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Abstract

In this study, we examined the extent to which knowledge about the sequence of places

encountered during route learning supports the formation of a metric cognitive map. In

a between subjects design, participants learned a route until they could navigate it inde-

pendently without error whilst also learning information about either the identity of

places along the route (Recognition Learning condition) or the sequence of places along

the route (Sequence Learning condition). In a follow-up Reconstruction of Order Task,

we confirmed that participants in the Sequence Learning condition had more accurate

route sequence knowledge than those in the Recognition Learning condition, despite

requiring the same overall number of trials to learn the route. Participants then com-

pleted a Pointing Task to assess the quality of their cognitive map of the environment.

Both groups performed above chance level, showing incidental encoding of metric infor-

mation, but the Sequence Learning group produced significantly lower pointing errors

than the Recognition Learning group. Further, we found that route distance between

pairs of places was a strong predictor of pointing error in both groups, whilst Euclidean

distance between places was a significant, but weak, predictor only for the Sequence

Learning condition. The results of this study demonstrate that discrete route sequence

knowledge directly supports the formation of metric cognitive maps. We consider how

the results are best explained by interactions between striatal route representations and

hippocampal metric representations, centered around the sequence of places acting as

a scaffold for the encoding of metric information.
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1 | INTRODUCTION

As experience with an environment increases, so does spatial knowledge

about routes and places within it. Although different types of spatial

knowledge are generally acquired in parallel (Ishikawa & Montello,

2006), the resulting representations vary in terms of their complexity

and utility (Chrastil, 2013; Wiener et al., 2009). Coarse discrete knowl-

edge, such as for turning directions or the sequence of places

encountered along a route, is easily attained but offers little behavioral

flexibility. In contrast, fine grained metric knowledge embedded into a

common coordinate system, often referred to as a cognitive map, con-

tains more precise information about space and affords flexible goal-

dependent navigation (Epstein et al., 2017). While there is ample evi-

dence for such an organization of cognitive spatial memory

(Chrastil, 2013), little research questions how these different knowledge

types that are supported by different networks in the brain, interact and
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support each other. We addressed this question by prompting the acqui-

sition of place sequence knowledge during route navigation in partici-

pants, who subsequently performed better in a pointing task compared

with a control group with less precise sequence knowledge.

Route knowledge is usually defined as discrete representations of

specific viewpoint-dependent route information. It includes landmark

and place knowledge, place–action pairing, and place sequence knowl-

edge (Hilton, Johnson, et al., 2021). The discrete nature of these com-

ponents of route knowledge is due to the involvement of associative

memory mechanisms providing coarse information about landmark–

place relationships (“when I see the town hall, I am at the town

center”; Mallot & Lancier, 2018), place–action pairing (“turn left at the

town hall”; Waller & Lippa, 2007) and sequence information (“once I

pass the town hall, I will arrive at the restaurant”; Strickrodt

et al., 2015). Note that sequence knowledge is qualitatively distinct

from other types of route knowledge, since it is the only component

that pertains to the relationship between different spatial locations.

In a prior study, we reported that participants who had learned and

could successfully navigate a route independently showed very high

performance on tests of landmark recall and place-action pairing

(>90%; Hilton, Johnson, et al., 2021). However, their sequence knowl-

edge was only mediocre (�50% successfully placed landmarks in a free

ordering task). Whilst piecemeal recall of directions at decision points

(place–action pairings) without sequence knowledge may be enough to

repeat a route, it only provides limited, if any, scope for behavioral flexi-

bility. However, integrating sequence knowledge by combining a

place–action pairing with the next encountered place to form place–

action–place associations creates a more flexible discrete representa-

tion (Trullier et al., 1997). This type of representation allows for the pre-

diction of upcoming places (Schinazi & Epstein, 2010), provides building

blocks for the integration of routes to create novel routes (Grzeschik

et al., 2021), and allows distinguishing of visually ambiguous locations

(such as when landmarks are repeated; Strickrodt et al., 2015). Thus, it

can be argued that route sequence knowledge is a crucial aspect of

more advanced representations of space that afford more flexible navi-

gation behavior, often referred to as cognitive maps.

Previous studies examined the relationship between cognitive

map and route knowledge development. In these studies, participants

learned routes before being tested on place, route, and cognitive map

knowledge (Anooshian, 1996; Kim & Bock, 2021). Kim and Bock

(2021) administered tests of spatial knowledge after every exposure

to a route, over a total of 10 exposures. They found that both route

and cognitive map knowledge improved gradually over trials, provid-

ing support for the parallel acquisition model of spatial learning (c.f.,

Ishikawa & Montello, 2006). Anooshian (1996) also tested spatial

knowledge, after participants had navigated a route whilst learning

either the identity of decision-point places, or the turn direction at

decision-points during route navigation. Place learning gave rise to

place identity, sequence, and cognitive map knowledge, whilst partici-

pants in the turn direction learning condition performed poorly on

these tasks, and were better at recalling directional information.

Both Anooshian (1996) and Kim and Bock (2021) reported a cor-

relation between sequence knowledge and metric knowledge, but

only when performance on these tasks reached a reasonable level. In

the early exposures to the route in the study by Kim and Bock (2021),

no relationship between improving route knowledge and cognitive

map knowledge was evident. Anooshian (1996) found a correlation

between sequence knowledge and metric knowledge only in the place

learning group, but not in the turn direction learning group who had

less developed sequence and cognitive map knowledge. Anooshian

(1996) suggested that dissociations between different knowledge

types emerging under certain circumstances highlight the possibility

of distinct underlying mechanisms. Building on this interpretation, Kim

and Bock (2021) suggested that acquisition of the different knowl-

edge types may start out as relatively independent processes, but

gradually converge into overlapping processes as the different infor-

mation streams become more integrated.

Kim and Bock (2021) assessed overall route knowledge involving

both landmark sequence and directional information. Specifically, they

combined scores from a landmark sequence test and a directional

recall test into one composite score to represent route knowledge.

Thus, the observed correlation between route and survey knowledge

after the final route exposures in their study was not necessarily spe-

cific to only sequence knowledge but also incorporated directional

knowledge (possibly explaining the overall weak relationship, r = �.3).

Indeed, Anooshian (1996) tested sequence and directional knowledge

in separate tasks and observed a larger correlation between cognitive

map and sequence knowledge (r = �.5), but no correlation with direc-

tional knowledge. Overall, prior work provides evidence that acquisi-

tion of cognitive map-like metric knowledge is related to sequence

learning (Anooshian, 1996; Kim & Bock, 2021). However, these stud-

ies only provide circumstantial evidence that the development of

sequence knowledge and cognitive map representations pattern

together, and not that a causal link exists between them. Kim and

Bock (2021) also assessed survey knowledge already during route

learning which means that participants could have amended their

learning strategies to intentionally acquire both route and survey

knowledge.

A mechanistic relationship between sequence learning and cogni-

tive mapping is further supported by an overlap in their neural sub-

strates. Studies of spatial learning strongly implicate the hippocampus

as a key brain structure for solving navigation tasks reliant on the cog-

nitive map (King et al., 2002). Other nonspatial memory research

implicates the hippocampus in binding of temporal episodes into

sequences (Bellmund et al., 2020). This conception of the hippocam-

pus as a key structure in the encoding of memory sequences is not

new (Jensen & Lisman, 2005). Yet, in the field of spatial cognition and

navigation, sequence learning is a feature of landmark-centered route

knowledge that is widely associated with striatal circuits, related to its

role in procedural memory (Doeller et al., 2008).

The dichotomy between striatal-base route knowledge and

hippocampal-base cognitive map knowledge is prevalent in models of

spatial knowledge, and presents an interesting question as to how dif-

ferent knowledge types emerge on a neural level. Goodroe et al.

(2018) argued that although routes are typically recalled via strial-

dependant stimulus–response associations, the hippocampus also
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contributes to route navigation via the input of context-dependent

sequence information. Indeed, the striatum and the hippocampus

have been shown to interact collaboratively during motor sequence

learning (Albouy et al., 2013). Goodroe et al. (2018) posit that the

interaction between the striatum and the hippocampus is an impor-

tant direction for navigation research, which reflects the same ques-

tion about the relationship between sequence knowledge and metric

knowledge on a cognitive level.

For navigation-based sequence learning in rodents, the hippocam-

pus has been shown to be involved in learning sequences of places

(Foster & Knierim, 2012), and is recruited during sequence-based nav-

igation, but not during exploration behavior (Babayan et al., 2017).

Further, a recent study using human intercranial electroencephalo-

graphic recordings showed that neural activity elicited by non-spatial

sequence learning closely resembled that predicted by neural models

of cognitive map formation, most strongly in the hippocampus (Stiso

et al., 2022). In fact, aging adults (both healthy and those showing

cognitive decline) often experience marked volumetric decline and

structural changes to the hippocampus (Bettio et al., 2017), which

coincides with difficulties in spatial sequence learning and cognitive

map-reliant navigation in these populations (Lester et al., 2017).

Overall, the independent acquisition of sequence knowledge

compared with place and place–action knowledge during route learn-

ing (Hilton, Johnson, et al., 2021; Hilton, Wiener, & Johnson, 2021),

indicates that sequence knowledge, which involves place-to-place

relationships, is distinct from other forms of route knowledge. Further,

the correlation between sequence knowledge and cognitive map qual-

ity (Anooshian, 1996; Kim & Bock, 2021), the common role of the hip-

pocampus in sequence learning and cognitive mapping, and the

overlap in age-related decline (Lester et al., 2017), indicates a possible

relationship between discrete route sequence knowledge and metric

cognitive map knowledge. Given that (i) most frameworks of spatial

learning position sequence learning at a lower hierarchical rank than

cognitive mapping (Chrastil, 2013), and that (ii) sequence knowledge

tends to reach better levels in navigators before metric

knowledge (Kim & Bock, 2021), we propose that route sequence

knowledge directly supports the development of a metric cognitive

map. Whilst current research only provides circumstantial evidence

that cognitive map and sequence knowledge acquisition patterns

together, we aimed to determine whether their development is inde-

pendent, or whether they are interconnected systems.

To test whether route sequence knowledge supports the devel-

opment of cognitive maps, we asked participants to learn a route and

either required them to also learn the sequence of places (Sequence

Learning condition), or to learn the identity of the places (i.e., no

sequence learning required; Recognition Learning condition). After

successful route learning, participants completed a sequence knowl-

edge task to confirm the effectiveness of our manipulation, and then

completed a pointing task. The pointing task, where participants were

placed at one location in the environment and then pointed directly to

another given location, is an established measure of metric spatial

knowledge (He et al., 2023), because an understanding of the dis-

tances and angles between places is required in order to produce

novel pointing vectors between place pairs. Importantly, during route

learning participants were naive to the upcoming tasks, and thus could

not amend their learning strategies to intentionally acquire metric

knowledge. In this way, we tested the incidental development of cog-

nitive maps as a result of enhanced sequence knowledge. We

expected participants in the Sequence Learning condition to produce

significantly lower angular errors in the pointing task than participants

in the Recognition Learning condition. Accepting this hypothesis

would support the notion that route sequence knowledge supports

cognitive map development. In contrast, rejecting it would suggest

that sequence and cognitive map-like knowledge develop

independently.

2 | MATERIALS AND METHODS

2.1 | Participants

Forty-one students from Bournemouth University took part in the

experiment. Participants were assigned to either the Recognition

Learning condition (9 females, mean age = 19.78; 11 males, mean

age = 20.18) or the Sequence Learning condition (9 females,

mean age = 25.78; 12 males, mean age = 23.33). Ethical approval

was granted by the Bournemouth University Research Ethics Panel

and written informed consent was gained from all participants who

participated in exchange for course credits.

2.2 | Design

Learning condition was the main between groups' independent vari-

able with two levels (Sequence Learning or Recognition Learning). The

difference between these two conditions was the alternate task,

which participants had to complete during the learning phase. All

other parts of the experiment were identical for both conditions. Par-

ticipants completed in order: the Learning Phase, the Reconstruction

of Order Task, and the Pointing Task. Overall, the duration of the

experiment varied between 1 and 2 h depending on the time taken to

complete the Learning Phase and variations in response times.

2.3 | Virtual environment

We recorded a video of a route through “Virtual Tübingen,” a virtual

model of Tübingen, Germany (Van Veen et al., 1998). The route con-

sisted of 13 intersections (4 right turns, 5 left turns, and 4 straights;

see Figure 1a) and the video was 4 min 49 s long without pauses.

2.4 | Learning phase

Each learning block consisted of one route navigation task and one

alternative task (Recognition Learning or Sequence Learning,

HILTON and WIENER 3
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depending on the condition). Within each block, the tasks were com-

pleted sequentially, one after the other, resulting in an interwoven

series over repeated blocks (route navigation, alternative task, route

navigation, alternative task, etc.). In the route navigation task, partici-

pants viewed a video of passive transportation along the route. At

each intersection, the video was paused (see Figure 1b), and partici-

pants were asked to indicate the direction of travel required to con-

tinue along the route via keypresses (left, straight, or right). The video

resumed once a response was given, therefore providing participants

with immediate feedback. For the first learning block, participants had

to guess which directions would be taken since they had never seen

the video before. When participants reached the end of the route,

they completed the alternative task.

The alternative task depended on which condition participants

were in. For the Recognition Learning condition, participants were

shown two images of which one was of a location along the route,

and one was a foil image taken from a different location in Virtual

Tübingen. The task was to indicate which location was encountered

along the route. For the Sequence Learning condition, participants

were shown two images both of locations from the route, and the task

was to indicate which of the locations were encountered first. The

two images in the Sequence Learning condition were always of neigh-

boring intersections. Both alternative tasks contained 12 trials in

which the side of the screen that correct and incorrect images were

presented on was counterbalanced (see Figure 1c).

The learning phase was conducted first and was repeated until par-

ticipants reached the 100% performance criterion in both the route

navigation task and the alternative task in the same learning block, or

after eight learning blocks if the performance criterion was not reached.

2.5 | Reconstruction of order task

After the Learning Phase, participants completed the Reconstruction

of Order Task, where participants were presented with A4 printed out

images of all 13 intersections at once. Their task was to arrange the

images into the order in which they were encountered along

the route. The task was conducted as described in Ward et al. (2010)

in which participants were free to place items in any temporal order

they wished and to move items that had already been placed. Partici-

pants were given as much time as they needed to construct the

sequence and indicated to the experimenter when they were finished.

There were two dependent measures for the Reconstruction of

Order Task: first was the absolute scoring method for which each

intersection placed in the correct position was scored 1 and

each incorrectly placed intersection was scored 0 (c.f. Ward

et al., 2010). This measure indicates sequence knowledge in terms of

absolute position. It is, however, not sensitive to relative ordering of

intersections. For example, imagine a participant places 12 items cor-

rectly, and then places the last intersection in position one, thereby

F IGURE 1 (a) Schematic of the route; (b) A screenshot of an intersection in the route; (c) Example trial from the alternate task in the
Sequence Learning condition; (d) Example trial from the pointing task.
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shifting all items one place forward. This would result in a total score

of 0, despite having the relative sequence of 12/13 intersections in

the correct order. To account for relative positioning, the second mea-

sure used was the Levenshtein Distance between the given sequence

and the correct sequence (Levenshtein, 1966). The Levenshtein Dis-

tance is the number of moves (deletions, insertions, and substitutions)

required to transform the given sequence into the correct sequence.

Sequences with good relative ordering of intersections have lower

Levenshtein Distances than those which have poor relative ordering.

2.6 | Pointing task

The final task was the Pointing Task, for which participants were

shown two images of locations from the route simultaneously. Their

task was to imagine that they were at the location shown in the left

image (indicated on screen) and to point in the direction of the loca-

tion shown in the right image. Participants were carefully instructed

to point as if drawing a direct line between the locations, “as the crow

flies,” and not pointing in which direction they should turn at the

intersection. Participants responded using the mouse to control a line

in a circle on the screen (see Figure 1d). They were able to position

the pointing line anywhere in the full 360-degree range of the circle.

Positioning the line towards the top of the circle represented the par-

ticipant pointing directly forwards and positioning the line towards

the bottom of the circle represented pointing directly behind them-

selves. Participants clicked the left mouse button to give the pointing

response when they had positioned the line.

All combinations of intersections were tested in both directions, for

a total of 156 pointing trials. Before the pointing task began, partici-

pants were asked to physically point to various locations in the building

the experiment took place in (the entrance of the building, the entrance

of the testing labs, the nearest staircase) in order to demonstrate their

understanding of the pointing task instructions to the experimenter.

2.7 | Materials

OpenSesame 3.1.4 (Mathôt et al., 2012) was used to display stimuli

and collect responses. The experiment was presented on a 102 cm

screen (diagonal) with an aspect ratio of 16:9 and a resolution of

1920 � 1080 pixels. Participants sat 1 m away from the screen and

responded using a standard keyboard.

3 | RESULTS

One participant from the Recognition Learning condition failed to

complete the Learning Phase after eight blocks and was excluded

from the analysis. Data were analyzed in R studio (RStudio

Team, 2021) using the lme4 package for linear and generalised linear

mixed effect models (LME; GLME; version 1.1–21; Bates et al., 2015)

and the lmerTest package to determine p-values (Kuznetsova

et al., 2017).

3.1 | Learning phase

We analyzed the number of learning blocks taken to reach the 100%

performance criterion in the Learning Phase (see Figure 2a). An inde-

pendent samples t test revealed that there was no significant difference

in the number of learning blocks taken to reach criterion between the

Recognition Learning condition (mean = 3.74, SD = 1.28) and the

Sequence Learning condition (mean = 4.29, SD = 1.15; t[38] = �1.43,

p = .161, d = �0.45).

We conducted a post-hoc power analysis for an independent

samples t test using G*Power (v3.1.9.7; Faul et al., 2007). Our study

was well powered (0.8) to detect an effect size of at least 0.81, but

only achieved a power of 0.4 to observe an effect size of 0.45 (i.e., as

reported). It is thus possible that the study was underpowered to

detect the numerical difference between groups as significant.

3.2 | Reconstruction of order task

We conducted a GLME on Reconstruction of Order Task absolute

scores (binomial) with learning condition as a fixed effect (factor; Recog-

nition Learning or Sequence Learning; sum contrast coding) and random

effects of participant and item (intercept only). The model revealed that

participants in the Sequence Learning condition (mean = 84.98,

SD = 23.52) performed significantly better in the Reconstruction of

Order Task than participants in the Recognition Learning condition

(mean = 44.94, SD = 25.16; β = 1.69, SE = 0.37, z = 4.56, p < .001;

see Figure 2b). Similarly, Welch's independent samples t test revealed

that Levenshtein Distance was significantly better (i.e., lower) in the

Sequence Learning condition (mean = 1.19, SD = 1.72) than in the

Recognition Learning condition (mean = 5.63, SD = 2.79; t[29.37]

= 5.98, p < .001, d = 1.94; see Figure 2c). To determine chance level

performance for this task, we ran a simulation with 1000 iterations of

random 13-item sequences compared with the correct sequence. The

mean chance level Levenshtein Distance was 11.23. One-sample t tests

showed that the Levenshtein Distances in both the Sequence Learning

condition (t[20] = �26.74, p < .001) and the Recognition Learning con-

dition (t(18) = �8.74, p < .001) were significantly smaller than chance

level.

3.3 | Pointing task

Absolute pointing error was analyzed with 0 degrees being perfect

pointing accuracy and 180 degrees being the maximum possible error.

Using one sample t tests we found that both groups performed signifi-

cantly better than chance (90 degrees; Recognition Learning: t[18]

= �6.93, p < .001; Sequence Learning: t[20] = �10.76, p < .001).
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We conducted an LME on pointing error with learning condition

(factor; Recognition Learning or Sequence Learning; sum contrast

coding) as a fixed effect and participant and intersection pair as ran-

dom factors (intercept only). The model revealed that participants in

the Sequence Learning condition (mean = 49.80, SD = 17.13) had

significantly lower pointing errors than participants in the Recognition

Learning condition (mean = 64.19, SD = 16.24; β = 7.20, SE = 2.65,

t = 2.72, p = .009; see Figure 2d).

We used the subject and trial variance, and the analysis model

structure from this study to run post hoc power simulations using the

“simr” package in R (Green & Macleod, 2016). We examined power

curves for different sample sizes to detect a large (pointing

error = 22.41) and small (pointing error = 10.83) effect size as

reported in prior analyses of a pointing task (Weisberg et al., 2014),

as well as a medium effect size determined as halfway between small

and large (pointing error = 16.62). We ran 1000 iterations per sample

and found that total sample sizes of 22, 36, and 72 were required to

achieve a power of 0.8 to detect a large, medium, and small effect,

respectively.

We also examined the relationship between Levenshtein Dis-

tance and pointing errors for the Recognition Learning condition.

There was a significant positive correlation between Levenshtein Dis-

tance's and pointing errors (r = .46, p = .045) demonstrating that bet-

ter sequence knowledge was associated with better metric

knowledge. We also checked the relationship between number of

learning trials (i.e., total exposure to the route) and pointing errors

with a Spearman's rank correlation across all participants and found

no significant relationship (ρ = 0.36, p = .134).

3.4 | Route versus Euclidean distance

We conducted an exploratory analysis into how the distance between

place pairs in the pointing task related to performance. For this mea-

sure, the distance could be defined by the direct Euclidean distance in

virtual units between the places, or by the number of intersections

the places were apart along the route, referred to as route distance.

There was a significant correlation between the Euclidean and route

distance (ρ = 0.57, p < .001), prohibiting them from being predictors

in the same model. This correlation is only of a medium size; however,

because places that are close together in route distance will also be

close in Euclidean distance, while places close in Euclidean distance

are not necessarily close in route distance (e.g., the first and last inter-

sections, see Figure 1a). Therefore, we performed separate models for

each measure on pointing error, which included distance as a fixed

effect (continuous; either Euclidean or route; centered) and learning

condition (factor; Recognition Learning or Sequence Learning; sum

contrast coded) and participant and intersection pair as random fac-

tors (intercept only). There was a main effect of learning condition in

both models as reported in the pointing task analysis above, and thus

we do not repeat that here, instead focusing on the distance variables

and their interactions with learning condition.

For the route distance model, there was a significant main

effect of distance, such that increasing route distance between

places related to larger pointing errors (β = 7.80, SE = 1.11,

t = 7.01, p < .001), and a significant interaction with learning con-

dition (β = �1.94, SE = 0.55, t = �3.51, p < .001). We followed

up this interaction by running models for each condition

F IGURE 2 (a) Number of trials taken to reach criterion in the Learning Phase; (b) Absolute scoring of the Reconstruction of Order Task;
(c) Reconstruction of Order Task Levenshtein's distance between given sequences and the correct sequence; (d) Angular errors on the Pointing

Task. Bars represent mean averages, error bars are 95% confidence intervals and points are individual participant data.
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separately, which revealed that route distance was a significant

predictor of pointing error for both the Recognition Learning

(β = 5.86, SE = 1.47, t = 3.98, p < .001) and Sequence Learning

conditions (β = 9.74, SE = 1.11, t = 8.80, p < .001), but the slope

was greater for the Sequence Learning condition, which explains

the interaction.

For the Euclidean distance model, there was no significant effect

of distance (β = 0.38, SE = 1.28, t = 0.30, p = .768), but there was a

significant interaction between distance and learning condition

(β = �2.30, SE = 0.55, t = �4.15, p < .001). We followed up this

interaction by running models for each condition separately, which

revealed that Euclidean distance was a significant predictor of point-

ing error, with greater distance relating to larger pointing errors, only

in the Sequence Learning condition (β = 2.98, SE = 1.34, t = 2.00,

p = .047), while there was no significant effect in the Recognition

Learning condition (β = �1.92, SE = 1.54, t = �1.25, p = .213).

Finally, we compared the Euclidean distance and route distance

models in each learning condition to assess which model better fit the

pointing error data. The route distance model was a better fit for both

the Recognition Learning condition (χ2 = 13.62, p < .001) and the

Sequence Learning (χ2 = 59.26, p < .001) condition.

4 | DISCUSSION

In this study, participants learned a route until they could navigate it

without errors whilst also learning either the identity of places along

the route, or the discrete sequence in which places were encountered.

Not surprisingly, participants who learned the sequence of places per-

formed better on the follow-up Reconstruction of Order Task, con-

firming that our manipulation to induce route sequence learning

worked as intended. Importantly, these participants produced lower

errors on the Pointing Task, during which they produced novel point-

ing vectors between locations along the route, than participants who

were not prompted to learn the sequence of places. Overall, the

results show that acquiring information about the sequence of places

contributes to better understanding of the metric relationships

between those places.

As predicted, participants in the Sequence Learning condition per-

formed better on the Pointing Task than participants in the Recogni-

tion Learning condition. The Learning Phase results show that this is

not likely to be explained by differences in exposure to the route,

since no significant difference was observed in this regard. There was

a small numerical increase in route attempts for the Sequence Learn-

ing groups (0.55 attempts), which we may have missed as a real effect

due to insufficient power, but the number of attempts in both learning

groups was very similar to that reported by Hilton, Johnson, et al.

(2021), four to five attempts on average), where participants learned a

route of similar length, but without a secondary task. Additionally, we

found that the number of learning attempts across all participants did

not relate to pointing error, and thus even if small differences

between groups did exist, the number of learning attempts is not a

good candidate to explain differences in pointing performance.

Improvement in Pointing Task performance is therefore better

explained by the improved route sequence knowledge for the

Sequence Learning condition. The Sequence Learning group per-

formed near ceiling level on both absolute and relative measures

of the Reconstruction of Order Task. On the other hand, partici-

pants in the Recognition Learning group performed similarly to

those in other studies testing sequence knowledge (Head &

Isom, 2010; Hilton, Wiener, & Johnson, 2021), and still better than

chance level. The results demonstrate that incidental sequence

learning does occur when initially learning a route but is fairly lim-

ited in the absence of an explicit requirement to do so.

Both groups performed above chance level in the pointing task,

demonstrating that metric learning occurred in both groups, despite

participants not knowing that this type of knowledge would be

assessed. Angular errors on the pointing task were fairly high, but

were in the range observed by other studies (50–60 degrees;

Huffman & Ekstrom, 2019) and in line with the notion that metric cog-

nitive map knowledge accumulates more slowly than discrete route

knowledge (Kim & Bock, 2021). Our study shows that simple

route learning can give rise to a complex representation of space.

Indeed, Anooshian (1996) observed that participants who were

prompted to learn place identities performed better on tests of

sequence and metric knowledge, which is analogous to the Recogni-

tion Learning condition in our study. The control group in Anooshian

(1996) learned turning directions only and performed very poorly on

the sequence and pointing tasks. Combined with our findings, these

results suggest that environmental learning that encompasses multiple

types of spatial knowledge depends on the strategy employed during

route navigation: basic directional response learning yields very little

knowledge, place learning yields some knowledge, and sequence

learning results in an even more developed representation.

We observed a correlation between sequence knowledge and

pointing performance in the Recognition Learning condition, replicat-

ing earlier work showing natural emergence of a correlation between

these knowledge types (Anooshian, 1996; Kim & Bock, 2021). By

manipulating sequence learning directly, our study reveals a causal link

between sequence knowledge and metric knowledge. Whilst the idea

that spatial representations transition from discrete landmark

sequences to metric cognitive maps is generally well-accepted

(Ishikawa & Zhou, 2020), our data suggest that this is an interactive

process between the two, rather than independently emerging mem-

ory systems (c.f. Kim & Bock, 2021). Importantly, the manipulation

used to prompt sequence learning was a purely discrete judgment

about which of two neighboring places was encountered first. Yet,

performance improved on a pointing task that required metric cogni-

tive map-like knowledge about place-to-place representations for

pairs of places that were never prompted in the Sequence Learning

task. Therefore, the improvement in pointing performance in the

Sequence Learning group was not simply due to additional focus on

prompted place pairs, but instead must have arisen from the interac-

tion between sequence learning and another process.

Path integration, the integration of self-motion motion informa-

tion (from optic flow in stationary desktop navigation), enables
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humans to determine the metric distance traveled and angles of turns

taken between places (Etienne & Jeffery, 2004). It is possible that

knowledge about the order of places provides a scaffold which is inte-

grated with the metric information derived from path integration, for

more effective encoding. Indeed, the strong relationship we observed

between the route distance separating places and pointing error

shows that accumulated metric information was tied to the represen-

tation of the route.

The binding of metric information, known to be related to the hippo-

campal and other medial temporal brain structures (Chrastil et al., 2015;

King et al., 2002), to the route representation which is widely associated

with striatal circuits, provides several insights into the underlying mecha-

nisms of spatial learning during navigation. Interactivity between the stria-

tum and the hippocampus has already been highlighted as a key factor in

spatial learning (Goodroe et al., 2018; Igl�oi et al., 2010), and such an inter-

action could explain the results of our study. Specifically, sequence infor-

mation may be the content of the interaction between striatal route

representations and hippocampal metric representations, by which a

holistic spatial representation is formed (see also Igl�oi et al., 2010). Future

neuroimaging studies could aim to investigate the interaction between

striatal and medial temporal networks during navigation potentially with a

focus on place sequence learning.

The notion that route information is input from striatal circuits to

the hippocampus to scaffold metric information is also in line with the

more general claim in previous work that the hippocampus is involved

with route navigation, not just with cognitive mapping (Rondi-Reig

et al., 2006). Indeed, Howard et al. (2014) found that the posterior

hippocampus tracks route distance to a goal location, which is consis-

tent with our results that metric information is tied to the route con-

figuration. They further found that the anterior hippocampus tracked

Euclidean distance to the goal location via input from the entorhinal

cortex. In our study, although route distance was the strongest predic-

tor, we also found an emerging relationship between pointing errors

and the Euclidean distance separating place pairs for participants in

the Sequence Learning condition. This result is consistent with How-

ard et al.'s (2014) evidence of route- and Euclidean-based encoding

structures for metric spatial information.

In their framework of spatial knowledge organization, Chrastil and

Warren (2014) proposed that spatial information is first organized in a

topological format, reflecting known routes through the environment,

which becomes labeled with metric information. As the metric infor-

mation becomes more precise, a “true” cognitive map that is embed-

ded in a global reference frame forms. Our finding that metric

information is bound to the route configuration, possibly via the inter-

action of striatal and hippocampal representations, is in line with the

labeled topology suggested by Chrastil and Warren (2014). The emer-

gence of a coarse Euclidean-based organization for participants in the

Sequence Learning condition may be the indicator of the progression

to a final map-like representation, which is first aided by the sequence

knowledge “scaffold.” This progressive integration of metric and route

information would account for the findings of prior studies that show

that the relationships between cognitive map-like knowledge and

route knowledge are not immediately apparent (Anooshian, 1996;

Kim & Bock, 2021), but only arise after an initial route representation

is formed, and after which metric information can be integrated

(Chrastil & Warren, 2014).

The implications of the findings presented here extend to the

investigation of age-related spatial navigation impairments. It is possi-

ble that impairments in cognitive map knowledge in older adults

(Lester et al., 2017) partially stem from the reduced encoding of route

sequence information by older adults (Head & Isom, 2010; Hilton,

Wiener, & Johnson, 2021). However, O'Malley et al. (2018) showed

that older adults were able to learn landmark sequences of short

routes when they were aware about an upcoming sequence knowl-

edge test. Therefore, interventions could aim to train older adults to

learn route sequence information as a way to organically improve cog-

nitive map representations. We conducted a pilot test with four older

adults using the present experiment. However, the long experiment

duration and poor learning performance led us to deem the experi-

ment unsuitable for an older participant sample. In our future

research, we intend to reduce the paradigm difficulty by shortening

the route and reducing the number of pointing trials to make it suit-

able for an older adult population. We could then address the ques-

tion of whether cognitive map representation deficiencies in older

adults can be partially ameliorated by prompting the acquisition of

sequence knowledge.

In conclusion, results from this study suggest a causal relationship

between the acquisition of route sequence knowledge and the devel-

opment of metric cognitive maps. Focusing navigators on learning the

discrete order in which places are encountered along a route so that

their sequence knowledge surpasses that which it normally would,

improves the incidental acquisition of metric information used to con-

struct a cognitive map. Our findings may provide an insight into the

content of the interactions between the host of brain networks

recruited during navigation for the formation of advanced spatial

representations.
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