement maps.

3.3. Network Architecture

The proposed ED2IF2-Net contains four main components: Pyramid Vision Trans-
former encoder, coarse shape decoder, deformation decoder, and surface detail decoder.

Based on the Pyramid Vision Transformer encoder, two variants of ED2IF2-Net are de-
signed: ED2IF2-Net-T with lower computation complexity and ED2IF2-Net-L with higher
computation complexity, and the latter achieves more pleasing reconstruction results.
ED2IF2-Net-T and ED2IF2-Net-L differ only in encoders, and they share the same architec-
ture for the other parts.
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3.3.1. Pyramid Vision Transformer Encoder

In this work, a Pyramid Vision Transformer [43] is used as an encoder for image
feature extraction, which consists of four stages. Each of these stages is composed of a patch
embedding layer and transformer encoder layers extracting multi-scale local features. In
the kth stage, the patch embedding layer partitions the input Mk−1 ∈ RHk−1×Wk−1×Dk−1 into
a total of Hk−1Wk−1

B2
k

patches, assuming that the size of each patch after partition is Bk. Then,

these patches are flattened, followed by a linear projection to the corresponding dimension
Dk of the current stage. After that, embedded patches are reshaped to Hk−1

Bk
× Wk−1

Bk
× Dk,

where the width and the height are scaled by a factor of Bk, and later fed into transformer
encoder layers together with the position embeddings. In this way, the image features with
different scales can be generated at different stages.

In addition, one of the core components of transformer encoder layers in the Pyra-
mid Vision Transformer [43] is Spatial-Reduction Attention (SRA) that can extract high-
resolution features without too much computation complexity. The input of SRA is a query
vector Q, a key vector K, and a value vector V. It differs from the standard MSA only in
that an extra spatial reduction is performed on K and V before the standard multi-head
self-attention. The spatial reduction can be described as:

SR(X) = LN(Reshape(X, Rk)WL), (6)

where X ∈ R(HkWk)×Dk indicates the input to be reduced, Rk is a hyperparameter that repre-
sents the reduction factor of the kth stage, LN denotes layer normalization, Reshape(X, Rk)

means the operation of transforming the input X into a sequence S ∈ R
(

HkWk
R2

k
)×(R2

k Dk)
, and

WL ∈ R(R2
k Dk)×Dk represents the linear projection function for changing the size of S to

(HkWk
R2

k
)× Dk.

In our implementation, two pre-trained models of the Pyramid Vision Transformer [43]
are used, PVT-Tiny and PVT-Large, as encoders for ED2IF2-Net-T and ED2IF2-Net-L, respec-
tively. The dimensions of local features for all stages of PVT-Tiny and PVT-Large are 64, 128,
320, and 512. The Pyramid Vision Transformer encoder finally outputs local features at four
scales denoted as li(i ∈ {0, 1, 2, 3}) and a global vector z of the input single-view image.

3.3.2. Coarse Shape Decoder

Inspired by IM-Net [19], implicit 3D reconstruction is by nature a classification problem
and we use ReLU for nonlinear activation of the MLPs to fit the SDF of the object’s coarse
shape. Specifically, the global vector z and the query point P are concatenated together as
the input, and the coarse implicit field gco will be output through the MLPs:

gco(P) = MLPs(concat(z, P)). (7)

However, the coarse implicit field gco is merely capable of approximating the coarse
shape of the object, and unable to reconstruct the structure details and recover the surface
details. Therefore, a deformation decoder and a surface detail decoder can be applied to
learn details of structure and surface of the object, respectively.

3.3.3. Deformation Decoder

The deformation function f can be learnt via the deformation decoder, as illustrated
in Figure 3. The deformation decoder firstly unifies the multi-scale local features through a
bilinear interpolation and then retrieves the local features for the query point P at all scales
in a pixel-aligned manner. Let p = π(P) be the projection of P on the image. Following
the similar idea of Ladybird [26], two pixel-aligned local features h1 and h2 are provided
for P. Specifically, h1 and h2 are extracted from the projection of P and its self-reflecting
symmetric point Ps on li, respectively, which are then concatenated as the final pixel-aligned
local feature li(p) of P. Finally, the continuous pixel-aligned local feature pairs are used
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to refine the coarse implicit field gco through the core lightweight components of the
deformation decoder, i.e., implicit field deformation block (IFDB). There exist three IFDBs
in our implementation of the deformation decoder and the last one generates the deformed
implicit field gst (see Algorithm 1):

gst(P) = f (gco(P), l0, l1, l2, l3, P, p), (8)

s1(P), c1 = IFDB(gco(P), l2(p), l3(p), P), (9)

s2(P), c2 = IFDB(s1(P), l1(p), l2(p), P, c1), (10)

gst(P), c3 = IFDB(s2(P), l0(p), l1(p), P, c2), (11)

where sj(P) and cj (j ∈ {1, 2, 3}) stand for the intermediate implicit field at P and the state
code generated by the jth IFDB, respectively, in particular, gst(P) = s3(P).

Algorithm 1 Deformation

Input: coarse implicit field gco, multi-scale local features li(i ∈ {0, 1, 2, 3}), query point P
and its projection p on the image

Output: deformed implicit field gst
1: function DEFORMATION(gco, li, P, p)
2: Ps ← Find_Symmetry_Point(P) // Find the symmetry point of the query point P
3: ps ← Find_Symmetry_Point_Projection(Ps) // Find the projection of the symmetry

point of the query point P on the image
4: for i = 0→ 3 do
5: res← 224
6: li ← Bilinear_Interpolation(li, res) // Unification of multi-scale local features to

res through bilinear interpolation
7: h1 ← Grid_Sampling(li, p)
8: h2 ← Grid_Sampling(li, ps)
9: li(p)← Concatenate(h1, h2)

10: end for
11: for j = 1→ 3 do
12: if j == 1 then
13: s0(P) = gco(P)
14: c0 = 0
15: end if
16: sj(P), cj ← IFDB(sj−1(P), l3−j(p), l4−j(p), P, cj−1)
17: if j == 3 then
18: gst(P)← sj(P)
19: end if
20: end for
21: return gst(P)
22: end function

Pixel-aligned local feature pairs not only enable the deformed implicit field to re-
construct the finer-grained topological structure details aligned with the image, but also
guarantee that the surface details can be correctly recovered using the surface detail decoder.
This is achieved by incorporating additional information about the query point and its
symmetry point in the object shape into the features.
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Figure 3. Architecture of the deformation decoder, where sj and cj represent the intermediate implicit
field and the state code of the jth IFDB output, respectively.

Implicit Field Deformation Block

It is known that the local features with larger scale tend to produce an overall shape,
while the ones with smaller scale can keep fine-grained structure details. The IFDB takes
advantage of this characteristic, which can be seen in Figure 4. To ensure a smooth implicit
field deformation, IFDB deforms the input implicit field according to the variations of
the pixel-aligned local features between adjacent scales. Moreover, a state code is used to
record all the information of the current implicit field deformation, which will be updated
at the end of each IFDB for the next IFDB. In contrast, the coordinates of the query points
are input into the deformation module instead of inputting point features in MDISN [25],
and our policy performs better than the latter.

Figure 4. Illustrations of the jth IFDB, where Concat means concatenation operation.

3.3.4. Surface Detail Decoder

In order to recover the enhanced displacement field gsu with surface details, a surface
detail decoder is applied to recover the detailed displacement maps of an object. As
demonstrated in Figure 5, a surface detail decoder takes as input all local features that are
extracted by the hybrid attention module [44] (HAM) consisting of spatial and channel
attention to enhance the feature representation of surface details. Then, a 1× 1 convolution
layer and a ReLU activation layer are employed to decrease the channels, followed by an
upsampling and a 1× 1 convolution layer. After that, the outputs of the convolution are
element-wise accumulated into the features of the next scale. After repeating the above
workflow three times, the features are upsampled twice to keep the consistent size with the
input image, followed by a series of convolution and HAM layers. Finally, the enhanced
forward and backward displacement maps are output through a 1× 1 convolution layer.
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Figure 5. Architecture of the surface detail decoder.

According to Equation (4), if P is near the visible surface, the deformed implicit
field of P is added to the forward displacement map at p. Conversely, it is added to the
backward one.

In our implementation, the gradient of the SDF on each query point is derived using a
central difference approximation. In the case that the direction of the gradient is approach-
ing the viewpoint orientation and the ground-truth SDF is less than a specific threshold,
the point is considered as being close to the visible surface. Otherwise, the point is treated
as being near the invisible surface. Moreover, a similar network to DISN [24] for estimating
the camera parameters is also trained. It should be pointed out that the camera parameters
and the gradients derived from the ground-truth SDF used in training are the ground truth,
and the predicted values are used in testing.

3.4. Loss Function and Sampling Strategy

The total loss function of ED2IF2-Net consists of four components L = LCoa + LDe f +
LOve + LLap, where LCoa, LDe f , LOve, and LLap represent the coarse shape loss, deformation
loss, overall shape loss, and Laplacian loss, respectively. More specifically, L2-norm-based
LCoa is used to minimize the distance between the coarse implicit field gco and the ground-
truth SDF SDF, and L1-norm-based LOve is employed to minimize the distance between
the fused implicit field g and SDF, which can regularize the enhanced displacement field:

LCoa =
1
N

N

∑
i=1
||gco(Pi)− SDF(Pi)||22, (12)

LOve =
1
N

N

∑
i=1
|g(Pi)− SDF(Pi)|. (13)

The structure details are evaluated through a novel deformation loss LDe f . Since the
deformation decoder iteratively refines gco, the intermediate implicit field s generated by
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all IFDBs, and the deformed implicit field gst are all taken into consideration, and their
L1-distances to SDF are accumulated through a weighted summation:

LDe f =
1
N

N

∑
i=1

M

∑
j=1

ωj|sj(Pi)− SDF(Pi)|

+
1
N

N

∑
i=1

ω0|gst(Pi)− SDF(Pi)|,
(14)

M

∑
j=0

ωj = 1, (15)

where Pi represents the ith query point, N denotes the number of query points, M indicates
the number of intermediate implicit fields, the jth intermediate implicit field is defined as
sj, ωj stands for the weight assigned to sj in the deformation loss, specifically, and ω0 is the
weight of the deformed implicit field gst.

LLap is the L2-distance between the Laplacian of the forward displacement map gsuF
and the Laplacian of SDF. As these two Laplacians are not in the same space, the forward
displacement map gsuF is a 2D image, whereas SDF is in 3D space. This problem is
addressed using the Laplacian of SDF with respect to the projected points on the image.
Suppose pi(ui, vi) denotes the projection of Pi on the image and p′i represents the coordinates
of Pi in the camera coordinate system. Similar to D2IM-Net [29], Laplacian loss LLap can be
formulated as:

LLap =
1
|PV | ∑

Pi∈PV

|| MgsuF(pi)− l(pi)||22. (16)

The Laplacian of the forward displacement map gsuF is:

MgsuF(pi) =
∂2gsuF(pi)

∂u2
i

+
∂2gsuF(pi)

∂v2
i

. (17)

In case Pi is close to the visible surface of an object, N(pi) is the unit normal from the
ground-truth normal map, equivalent to the gradient of the SDF with respect to p′i as:

N(pi) =
∂SDF(Pi)

∂p′i
, Pi ∈ PV . (18)

Then, the Laplacian of SDF can be defined as:

l(pi) = N(pi)
∂p′i
∂2ui

+ N(pi)
∂p′i
∂2vi

. (19)

To enhance the fidelity of the reconstructed object and capture richer small-scale
details, ED2IF2-Net employs a weighted sampling strategy similar to D2IM-Net [29]. This
strategy assumes dense sampling of the object, where the density of each sampling point is
determined by the number of surrounding sampling points within a specified radius. Inside
and outside the object, a clipping policy defines compact sample densities. These densities,
along with the same samples, serve as sampling weights during the training of ED2IF2-Net.
The effectiveness of the weighted sampling strategy in reconstructing small-scale details is
demonstrated through ablation studies.

4. Experiment Results and Discussion

In Section ??, the utilized datasets and evaluation metrics are described, while in
Section 4.2, the implementation details are outlined. Section 4.3 presents a qualitative
and quantitative comparison of ED2IF2-Net with state-of-the-art methods for single-view
implicit 3D reconstruction. Ablation studies are conducted in Section 4.4 to assess the



Appl. Sci. 2023, 13, 7577 13 of 28

impact of different factors, and the computational complexity of various methods is ana-
lyzed in Section 4.5. Examples showcasing the proposed applications are demonstrated
in Section 4.6 and the influence of different camera sensors on ED2IF2-Net is discussed
in Section 4.7.

4.1. Dataset and Metrics

ED2IF2-Net was trained and tested on a subset of ShapeNet [57], which comprises
13 classes and approximately 44,000 3D models. These models underwent pre-processing
using the method proposed by DISN [24] to generate point coordinate–SDF pairs, as well
as RGB images and normal maps from 36 random views at a resolution of 224× 224. For
the experiments, we adhered to the official training/validation/testing split.

For the overall quality of the reconstruction, intersection of union (IoU), Chamfer
distance (CD) and earth mover distance [58] (EMD) are computed. Moreover, the edge
Chamfer distance [59] of the reconstructed shape (ECD-3D) and the edge Chamfer distance
in the image [29] (ECD-2D) are used to measure the recovered detail information. The
specific definitions of all the above evaluation metrics are as follows:

IoU is used to measure the similarity between the reconstructed object and the ground
truth, defined as

IoU(PCP, PCQ) =
intersection(Γ(PCP), Γ(PCQ))

union(Γ(PCP), Γ(PCQ))
, (20)

where PCP and PCQ denote two point clouds, and Γ denotes the operation that converts a
point cloud into a voxel grid.

CD is a commonly used metric for measuring the distance between two point clouds,
denoted as PCP, PCQ, defined as

CD(PCP, PCQ) = ∑
p1∈PCP

min
p2∈PCQ

||p1 − p2||22 + ∑
p2∈PCQ

min
p1∈PCP

||p1 − p2||22. (21)

EMD is a metric frequently used to measure the distance between two point clouds,
denoted as PCP, PCQ, by considering the distribution problem. It can be defined as

EMD(PCP, PCQ) = min
φ:PCP→PCQ

∑
p∈PCP

||p− φ(p)||2, (22)

where φ : PCP → PCQ represents a bijection between the two point clouds.
ECD-3D is a metric calculated as the Chamfer distance (CD) between the edge points

on the ground-truth object and the reconstructed object. The “edgeness” property of each
sampled point from a 3D object is defined as

ψ(pj) = min
pk∈Ωj

|nj · nk|, (23)

where Ωj represents the set of neighboring points of pj, and nj and nk denote the unit
normal vectors at points pj and pk, respectively.

In our implementation, we consider a set of 10 neighbouring points (Ω) for each point
and we evaluate the edge feature recovery using points with an "edgeness" property (ψ(pj))
value below 0.8.

ECD-2D represents the Chamfer distance (CD) between edge pixels on the rendered
images. In our implementation, we utilize the Canny operator to extract the edges from the
rendered normal map of the reconstructed object, which has a resolution of 224× 224, in
order to obtain the edge pixels.
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4.2. Implementation Details

In ED2IF2-Net, an RGB image of size 224 × 224 is used as input, and the model
outputs signed distance values of the query points. The iso-surface mesh is visualized
using Marching Cubes with a resolution of 128× 128× 128. The network is implemented
in Pytorch [60] and the training parameters are set as follows: batch_size of 16, Adam
optimizer [61] with a learning rate of 5× 10−5, β1 = 0.9, β2 = 0.999, and weight decay of 10−5.
During training, 2048 query points are randomly selected based on the weighted sampling
strategy for loss calculation and back propagation. The experiments were conducted using
PyCharm Community Edition, and the training of ED2IF2-Net was performed on two
Nvidia RTX 3090 graphics cards, taking 1 to 3 days, depending on the specific settings. The
hyperparameters ω0, ω1, and ω2 in the deformation loss term LDe f of the network loss
function were fixed at 0.5, 0.25, and 0.25, respectively. The value of ω0 at 0.5 was chosen to
emphasize the influence of the deformed implicit field gst on the final reconstruction results.
The training process involved 500 epochs and the learning rate was adaptively optimized
using the Adam optimizer as described above. Further details on the implementation can
be found in Appendix A.

4.3. Comparison with SOTA Approaches

Our comparison concentrates on the implicit models that have achieved state-of-the-art
results to date, mainly including IM-Net [19], MDISN [25], DISN [24], D2IM-Net [29], and
its variant D2IM-NetGL. IM-Net is similar to the coarse shape decoder of ED2IF2-Net, and
MDISN and D2IM-Net are the corresponding baselines for the deformation decoder and the
surface detail decoder, respectively. Moreover, DISN is by far the most excellent single-view
implicit 3D reconstruction method with respect to geometric details. For comparative
fairness, the above networks were all trained and tested based on the same benchmarks.

Table 1 presents the quantitative comparison of all the aforementioned methods on
ShapeNet. The results indicate that ED2IF2-Net-T and ED2IF2-Net-L outperform other
methods in most object categories, demonstrating significantly higher mean values for
each evaluation metric across 13 object categories compared to the other methods. Notably,
ED2IF2-Net-L achieves state-of-the-art quantitative results on ShapeNet, with an IoU of
61.1, CD of 7.26, EMD of 2.51, ECD-3D of 6.08, and ECD-2D of 1.84. When compared to
DISN, ED2IF2-Net-L exhibits a 7% increase in mean IoU, and a 34%, 12%, 12%, and 26%
decrease in mean CD, EMD, ECD-3D, and ECD-2D, respectively. These quantitative results
demonstrate that both ED2IF2-Net-T and ED2IF2-Net-L excel not only in overall shape
(topological structure) but also in recovering edge details (surface details). It is important to
note that ED2IF2-Net may not achieve the best performance in every category, which could
be attributed to the the network being trained on all categories of ShapeNet. The network’s
sensitivity to the quantity and diversity of models within a single category may result in
slightly inferior reconstruction results for categories with fewer models or predominantly
similar models, such as phones.

The qualitative comparison of different methods is presented in Figure 6. From the
figure, it is evident that IM-Net can only reconstruct the coarse shape of the object, resulting
in a loss of significant topological structure details (such as holes of the sofa backrest and
handles of the table drawers) as well as surface details (e.g., chair backrest). Compared
to IM-Net, DISN performs better in rebuilding topological structures and surface details,
although the results may contain geometric noise leading to blurry surfaces (e.g., sofa
backrest surface). However, DISN struggles in recovering details at small scales (bottom
and backrest of the chair).

While MDISN can reconstruct more detailed topological structures, it fails to recover
surface details and even introduces shape distortions to the object (e.g., speaker and table).
On the other hand, D2IM-Net shows promise in surface detail recovery but often produces
incorrect topological structures for highly curved shapes (e.g., armrests and bottom of the
chair) and introduces numerous artifacts (such as the table).
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Figure 6. Qualitative comparison of various methods for single-view 3D reconstruction on ShapeNet.

In contrast, both ED2IF2-Net-T and ED2IF2-Net-L are able to reconstruct more visually
appealing qualitative results. These methods enable the reconstruction of more complex
topologies (e.g., holes in sofa backrests, handles of table drawers) and capture finer small-
scale surface details (e.g., chair backrests). These findings align with the quantitative
comparison in Table 1 and validate that ED2IF2-Net can effectively generate high-fidelity
3D shapes with accurate topological structure and surface details.

Table 1. Quantitative comparison of all methods for single-view 3D reconstructions on ShapeNet.
Evaluation metrics include IoU (%, the larger the better), CD (×0.001, the smaller the better), EMD
(×100, the smaller the better), ECD-3D (×0.01, the smaller the better), and ECD-2D (the smaller the
better). CD and EMD are calculated on 2048 sample points. ECD-3D is computed on 20K points.
ECD-2D is calculated on the normal maps with a resolution of 224× 224. Top scores are highlighted
in bold and underlined, while the italic one is the second.

Plane Bench Box Car Chair Display Lamp Speaker Rifle Sofa Table Phone Boat Mean

IoU↑

IM-Net 55.4 49.5 51.5 74.5 52.2 56.2 29.6 52.6 52.3 64.1 45.0 70.9 56.6 54.6
DISN 57.5 52.9 52.3 74.3 54.3 56.4 34.7 54.9 59.2 65.9 47.9 72.9 55.9 57.0

MDISN 60.4 54.6 52.2 74.5 55.6 59.4 38.2 55.8 62.2 68.5 48.6 73.5 60.4 58.8
D2IM-Net 60.6 55.7 52.1 74.6 56.2 61.9 40.8 54.5 63.4 69.3 48.2 73.8 62.5 59.5

D2IM-NetGL 59.2 53.8 52.6 73.5 54.7 62.4 41.1 54.3 62.9 68.5 48.0 74.3 61.6 59.0
ED2IF2-Net-T 62.9 57.8 55.2 75.8 56.5 63.7 38.9 54.6 64.5 71.1 49.3 72.6 61.8 60.4
ED2IF2-Net-L 63.5 59.6 56.5 76.4 57.3 64.2 39.6 55.7 65.1 70.6 50.8 72.1 62.3 61.1

CD↓

IM-Net 12.65 15.10 11.39 8.86 11.27 13.77 63.84 21.83 8.73 10.30 17.82 7.06 13.25 16.61
DISN 9.96 8.98 10.19 5.39 7.71 10.23 25.76 17.90 5.58 9.16 13.59 6.40 11.91 10.98

MDISN 5.77 6.29 8.78 5.21 6.68 8.13 15.59 14.54 6.98 6.96 10.36 5.36 6.20 8.22
D2IM-Net 7.32 6.03 9.16 4.98 6.41 8.25 14.57 14.69 5.14 6.45 9.83 5.42 7.56 8.14

D2IM-NetGL 7.14 6.15 8.92 5.06 6.34 8.03 14.59 14.41 5.27 6.58 9.67 5.49 7.12 8.06
ED2IF2-Net-T 6.31 5.62 8.13 4.66 6.15 7.59 14.17 13.06 4.38 6.06 8.64 5.47 6.45 7.44
ED2IF2-Net-L 5.89 5.34 7.86 4.52 6.03 7.42 13.91 12.75 4.41 6.12 8.54 5.39 6.23 7.26

EMD↓

IM-Net 2.90 2.80 3.14 2.73 3.01 2.81 5.85 3.80 2.65 2.71 3.39 2.14 2.75 3.13
DISN 2.67 2.48 3.04 2.67 2.67 2.73 4.38 3.47 2.30 2.62 3.11 2.06 2.77 2.84

MDISN 2.33 2.17 2.91 2.70 2.52 2.50 3.67 3.30 2.17 2.43 2.81 2.11 2.42 2.62
D2IM-Net 2.24 2.18 2.93 2.61 2.65 2.62 3.72 3.28 2.14 2.36 2.78 1.91 2.53 2.61

D2IM-NetGL 2.32 2.13 3.01 2.58 2.62 2.66 3.67 3.41 2.25 2.44 2.86 2.00 2.49 2.65
ED2IF2-Net-T 2.12 2.15 2.96 2.57 2.59 2.48 3.55 3.21 2.18 2.42 2.72 2.08 2.37 2.57
ED2IF2-Net-L 2.07 2.12 2.93 2.45 2.54 2.51 3.47 3.16 2.11 2.38 2.66 1.95 2.28 2.51
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Table 1. Cont.

Plane Bench Box Car Chair Display Lamp Speaker Rifle Sofa Table Phone Boat Mean

ECD-3D↓

IM-Net 7.89 6.85 8.72 8.72 6.61 8.20 9.95 10.80 6.74 7.90 7.10 7.24 8.23 8.07
DISN 6.84 5.73 6.97 6.80 5.64 7.65 11.27 10.77 3.50 6.06 6.01 7.08 5.83 6.94

MDISN 6.32 5.13 6.84 6.87 5.57 7.39 10.06 10.26 3.53 6.29 5.95 6.72 5.94 6.68
D2IM-Net 5.67 4.77 6.61 7.28 5.23 6.74 9.18 9.09 3.43 6.42 6.30 6.09 5.68 6.34

D2IM-NetGL 5.98 5.16 6.91 6.46 5.04 7.13 8.97 9.73 3.57 6.02 5.67 6.60 5.34 6.35
ED2IF2-Net-T 5.31 4.51 6.54 6.76 5.19 6.51 9.07 8.94 3.16 6.03 5.93 6.02 5.45 6.11
ED2IF2-Net-L 5.33 4.45 6.60 6.72 5.15 6.49 9.11 8.87 3.12 5.98 5.86 5.96 5.38 6.08

ECD-2D↓

IM-Net 2.53 2.85 4.47 3.34 2.70 3.23 3.36 4.20 3.14 2.98 2.85 2.42 3.05 3.16
DISN 2.67 2.21 2.25 2.04 1.98 3.16 4.86 3.34 1.35 2.06 2.07 2.26 2.00 2.48

MDISN 2.36 2.13 2.01 2.12 1.64 2.65 4.47 2.98 1.39 2.08 1.97 1.93 1.91 2.28
D2IM-Net 1.99 1.67 1.79 2.07 1.71 1.95 3.16 2.64 1.28 2.01 1.88 1.62 1.73 1.96

D2IM-NetGL 1.98 1.77 1.74 1.77 1.58 2.68 3.01 2.72 1.77 1.78 1.74 2.14 2.27 2.07
ED2IF2-Net-T 1.92 1.51 1.66 1.94 1.63 1.87 2.99 2.48 1.36 2.04 1.79 1.58 1.65 1.88
ED2IF2-Net-L 1.96 1.44 1.68 1.85 1.59 1.79 3.04 2.41 1.26 1.88 1.84 1.52 1.63 1.84

4.4. Ablation Studies

To validate the effectiveness of the individual components of ED2IF2-Net and the loss
functions, extensive qualitative and quantitative ablation studies were carried out. All
the networks used in the ablation studies were trained and tested on the chair class of
ShapeNet. To be specific, the following network options were designed:

• Option 1: In this option, we keep the original encoder PVT in the network, plus the
coarse shape decoder (CSD) and a random sampling strategy, and the loss function
LCoa is applied. It can be seen from Figure 7 that the coarse shape decoder and the
random sampling strategy can only reconstruct the coarse shape with few structure
details and no surface details. It is consistent with the quantitative results in Table 2.

• Option 2: On the basis of the first option, the network is trained with weighted sam-
pling (WS). It can be found from Figure 7 that WS enables the network to reconstruct
more details, especially at small scales.

• Option 3: In this option, we still use PVT as the encoder. However, we try to directly
initialize a random signed distance value for each query point and iteratively refine it
in the deformation decoder (DD). Then, the network is trained only constrained by
deformation loss LDe f with WS. It can be observed from Figure 7 that the network
without the coarse implicit field reconstructs awful surfaces and topologies. Moreover,
quite a few surface artifacts emerge due to the absence of the coarse implicit field near
the shape.

• Option 4: With this option, CSD together with the DD serve as the decoders and only
LCoa with WS is used for the loss estimation. It can be seen in Figure 7 that such a
network creates fewer shape artifacts and distortions, but it still fails to reconstruct a
full shape of the structure, which is attributed to the fact that the loss function takes
no account of the intermediate implicit fields generated in the iterative deformation.

• Option 5: Based on the previous options, LCoa and LDe f are applied to train the CSD
and the DD, respectively. WS is also used here. From Figure 7, it is illustrated that
the network with this option is capable of reconstructing more accurate topological
structures and producing a smoother shape.

• Option 6: In this option, the surface detail decoder in ED2IF2-Net with WS cancels
the prediction of the backward displacement map and the deformed implicit field is
only fused with the forward displacement map. The surface detail decoder in this
case is represented as SDD_S and the normal case is denoted as SDD_N. It can be
noticed from Figure 7 that, without the backward displacement map, the surface
details of the results may be incorrectly reconstructed and distortions may occur at the
structural level, possibly owing to the lack of the backward displacement map, which
prevents fine-tuning.
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• Option 7: Only the LLap of the standard ED2IF2-Net loss functions is removed and the
rest remains unchanged. It can be noted from Figure 7 that, in this case, the surface
details of the reconstruction cannot be clearly recovered and may produce distortions.

• Option 8: The encoder in ED2IF2-Net-T is replaced with ResNet18, keeping the rest
of the settings fixed. The reconstruction results are shown in Figure 7 and it can be
noticed that there exist plenty of artifacts, which may be caused by ResNet18 being
slightly inferior to PVT in terms of feature extraction, proving that PVT is optimal
for ED2IF2-Net.

• Option 9: When this option is selected, all HAMs in the SDD_N of the standard
ED2IF2-Net are removed and the rest of the network settings remain fixed. As shown
in Figure 7, the surface details of the reconstructed objects become unclear without
the HAM, which is consistent with the quantitative results in Table 2, demonstrating
that the variant leads to an increase in ECD-3D and ECD-2D. These results confirm
the effectiveness of HAMs in enhancing surface details.

• Option 10: We remove the DD from the standard ED2IF2-Net and exclude the LDe f

term from the loss function to create a variant pipeline similar to D2IM-Net. As shown
in Figure 7, the shapes reconstructed by this variant are not comparable to the ones
reconstructed by the standard ED2IF2-Net. It is worth noting that the quantitative
comparisons in Tables 1 and 2 show that, although the variant (marked in orange)
has slightly lower performance than the standard ED2IF2-Net to some extent, it still
outperforms D2IM-Net, which confirms the superiority of our network pipeline.

• Option 11: To further validate the effectiveness of the deformation decoder (DD) and
deformation loss LDe f in reconstructing finer topological structures, we add the DD to
the network of option 10 while keeping the other settings unchanged. As shown in
Figure 7, this variant generally reconstructs object shapes with more detailed topologi-
cal structures compared to option 10. This further demonstrates the contribution of
the DD in reconstructing finer topological structures of objects. However, it is worth
noting that the variant still struggles to generate visually appealing object shapes
compared to the standard ED2IF2-Net. This observation emphasizes the importance
of the deformation loss LDe f in the reconstruction process.

• Option 12: To further demonstrate the superiority of the proposed method in feature
extraction, we replace the PVT-Tiny and PVT-Large image encoders in the standard
ED2IF2-Net-T and ED2IF2-Net-L with DeiT-Tiny and DeiT-Base [37], respectively,
while keeping the other settings unchanged. The qualitative results are presented in
Figure 7. It can be observed that when the image encoders of ED2IF2-Net-T and ED2IF2-
Net-L are replaced by DeiT-Tiny and DeiT-Base, respectively, the network tends to
reconstruct inferior results, which exhibit poor topological structure and surface
details. This further confirms the effectiveness of ED2IF2-Net in feature extraction.

• Option 13: To further validate the effectiveness of HAM in the surface detail decoder
for enhancing surface detail representation, all HAMs in the surface detail decoder of
the standard model are replaced with CBAMs [45], while keeping the other settings
unchanged. The qualitative reconstruction results are depicted in Figure 7. In com-
parison to the standard ED2IF2-Net, the variant encounters challenges in capturing
and recovering clear surface details of the object, resulting in the presence of artifacts
around the shape. This option further demonstrates that HAM is more effective than
CBAM in enhancing the capability of ED2IF2-Net to handle surface details.

• Option 14: The standard ED2IF2-Net proposed in this paper, including all components
and the loss function with WS.

The visualization and quantitative results of the ablation studies are presented in
Figure 7 and Table 2, respectively.
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Table 2. Quantitative comparison for ablation studies, where!indicates the component or loss term used by the option. Evaluation metrics remain IoU (%), CD
(×0.001), EMD (×100), ECD-3D (×0.01), and ECD-2D. Top scores are highlighted in bold and underlined.

PVT-Tiny ResNet18 DeiT-Tiny PVT-Large DeiT-Base CSD DD SDD_S SDD_N HAM CBAM WS LCoa LDe f LOve LLap IoU↑ CD↓ EMD↓ ECD-3D↓ ECD-2D↓

Option 1 ! ! ! 52.4 9.96 3.11 7.42 3.58
! ! ! 52.9 9.87 3.09 7.36 3.52

Option 2 ! ! ! ! 53.5 9.23 3.04 7.16 3.17
! ! ! ! 53.7 9.31 2.95 6.98 3.06

Option 3 ! ! ! ! 54.1 8.67 2.96 6.85 2.88
! ! ! ! 54.2 8.63 2.87 6.64 2.75

Option 4 ! ! ! ! ! 54.7 8.32 2.89 6.53 2.54
! ! ! ! ! 54.9 8.17 2.81 6.35 2.46

Option 5 ! ! ! ! ! ! 55.1 7.74 2.83 6.29 2.27
! ! ! ! ! ! 55.4 7.63 2.75 6.02 2.11

Option 6 ! ! ! ! ! ! ! ! ! ! 55.6 7.21 2.78 5.87 1.95
! ! ! ! ! ! ! ! ! ! 56.1 6.97 2.67 5.64 1.82

Option 7 ! ! ! ! ! ! ! ! ! 55.9 6.58 2.71 5.49 1.76
! ! ! ! ! ! ! ! ! 56.5 6.39 2.62 5.38 1.67

Option 8 ! ! ! ! ! ! ! ! ! ! 51.2 10.83 3.16 7.59 3.65

Option 9 ! ! ! ! ! ! ! ! ! 56.4 6.26 2.61 5.21 1.65
! ! ! ! ! ! ! ! ! 57.0 6.12 2.56 5.18 1.62

Option 10 ! ! ! ! ! ! ! ! 56.2 6.35 2.64 5.22 1.69
! ! ! ! ! ! ! ! 56.4 6.27 2.61 5.20 1.64

Option 11 ! ! ! ! ! ! ! ! ! 56.3 6.30 2.62 5.21 1.67
! ! ! ! ! ! ! ! ! 56.8 6.14 2.57 5.17 1.61

Option 12 ! ! ! ! ! ! ! ! ! ! 54.8 6.54 2.76 5.43 1.78
! ! ! ! ! ! ! ! ! ! 55.6 6.48 2.69 5.32 1.68

Option 13 ! ! ! ! ! ! ! ! ! ! 56.0 6.26 2.72 5.25 1.71
! ! ! ! ! ! ! ! ! ! 56.9 6.18 2.64 5.23 1.67

Option 14 ! ! ! ! ! ! ! ! ! ! 56.5 6.15 2.59 5.19 1.63
! ! ! ! ! ! ! ! ! ! 57.3 6.03 2.54 5.15 1.59
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Figure 7. Visualization of the qualitative ablation studies of ED2IF2-Net-T. It is best viewed magnified
on the screen.

Overall, the weighted sampling strategy enables the network to reconstruct small-scale
details effectively. Additionally, the deformation decoder, which refines the coarse implicit
field, plays a crucial role in capturing the object’s topology. The deformation decoder per-
forms optimally when trained with the deformation loss term LDe f , while the coarse shape
decoder benefits from the LCoa. The deformed implicit field, derived from the deformation
decoder, serves as a solid foundation for reconstructing the object’s surface, which is further
fused with the forward displacement map generated by the surface detail decoder trained
by LLap to recover the surface details of the object. Moreover, the backward displacement
map from the surface detail decoder compensates for the deformed implicit field, ensuring
the correct topology reconstruction. Furthermore, compared to using ResNet18 as an en-
coder, the standard ED2IF2-Net achieves higher-fidelity results. Importantly, the presence
of the deformation decoder and the utilization of the deformation loss term LDe f contribute
to the reconstruction of ED2IF2-Net with finer topological structures. Furthermore, the PVT
architecture, which generates multi-scale hierarchical local features, is more suitable as
an image encoder for ED2IF2-Net compared to other conventional transformers such as
DeiT. Lastly, in the surface detail decoder, the HAM module proves to be more effective
in improving the model’s performance in recovering surface details and ensuring the
reconstruction of a correct topological structure compared to CBAM.

The proposed ED2IF2-Net is inherently superior to D2IM-Net. Specifically, ED2IF2-
Net significantly improves the network’s ability to extract features by using PVT instead
of ResNet18. Moreover, ED2IF2-Net iteratively refines the coarse implicit field via the
deformation decoder with LDe f to reconstruct finer topological structure details of the
object, and employs HAM to enhance surface details instead of predicting only the coarse
implicit field and the ordinary displacement field as in D2IM-Net. Finally, when the
deformation decoder with LDe f in the standard ED2IF2-Net are abolished, the quantitative
results achieved by the network still outperform D2IM-Net.

4.5. Computational Complexity

In addition to the qualitative and quantitative experiments described above, we also
provide the computational complexity of the various methods in Table 3, specifically in
terms of training time and inference time. To ensure a fair comparison, all models were
trained and tested using the same settings.

As shown in the table, ED2IF2-Net-T achieves the fastest training speed, with a training
time of 47 h. Similarly, ED2IF2-Net-L has a relatively shorter training time of 66 h compared
to most other models. In terms of inference time, both ED2IF2-Net-T and ED2IF2-Net-L
outperform other methods, with inference times of 97.64 ms and 144.09 ms, respectively.

The above comparison of computational complexity highlights the advantages of the
proposed ED2IF2-Net in terms of faster training speed and shorter inference time.
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Table 3. Training time and inference time. All training times as well as inference times are obtained
with the same settings, where the inference times are tested with a batch_size of 1.

Model IM-Net DISN MDISN D2IM-Net ED2IF2-Net-T ED2IF2-Net-L

Training Time (h) 138 105 84 68 47 66
Inference Time (ms) 204.15 188.19 162.73 146.57 97.64 144.09

4.6. Applications
4.6.1. Test on Online Product Images

ED2IF2-Net, after being trained on the rendered RGB images, allows for further testing
of online product images without ground-truth shapes. The qualitative reconstruction
results of ED2IF2-Net for online product images are presented in Figure 8. This application
demonstrates the generalization capability of ED2IF2-Net.

Figure 8. Examples of reconstruction from online images through ED2IF2-Net.

4.6.2. Surface Detail Transfer

Surface detail transfer is defined as the fusion of the disentangled enhanced displace-
ment field of a source object with the deformed implicit field of another target object. In this
application, the specified surface details can be transferred and Figure 9 shows examples of
surface detail transfer between different objects.

Figure 9. Two examples of surface detail transfer using ED2IF2-Net, where the backrest details of the
source chair are transferred.

4.6.3. Pasting a Logo

We propose that a logo can be pasted on the target object image and then the modified
image is used to generate a model with the logo. Figure 10 shows examples of pasting a
logo on a model.
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Figure 10. Examples about pasting a logo using ED2IF2-Net.

Actually, D2IM-Net [29] provides similar applications. A quantitative comparison of
the different applications of D2IM-Net and ED2IF2-Net is shown in Table 4. It should be
noted that, as there are no ground-truth models for the generated objects, the corresponding
ground-truth models are created for the shown generated objects by traditional manual
modeling, and the mean values of various evaluation metrics obtained by both D2IM-
Net and ED2IF2-Net are computed. It can be observed from Table 4 that the proposed
ED2IF2-Net achieves more promising performance compared to D2IM-Net in downstream
applications, where ED2IF2-Net-L reaches state-of-the-art performance in these applications,
further illustrating the superiority of ED2IF2-Net over D2IM-Net.

Table 4. Quantitative results of D2IM-Net and ED2IF2-Net for various applications. Evaluation
metrics also include IoU (%), CD (×0.001), EMD (×100), ECD-3D (×0.01), and ECD-2D. The best
results for each application are highlighted in bold and underlined, while the italic one is the second.

IoU↑ CD↓ EMD↓ ECD-3D↓ ECD-2D↓
Surface
Detail

Transfer

D2IM-Net 51.4 6.87 3.01 5.86 2.25
ED2IF2-Net-T 52.3 6.69 2.88 5.72 2.01
ED2IF2-Net-L 53.1 6.58 2.75 5.65 1.92

Pasting
a Logo

D2IM-Net 53.4 6.67 2.93 5.66 2.08
ED2IF2-Net-T 54.6 6.52 2.84 5.57 1.88
ED2IF2-Net-L 55.8 6.36 2.69 5.42 1.75

4.7. Discussion about the Effects of Camera Sensor Type on ED2IF2-Net

In the previous experiments and applications, the images utilized were acquired using
a standard camera sensor model, which allowed for capturing images without significant
distortion. However, in various industries such as drone aerial photography, security
surveillance, and automotive, wide-angle and fisheye imaging sensors are extensively
employed. These sensors typically have a field of view (FOV) greater than 100 degrees,
which is considerably larger compared to standard camera sensors. Hence, in this section,
we primarily focus on discussing the effects of images captured by wide-angle and fisheye
imaging sensors on the performance of ED2IF2-Net.

There are existing works [62–64] that utilize images captured by wide-angle or fisheye
sensors for 3D reconstruction and other related tasks. For instance, Ma et al. [62] proposed
a specific model for fisheye sensors and introduced sparse and dense multi-view 3D recon-
struction methods based on this model. Strecha et al. [63] performed 3D reconstruction
using images captured by fisheye sensors and standard lens models, respectively, em-
ploying the Pix4Dmapper software. Kakani et al. [64] proposed a self-calibration method
for wide-angle and fisheye cameras to correct the captured images, allowing for their
utilization in 3D reconstruction and other tasks.

In general, wide-angle sensors can capture images with a larger field of view compared
to standard lenses, but they often introduce perspective distortion. This distortion can alter
the shape of objects in the image, making it challenging for ED2IF2-Net trained on images
acquired from the standard lens model to reconstruct high-fidelity object shapes. On the
other hand, fisheye camera sensors can capture images with an extremely wide field of
view but introduce barrel distortion, which causes even more severe distortion of objects
in the image. Consequently, ED2IF2-Net faces difficulties in reconstructing accurate object
shapes from such distorted images.
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To mitigate the effects of perspective distortion and barrel distortion caused by wide-
angle and fisheye camera sensors on ED2IF2-Net, pre-processing techniques such as camera
calibration [64] and image correction [65] can be employed to reduce the degree of image
distortion. Another approach is to consider training ED2IF2-Net on publicly available
datasets of images captured by wide-angle sensor models and fisheye sensor models,
enabling the network to learn about the different distortions using its powerful feature
extraction and learning capabilities.

5. Limitations and Future Works

The proposed method has two main limitations. Firstly, although the surface detail
decoder enhances surface information, some reconstructed object shapes, such as the
speaker in Figure 6, lack prominent surface detail. This limitation may be attributed to the
introduction of redundant local features during the implicit field deformation procedure.
To address this, future studies should explore adaptive neglect of unnecessary local features
as an attractive direction for improvement. Secondly, while ED2IF2-Net outperforms
similar methods in terms of inference speed and performance, it is not specifically designed
for real-time 3D reconstruction. This may pose challenges for systems that require real-
time reconstruction. To tackle this issue, we plan to leverage a sparse sphere rendering
algorithm [33,66] to accelerate inference speed. Additionally, we aim to explore more
advanced transformers, such as Swin Transformer V2 [67], to enhance the feature extraction
capability of ED2IF2-Net.

In future work, we will optimize the proposed framework for embedded platforms,
considering the following aspects: (1) reducing model parameters and computational
complexity by minimizing the number of layers in the Pyramid Vision Transformer or
reducing the number of channels in the deformation decoder’s convolutional layer while
maintaining performance; (2) improving the readout speed of implicit fields and displace-
ment fields by utilizing more efficient data structures, such as hash tables, for data storage;
(3) optimizing the training and prediction process through techniques such as distillation [68];
(4) deploying the framework on native embedded platforms to reduce communication
and latency.

6. Conclusions

In this paper, we introduce ED2IF2-Net, the first single-view 3D reconstruction network
based on the Pyramid Vision Transformer. Our network disentangles objects’ implicit
fields into deformed implicit fields and enhanced displacement fields. IFDBs refine the
coarse implicit fields by analyzing pixel-aligned local features across scales, capturing finer
topological structure details in the deformed implicit fields. Moreover, we enhance the
displacement fields in both spatial and channel dimensions to preserve surface details.

By employing a novel deformation loss and Laplacian loss, ED2IF2-Net achieves high-
fidelity reconstruction, capturing both the structure and surface details of objects. On the
ShapeNet dataset, ED2IF2-Net delivers superior performance, with ED2IF2-Net-L achieving
the best mean IoU, CD, EMD, ECD-3D, and ECD-2D values of 61.1, 7.26, 2.51, 6.08, and
1.84, respectively.

Compared to other methods, ED2IF2-Net excels in reconstructing finer topological
structures while preserving enhanced surface details. It overcomes the limitations of
alternative approaches that may compromise surface details or yield incorrect topology,
resulting in higher-quality reconstructions.

Our research represents a significant milestone in single-view implicit 3D reconstruc-
tion. We propose the first transformer-based single-view implicit 3D reconstruction net-
work, opening up new possibilities for solving such tasks using transformers. ED2IF2-Net
achieves state-of-the-art performance on the ShapeNet dataset while maintaining compet-
itive inference time. The proposed IFDB and deformation loss can be readily applied to
future works, enabling better reconstruction results in single-view implicit 3D reconstruc-
tion. The disentangled deformed implicit fields and enhanced displacement fields in our
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network benefit downstream applications, including surface detail transfer and pasting a
logo. Furthermore, our framework can be optimized for embedded platforms, shedding
new light on industrial applications such as VR/AR. Beyond real-time rendering challenges,
the framework holds promise for industries such as robotics and autonomous driving.
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PVT Pyramid Vision Transformer
IFDB Implicit Field Deformation Block
HAM Hybrid Attention Module
SDF Signed Distance Function
SRA Spatial-Reduction Attention
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CD Chamfer Distance
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Appendix A. Implementation Details

The implementation details mentioned in Section 4.2 of the main text are explained here.

Appendix A.1. Advantages of Utilizing a 224× 224 RGB Image as Input

The reasons for choosing an RGB image with a resolution of 224× 224 as the network
input are as follows:

https://shapenet.org
ftp://cs.stanford.edu/cs/cvgl/Stanford_Online_Products.zip
ftp://cs.stanford.edu/cs/cvgl/Stanford_Online_Products.zip
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• Dataset compatibility: The majority of images in existing publicly available 3D re-
construction datasets are based on a resolution of 224× 224. Therefore, selecting
RGB images with a resolution of 224× 224 as input ensures better alignment with the
dataset, leading to improved training efficacy of the network.

• Resource constraints: Higher resolution images as input increase computational and
memory requirements, resulting in longer training times and higher hardware de-
mands. By opting for RGB images with a resolution of 224× 224 as input, computa-
tional resource consumption is reduced while maintaining higher performance levels.

• Information preservation: 3D reconstruction involves processing and analyzing input
images to extract relevant features. By choosing RGB images with a resolution of
224× 224 as input, more detailed information can be preserved, resulting in enhanced
3D reconstruction performance.

Appendix A.2. Analysis of Parameter Settings

Appendix A.2.1. Setting batch_size as 16

Setting a smaller value for ’batch_size’ can yield the following advantages:

• Reduced memory consumption: A smaller batch_size leads to decreased memory
usage since fewer data samples need to be stored per batch. This enables a larger
number of batches to fit within the available memory, facilitating efficient training and
inference processes.

• Improved model stability: A smaller batch_size enhances the stability of the model
by introducing greater randomness in the samples within each batch. This ran-
domization can help mitigate the risk of overfitting, resulting in a more robust and
generalizable model.

• Improved tuning effectiveness: A smaller batch_size allows for faster observation of
the model’s training progress. This expedited feedback loop enables quicker adjust-
ments and fine-tuning of hyperparameters.

Furthermore, the model’s performance was compared for various batch_sizes and
the corresponding quantitative results are displayed in Figure A1. It should be noted that
ED2IF2-Net-L was not trained with a batch_size of 32 due to memory limitations. From
the figure, it can be observed that both ED2IF2-Net-T and ED2IF2-Net-L achieve the best
performance when the batch_size is set to 16. However, it is worth noting that these models
also exhibit the highest memory utilization among the tested batch_sizes.

Figure A1. Performance comparison of models with different batch_size; other settings remain fixed.
Evaluation metrics include IoU, CD, EMD, ECD-3D, and ECD-2D.

Appendix A.2.2. Setting Learning Rate as 5× 10−5

The learning rate should be carefully selected in conjunction with the batch_size to
achieve optimal performance. ED2IF2-Net is trained using different learning rates for a
batch_size of 16. We consider three main learning rates: 1× 10−4, 5× 10−5, and 1× 10−5,
and compare the performance of the models trained with these different learning rates.
Figure A2 illustrates the performance of ED2IF2-Net-T and ED2IF2-Net-L under different
learning rates. It can be observed that the optimal model performance is achieved with a
learning rate of 5× 10−5 and a batch_size of 16.
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Figure A2. Performance of the models with different learning rates is compared with batch_size set
to 16 and other settings kept fixed. Evaluation metrics are IoU, CD, EMD, ECD-3D, and ECD-2D.

Appendix A.2.3. Reasons for Other Settings

The Adam optimizer is a widely used algorithm for adaptive learning rate optimiza-
tion. It combines the benefits of RMSProp and Adagrad [69] with bias correction, effectively
addressing issues such as gradient disappearance and explosion. Adam offers advantages
such as self-adaptive learning rate, fast convergence, robustness, and efficient memory
consumption. In our experiments, we adopt the default settings of the Adam optimizer,
specifically β1 = 0.9 and β2 = 0.999. This configuration has demonstrated excellent perfor-
mance across a wide range of experiments.

Weight decay is a technique that mitigates model complexity by introducing a penalty
term to the loss function, thereby enhancing the model’s generalization capability. A weight
decay value of 10−5 has shown consistent effectiveness across numerous models. Addition-
ally, this value strikes a balance as it effectively combats overfitting without significantly
compromising model performance. Hence, a weight decay of 10−5 is considered a suitable
and reasonable choice in our experiments.

The choice of sampling 2048 query points strikes a balance between computational
efficiency and model performance. When the number of query points is small, the network
may struggle to acquire sufficient knowledge, resulting in poor reconstruction performance.
Conversely, an excessively large number of query points significantly increases computa-
tional costs and slows down network training. Previous studies [24–26,29] have validated
that 2048 query points offer an appropriate compromise. This number ensures that the net-
work captures ample information while maintaining manageable computational overhead.
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