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Abstract 

Object-Oriented methods have increased in popularity over the last decade, and are now 
the norm for software development in many application areas. Many claims were made for 

the superiority of object-oriented methods over more traditional methods, and these claims 
have largely been accepted, or at least not questioned by the software community. Such was 

the motivation for this thesis. One way of capturing information about software is the use 

of software metrics. However, if we are to have faith in the information, we must be 

satisfied that these metrics do indeed tell us what we need to know. This is not easy when 

the software characteristics we are interested in are intangible and unable to be precisely 
defined. 

This thesis considers the attempts to measure software and to make predictions regarding 

maintainabilty and effort over the last three decades. It examines traditional software 

metrics and considers their failings in the light of the calls for better standards of 

validation in terms of measurement theory and empirical study. From this five lessons were 

derived. The relatively new area of metrics for object-oriented systems is examined to 

determine whether suggestions for improvement have been widely heeded. 

The thesis uses an industrial case study and an experiment to examine one feature of object- 

orientation, inheritance, and its effect on aspects of maintainability, namely number of 

defects and time to implement a change. The case study is also used to demonstrate that it 

is possible to obtain early, simple and useful local prediction systems for important 

attributes such as system size and defects, using readily available measures rather than 

attempting predefined and possibly time consuming metrics which may suffer from poor 

definition, invalidity or inability to predict or capture anything of real use. 

The thesis concludes that there is empirical evidence to suggest a hypothesis linking 

inheritance and increased incidence of defects and increased maintenance effort and that 

more empirical studies are needed in order to test the hypothesis. This suggests that we 

should treat claims regarding the benefits of object-orientation for maintenance with some 

caution. This thesis also concludes that with the ability to produce, with little effort, 

accurate local metrics, we have an acceptable substitute for the large predefined metrics 

suites with their attendant problems. 
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Chapter 1 Introduction 

Synopsis 

This chapter describes the research problem undertaken by this doctoral research, 

namely the need to redress the lack of empirical evidence regarding the 

application of object-oriented (00) technology, with the emphasis on software 

maintenance. Next the chapter explains the need for such an investigation. 

Various 00 concepts are defined and the scope of the research delineated. The 

research approach is outlined and the chapter concludes by summarising the 

structure of the remainder of the thesis. 

1.1 The Research Problem 

Although the original ideas behind 00 technology derive from work on 

the programming language Simula in the 1960s, it was not until the 

1980s when the work was popularised and its use became more 

widespread. Presently, C++ and Java are widely used and widely taught. 

The 00 paradigm could be regarded as the orthodoxy of the late 1990s. 

One reason for its pre-eminence is that proponents of the 00 paradigm 

makes a number of claims as to its benefits. Those pertaining to 

maintainabilty are considered here below. 

The common thread running through many of the textbooks and papers 

on 00 is that 00 leads to a simpler solution to a problem, or at least 

more complex problems can be tackled than with more conventional 

methods, because object-oriented methods provide ways of abstracting 

out information leading to a system that is relatively easy to understand. 

Wirfs-Brock, Wilkerson and Weiner (Wirfs-Brock, Wilkerson et al. 1990) 

feel that the use of 00 methods leads to a software system which is more 
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maintainable and extensible. They claim that encapsulation and 
information hiding constrain communication between objects (lower 

coupling), enabling communication patterns between objects to be more 

easily understood and so making it easier for the maintainer to locate 

errors and to assess where side effects of changes could occur. 

Rumbaugh et al. (Rumbaugh, Blaha et al. 1991) claim that the use of 00 

analysis and design methods will lead to "better understanding of 

requirements, cleaner designs, and more maintainable systems". 

Encapsulation is again highlighted as a concept which promotes 

maintainability by minimising interdependency between objects and 

thus the effects that changing one object will have on others in the same 

system. 

Rao (Rao 1993) claims the 00 results in "improved programmer 

productivity and ease of software maintenance" and considers 

information hiding to be a factor which effects maintainability, since it 

limits the effects of change. 

Booch (Booch 1991) feels the use of object-oriented methods leads to 

smaller systems where code is reused and also systems that have a 

simpler structure. He feels that the process by which 00 software is 

developed "reduces the risk of building complex software systems, 
because they are designed to evolve incrementally from smaller systems 

in which we already have confidence". In his earlier work, (Booch 1986) 

he concludes that since 00 "captures a model of the real world" the 

resulting software will be more understandable and maintainable. 

However, we have concerns that these claims are largely unverified. 
Unfortunately, we have comparatively little empirically based 

knowledge of the behaviour of systems that have been implemented 
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using 00 technology, with a few notable exceptions such as (Wilde, 

Matthews et al. 1993; Cartwright and Shepperd 1997b; Harrison, Counsell 

et al. 1997; Hatton 1997). Thus as OOT (object-oriented technology), and 

particularly the use of C++, continues to be heavily invested in, research 
into better understanding, and prediction, of the behaviour of object- 

oriented software is a matter of some urgency. 

Despite the need for empirical research into large scale 00 systems, the 

majority of object-oriented metrics research has concentrated upon 
defining sets of structural metrics, (e. g. (Abreu and Carapuca 1994; 

Chidamber and Kemerer 1994)). The structural metrics are measures of a 

range of attributes, in the main pertaining to various architectural aspects 

of 00 systems. Without empirical evidence it is not possible to say how 

useful these measures are, particularly in the sense of being inputs to 

prediction systems (e. g. of defects, reliability, cost etc. ) that can yield 

sufficiently accurate results to aid in the process of developing software. 
It seems, therefore reasonable to conclude that there is a need to study 00 

systems including those drawn from industry without restricting 

ourselves to predefined sets of metrics, which may or may not be useful. 
We can then make best use of the available data, rather than discarding 

something potentially useful because it is not required or considered by a 

particular metrics set. 

The aims of this research are: 

i) To investigate the impact of key 00 mechanisms, specifically 
inheritance, on software maintenance. 

ii) To examine previous work in the area of traditional, 

complexity metrics development and identify any problems 

with this approach. These problems could be used to derive 
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"lessons to be learned", which would be considered when 

assessing the metrics proposed for object-oriented software. 

iii) To consider the available 00 metrics in the light of what was 

discovered from the above aims (examination of previous 

work and the impact of inheritance on maintainability) and 

ascertain which, if any, metrics fulfilled the criteria of being 

easy to obtain and useful. 

iv) To develop simple local prediction systems for size and 

maintainabilty (in terms of defects) and assess their accuracy. 

1.2 Scope and Definition 

This research concentrates on the effects of object-oriented software 

(designed using an object-oriented analysis and design method (OOAD) 

and coded with an object-oriented programming language (OOPL)), upon 

software maintenance. Here it is worth clarifying what is meant by 

maintainability. In the literature dealing with 00 and maintenance, the 

term is rarely clarified. From their context, it is sometimes taken to 

mean corrective maintenance or more often, perfective maintenance 

(Lientz and Swanson 1980). In terms of the case study, we are considering 

corrective maintenance, the fixing of errors or defects. In the experiment 

the maintenance changes are intended to be perfective (adding new 

requirements) although it was not impossible that some corrective 

maintenance might be required. 

Figure 1.1 below shows a McCall inspired model (see van Vliet (1993), 

one of many possible secondary references, since the original McCall 

reference is somewhat obscure). This indicates the aspects of 
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maintainability with which this thesis is concerned. In the experiment 
described in chapter 5, time to implement a change is used as a measure 

of maintainability. The case study uses the number of defects (and defect 

density) as a measure of correctness. Both maintainability and 

correctness are affected by the understandability of the solution and 

familiarity with the problem domain. This thesis is concerned only with 

the former. The model shows three issues that impact upon 

understandability. These are size, which has been measured in the case 

study by LOC, STATES and EVENTS, amongst others; architectural and 

structural mechanisms, which can be further categorised, and 

documentation, which is outside the scope of this thesis. Inheritance, 

coupling and cohesion are architectural / structural mechanisms. This 

thesis is concerned with inheritance, measured by the Chidamber and 
Kemerer (Chidamber and Kemerer (1994)) metrics, DIT and NOC (see 

section 3.3.1 and chapter 5). The case study suggests then, a link between 

inheritance and correctness, but of course, the findings of a case study 

cannot be generalised (see section 1.3). 
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\documentation\cohesion 

problem domain 

Figure 1.1: Partial Quality Model for Maintainability 

A case study and an experiment were chosen as research methods. Both 

are based on C++ systems, since, at this time (of carrying out the 

research) C++ is the most successful' and widely used 00 language for 

industrial systems. 

The object-oriented paradigm exhibits three characteristics recognised as 

important to the development of good quality software, namely 

encapsulation or information hiding, abstraction and modularity 

' In terms of industrial interest, usage, number of systems developed and variety of 
application areas. This was indicated by a small survey carried out by the author in 1992. 
There are journals either dedicated to or giving prominent coverage to C++, including 
some aimed at a more mass market as opposed to special interest groups. 
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((Pressman 1992)). (Booch 1991) adds others to this list - hierarchy, typing, 

concurrency and persistence. 

As mentioned in section 1.1,00 concepts were first included in the 

language Simula. This language never achieved the popularity of 

subsequent OOPLs such as Smalltalk, C++, and more recently, Java. 

Object-oriented analysis and design (OOAD) methods have developed 

from object-oriented programming languages and are therefore very 

different from traditional methods in terms of both the way that 

problems are decomposed and in the architecture of any system 

developed using an 00 method. However, there is no universal 

agreement on what features an object-oriented language should include, 

what exactly each concept should entail or how it should be used. Thus, 

since what constitutes 00 programming is interpreted differently among 

different practitioners (Rentsch 1982; Booch 1991), OOADs have 

developed different ideas and emphasise different aspects of 00, and 00 

terminology is not standardised across programming languages or 

development methods. 

(Booch 1991) feels that the object-oriented approach is more than a 

software development method. In addition to programming languages 

and analysis and design methods, 00 is applicable to user interfaces, 

databases, knowledge bases and computer architecture and as such offers 

a more integrated approach to system design. 

Some of the terms used in this report are explained. Due to the lack of 

uniformity in the terms used to describe concepts, an effort will be made 

to give commonly used synonyms, which, throughout the remainder of 

the report, may be used interchangeably. 
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(i) Object 

An object has identity (data) and behaviour (operations. ) It may be 

concrete or conceptual. It may represent an entity in the real world, such 

as a device, something which exists only in the context of the system, a 

role played by a person and so on. Booch (Booch 1991) defines an object 

as "a tangible entity that exhibits some well defined behavior". 

(ii) Class 

A class is a collection of objects sharing a common data structure and 

behaviour. Each object is said to be an instance of the class. The data or 

attributes for all objects in a class are common but the specific values may 

differ. 

(iii) Operation 

This term is used interchangeably with method An operation is simply 

an action which an object may perform and is invoked using a message. 

(iv) Abstraction 

This is a way of dealing with complexity, where essentially, a simplified 

view of a problem is created, with unnecessary details suppressed. Booch 

(Booch 1991)defines abstraction in the context of 00 thus: " An 

abstraction denotes the essential characteristics of an object that 

distinguishes it from all other kinds of objects and thus provide crisply 

defined conceptual boundaries, relative to the perspective of the user". 

Abstraction allows the separation of an object's behaviour or what it does 

from its implementation or how it does something. 
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(v) Encapsulation 

This is the grouping of data and operations which affect the data into an 

object. The information encapsulated may be hidden from external 

view. The external view of an object, or its public face consists of what it 

offers or can do, whereas the internal view or private face is concerned 

with the implementation or how things are done. This is known as 
information hiding. 

(vi) Inheritance 

This is a further means of classification. Objects may be grouped into 

classes, classes may be arranged into an inheritance hierarchy, whereby 

new classes may be created as refinements of existing classes. In other 

words inheritance provides a mechanism for the creation of a taxonomy 

of classes, where classes inherit behaviour from others and refine or add 

something more to form a unique class. 
Inheritance is usually taken to mean that each class inherits from only 

one other, unless specifically defined as multiple inheritance. 

(vii) Sub and Superclasses 

These arise out of the use of inheritance. A subclass inherits properties 
from a superclass and refines them i. e. adds its own behaviour. 

(viii) Polymorphism 

This abstraction allows an object to send out a message without needing 
to specify which object should implement it. Two or more objects may be 

capable of responding to the message, depending upon the data or 

parameters supplied. For example, an object can send out a print 
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message, without concerning itself with deciding which object should 
carry out this task. There will be two or more objects (normally related by 

inheritance) which can implement the command, each in its own way, 
appropriate to a particular type of document. Thus when the client sends 

out a print message along with information that, for example, it is a 

graphics file, and its required destination (printer or screen), the 

appropriate object can respond and implement the method to print that 
document. Another example is the "+" operator, it will be implemented 
in different ways according to what is being added. This is also known as 

overloading. There are various classifications of polymorphism. The 

interested reader is referred to (Booch 1994). 

It is also necessary to consider what is meant by the term metric. In this 

thesis it is used as a generic term for both measurement and prediction 

system, applied to software. It is used when it is not necessary to 
distinguish between these more specific terms, where the particular term 

intended is obvious from the context, or where the work of others is 

being discussed and the work in question does not distinguish between 

the terms measurement or prediction system. The metric may be 

derived from code, design or some other artefact or process arising from 

the activity of software development. A measure is taken to mean a 

measurement taken from some software artefact (e. g. the number of 

classes taken from design documentation) or some combination of 

measures used together, perhaps as a proxy for a less tangible concept. (e. g. 

the number of classes + the number of couplings between classes) being 

used as a proxy measure for the complexity of a design. A prediction 

system uses measurements in some way to provide a prediction about 

some attribute which at that time is unmeasurable (e. g. using the 

measure of the number of methods in a design to predict the number of 
lines of code in the finished system). 
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So, to summarise, this thesis is concerned with the investigation of fully 

00 systems, as defined above, and excludes what is sometimes referred to 

as object based systems such as Ada 83. In practice the focus is C++ which 
is currently the most widely adopted 00 programming language. 

1.3 Research Methodology 

This section will briefly define and discuss the approach taken 

1)case study 

The more traditional area of application for this research method 
is in the field of social science research. It is, however used in 

object-oriented systems research, examples of which include 

(Booch 1986; Mancl and Havanas 1990; de Champeaux, Anderson 

et al. 1992; Wilde, Matthews et al. 1993; Capper, Colgate et al. 1994; 

Pomberger and Pree 1994). 

The working definition used in this thesis is taken from Yin (Yin 

1994): 

A case study is an empirical enquiry that investigates a 

contemporary phenomenon within its real-life context, especially 

when the boundaries between phenomenon and context are not 

clearly evident. This suggests that contextual conditions may be 

relevant to the investigation. Case studies are also likely to 

encounter situations where there are more variables of interest 

than there are datapoints. Case studies may also utilise multiple 

sources of evidence (and if so data should triangulate). 
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As with any approach, case study has its strengths and weaknesses. 
It facilitates the study of a phenomenon in its real context, playing 
down the need for distinction between the boundaries of 

phenomenon and context, but sacrifices control. Pre-established 

theories and propositions can guide data collection and analysis, 

and it is flexible enough not to exclude the unexpected. However, 

a case study suffers in its potential for generalisation, in that the 

results from one case can not necessarily be generalised to another 

(similar) situation. Yin (Yin 1994) suggests that "case studies, like 

experiments, are generalizable to theoretical propositions and not 

to populations or universes. " In this thesis, the case study will be 

used to formulate a hypothesis or hypotheses, which can be 

further tested by experimentation and analysis. Yin (Yin 1993) 

describes this approach as an exploratory case study. Ideally a 

number of case studies could be used to build up a body of 

evidence in support of a particular contention. In the absence of 

further industrial case studies during the time available, an 

experiment, also looking at object-oriented software maintenance 

was conducted. 

2)experiment 

An experiment answers the same type of research question, 

namely "how? " and "why? ", as a case study (Yin 1994), and can 

thus be complementary. It allows the researcher to isolate the 

phenomena from its context and thus is able to filter out 

extraneous factors to some extent. This control is gained at the 

expense of reality. A laboratory setting will be artificial and what 
happens in the lab may not happen in the real life context. The 

most typical experiment, and the type used in this research is a 

factorial design where the independent variables are varied 
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systematically and the dependent variables are quantitative, 

objective measures (Adelman 1991). 

Factor Case study Experiment 

scale Large phenomena small well defined events 

No. of cases few many 

control little much 

inference local generalizable if replicated 

setting In situ laboratory 

Table 1.1: Comparison of characteristics of empirical approaches 

1.4 Structure of the Thesis 

Chapter two provides a review of the development of software metrics 

since the earliest reported work in the 1950s. It traces the progress, and 

sometimes lack of it, over the subsequent four decades. It considers the 

two main approaches to the development and validation of metrics, the 

axiomatic approach and the empirical approach and also the application 

of measurement theory to the development and validation of metrics. 
From this history and critique, five major problems and thus lessons to 
be learned are derived. 

Chapter three considers many of the metrics proposed for object-oriented 

systems. The metrics fall into two categories, traditional metrics, that is 

metrics already proposed for structured systems, and new metrics 
developed specifically for object-oriented systems. These are examined in 

the light of the five lessons to be learned (chapter 2), to give an 

assessment of the current state of object-oriented software metrics. 
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Chapter four describes the case study carried out on a large industrial 

object-oriented telecommunications system. The aims of the case study 
are given. From the analysis a hypothesis is drawn that classes that are 
part of an inheritance hierarchy contain a higher density of defects than 

classes that are not involved in an inheritance relationship. The case 
study is also used to demonstrate that simple local prediction systems can 
be derived easily, without the need to use predefined metrics which are 

sometimes complicated, difficult to collect at design time or part of a large 

suite of similar metrics. Measures collected are defined and the process 
by which the prediction systems are derived and tested is described and 

the results presented. 

Chapter five describes the experiment carried out to investigate the 

impact of inheritance on maintenance effort. The experiment used is a 

partial replication of an experiment designed and implemented by John 

Daly for his doctoral thesis at the University of Strathclyde (Daly 1996). 

The hypotheses under test are presented and tested. 

Chapter six is the final chapter with the summary and conclusions to be 

drawn from the research program. It also outlines the weaknesses of the 

research and suggests further research that could be carried out to build 

up a body of empirical evidence and to complement the work carried out 

so far. 

1.5 Background Knowledge 

The reader is expected to have some knowledge of object-oriented 
concepts, although practical experience is not necessary. Readers are 
referred to the following texts on object-oriented analysis and design: 
(Wirfs-Brock, Wilkerson et al. 1990; Shlaer and Mellor 1992). Shlaer and 
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Mellor describes the analysis and design method used in the industrial 

case study described in chapter 4. Wirfs-Brock et al provides a more 
"pure" introduction to object-orientation, having evolved from the 

experience of Smalltalk designers, as opposed to the former method, 

which developed from a structured approach. The reader is provided 

with the necessary aspects of measurement theory in sections 2.4.1.1 and 
2.4.1.2. Chapters 4 and 5 require a basic knowledge of statistics for 

exploratory data analysis and hypothesis testing. One recommended 
book is Tukey's book on exploratory data analysis (Tukey 1977), but any 
book covering hypothesis testing and non parametric statistics should 

suffice, since the tests and plots employed are in common use. 

1.6 Reports resulting from this research 

The following reports have been produced: 

(i) Cartwright, M. H. and M. J. Shepperd. "Maintenance the Future of 
Object-Orientation. " In Durham 95 Ninth European Workshop on 
Software Maintenance in Durham. UK. 1995. 

(ii) Cartwright, M and M. J. Shepperd. An Empirical Study of Object- 
Oriented Metrics. Bournemouth University, 1997. Technical Report 

(iii) Cartwright, M. and M. J. Shepperd. "Building Predictive Models 
from Object-Oriented Metrics. " In Proc 8th European Software Control 
and Metrics Conf. in Berlin. 1997. 

(iv) Cartwright, M. H. "An Empirical View of Inheritance. " Information 
and Software Technology (accepted for publication) (1998). 

Also presentations at 
Durham '95 (i); 
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BMW '96 Bournemouth Metrics Workshop, 18th-19th April 1996; 
ESCOM 97 (ii); 

EASE '98 (iv). 

1.7 Summary 

Empirical research on the application of object-oriented development has 

lagged far behind the uptake of object-oriented methods and languages. 

This thesis aims to provide empirical evidence on the impact of object- 

orientation on software maintenance. Software metrics are an important 

resource for assessing attributes such as maintenance effort and related 

attributes such as software quality. Therefore in addition to the empirical 

evidence provided via the case study and the experiment, an extensive 

review of metrics for object-oriented systems is given. The metrics 

considered are maintenance related in that they purport to capture or 

predict attributes directly or indirectly related to software maintenance. 
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Chapter 2 The History of Software Metrics in 57 Pages. 

Synopsis 

We can all learn from the mistakes of the past. Software metrics proves 

no exception. This chapter considers the development of software metrics, 

how researchers have identified problems in metrics and the way in 

which metrics (both measures and prediction systems) were developed, 

and how research in other fields can be utilised to improve the 

development and validation process. 

2.1 Introduction 

The history of software metrics is a much covered topic almost any book 

or paper in this area will include some sort of description, critique or 

overview (see (Pressman 1992; Shepperd and Ince 1993), for examples). 
In this thesis it is included for the following reason. The major 
developments that have occurred in the field of software will 

undoubtedly have influenced the way in which software metrics 

applicable to the object-oriented paradigm have so far developed and will 

continue to be developed. Thus, background information on the past 
development of software metrics will provide a context in which current 

research, development and practice can be analysed and discussed. 

Therefore, this chapter does not contain an exhaustive list of software 

metrics over the last three decades, but takes the form of a critique of the 

major developments and themes of software metrics to date, thus 

providing a framework for the examination and critique of object- 

oriented software metrics which began to appear in the early 1990's. 

The need for software engineering techniques, including measurement, 

in order to plan and control software projects, especially with regard to 

cost was recognised as far back as 1956, with the SAGE air defence system, 
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which was probably the first large (around 500,000 LOC) system to be 
developed and was also probably one of the first to require teams of 

programmers as opposed to individuals (Benington 1956; Benington 
1983). However, the techniques Benington describes were not taken up 
by his contemporaries; as he notes, there was no attempt by the 

computing industry to apply engineering management, despite its 

success in the SAGE project, possibly because as Benington notes, at the 

time programmers were regarded as "different" and unable to work 

under such control. Another notable point in this paper is the statement 
"the time and cost required to prepare a system program are comparable 

with the time and cost of building the computer itself. " This seems to be 

ahead of its time - it was not until the late 1960s/early 1970s that software 
development costs surpassed hardware costs, making the planning, 

control and cost of software development into a major issue. 

Section 2.2 considers the main themes and influential metrics in the 

1970's and early 1980's. Section 2.3 examines approaches to validation. 

Section 2.4 discusses the emergence of the application of classical 

measurement theory to software metrics, in particular the work of 

Fenton and Kitchenham published in 1991. In section 2.5 we revisit the 

previous developments covered in 2.1 and discuss them in the light of 

measurement theory and prediction systems covered in section 2.4. The 

focus is on structural metrics - this mirrors the state of object-oriented 

metrics, which have also tended to be mainly structural/ complexity 

measures. However, not all metrics fall completely into popular 
categories such as structural/complexity, or cost/effort. See (Fenton and 
Pfleeger 1996) for a breakdown of areas which go under the banner of 

software metrics. So although some of the metrics covered (notably 
Function Points and Bang) are usually considered as cost/effort metrics 
(prediction systems), they are included here because they require some 
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structural knowledge as input to the model and thus in a sense, can be 

considered structural metrics. 

2.2 Structural Metrics 

Structural metrics are those which measure some aspect of software, such 

as coupling between components, for example, but are more than simple 

counts, such as LOC. Structural metrics do not include measures of 

performance. Structural measures would then normally be used to make 

some prediction or inference regarding another attribute, such as quality 

or size. Traditional structural metrics can be categorised in a number of 

ways, although there will be an inevitable overlap in some cases. The 

division of this section reflects the concerns of a maturing development 

process. It can be seen the earlier metrics concentrate on code complexity, 
followed by design metrics a few years later, with metrics for database 

systems appearing relatively recently. 

2.2.1 Complexity Metrics 

As stated above, the need to plan and control software development was 

recognised as long ago as the 1950s by Benington (Benington 1956; 
Benington 1983). This opinion did not appear to be widely shared, since 
the first published attempt at measuring software (structural as opposed 
to cost estimation or performance) did not appear until 1972. Halstead's 

Software Physics (Halstead 1972), later Halstead's Software Science 

(Halstead 1977) was an early attempt to measure code complexity and 

generated a great deal of interest. It was the first attempt to draw together 

a variety of factors thought to affect code complexity in order to provide a 
framework for software measurement to predict other, more useful, 

measures such as effort and time. Halstead postulated the idea that, as in 
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other disciplines, such as physics, there were fundamental laws that 

would hold for software, whatever the environment or development 

process. 

There is little doubt of Halstead's influence on the development of 

software metrics, since the metrics still continue to be cited and used, 

despite criticism of its underlying theory and the empirical evidence 

offered as support (Hamer and Frewin 1982; Shepperd and Ince 1993). Its 

value lies in the fact it was the first published attempt to provide a 
framework for measuring software, as opposed to a simple measure such 

as LOC and the first metric to attempt to measure or quantify 

characteristics "scientifically". ' Its legacy is the drive to quantify 

complexity and thus create a generally applicable complexity metric. 

Halstead's Software Science was not only welcomed, it also shaped 

subsequent software metrics research. For the rest of the decade, and 
indeed into the next, research effort concentrated entirely on code 

complexity metrics which were implicitly assumed to be language and 

environment independent. This was not the case3, however, which 

contributed to the list of problems with code metrics. Complexity was 

perceived as the key to predicting such factors as maintainability, effort, 
development costs etc. 

The simplest metric, LOC has tended to be rejected, partly because what 

constitutes a line of code can vary with programming style (see (Software 

2 Although Benington's original paper of 1956 predates Haltead's publication by almost 
twenty years, it was not widely read (see (Benington 1983)), plus it does not give 
sufficient details of how to use measurements to make a prediction to allow the reader to 
apply it in practice. 
3 An example of metrics not being language and environment independent is that both 
Software Science and Cyclomatic Complexity paid little heed to modulariztion of 
software. SS assumes systems to consist of one module (Hamer and Frewin 1982) and CC 
tends to increase with modularization (Shepperd 1988). 
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Metrics Definition Working Group 1991), which is just one of a number 

of publications), and partly because the metric is regarded as too 

simplistic to characterise something as complex as complexity. 
However, the concept of complexity remains at best, loosely defined. In 

keeping with the ad hoc approach to metrics development in the 1970's, 

measures were suggested without a clear idea of what was being 

measured, how the measures were to be used, what they were to predict 

or what to do with such predictions. 

One reason for this rather casual approach is the rather hazy concept of 

complexity. At first glance its meaning may seem straight forward, but it 

becomes obvious that it is not. First there are different types of 

complexity and second there are many issues, many of which are human 

factors, which affect the perception of complexity. As we well know, 

where human factors become involved things become somewhat more 

complicated. It is thus debatable whether complexity is actually a 

property of the software itself or whether it is dependent upon the 

interaction of individuals, the task they are performing and the software 

product upon which they are performing it. 

From the literature it can be seen that there have been attempts to 

categorise the different types of complexity such as computational (based 

on the difficulties in performing the various mathematical computations 
in an algorithm) and psychological or conceptual, which considers the 

difficulties in the interaction between programmer and software. 
However, these do little to clarify the situation, since intuitively, 

software complexity must be an interaction of the two, and the 

classification does little to determine to what extent either affects the 

development or maintenance of a program. 
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We are left with a situation as follows. Software complexity cannot easily 
be formally defined, if at all. It means different things to different people. 
A variety of factors are involved, many of them human factors. Even if 

we could agree upon the factors involved and upon an acceptable 
definition, such intangible characteristics would be difficult, if not 

impossible, to capture using measurement. Complexity in itself seems to 

be of little use. We would then need to know how complexity affects, for 

example, maintainability, and work out some prediction system. 

Thus complexity metrics are attempting to capture an intangible concept 

based on various factors, many of which (particularly those involving 

cognition) cannot be satisfactorily measured. Without a definition of 

what we are trying to capture, we cannot validate a measure or assess its 

usefulness. 

Notwithstanding the problems outlined above, the goal of software 

metrics research in the 1970's (and beyond) was to measure complexity. 

Another influential, widely cited and used code complexity metric was 

McCabe's Cyclomatic Complexity (McCabe 1976). Here programs are 

represented as directed graphs showing executable statements as nodes 

and control flow as the edges between them. The complexity works out 

to be the number of decisions plus one. The result is intended to provide 

an upper bound beyond which subdivision of the module should occur, 

and to indicate the amount of testing effort needed. Cyclomatic 

Complexity has subsequently been used to predict other complexity 

related features (see (Curtis, Sheppard et al. 1979; Shepperd 1988; Gill and 

Kemerer 1991)). 

2.2.2 Design Metrics 
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The realisation that taking measurements earlier in the development 

process would be of more benefit than code metrics in the planning and 

control of a project came about in the very late 1970's / early 1980's. The 

first published attempt at system design metrics seems to be Yin and 
Winchester's complexity metric (Yin and Winchester 1978). This 

considers only the complexity of the interconnections between modules 
in the design by treating the module hierarchy chart as a graph and 

representing complexity as the extent to which it departs from a tree 

structure. Similar is Benyon-Tinker's graph-based metric (Benyon- 

Tinker 1979) which also represents modules as nodes and calls as edges. 
Here a module will be considered only once by the metric, however often 
it is invoked, therefore, the representation will always be a pure tree. 

Complexity is instead regarded as a function of the length and breadth of 

the tree. 

Another attempt is Yau and Collofello's system stability metric (Yau and 
Collofello 1980), where design's "resistance to change" is assessed. In a 

poor design a simple change will ripple through the design whereas a 

good design will contain the change within the module. This approach 

was flawed, since it cannot be reliably calculated purely from design 

information. Thus, the publication of Henry and Kafura's paper on 

system design (Henry and Kafura 1981a), based on Henry's doctoral thesis, 

completed 1979, could be regarded as the first complete design metric in 

that it cdnsidered both the internal complexity of a module as well as that 

of connections between modules. 

Henry and Kafura's Information Flow metric is based on the idea that a 

good design should be modular with little coupling between modules, an 

idea adapted for software architecture by (Stevens, Myers et al. 1974) from 

the work of (Alexander 1964). The complexity of a module is calculated 

from the number of information flows entering (fanin) and leaving 
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(fanout) a module (multiplied together and then squared) multiplied by 

the internal complexity, measured in LOC. This is expressed as: 

length * (fi * fo)2. 

An obvious drawback is that if applied at the design stage actual LOC will 

not be available'. The authors offer some results from an empirical 

validation of industrial software, using a collection of changes made to 

the UNIX system to determine whether the metric can predict which 

procedures are likely to need changes made to them. The authors 

present the results of a correlation between changes and high procedure 
(module) complexity as measured by the metric. The results show a high 

correlation between the metric and changes (r=0.94), which improves 

when the length parameter is removed (r=0.98). Various uses were 

suggested : identifying outliers (modules of unusually high complexity) 

and system "hot spots" where an unusual amount of "traffic" occurs. 
Increases in complexity could indicate a missing level of abstraction. 
Thus, the metric could be used to improve the design, with the 

subsequent benefits being, of course, the software would be easier to 

implement, test and maintain. 

Post Henry and Kafura came further information flow metrics, IF4 

(Shepperd 1989; Shepperd 1990; Shepperd and Ince 1993) and Card and 
Agresti's design complexity measures (Card and Agresti 1988). IF4 is 

based on Henry and Kafura's measure, but the definitions of information 

flow are modified in accordance with criticisms of Henry and Kafura's 

original metric (Kitchenham 1988; Ince and Shepperd 1989; Shepperd 
1990a). Card and Agresti propose separate metrics for structural and 
internal module complexity. Fanin was discarded since it was not so 

In practice it is often omitted. Its contribution is questionable - see section 2.5.2.3 . 
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significant an indicator as fanout and also since counting just one way 
(i. e. fanin or fanout) ensures that a connection between two modules is 

not double counted. The significance of inter module (structural) metrics 
is supported by Troy and Zweben's study of 21 design measures (Troy and 
Zweben 1981), relating to five categories, including coupling. It was 

concluded that coupling had the most influence on error counts. 

2.2.3 Specification Metrics 

Albrecht (Albrecht and Gaffney 1983), proposed a metric, (referred to as 
Function Points or simply FP) which can be extracted from a 

specification. It is intended to be used to predict development effort, as 

an alternative to predicting LOC. The different functions described are 
identified and then weighted according to the complexity of the function 

type. The advantages are obvious - the earlier feedback is made, the 

better. The model has been well received and successfully used in 

industry (Behrens 1983; Kemerer 1987). It has been subject to 

modification (Symons 1988) for use with entity-relationship models and 

for use with real-time systems (Jones 1987). ' 

Another specification metric is DeMarco's Bang metric (DeMarco 1982) 

which utilises such specification notations as data flow diagrams, entity- 

relationship diagrams and state transition diagrams. The systems are 

classified as function strong (a count based on low level data flow 

diagram bubbles or processes) or data strong (derived from the number of 

entities in the entity-relationship diagram), or a hybrid. The metric can 

be used to produce a product size estimate. There is little published work 

validating the metric, although one by (Rask, Laamanen et al. 1993) 

suggests that Bang offers advantages over Albrecht's Function Points. 

s This point seems to have been retracted (verbally during discussion at meetings). 
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2.2.4 Database Metrics 

The metrics considered so far are largely functional metrics. In other 

words they consider function or processing rather than data. This reflects 

metrics research as a whole. The focus has been almost exclusively on 
functional systems, with few database metrics being proposed. The 

earliest seems to be (Geritsen, Morgan et al. 1977) which considers both 

network and relational databases. Function points (Albrecht and Gaffney 

1983) consider both internal data and exported/shared data. Mk II 

function points (Symons 1991) uses entity-relationship models to derive 

counts. The Bang metric (DeMarco 1982) also uses entity-relationship 

models for "data strong" systems. Other work has been carried out by 

(MacDonnell 1992; MacDonnell 1993), who suggests a large number of 

measures which can be extracted automatically from the various models 

used to describe a database system. Later work with Shepperd 

(MacDonnell, Shepperd et al. 1997) concentrates on a smaller number of 

measures taken from the entity-relationship model and the functional 

model in order to make a size prediction. Another study (Gray, Carey et 

al. 1991) suggests database design metrics, emphasising the need to be able 

to automatically extract them using CASE tools. Among the metrics 

suggested is an extension to IF4 (Shepperd 1990b), called IF4+, and an 

entity-relationship or ER metric. 

2.2.5 Summary 

During the 1970's and early 1980's, many software metrics were proposed. 
The main area of interest was software complexity, because of its effects 

on activities such as maintainability and testing. There was, however no 
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general agreement on what constituted complexity, or how it could be 

measured. 

The metrics examined in this section were all subject to attempts at 
"validation". Many papers have been published in support of, for 

example, Software Science, the authors claiming they have evidence to 
back this up. The high correlation found between Software Science and 

actual data have tended to be the result of misuse of, or incorrectly 

applied, statistics. For example, the study by Funami and Halstead 

(Funami and Halstead 1976), used data containing errors and the 

calculations of the parameters n, and n2 are unreliable and thus so are 

estimates of effort (E) on which they depend (see (Hamer and Frewin 

1982)). Ottenstein's validation (Ottenstein 1979), used the same data. 

Accurate calculations were produced (which varied considerably from 

those produced by Funami and Halstead), but since the estimates did not 

correspond well with the actual counts, it has not proved possible to 

reproduce the desired result without some sort of manipulation. Hamer 

and Frewin (Hamer and Frewin 1982)), reasonably state that "the claimed 

experimental support is largely illusory. ". The results cannot be relied 

upon since even when calculations are performed on the same data, 

different results can occur, depending upon the interpretation. 

Additionally, a truly independent validation needs to use a different data 

set to that from which the metric is derived. Hamer and Frewin found 

that when a different data set was used for validation, the relationship 
between V (volume) and bugs was non-linear (a linear relationship was 

observed by Funami and Halstead) and so a high correlation coefficient 
does not necessarily mean that the number of bugs will rise in direct 

proportion to size (as represented by volume, V). However, this desire 

to validate the metric by whatever means should not be surprising. An 

intuitively pleasing metric, both easily collectable and accurate is 

something that developers and project managers would naturally crave. 



28 

However, metrics need to be rigorously examined and validated (with 
due regard to measurement theory, thus ensuring correct use of relevant 
statistics), and, if they do not stand up to this validation, discarded. This 
is the attitude which emerged in the mid to late 1980's, where the widely 
cited and used metrics of the 1970's/early 1980's were critically examined 
and, in many cases, debunked. 

The lack of definition, the lack of rigour in deriving metrics and indeed 

the lack of guidance on how such measures should be used, were typical 

of an era of confusion. Those who proposed metrics realised the need for 

measurement in the software development process, but not of the need 
for definition and validation, so that practitioners could understand 

what characteristics were being measured, how this was to be done, and 
have a reasonable degree of certainty that the metric actually did what 

was claimed. 

It can be seen that validity is central to software metrics. The next section 

(2.3) will consider the issue in some depth. Two approaches to validating 

metrics will be considered, as will their effectiveness when used in 

isolation and as complementary techniques. Section 2.4 will consider the 

application of measurement theory to software metrics and validation. 

2.3 Validating Metrics 

The mid to late 1980's saw moves to improve techniques for validating 

metrics. Two strands emerged, the axiomatic approach and the empirical 

approach. Although evidence had been offered in support of metrics 
before, the approach which emerged at this time was to more critically 

validate existing metrics using either a more formal technique, axiomatic 

validation, as explained in section 2.3.1, or using suitable statistical 
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techniques (see section 2.3.2), which addressed the usefulness of software 

metrics. In this context "critically validate" means to provide a 
demonstration that the metrics worked (i. e. captured what they 

purported to or gave accurate predictions). Purely speculative work was 

no longer sufficient. The critical eye cast over metrics that had been 

accepted almost without question was long overdue. However, metrics 
development, validation and usage still suffered from confusion, which 

was not addressed. 

2.3.1 The Axiomatic Approach 

The axiomatic approach was a more formal6 way of validating a metric 

than the empirical approach. It does not deal with the usefulness of the 

metric in practice, but whether a metric behaves as required in theory. It 

is a deductive way of reasoning i. e. the metric must be formally defined, 

and then judged against a set of axioms which describe the desired 

properties of the metric, which allows us to "see" how the metric would 

behave in practice. This is the opposite to the empirical approach which 

is inductive (the results of applying the metric to data are analysed to 

deduce the effectiveness /validity of the metric). The axiomatic approach 

allows metrics to be validated without collecting data, which can be 

difficult and is invariably time consuming, thus it allows for a "quick and 

easy" validation of a proposed metric. However, the approach has 

drawbacks which detract from the intuitively appealing notion of 

proving formally and mathematically whether a metric is or is not valid. 

Firstly there is the problem of the definition of an axiom set. It is a task 

requiring rather more skill than proposing software metrics. Defining 

axioms requires some appreciation of measurement theory. Early work 

6 Here formal means that the metrics are tested using a set of rules (axioms) and their 
compliance or otherwise to these rules can be demonstrated mathematically. 
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in the area was carried out by Prather, (Prather 1984), who proposed a set 

of three axioms and applied them to complexity measures. Criticism of 

the work centres on the weakness of the axioms, since they "validate" 

measures which are not actually acceptable (Weyuker 1988; Shepperd 

1992) as can be seen from that fact that McCabe's Cyclomatic measure 

satisfies all three axioms, despite its weaknesses (see (Prather 1984)). 

More extensively quoted, and used to validate software metrics, are 

Weyuker's axioms (Weyuker 1988), a set of nine axioms for the 

evaluation of complexity measures. These are reproduced in table 2.1 

below, where M is a metric applied to a program, and c is complexity. 

PROPERTY NUMBER: 

I there are programs P and Q for which M(P)x M(Q) 

2 if c is a non-negative number, then there are only finitely 

many distinct programs P for which M(P)=c 

3 there are distinct programs P and Q for which M(P)=M(Q) 

4 there are functionally equivalent programs P and Q for which 

M(P)m M(Q) 

5 for any program bodies P and Q, we have M(P)<_M(P; Q) and 

M(Q)<_M(P; Q) 

6 there exist program bodies P, Q, and R such that M(P)=M(Q) 

and M(P; R)* M(Q; R) 

7 there are program bodies P and Q such that Q is formed by 

permuting the order of the statements of P and M(P)x M(Q) 

8 if P is a renaming of Q then M(P)=M(Q) 

9 there exist program bodies P and Q such that 

M(P)+M(Q)<M(P; Q) 

Table 2.1: Weyuker's Axioms 

This work has also been criticised since whereas Prather's axioms accept 

weak metrics, Weyuker's axioms reject reasonable metrics (Shepperd 

1992; Zuse 1992; Fenton and Pfleeger 1996). Additionally the axioms have 

been shown to be inconsistent. Zuse, for example has proved, using 
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representation theory', that properties 5 and 6 are contradictory. Property 

5 implies that size is a major factor in complexity, since a program cannot 
(according to this) reduce complexity by adding code (i. e. must be 

monotonistic). It reflects the received wisdom that we can understand 

smaller programs better than large ones because we can see more of them 

at once, but ignores comprehensibility as a factor (i. e. the lower the 

comprehensibility the higher the complexity). However, property 6 states 

that two programs of equal complexity can each be concatenated to a third 

program, the resulting two programs having differing complexities. This 

axiom covers comprehensibility and not size. Thus the two contradictory 

views of complexity lead to a situation where no single measure can 

satisfy both, in other words the notions of low comprehensibility and size 

embodied in the properties cannot be captured in one measure since they 

contradict each other. Zuse also shows that the two properties require 

different measurement scales8, ratio for property 5 but explicitly not for 

property 6. This has been disputed by Weyuker, amongst others 

(Morasca, Briand et al. 1997), but the weight of opinion tends to back 

Zuse's criticisms (Kitchenham, Pfleeger et al. 1997). 

Aside from the issue of flaws in an axiom set, the problem is that the 

"desirable" properties of a metric are subjective. What is desirable is 

dependent on what the author of the set considers to be so, not upon 

universal truths9. Weyuker did not claim that the properties she 

proposed were sufficient as they stand. However, the likelihood of 

evolving a complete and generally acceptable axiom set for validating 

complexity metrics is no more likely than arriving upon a generally 

Representation theory is discussed in section 2.4.1.1. 
s Measurement scales are considered in section 2.4.1.2. 

The notion of universal truths or laws has plagued software metrics development since 
Halstead. Software Science was based upon the notion that there were fundamental 
truths/laws about software that would hold, independent of environment, application 
area etc. 
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acceptable definition of software complexity itself. As discussed above, 
differing views on complexity can lead to contradictory statements. 

Secondly the axiomatic approach cannot demonstrate the usefulness of a 

metric, only that the model meets certain criteria, thus is inadequate 

when used in isolation. The issue of usefulness is separate from that of 

validity, to be deduced from empirical analysis, which must therefore be 

considered at least as a complementary technique. The usefulness of a 

metric is as much an issue as its validity (in the sense that the metric 

represents what it claims to and does not violate mathematical rules). 
Usefulness can only be assessed via an empirical study since this is the 

only technique to try to apply metrics in practice. The formal/ axiomatic 

approach can represent the "real world" mathematically and thus can 

model what should happen in predefined circumstances. It cannot, as 

empirical observation can, discover unforeseen phenomena nor assess 
the practicality and ease of applying the measures. 

To summarise: the axiomatic approach introduces pleasing formality 

into software metrics validation, enabling us to ascertain the likely 

behaviour of a metric without having to apply it. It deals with general 

principles, unlike the empirical approach it cannot assess the usefulness 

of the said metric nor indicate whether or not it is applicable in practice 
(i. e. the axiomatic approach is deductive not inductive); in addition the 

axioms sets available (Prather's and Weyuker's) have drawbacks as 
discussed above, neither able to strike the right balance, either accepting 
weak measures (Prather) or rejecting reasonable metrics (Weyuker). 

2.3.2 The Empirical Approach 
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The empirical approach requires data to be collected in order to validate a 
metric. Therefore it has the drawback of being a more time consuming 

approach to metrics validation than the use of axioms. However, it has a 

number of advantages. It allows the investigator to observe how things 
behave in reality, which of course can be rather different from how they 

"should" behave, software development being a cerebral, human centred 

activity, thus not conforming to mathematical or physical rules as do 

other activities, e. g. structural engineering. By collecting data and 

analysing it in order to discover the patterns within it, inferences may be 

drawn about what is occurring during the software development process, 

the effects on program structure on error rates and maintenance 

activities. " 

The empirical approach to metrics validation can take the form of 

industrial data collection or of controlled experiments. Both of these 

have been used in order to validate metrics. Both suffer from some 
inadequacy, in the former, the difficulty in replication of results, and in 

the latter the difficulty of simulating "real" software development under 

experimental conditions. Further problems with empirical validation 

occur when the investigation is unfocused or ill defined. It is important 

to know what you are looking for, and to define what measurements are 
being taken and how (counting rules - so that measurements are taken 

consistently). Where such clarity is lacking, spurious correlations can be 

mistaken as meaningful. An example is Software Science, where 

measurements were taken to represent complexity, in order to then 

predict effort, but the metric was also used in other studies, without 

modification, to predict other complexity related characteristics such as 

quality and defects (e. g. (Fitzimmons 1978)). Such a lack of clarity and 

10 In others words it is an open systems approach, which admits the possibility of 
external, unknown events. The opposite, closed system is represented by the formal 
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focus leads to confusion regarding the actual result, where the direct 

measurement taken can be used to represent another characteristic, or 

whether is should be used as an input to an equation (see section 2.4 

regarding the confusion between measures and predictions systems). 

An empirical study is the best technique to assess the usefulness of a 

metric (axiomatic techniques can't and intuition can't be proved), but this 

does not happen automatically. The metrics need to be tested by 

replication, using appropriate statistical tests, with actual data, in order to 

show accuracy and statistical significance. 

Further, there are problems of replication. This is a problem particularly 

apparent in industrial-based studies. The cost and effort involved in 

developing software and also in collecting metrics, mean that replicating 

the study is not an option. Thus although a study may show a metric to 

work in one situation, it will not necessarily work as well, or at all in 

another situation, where, for example, the environment is different. 

Therefore, the effects of such factors cannot be assessed empirically in an 

industrial setting, since companies will not, understandably, commit 

resources to, for example, developing a product in two different ways to 

assess the effect of design method or language upon prediction systems. 

This can be done in a laboratory based experiment, but still with practical 

difficulties - if the products were developed simultaneously, the teams 

would differ in terms of experience, if consecutively, the team would 
have gained in domain knowledge from the first project, and so on. This 

can be balanced by assessing the experience of team members and using 

this knowledge in team selection, but other factors cannot be overcome, 

such as the size and nature of the system under development (many 

approach, since all events must be known and defined within the system in order for 
validation to take place. 
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industrial systems take years to complete, involve millions of lines of 

code etc. ), this cannot be matched in a laboratory based experiment. 

Other problems can occur with experimental design and the statistical 

techniques used to analyse results. Common examples include the use of 

statistical techniques inappropriate to the measurement scale (see section 

2.4 on measurement theory) or to the data distribution, lack of focus to 

the experiment (trying to find out too many things in one go), 

insufficient cases, experimental bias, Hawthorne Effect and so on. 

However, contrasting results do not necessarily mean one or other study 

was poorly designed, an allowance must be made for external variation 

between different environments etc. Taking time to design experiments 

and to choose appropriate statistics, using the considerable amount of 

published material on both subjects will alleviate many problems, but 

some cannot be removed nor their effects be calculated in order to make 

allowances. 

There is frequently a conflict been the need for control and the need for 

reality. Laboratory based experiments allow more control and the 

opportunity for replication of experiments in order to strengthen 

conclusions. However, they are contrived, and cannot compensate for 

the lack of reality. Empirical observation in the field means reality is in 

built but the trade off is surrender of control and the opportunity to 

replicate. 

However imperfect, the empirical approach at least satisfied the desire for 

evidence with regard to metrics. The use of sound statistical techniques 

to analyse data and test hypotheses lends credence to the conclusions 

drawn from the results. Additionally, use of "good" experimental 

practice such as triangulation (i. e. where the study involves measuring 

the same attribute in more than one way) and replication (attempting to 
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replicate results using other datapoints/datasets) can help improve the 
standard of empirical studies. Statistics can be misused, of course. 
Statistical analysis of the data collected does not necessarily provide 
absolute proof of a theory. Take Halstead's measures, for example 
((Halstead 1972; Halstead 1977; Halstead 1979)) - his results appeared to 

support the usefulness and accuracy of the measures he proposed, but his 

metrics are now widely discredited, after the findings of other empirical 
studies disagreed with the results and queried the experimental design 

and statistics used((Hamer and Frewin 1982; Shepperd and Ince 1993)). In 

short, when attempting to validate software metrics we will always fall 

short of the accepted desiderata for an empirical study 11, thus for any 

validation, criticisms may be made of the conclusions drawn, the data 

collected, the techniques used and the assumptions made during 

analysis. With limited resources we must be pragmatic and accept trade 

offs, such as giving up control of how the software development process 
is carried out in return for getting data from industrial software, or by 

accepting student developed software in return for greater control on the 

empirical study. 

2.3.3 Summary 

It is implicit in the above sections on axiomatic and empirical techniques, 

that while many favour one over the other, and presumably my own 
bias towards empirical methods shows, they can be used most effectively 
as complementary techniques. An axiomatic validation can help to focus 

an empirical one, by demonstrating what should happen, and thus what 

" The idea of "accepted" desiderata has evolved from the "good" and "bad" examples 
published in software engineering particularly. Good examples take problems into 
account, bad ones get criticised by other empiricists. The perfect empirical validation 
would be large scale, in situ, with controls, with an explicit hypothesis. Results would 
need to be repeatable, i. e. in other studies, be able to take into account the affects of 
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to look for. An empirical study can demonstrate whether or not the 

mathematical models are applicable in practice. 

2.3.4. Difficulties in Validation 

As discussed above, both of the available approaches to metrics 

validation have limitations. This is essentially because of the nature of 

software and the processes by which it is developed. Although we use 

the terms "science" and "engineering" with regard to software, attempt to 

build formal models and to impose discipline on the process of 

development, software is intangible. In science and engineering, 

predictions can be made based on what is known about the physical 

properties of a substance, prototype models can be built and tested, 

experiments can be carried out and results replicated, allowing reliable 

and useful formal models or prediction systems to be built specifying 

what would happen under what conditions. 

Software, however, has little in the way of physical properties. There are 

some measurements that can be taken, the amount of disk space it takes 

up, the time taken to execute, for example. But they can tell us little 

about how the program will behave, how error prone it will be, how easy 

to maintain. We need to assign numbers to intangible properties in 

order to provide the management information required in order to plan, 

allocate resources, assess the success or otherwise of a project. We cannot 

know for sure what all of the factors that have affected the end software 

product are, or how much each has contributed. Therefore assigning 

meaningful numbers to these factors and assessing the end result is 

impossible to do with 100% accuracy or certainty. We must be satisfied 

with probabilities, significance, feasible explanations. 

various factors upon the results such as the environment, problem area, personnel and so 
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Moreover, we must accept that a valid metric (empirically or formally 

valid) does not mean it is useful, and that a metric that is useful in one 

situation will not necessarily be useful in another, because of the myriad 

of affecting factors that are either unknown or unquantifiable. The goal 

or purpose behind the metric affects its usefulness - it may be valid in 

that it accurately captures a particular attribute, but if the goal is really to 

measure or predict something different, then the metric is not useful for 

that purpose. 

It has been shown, however, that improvements can be made to the 

development and validation of software metrics. A number of papers 

were published on the subject of measurement theory and its relevance 

to software engineering. Some aspects of classical measurement theory, 

namely those that have been applied to software engineering 

measurement, will be discussed in the following section 2.4. 

2.4 The 1990's: Measurement Theory and Prediction Systems 

The 1980's saw empirical validation of software metrics and some 

unsatisfactory attempts to formally validate them. Measurement theory 

has been promoted as a way of formally validating metrics to 

complement the empirical approach which assesses the usefulness and 

applicability of metrics. Although measurement theory is not new, its 

application to the problem of software metrics validation started at the 

end of the 1980's ((Zuse and Bollmann 1989)), gaining momentum in the 

early 1990's which saw a number of publications on the subject, primarily 
by Fenton and Kitchenham, also Pfleeger and Zuse. This helped to clarify 
the terms in use, since the term metric has and continues to be applied to 

on 
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both a measure of some attribute and to a model which uses measures in 

order to generate a prediction about the software in question. The term 

"prediction system" was introduced to enable a distinction to be drawn 

between a metric as a measure of an attribute and metric being used as a 

predictor of an, as yet, unobtainable attribute. 

The confusion between measures and prediction systems can be 

illustrated with the much maligned measure, LOC. It is a valid measure, 

which captures what it purports to, i. e., the number of lines of code in a 

program. Counting rules can be specified, such as not counting blank 

lines, but that aside, it properly represents the attribute code length. 

However, as a measure of complexity, for which it was often used, it is 

clearly unsatisfactory as it stands. It might to be used as an input into a 

prediction system which can then, for example, give an estimate of error 

rates. Of course, even if the prediction system into which it is input is 

not useful, LOC is still a valid measure. 

Additionally a distinction between "valid" and "useful" is drawn 

(Fenton and Kitchenham 1991). Broadly speaking measurement theory 

can determine the validity of a measure and empirical studies can 

determine its usefulness. Fenton and Kitchenham (Fenton and 

Kitchenham 1991) give an informal definition of validity. A measure is 

considered valid if it "accurately characterises the proposed attribute" and 

a prediction system is valid "if it makes accurate predictions". 

Further work by Kitchenham, Pleeger and Fenton (Kitchenham, Pleeger 

et al., 1995), breaks down measures (terms used are direct measures, 

indirect measures and predictive measures) and the measurement 

process into more elementary components, and discusses them with 

regard to their properties, in order to define a measurement structure 

model as part of a framework for validating software measurement. They 
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present a list of guidelines which they suggest should be applied in order 

to avoid major problems. The authors emphasise that attempts at 

software measurement should not stop until researchers can be certain 

the are correctly validate their measures. The suggestions made by the 

authors are ideals to aim for. The theoretical suggestions, such as 

satisfying the representation condition and using scale types correctly can 

be met by paying due attention to measurement theory. Suggestions 

involving empirical corroboration ("validation" by use of empirical 

techniques) are harder to comply with due to practical issues, such as 

availability of data. 

Clearly empirical validation is necessary to effectively validate a measure 

in the fullest sense. An empirical validation will not give proof in the 

formal, mathematical sense, but will give evidence so that a hypothesis 

can confidently be confirmed or rejected. Additionally, since the validity 

of prediction systems is based upon their accuracy, the question of an 

acceptable margin of error is raised (how accurate must something be) as 

is the number of cases used in the hypothesis testing (how many are 

needed before the hypothesis can be accepted/ rejected with confidence). 

There seems to be no one answer to either question. Acceptable accuracy 

will depend on the person using the system. The minimum number of 

cases will depend on a number of factors: on the test being carried out; 

on the quality of the data (e. g. student programmers as opposed to "real" 

programmers); on the plausibility of the hypothesis being tested. 

Conventionally confidence limit are set at alpha=0.05, i. e. we can be 95% 

confident of the correct outcome. Setting alpha too low means although 

we are unlikely to wrongly reject an the null hypothesis, we are less 

likely to correctly accept the alternative hypothesis. There will also be a 

personal view regarding accuracy and confidence, thus the validity of a 

prediction will always be open to question - it is as much a question of 

persuasion as "proof". The validation of a measure (metric for 
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assessment) can be carried out according to representation theory of 
measurement (see (Fenton 1991) or (Fenton and Pfleeger 1996)), by 

ensuring that the mathematical representation (measure or metric) of 
the attribute corresponds to the empirical world. 

There has been a failure to recognise that a measure does not have to be 

valid (in the measurement theory sense) to be useful. Valid and useful 

are not one and the same thing. An example of this is Function Points 

(Albrecht 1979; Albrecht and Gaffney 1983; Albrecht 1984) and Mark II 

Function Points (Symons 1991). Both are very widely used metrics. 
These measures are not considered valid, one reason being the way in 

which the metrics are constructed, another the instability of model upon 

which the metrics are based (Kitchenham, Pfleeger et al. 1995). This 

means that both Function Point metrics could behave unpredictably, as 
demonstrated by a number of conflicting empirical studies (Low and 
Jeffery 1990; Kemerer 1993). However, the metrics enjoy widespread use 

and support among practitioners. Conversely there are any number of 

perfectly valid measures which can be taken directly from software, 

which are of little or no use, either because they are not available until 
late in the development process, because they do not tell us anything of 
interest nor are used in a useful prediction system, or because they are 

closely related to (i. e. tell us the same thing as) a more readily available 

measure. Pfleeger has published extensively on metrics validation and 

the application of measurement theory to software, but admits "a 

measure can be useful as a predictor without being valid in the sense of 

measurement theory" (Pfleeger, Jeffery et al. 1997). 

Appearing to be useful does not necessarily mean that a metric really is 

useful. This is particularly true of many of the early complexity metrics, 

such as Software Science (Halstead 1977) or Cyclomatic Complexity 

(McCabe 1976). Both of which were the subject of many independent 
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empirical studies which supported the claims made to the metrics' 

usefulness with respect to a number of features (see (Shepperd and Ince 

1993) for a discussion and review of work concerning both of these 

metrics). Such results are now regarded largely as erroneous 'Z, either 
because of flaws in the analysis, or because it is unclear as to what is being 

measured or tested. 

2.4.1 Measurement Theory and its Application to Software Metrics 

This section considers some of the concepts of measurement theory and 

examines how it has been applied to the measurement of software. The 

aim of the section is to provide a basis for any further discussion or 

application of aspects of measurement theory in this or subsequent 

chapters. It will provide a context within with metrics can be examined 

and criticised. 

The essence of measurement theory is to provide rules and definitions 

for the process of measurement and the measures themselves. 
Measurement can be defined as the process of assigning numbers (or 

sometimes other mathematical entities or symbols) to some attribute of 

an entity in order to describe that attribute (Pfanzagl 1968; Krantz, Luce et 

al. 1971; Roberts 1979). The two main strands of measurement theory 

applicable to software metrics are representation theory and scales. 

2.4.1.1 Representation Theory 

This aspect of measurement theory is concerned with the mapping 
between the real, empirical world and the mathematical, theoretical 

world. Its purpose is to ensure that the "real" relationships between 

12 It seems that McCabe's v(G) may be able to predict branch coverage testing effort. 



43 

"real" artefacts and the rules which govern these relationships are 

represented accurately and are preserved in the mathematical model. 

The formal explanation is as follows (from (Finkelstein and Leaning 

1984)): 

an empirical relation system is Q= (Q, R); 

Q is the set of observations; 

R is the set of relations on Qsuch that R= [R1, R2,..., Rn }; 

a numerical system is N= (N, P); 

N is the set of real numbers; 

Pis the set of relations on N such that P= {P1 
9 P2 , ..., P, 

z 
}; 

the measurement function M maps Q to N, M: Q --> N. 

The mapping must be done so that the observed relationships between 

empirical entities hold for the numbers representing them. This is 

described by the following Representation Theorem: 

P. 
. 
is a relation on N which corresponds to the relation R, on Q; 

if q, r,... EQ, 

R; (q, r, ... ) t' 
P" [M(q), M(r),... ] 

for all ii 1, n 

(1) 

The conditions under which this holds are representation conditions, 

thus if M satisfies the representation conditions, there exist other 

mappings, Al' which satisfy these conditions and are related to via a 

transformation f, such that M=f (M). It follows from (1) that: 
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R. (9, r,... ) P[[f[M(9)], f[M(r)],... )] (2) 

All f belong to the set of admissible transformations, a. k. a. the 

uniqueness condition. The scale of measurement, can be denoted as 

S= (Q, N, M) (see section 2.4.1.2 below for a discussion of measurement 

scales). 

2.4.1.2 Scales 

This process is governed by rules which determine the appropriate 

measurement scale and thus the legitimate operations or 

transformations which can be applied to the measures. Here we are 

primarily concerned with direct measures, such as length (i. e. those 

which do not depend on the measurement of any other attribute), as 

opposed to indirect measures (those depending on the measurement of 

one or more other attributes, such as density). 

Stevens (Stevens 1946), introduced a classification of scales of 

measurement, on which the table below (table 2.2) is based. 

Scale Basic Empirical Operations Example 

Nominal equality (-) labelling 

Ordinal equality, greater or less >) Beaufort Scale 

Interval equality, greater or less, equality of intervals or women's dress sizes 

differences (. -, <, >, (X, Y~V, W)) 

Ratio equality, greater or less, equality of intervals, length 

equality of ratios >, (X, Y-V, W), 

(X/Y--V/W)) 

Table 2.2: Measurement scales, legitimate operations and examples 
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The nominal scale allows numbers to be assigned as labels, (where words 

letters or symbols could also be used), the only rule being "do not assign 

the same numeral to different classes or different numerals in the same 

class" (Stevens 1946). The Nominal scale is a binary system, so that an 

entity either has some property or does not. Using the notation in 

section 2.4.2.1: 

the empirical relational system is (Q, -), where - is a binary equivalence 

relation; 

for q, r,..., E Q, the representation theorem is 

q -- ra M(q) = M(r) (3) 

The ordinal scale is an extension to the nominal scale in that it allows 

rank ordering of classes or categories which must be preserved. In the 

example given above, the Beaufort Scale assigns a number (which 

represents an estimate of wind speed) according to observed effects on 

land, e. g. smoke rising vertically is assigned 0, a hurricane is 12 on the 

scale. This is also a binary system. In addition to the relation given for 

the Nominal scale above (3), in the Ordinal scale the relation set, R also 

contains r, thus: 

qrra M(q) > M(r) (4) 

The interval scale builds on the ordinal scale in that it preserves 

ordering, as in the ordinal scale, and also captures information about the 

size of the interval between classes. The classic example being 

temperature measured on the Fahrenheit or Celsius scales, a different 

example is women's dress sizes. If R contains the relation >- where 



46 

(q, r)>(s, t) means the interval (q, r) between q and r is greater than or 
equal to the interval (s, t), then 

1. (q, r)ý: (s, t) a M(q, r) _> M(s, t) and 
2. M(q, s) = M(q, r) + M(r, s) (5) 

As its name suggests, the ratio scale preserves the ratio between entities 

allowing us to say, for example, that one piece of string is twice as long as 

another. The starting point is an absolute zero (the total lack of attribute), 
increasing at regular intervals. We can therefore meaningfully add two 

measurements to create a third. So 

1. q-ra M(q) = M(r) and 
2. qor-sa M(q) + M(r) = M(s) (6) 

Another is the absolute scale, the most restrictive scale, where the actual 

count (of the number of occurrences of x in y) is the only possible 

measurement. An example of this might be the number of entities in an 

entity-relationship diagram see (Fenton and Pfleeger 1996). 

The classification of scales allows us to determine which statements 
regarding measurements are meaningful, and which statistical or 
mathematical operations can be legitimately performed. Thus 

measurement theory applied to software metrics allows us to determine 

whether or not the measure is valid and meaningful. It does not 
however, ensure that a measure is useful. This needs to be demonstrated 

empirically, to test if a valid, measure or prediction system gives us 
useful, meaningful information or predictions about software. There are 
occasions where useful measurements are not meaningful according to 
Stevens' scales, for example the mean of a set of exam marks is 
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commonly used, despite the argument that marks can be assumed to be 

ordinal and thus mean would not be considered legitimate or 

meaningful (Finkelstein and Leaning 1984). 

There are opposing views. Stevens' work on scales has been criticised by 

some statisticians and psychologists. (Baker, Hardyck et al. 1966) cite 
"statistically minded" psychologists and a statistician who argue that 

statistics apply to numbers not objects and thus statistical operations need 

not be limited to what is consistent with the scale properties of what is 

observed. Baker et al carry out a study using t values, as an example of a 

robust and commonly used statistic. The data was transformed to 

simulate typical situations (in psychological analysis) where 
inconsistencies with measurement scales might occur. The authors 

conclude that with minor reservations, the probabilities estimated from 

the t distribution vary little according to the measurement scale used. 

Doubts regarding the issue of measurement scale are raised by Briand et 

al (Briand, El Emam et al. 1996), who cite a number of statisticians /data 

analysts holding the dissenting view that a pragmatic approach to 

measurement and analysis is necessary since an inflexible application of 

measurement theory has a detrimental effect on the volume of results. 

Briand et al consider this a to be a serious problem in software 

engineering, since as a relatively immature discipline, results of software 

measurement are scarce. The paper presents the view that since 

parametric tests have more power than non-parametric tests, then these 

should be used where possible, to avoid the possibility of not rejecting 

the null hypothesis because of a lack of statistical power, noting that 

researchers are more likely to conclude that the metric is not valid than 

to conclude that the weakness of non-parametric tests is the problem. 
However there is of course the opposing view that researchers are more 
likely to reject the null hypothesis anyway, since they are not necessarily 
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strictly impartial if their research has been geared towards supporting the 

alternative hypothesis. 

2.4.1.3 Summary 

Valid measures must represent a defined attribute of a defined entity. 
Measurement theory demands a rigour not previously associated with 

software engineering metrics, ensuring that we clearly state what we will 

measure and how, facilitating a common understanding of what we are 

trying to capture. Therefore, measurement theory leads us to question 

whether attributes such as complexity, the target of so many metrics, can 

ever successfully be captured. It is evident that complexity cannot be 

defined to the satisfaction of all and since it cannot be defined, for any 

measures claiming to capture complexity, it will be hard to demonstrate 

that they satisfy the representation theorem. 

Measurement theory has clarified measures and prediction systems. 

Prior to the movement to apply measurement theory to software 

engineering, the distinction between a basic measure, capturing a 

definable attribute (e. g. lines of code) and a prediction of some as yet 

unknown characteristic (e. g. errors) was not made. With hindsight, it is 

inconceivable that this confusion went on for so many years and that few 

researchers /practitioners recognised the problem. Undoubtedly some 

recognised the problem but could not provide a solution, but the whole 

research area at the time was characterised by confusion and lack of 

clarity of purpose. 

The contribution made by the application of measurement theory can be 

summarised as follows: 
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" it defines measurement, allowing us to differentiate between a 

measurement and prediction system, and thus appropriate tests can be 

applied; 

" it can demonstrate validity of a proposed metric, via 

representation theory; 

" it emphasises meaningfulness, since the use of appropriate 

statistical tests allow us to draw meaningful conclusions. 

2.4.2 Prediction Systems- 

In order to classify a "metric" as the more specific "prediction system", it 

must be of the following form: 

Figure 2.1: A prediction system 

A prediction system must have at least one input and can have one or 

more outputs. The inputs undergo a transformation process, such as 

being fed into a predefined equation (or a series of equations), the output 

of which is the predicted software attribute. All parts of the prediction 

system must be clearly and unambiguously defined. This applies to the 

measurement unit used for the input and output, counting rules for 

collecting inputs, what steps are to be taken during the transformation 

process, using which inputs and producing which outputs. 
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Validation for a prediction system is different from that of a 

straightforward measurement (assuming inputs are validated separately). 

Prediction systems are probabilistic, and thus whether a prediction 

system is valid or invalid is of lesser importance than whether it is 

useful or not useful. However, the terms can still be used, especially 

validation process, but we are interested more in the accuracy of 

predictions than whether stringent measurement theory standards are 

met throughout. Therefore the emphasis must be on empirical 

validation, since this is the way to assess usefulness. The problems do 

not end there, since prediction systems can utilise widely different 

measurements as inputs in order to produce different types of output. 

Thus the techniques used will vary according to the type of data available 

and what is being predicted. We must be pragmatic in our selection, 

using the best techniques we can apply, but not rejecting validations 
because the techniques which can be used in one particular study are less 

sophisticated or sensitive than those used in another. An example of 

this is the validation of cost estimating prediction systems compared 

with validation of defect prediction systems. Because cost estimation 
involves data which is continuous, likely to contain a large number of 

data points, with high values, a large number of fairly sophisticated 

techniques can be applied to test the accuracy of its predictions. However, 

for a defect prediction system, the data is discrete, sparse and actual 

values tend to be low. Also the data tends to be skewed. Therefore the 

same range of techniques are not available. In this situation, although, 

for example MMRE (mean magnitude relative error) could be applied, it 

would not be useful because of the nature of the data - predicting one 

defect where there are actually two is a fairly close estimate, but in terms 

of MMRE it would be 100% wrong. Thus, for prediction systems such as 

defects, adjusted R2 is often used. It is a test in which we can have some 

confidence, since it gives us the amount of variation in the dependent 
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variable which can be explained in terms of the independent variable. A 

problem which often occurs with empirical studies is that they present 

no explicit prediction system and rely on the correlation coefficient alone 
to indicate a relationship. This cannot be considered to have 

demonstrated the usefulness of a particular measure since it can be seen 
from measurement theory (and common sense) that without knowing 

exactly what is being assessed and how, we cannot adequately test the 

hypothesis nor repeat experiments for confirmation. 

2.4.3 Lessons to be Drawn from Measurement Theory 

Consideration of both classical measurement theory and the application 

of measurement to traditional science and engineering disciplines has 

highlighted failings in software engineering measurement and in the 

validation of software engineering metrics. 

failing: 

1 failure to distinguish between a measurement and a prediction system 

2 attempts to capture poorly defined attributes 

3 inadequacy, and often absence of validation for metrics 

4 lack of goal or motive for using metrics or prediction systems 

5 failure to establish validity and/or usefulness (since these are not one and the same) 

Table 2.3: Summary of failings in software engineering measurement 

1. First and most important is the failure to distinguish between a 

measurement and a prediction system, which is closely related to the 

fourth point, the tendency to overlook the need for goal or motive for 

using metrics. Where measurements are unavailable, e. g. number of 

errors per KLOC at design time, we require a prediction system. In the 

past, metrics have tended to stop short of this. For example many 
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metrics have attempted to capture system complexity in order to predict 
effort, defects etc. However, although various uses for complexity 
measures have been mooted, few have shown how they think 

complexity should be used in order to predict such attributes. " Thus, 

notwithstanding the issues regarding complexity measures, since in this 

case complexity is merely used as an example, these cannot be regarded as 

prediction systems. 

2. The attempts to capture poorly defined attributes, or those 

attributes which are intangible and thus cannot satisfactorily be defined 

(quality and complexity being two such attributes). It follows that 

without a clear definition, the attribute cannot successfully be captured, at 

least with any consensus. Such "complexity" and "quality" metrics have 

captured other, more specific or definable attributes felt to have an effect 

on the complexity/ quality of software. These measurements have then 

been used as a proxy for the desired attribute, the implication being that 

there is a high correlation between the two attributes, for example, the 

number of decisions plus one representing complexity according to 

McCabe's Cyclomatic Complexity metric. In order to be validated, one 

must be clear whether a measure is a direct one, or indirect (and thus 

needs to undergo some sort of transformation). Lack of definition can be 

extended to counting rules, where how or what to collect is often not 

explicitly defined, leading to a situation where different results can be 

obtained according to the practitioner's interpretation. 

3. The inadequacy, and often absence, of validation for metrics. 
Measurement theory can assess the validity of a metric in how it captures 
the defined attribute, appropriateness of the chosen scale, etc. A further 

flaw in metrics development has been unsatisfactory (or entirely absent) 

13 Of course one might not always require a prediction, one may wish to compare two 
systems. 
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validation. There were attempts to address this problem during the 
1980's, using axiomatic validation (Prather 1984; Weyuker 1988) (see 

section 2.3.1) and empirical validation (see section 2.3.2). Neither 

approach turned out to be satisfactory. First both approaches had flaws, 

and second they did not share the same criteria for validation and tended 

to be used in isolation, not as complementary techniques. 

Both Prather's and Weyuker's axioms concentrate on complexity metrics. 
The rationale is that a valid metric will conform to the axiom set. 
Initially this seems a pleasing and formal way to validate a metric, but in 

practice, both axioms sets fail to give a satisfactory validation, although 
for very different reasons. 

Prather's set of three axioms have limited applicability, being appropriate 

only for structured programs and control flow metrics. They are also 

weak, for example, despite known weaknesses in McCabe's Cyclomatic 

Complexity, the metric is valid according to Prather's axioms. 

Conversely Weyuker's axioms are highly restrictive, none of the metrics 

used to demonstrate the set satisfy all of the axioms. See (Shepperd and 

Ince 1993) for a detailed criticism. 

Both axioms sets are artificial, favouring mathematical formality over 

reality, avoiding real world problems. Thus the empirical approach is 

favoured by many. It has the benefit of being able to assess the usefulness 

of a metric and since it is a practical approach, observes how metrics 

behave in reality. Criticisms can and have been levelled at this approach, 

such as the lack of rigour in some empirical studies and the conflict 

between reality and control (the industrial vs. the laboratory setting), see 

section 2.3.2. Also, inappropriate use of statistical tests may result in 
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misleading conclusions being drawn, since results are invested with a 

significance they do not possess (see section 2.5.2.3, as an example). 

Clearly neither approach can demonstrate the validity of a metric, 
Prather's axioms are too weak, Weyuker's too restrictive, and the 

empirical approach can be poorly designed or poorly conducted in 

practice. Measurement theory improves the situation, in that it offers a 

formal mathematical approach which need not be highly restrictive. It 

can become impractical and impenetrable, such as some of the work of 

Zuse (Zuse 1991), and has not been universally accepted, many 

statisticians feeling that the interpretation of measurement theory is 

overly restrictive and not pragmatic. See (Briand, El Emam et al. 1996) 

for a criticism of measurement theory when applied strictly. 

The implication is that any approach loses value when taken to 

extremes. It seems sensible to apply measurement theory to ensure a 

well defined attribute and measurement and the use of appropriate 

statistical techniques. However, the real world vs. mathematical world 

debate is still an issue, and so pragmatism (as embodied by the empirical 

approach to validation) is also called for. The two are complementary 

and exert a modifying influence over each other, with the empirical 

approach introducing an element of practicality and the concept of 

usefulness, and measurement theory ensuring that the empirical 

approach conforms to acceptable levels of mathematical rigour. It is after 

all important to ensure that the metric are actually measuring what they 

are intended to measure. We need to assess that the mathematical 

model captures what we see in the real or empirical world. 

The two approaches have been exploited to suit metrics research. 
Statistical tests and data have been chosen to give support to the desired 

outcome (as with Henry and Kafura, above, where inappropriate 
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methods of analysis have been used) or have been ignored in favour of 

an entirely formal validation (often using Weyuker's axioms) where lack 

of data, time or resources means an empirical validation cannot be 

carried out. Since the two approaches are complementary, ideally a 

combination of the two would be used to lead to a validation in which 

we can have confidence: use measurement theory to ensure that 

appropriate statistical tests are used, and thus meaningful conclusions 

can be drawn; use empirical validation to determine how the metric 
behaves in reality, its usefulness14 and practicality (such as ease of 

collection and ease of calculation). This thesis concentrates on the more 

time consuming empirical approach at the expense of the formal, 

measurement theory approach, simply because that is my bias. It should 
be reiterated that I am aware of the principles of measurement theory 

and thus have attempted not to violate them, even though this thesis 

does not include a measurement theoretic validation of the metrics 

presented. 

4. The lack of a goal or motive for using metrics or prediction 

systems. The need for a goal, besides being common sense, has been 

highlighted in the GQM (goal question metric) method (Basili and 

Rombach 1988; Rombach and Basili 1990). Where metrics are chosen 

according to the goals or aims of measurement (identification of goals is 

the first step in the process). Unfortunately, all too often the primary 

focus has been on the metric alone, with apparently little or no thought 

given to the model on which the metric or prediction system is based or 

as to why measurement is required. Metrics are only useful as part of a 

larger activity, assessing software quality or making predictions for 

project management, resource allocation and so on. It is not uncommon 

to read a metrics text book or paper (those aimed at practitioners) and see 

14 Pfleeger et al., admit that measures can be useful "without being valid in the sense of 
measurement theory" (Pfleeger, Jeffery et al. 1997) 
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lists of metrics to collect, with little or no explanation as to how and why 

they are to be collected, nor how the results are to be used (recent 

examples being those by (Lorenz and Kidd 1994; Henderson-Sellers 1996)). 

It would therefore be reasonable to assume that there is no clear goal or 

motive, nor explicit definitions, and thus no validation. After all, if the 

authors had done such work, then surely they would publish whatever 

they could in order to bolster their claims for the metrics they propose. 
There seems to be a tendency to propose lists of metrics covering every 

aspect of, for example, code, rather than considering what information is 

important, how it can be obtained, and how to use the results and to 

what purpose. Presumably this is because it is easier to suggest 

measures /prediction systems, even seemingly complicated ones, than it 

is to define its purpose and to validate the metric against this i. e. does it 

satisfactorily fulfil its purpose. 

5. Finally, failure to establish validity and/or usefulness (since these 

are not one and the same) A measure may be valid, but convey little 

useful information. For example LOC has been criticised as a poor 

metric. However it is valid, since it captures precisely the length of a 

program in terms of the number of lines of code. It's usefulness in 

conveying other information (on its own or as part of a prediction 

system) is a different issue, to be assessed by empirical observation. 

2.5 Metrics Revisited 

We can now re-examine metrics development using the insights 

provided by the application of measurement theory as discussed in 2.4 

above. This section will examine the main themes and most influential 

metrics (as outlined in section 2.2 above) in the light of what has been 

learnt from the application of measurement theory to software 
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engineering. The first section, 2.5.1 is a general criticism of the hazy 

concepts which software measures and prediction systems attempt to 

capture. The second section, 2.5.2 applies these issues (detailed in 2.4.3) to 

the metrics. Section 2.6 summarises the approach and emphasis metrics 
development and validation should take if it is to move from an 

undisciplined, arbitrary field, to one where proposed measures and 

prediction systems can be accepted with some confidence as to their 

validity and usefulness. 

2.5.1 Describing the Indescribable 

Complexity, quality, and so on are much used terms by researchers and 

practitioners. Both groups are guilty of devoting time, attention and 

resources to considering and measuring these attributes without having 

first satisfactorily defining them e. g. (Jones 1978; Henry and Kafura 1981; 

Weyuker 1988; McCabe and Butler 1989; Henry and Selig 1990; Maus 1992; 

Lee, Liang et al. 1993; Lorenz and Kidd 1994; Constantine 1997; de 

Champeaux 1997). This is, of course extremely difficult. The concepts are 

subjective. Although a group may have some general agreement on, for 

example, whether one program is more complex than another, they 

would be hard pressed to quantify this, and could not produce a set of 
desiderata which would be applicable in all situations and satisfy all those 

involved. Even for tangible objects, the concept of "acceptable quality" 

varies from person to person. For example, the US Food and Drug 

administration, sets "acceptable" levels of contamination of food stuffs 
(i. e. below which the food is considered to be of "unacceptable quality"), 

such as: tomato paste, 30 fly eggs or 15 fly eggs plus one lava in a 100g 

sample; peanut butter average of 30 or more insect fragments, or one or 

more rodent hairs per 100g sample; canned mushrooms, up to 20 

maggots per 100g of drained mushrooms. It is questionable that anyone 
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would happily eat a mushroom pizza if they were informed that it 

contained up to 30 fly eggs and 20 maggots! 

Thus for software, something that is intangible, the situation is even less 

clear. We can model the software according to "good" design practice and 

test the end product in an attempt to remove faults, but we cannot 

produce universally acceptable criteria by which to measure concepts 

such as complexity or quality because we cannot define it's 

Unfortunately much of the work in the field of software metrics has 

concentrated on the pursuit of software quality or software complexity 

metric. These are the metrics which have been taken up by industry, in 

preference to more simple measures or prediction systems. 

2.5.2 How metrics "measure up" -- no pun intended 

The metrics considered in sections 2.1 and 2.2 purport to capture 

complexity or a related characteristic. The definitions and factors thought 

to contribute to software complexity vary. We will now re-examine 

some of the more popular metrics. Recurring themes/criticisms will run 

throughout the following sections, since each has something in common 

with others, such as poor definition or poor empirical evidence, for 

example. In particular, the inadequacies summarised in 2.4.3 will be 

considered as applicable. These are listed below, refer to 2.4.3 for more 
detail: 

" failure to distinguish between a measure and a prediction 

system; 

' Gilb suggests that operational definitions, which can be measured, should be produced 
(Gilb 1988). However, we still face the problem of an agreed definition, subjectivity etc., 
and so would need to accept that there can be no single, universal commodity. A workable 
definition may still fail to capture important aspects of the attribute. 
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" poor definitions; 

" inadequate validation; 

" absence of clear goal or purpose; 
" failure to establish validity and/or usefulness (since these are not 

one and the same). 

2.5.2.1 Halstead's Software Science 

Halstead intended Software Science as a prediction system, the 

assumption that complexity was the goal for all of the Software Science 

metrics is an error or misinterpretation which must be blamed on others, 

since although the language level is related to complexity, many 

subsequent researchers have treated Software Science as a whole as a set 

of complexity measures. Although the distinction between 

measurement and prediction system was not current at the time, it was 

clear, that however flawed its assumptions, Software Science was 

intended primarily to predict effort. Confusion may have arisen from its 

emphasis on complexity, with some practitioners and researchers 
(including Halstead himself) assuming that complexity could be used as a 

proxy for other attributes, such as bugs and quality. 

However, the allegation of having poorly defined attributes, can indeed 

be levelled at Software Science. Halstead made a comprehensive attempt 

to draw together various factors (Halstead 1972; Halstead 1977; Halstead 

1979) affecting software. He believed that, as with the physical sciences, a 

set of fundamental laws, which would remain true whatever the 

development environment, could be produced for software 
development. Halstead did not study the code in isolation, but also 
included the idea of cognitive complexity. This was an attempt to 
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include the programmer's perspective on the code. Halstead felt that in 

addition to the structure of the code, the cognitive effort of the 

programmer needed to be included before the complexity, and thus, 

effort could be predicted. This is a valid point. Complexity is subjective; 

what one programmer regards as complex may not be a problem for 

another. Halstead claimed to use the results of cognitive psychology 

studies in his prediction system. However, subsequent examination of 
his theories suggests that the theories have been incorrectly and 

selectively applied (and are themselves questionable). Halstead proposed 

that the number of parameters in a module should be six (five input and 

one output), based upon his interpretation of Miller's research into short 

term memory and sensory stimulation (see (Coulter 1983)). However, 

this is not the same sort of activity as programming. Additionally it 

cannot be assumed that parameters necessarily indicate the complexity or 

type of function. Cognitive research indicates that the amount of 

information which can be held in short term memory when carrying out 

a task depends on the task itself. With an easy task all of the brain's 

resources can be used to maintain the necessary information in short 

term memory, but a more complex task means more resources are 

needed for processing and thus cannot maintain as many items in short 

term memory. 

Another misinterpretation seems to concern the "Stroud Number". 

Stroud conducted research into sensory memory processing. He used the 

term "psychological time" defined as "the time in which we are aware of 

things happening" with regard to sensory input and operations upon the 

input. He stated the ratio was somewhere between 5 and 20 moments of 

psychological time to each second of physical time, suggesting a figure of 
10 as most likely. Halstead again generalised the research and applied it 

to programming, suggesting that between 5 and 20 mental 
discriminations with regard to programming were possible, suggesting 
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an average figure of 18 from an empirical study. Clearly programming is 

not an activity based in sensory memory. A further problem is that 

Halstead assumed that human memory used a binary search which is not 

supported by cognitive psychology research. 

Halstead did posit a model for Software Science and saw the importance 

of having a model, presumably from his studies of other sciences, where 

the notion of defining theory and a model, from which a hypothesis can 

be derived and tested has long been the norm. Indeed the process 

followed by Halstead is laudable, considering that software metrics 

research was still very much in its infancy, and even more so when 

compared with other metrics development around the same period. 

However, as is now generally known and accepted, Halstead's metric is 

invalid. Supporting empirical evidence has been shown to be dubious 

(Hamer and Frewin 1982; Coulter 1983; Shepperd and Ince 1993). Hamer 

and Frewin, for example, criticise the standard of experimental design, 

and conclude that the experiments to test the hypotheses "are virtually 

incapable of rejecting the hypotheses - they simply do not have the 

power to identify false hypotheses. " They also report errors in the test 

data used in (Funami and Halstead 1976), which was based on (Akiyama 

1971). 

Thus although Halstead's model was inspired by cognitive research, it 

was ill founded. Further criticism of Halstead's metric can be found in 

(Hamer and Frewin 1982). It's value lies in the way it was presented - 

an explicitly defined model of program complexity. Although both the 

theory behind Software Science and the validity of this prediction system 

has been debunked, Software Science is noteworthy in that it was based 

upon a theory and model, and attempted to draw together the various 

factors which contribute to software complexity. Its most negative effect 
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was that it laid down the challenge to other researchers to discover the 
ideal complexity metric", which could be used to predict all complexity 
related software attributes, such as maintainability and effort. 

2.5.2.2 McCabe's Cyclomatic Complexity 

McCabe's Cyclomatic Complexity Metric (McCabe 1976) is a code 
complexity metric which has less to commend it than Software Science, 
in terms of definition and theory. How to apply it as a predictor of errors, 
development effort, and so on, is not defined, but that has not prevented 
its use as a prediction system for almost any attribute thought to be 

related to complexity, e. g. "programmer performance", defined as the 
time taken to locate and fix bugs (Curtis, Sheppard et al. 1979), 

maintenance effort (Gill and Kemerer 1991). Research, reflecting on its 

application as a prediction system, suggests Cyclomatic Complexity is 
little more than a size indicator, since it correlates strongly with LOC 
(Shepperd 1988), though of course, since it is a code metric, LOC would be 

readily available anyway. Basili and Perricone, found it a poor indicator 

of error density, in fact error density decreased with increasing 
Cyclomatic complexity (Basili and Perricone 1984). In general, the 
independent empirical validations carried out are unsupportive. An 

exception is Henry et al, (Henry and Kafura 1981), whose study shows a 

strong correlation between Cyclomatic Complexity and error rates by 

module. However, error free modules were not included in the study, 
thus making the results questionable. 

Essentially the Cyclomatic Complexity is equal to the number of decisions 

in a procedure or module plus one. McCabe suggested an upper limit to 

16 Given Halstead metric had no real goal nor use, the need for a metrics or prediction 
system to have a goal and to be demonstrably useful in some situation, seemed not to be 
picked up on by the next wave of metrics researchers. 
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program complexity (10 in most situations). Shepperd criticises the 

metric on a number of points, including that it is inconsistent with the 

accepted thinking on modular software - Cyclomatic Complexity 

increases with modularisation and other accepted notions of good 

programming style for improving program structure (Shepperd 1988), 

which is borne out by other studies (Baker and Zweben 1980; Prather 

1984). This confirms that the underlying model, such as it is, is flawed, 

since relying on the metric for guidance regarding program structure 

would be misleading. 

Cyclomatic Complexity also suffers from being ill defined. McCabe is 

suggesting that most software properties can be derived from, and thus 

are linked in some way to the number of decisions in the program code 

and does not adequately describe what a decision can be. For example, IF 

statements are counted but not ELSE statements. Without well defined 

counting rules, the metric may not be applied as intended, and further 

empirical work may be based upon incorrect data. Indeed no attempt was 

made to explicitly define complexity, or even some of the factors which 

might contribute to code complexity (a criticism which cannot be levelled 

at Software Science), it was simply assumed that readers had a shared 

understanding of the issue, illustrated by McCabe's statement that his 

complexity measure "is designed to conform to our intuitive notion of 

complexity". He seems to have missed the point of a complexity metric; 

if everyone were able to rely upon their intuition and shared 

understanding of complexity, there would be no need to quantify it. 

In conclusion, Cyclomatic Complexity could be regarded as a measure 

which counts the number of decisions in a program, which could go 

some way to indicating complexity, but it adds 1 to the count, causing 

problems (loses additivity). However many factors are ignored, and as 
discussed previously (see 2.2.1), complexity itself is both difficult to define 
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and capture, thus Cyclomatic Complexity cannot be considered as a 
prediction system. This means its usefulness is, to say the least, limitedl'. 

Its potential usefulness and its validity are further compromised by the 

absence of a clear and explicitly defined goal. Without a goal, any 

empirical validations carried out are somewhat speculative, depending 

on what the investigators think the goal to be, else the investigation is 

carried out to see to what use the metric can be put. "' This is apparent to 

the wide variety of attributes that empirical studies have attempted to 

link to Cyclomatic Complexity. 

2.5.2.3 Henry and Kafura's Information Flow Metric 

The search for a code complexity metric influenced subsequent metrics 

research. It was recognised that metrics applied earlier in the 

development cycle would be of more use, but researchers into design 

metrics still aimed to develop complexity metrics, the idea being that a 

complex design is indicative of complex code. The classic system design 

metric, Henry and Kafura's information flow measure (Henry and 

Kafura 1981) considers both the internal complexity of a module, and the 

external complexity in terms of the information flows between it and 

other modules in the system. It is meant then, as a prediction system, to 

predict module code complexity at design time. However, the purpose of 

the prediction remains unclear, what can be indicated from the module 

complexity? In the papers concerning the metric (Henry and Kafura 1981; 

Henry and Kafura 1984) and in Henry's doctoral thesis, a number of 

motives are given, such as controlling complexity, high development 

costs, high maintenance costs, providing guidelines for software design 

"It seems that the only conceivable use would be to predict effort for branch coverage 
testing. 
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and improving software reliability, but how the module complexity 

measure should be used to predict such attributes remains undefined. 

Internal complexity is measured in LOC. An obvious drawback is that 

actual LOC is not available at design time, limiting the usefulness of the 

information flow metric, as originally defined, as a prediction system. 
Another drawback is the usefulness of LOC as a complexity measure, 

although, some studies have shown LOC to outperform complexity 

measures such as Cyclomatic Complexity, as a predictor of some quality 

measures (Kitchenham 1981). Studies on the effect (of using LOC as a 

measure of internal complexity) on the performance of the information 

flow measure are varied, some finding that using LOC improves the 

performance of the metric (Kafura and Reddy 1987; Rombach 1987) and 

others finding that its use detracts from the metric's performance (Henry 

and Kafura 1981; Shepperd and Ince 1991). External complexity is based 

on the desiderata for good design of minimising coupling and 

maximising cohesion (Stevens, Myers et al. 1974) and is calculated by 

counting the flows19 into and out of a module and squaring the total In 

addition to attempting to capture a concept so difficult to define as 

complexity, the metric suffers from further ambiguity since the counting 

rules are open to interpretation, due to hazy and apparently conflicting 
definitions of indirect flows. In other words it is not clear the inputs to 

the metric are to be calculated. Thus we can not be sure of what we are 

attempting to capture indirectly, nor whether the means by which we are 

attempting to do so is correct. 

Unlike Cyclomatic complexity, the model associated with Henry and 
Kafura's information flow measure considers modularity and system 

18 Although it makes far more sense to define a goal and then attempt to reach it, it is 
common to find that a metric is first devised and then attempts made to see what use it 
can be put to. 
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architecture by incorporating both internal complexity (of a module) and 
external complexity (connections to other modules and data structures 
within the same system. A number of flaws can be seen when the metric 
is applied. 

It is not clear what it is trying to measure/predict and for what purpose 
(see the introductory paragraph in this section). A second criticism is that 

internal complexity is defined as LOC, which has been widely criticised as 

a complexity metric and is unavailable at design time (see the second 

paragraph in this section), LOC for the internal complexity component 

would therefore need to be estimated. Alternatives to LOC, suggested by 

Henry and Kafura, Software Science and Cyclomatic Complexity, are also 

code metrics, thus suffering from the same problem of availability, 
(Henry and Kafura were presumably unaware of the flaws in these 

metrics, see sections 2.5.2.1 and 2.5.2.2 above]. Much more attention has 

been given to the external complexity component of the model, but the 

definitions of the inputs to this part of the model are hazy and conflict, 

particularly regarding indirect flows. The terminology used is 

inadequately defined, as with other metrics, a shared understanding is 

relied on. Shepperd (Shepperd and Ince 1993) points out that some cases 

of indirect flows will be detected only on analysis of a module's code, i. e. 

they will not show up at design time. In addition, Henry and Kafura 

make the decision that a flow should be followed (and counted) over no 

more than two levels of the system. There is no reason given for this. 

Questions have also been raised as to what indirect flows correspond to 

in the real world (Ince and Shepperd 1989). Other flaws become apparent 

when attempting to apply the model. One is that it penalises reuse 
where the reused module has information flowing in or out of it, since 
the flows between the module and all that use it are counted, making it 

19 Unfortunately, control flow and information flow are not distinguished. 
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appear more complicated than it is, since the more it is used, the higher 

its complexity becomes. (Benyon-Tinker's metric (Benyon-Tinker 1979), 

counts a module only once, however many times it is called, but this 

distorts the picture, since the system will always appear as a tree 

structure). Conversely, modules communicating via a "global data 

structure", are not calculated using flows, but instead a simple count of 

accesses is used, potentially leading to a lower figure (and thus seemingly 

encouraging the used of global data over local data). Any module with a 

zero fan-in or fan-out will have a complexity measure of zero because of 

the formulation of the model equation, where clearly a module can have 

functionality (and thus complexity) even if information flow is one way. 

Further, no consideration seems to have been given to the type of 

information flow. All flows are assumed equal, when this will clearly 

never be the case in reality. 

The poor definition of the Information Flow metric makes validation 
difficult, since studies are not necessarily assessing the same metric (its 

value will depend on the definitions and counting rules used). Henry 

and Kafura's own empirical validation of the information flow metric 

(Henry and Kafura 1981; Henry and Kafura 1981), assumes a normal 

distribution of data and thus uses parametric tests when in fact the data is 

skewed, necessitating the use of non parametric tests and also remove 

two observations (from a total of eight) as outliers. When reinstated, the 

correlation coefficient drops considerably (to the extent it can no longer 

be considered significant). A further point, connected with poor 

definition of attributes, is the lack of clarity regarding the hypothesis 

under test. There is also the possibility of manipulating statistics and 

data (removing data points, for example), in order to increase the 

statistical significance of results. Shepperd (Shepperd and Ince 1993) 

suggests at the very least, an empirical validation must posit an 
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unambiguous hypothesis which it is possible to reject, and use 
appropriate statistical techniques. 

2.5.2.4 Function Points 

Beside the functional design/code complexity metrics considered above, 

other metrics are open to the same criticisms. 

One such metric is Function Points (Albrecht 1979), as introduced in 

section 2.2.3. Function points has been much debated, since despite the 
lack of supporting validation, it is widely used in industry, and 

considered a useful metric, with a user's group dedicated to its 

application and improvement. 

Problems exist both with the "model" and the validation of the metric. It 

is not possible to interpret function points as a measure since it has 

inputs, suggesting that it is intended as a prediction system. As a 

prediction system it lacks clarity of purpose and of definition, both in its 

collecting procedure and in its counting rules. As such there will be 

differences between practitioners' calculations. Function point users 

would counter such criticism by drawing attention to the official user 

groups (e. g. the International Function Point User Group) who publish 

counting practices and the fact that function point counters can take an 

exam and be certified as proficient in function point counting. 

Shepperd (Shepperd 1994) summarises the results of eight empirical 
studies which report widely varying results for function points as a 
predictor of effort, with RZ values from 0.9 to 0.18, although typically the 
RZ value is low, thus indicating it is of dubious value. Where MMRE is 

performed, these tend to be disturbingly high (103 % for Kemerer 
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(Kemerer 1987) and 99% for Shepperd and Turner (Shepperd and Turner 

1993)). Studies also report variation in variation in the range of counts 

(i. e. different counts for the same system) (Low and Jeffery 1990; Kemerer 

and Porter 1992), since some aspects are subjective. 

Function points certainly would not survive a formal validation since 

the model, such as it is, is poorly thought out. When described in simple 

terms it can be seen for what it is - playing with numbers rather than a 

well thought out process. The following summary is taken from 

(Kitchenham, Pfleeger et al. 1995) "Albrecht's model involves classifying 

each input using an ordinal scale (simple, average, complex) according to 

the number of data elements and logical files involved, mapping those 

values to numbers and summing the numbers. " 

Measurement theory (scale types - see section 2.4.1.2) tells us (and it is 

common sense) that we cannot sum ordinal measures, thus this is 

meaningless. (Kitchenham, Pfleeger et al. 1995) point out a further 

violation, since the smallest value a non-null system can take is 3, thus 

function point values are discontinuous (moves from 0 to 3,4,5 etc. ) and 

is without a unit value, thus comparisons such as system x is twice as 

complex as system y cannot hold. 

Further criticisms of the model/theory upon which it is based can be 

made. Function points are intended to be adjusted to suit the local 

environment. In the empirical studies summarised in (Shepperd 1994), 

unadjusted function points perform at least as well as the adjusted 

function points. This would indicate that the adjustments have no 

beneficial effect on the predictive power of the prediction system. 

Additionally, studies (Jeffery and Stathis 1993; Kitchenham and Kansala 

1993) have found dependencies between the inputs (function types) 

which form the unadjusted function point, indicating instability, since if 
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such inputs are strongly correlated, they effectively capture the same 

phenomenon, and thus its impact will be increased, as demonstrated by 

the fact that the two studies found different correlations between 

function point elements. Further, the values for the weights supplied 

were based upon project data from IBM in the 1970s, which is not 

necessarily applicable to other environments. Albrecht describes the 

weights as reflecting the value of the function from the customer's point 

of view, but in reality this has little bearing on effort or cost. Another 

criticism of the model and validation upon it, is that although it is 

claimed to be language independent this is not borne out in Symons' 

evaluation (Symons 1988), which indicates that it is, in fact, dependent, a 

point reiterated by (Verner, Tate et al. 1989). 

Symons introduced Mark II Function Points (Symons 1991) to improve 

upon the inadequacies of Albrecht's function points, but some remain, 

particularly confusion over what is being measured and the complexity 

of the system making calibration difficult (Shepperd 1994). (Kitchenham, 

Pfleeger et al. 1995) identify three size attributes present in Mark II 

function points, which are then individually weighted to represent 
development effort, and then summed. The authors consider this 

process acceptable if Mark II function points are used as an effort model, 

otherwise the authors' measurement validation framework (based on 

measurement theory) is violated. The reason being that there is no 

theoretical model of the relationship needed in order to convert function 

points into a unit of size or functionality. There are also inconsistencies 

in the weights given, an example being input and output size are 

measured in the same unit but are given different weights. 

Thus for both types of function points there is confusion about what is 

actually being measured, and until this is established it cannot be 

successfully validated. Such criticisms appear to carry little weight with 
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practitioners - as illustrated by a recent article (Furey 1997) claiming that 
function points were technology independent, repeatable and consistent 

and could provide valid estimates and the basis for valid comparisons. 
These statements appear to be based wholly on personal observation and 

possibly anecdotal evidence. Perhaps Pfleeger's statement, "a measure 

can be useful as a predictor without being valid in the sense of 

measurement theory" (Pfleeger, Jeffery et al. 1997), could be applicable 
here. 

2.5.2.5 Summary of Common Product Metrics 

The metrics criticised above are merely well known examples of the 

many complexity metrics proposed. All complexity metrics can be 

criticised for attempting to capture an inadequately defined attribute. 

Some, such as Halstead's Software Science have attempted to define and 
include the various facets of complexity with regard to software, but it is 

an impossible task. It is hard to believe that so much effort has been 

expended on such an ill defined goal, particularly since software 

complexity itself is not what we wish to predict. It is of interest because of 

the perceived relationship between complexity and other attributes, such 

as maintainability, errors, and effort. 

2.5.3 The State We're In / Predicting the Future 

As mentioned previously, there has been a lack of clarity in the 

derivation and use of metrics. Firstly the term metric has been used to 

cover both direct measurement (e. g. LOC) and prediction systems, (e. g. 

Haltead's E metric). This has been especially true with complexity 

metrics. Metrics requiring hard to capture or calculate inputs or even 

estimations of inputs (consider Henry and Kafura's information flow 
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metric, or function points), have been proposed in order to assess or 

predict complexity. However, a measure of complexity is of little use in 

itself, since the information required is a prediction of something more 

tangible, the number of errors, development time in person-days and 

cost to develop, for example. However, researchers (and the practitioners 

who embraced the metrics) seem to have been content to leave this 

matter unresolved for many years, since it was not until the work by the 

likes of Fenton, Kitchenham and Pfleeger published in the early 1990's 

that the distinction was drawn and definitions offered. An excellent 

example is Fenton and Kitchenham's paper (Fenton and Kitchenham 

1991) which considers the use of measurement theory in validation. 

They emphasise the necessity for clear and unambiguous definitions of 

what is being measured, how and for what purpose before a satisfactory 

validation can take place. It is noted by (Fenton and Kitchenham 1991) 

that in some cases the distinction between an indirect measurement and 

a prediction system are not always obvious and so validation in both 

senses should be performed. 

2.6 Summary 

To date, many metrics have been proposed and debunked. Measurement 

theory has identified areas which metrics validation and construction 

must address. Empirical evidence is vital in order to assess the 

usefulness of prediction systems, since mathematical validity alone 

cannot tell us how accurate a prediction system is. The following lessons 

learned from the successes and failures of over twenty five years of 

software metrics research are summarised as follows (see section 2.4.3 for 

a fuller explanation): 
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" failure to distinguish between a measure and a prediction 

system; 

" poor definitions; 

" inadequate validation; 

" absence of clear goal or purpose; 
" failure to distinguish between validity and usefulness. 

These lessons must be applied to future developments in order to 

prevent the same mistakes being made. However, it is obvious that even 
today, these mistakes are continue to be made and warnings must be 

repeated (Pfleeger, Jeffery et al. 1997). 

The process of metrics development and the application of measurement 

theory to this process holds true whatever the software paradigm used. 
Thus although different characteristics need to be assessed, and different 

inputs will be used to make different predictions, the way in which we 
derive these measures and predictions systems and validate them need 

not change. 

The analysis of software metrics development and validation presented 

in this chapter emphasises the need for validity in three respects. 

First, measures should be valid, ideally, whether they are simple 

measures of assessment or inputs to prediction systems. This can be 

achieved by the application of measurement theory, to ensure that the 

metric satisfies the representation conditions. Axiomatic validation can 
be used to ensure it does not violate the belief of how it should behave20. 

20 As previously discussed, axioms themselves can be proved/validated since they come 
from beliefs of how the world should behave, although, as in the case of Weyuker 
(Weyuker 1988), sets can be shown to be inconsistent or contradictory. Thus the axioms 
should be carefully chosen - since they can only demonstrate the metric's consistency with 
the axiom set, we need to be satisfied with the validity of the axiom set itself. 
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Second we need to ensure that the goal and process model of the 

measurement or prediction system is clearly stated. If not, testing its 

validity or usefulness will prove difficult, because of the likelihood of 
differing interpretations. 

Third, we must ensure that prediction systems are useful, in that they 

make accurate predictions and predict something useful. This can be 

tested by empirical studies, though we are limited to determining the 

probability that a prediction system is accurate. Additionally the scope of 

the prediction system, that is, in what situation and environment can it 

be applied with confidence, must be made clear. This indicates the need 

to move away from the traditional quest for a metric applicable in all 

situations and environments. 

Thus, metrics proposed for the object-oriented paradigm, examined in 

the next chapter, need to conform to the same standards of validity and 

usefulness as traditional metrics. These metrics must be clear whether 

they are prediction systems or measures of assessment. The attributes to 

be captured (for assessment or as inputs to a prediction system) must be 

clearly defined, as must the rules by which they are derived and the 

purpose of the measure or prediction system must be made clear. Metrics 

must be associated with a model, to provide meaning and a means by 

which to validate the mathematical representation of the real-world 

entity or attribute, which together with the empirical validation will 

allow us to make a reliable assessment of the metric's accuracy in 

capturing the intended attribute (in the case of a measure) or the accuracy 

of its predictions (in the case of a prediction system). The following 

chapter (chapter 3) will bear these points in mind when examining the 

metrics proposed for object-oriented systems. 
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Theme/Lesson Software 

Science 

Cyclomatic 

Complexity 

Henry and 

Kafura's 

Information 

Flow 

Function Points 

distinction between not explicit, no no ro 

measurement/prediction 

system 

definition: poor/poor poor/OK poor/contradict poor/contradictory 

attribute/counting rules ory 

validation (supporting) empirical empirical empirical empirical 
unsatisfactory unsatisfactory, unsatisfactory, 

unsatisfactory 
not compelling not compelling 

clearly defined goal effort no no (give many t-r 
and varied 

possible) 

applications 

valid/useful no/no no/in one no/could be no/possibly in some 
situation useful for 

situations 
maintainability 
(Rombach 1987) 

Table 2.4: Comparison of Traditional Metrics 



Blank 
In 

Original 
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Chapter 3 Metrics for Object-Oriented Software 

Synopsis 

The widespread uptake of object technology has ensured that a significant number 

of metrics researchers and practitioners have turned their attention to measuring 

object-oriented software. Despite calls advocating the use of empirical 

evaluation and validation, many metrics continue to be proposed with little 

empirical evidence to support them. In fact, it can be seen that despite there being 

lessons to learn from the earlier years of metrics development, the message seems 

not to have reached many of those working in the area. This chapter will 

consider some of the object-oriented metrics proposed so far, paying particular 

attention to design complexity and quality metrics. The metrics will be described 

and assessed according to the points raised in 2.4.3. 

3.1 Introduction 

Although applying measurement to a new paradigm, we still need to 

consider why we are measuring and how this is to be done. Despite prior 

experience in software metrics to look back on, the answers to these 

questions remain, in the majority of work, as hazy as they ever were for 

the metrics developed, applied and validated prior to the advent of 

object-orientation. 

This chapter will consider a number of metrics for object-oriented 

software. Firstly we will examine the attempts to apply traditional 

metrics to object-oriented systems (section 3.2). Then we will consider 

the exclusively object-oriented metrics (section 3.3). The previous 

chapter (2) highlighted a number of points to consider, or lessons to be 

learned, based on past mistakes and the application of measurement 

theory to software metrics, namely: 
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(i) The lack of a clearly defined goal; 
(ii) The failure to distinguish between measures and prediction systems 
(metrics can be taken to mean either); 
(iii) Poor definition of attributes to be captured and the counting rules for 

doing so; 
(iv) Poor validation; 
(v) Failure to establish validity and/or usefulness. 

These will be considered throughout the examination of object-oriented 
software metrics. 

3.2 Recycling Metrics (the application of traditional complexity metrics to 
object-oriented systems) 

A minority of the research into measurement of object-oriented systems 

has attempted to apply traditional metrics to object-oriented software. 
Unsurprisingly, activity in this area does not seem to have been 

sustained. These early attempts were quite possibly influenced by tool 

support. Inevitably there will be a lag between the introduction of a 

technology and the tools necessary to support it. Until there is some call 

for object-oriented metrics to be incorporated into a tool, the developers 

of such tools are unlikely to include "new" metrics and are of course 
limited to those metrics already proposed, since they tend not to be in the 

business of developing and validating metrics themselves. Thus metrics 

practitioners working on an object-oriented project, probably for the first 

time, would need to make do with what was available and the suggestion 
that familiar metrics would work for object-oriented software 
measurement would be very appealing. The first published analysis and 
design method, Shlaer-Mellor (Shlaer and Mellor 1988; Shlaer and 
Mellor 1992), deliberately used familiar notations and models, specifically 
an entity-relationship model (known as an information model), state 
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models, using a familiar state-transition notation and a dataflow 

diagram, again familiar to those involved in structured design. This 

could give the impression that object-oriented design was not so very 
different and that traditional metrics would still be applicable. 

The idea that traditional metrics (i. e. for structure design and code) could 

be successfully applied to object-oriented software, is intuitively 

implausible". Two of the selling points of object-oriented technology 

have been as follows. First, that it is a new and better way of developing 

software, that it is a different way of modelling the real world (by 

focusing upon objects as the "building blocks" and encapsulating the 

associated data and processes within them, rather than creating an 

artificial division between data and process). Second, it is a different way 

of executing a program (using mechanisms such as dynamic binding and 

polymorphism). Thus metrics based on a structured, top-down approach 

to design and coding seem unlikely to be useful for a technology which 

works by interaction or co-operation between objects rather than 

requiring a module to be controlled by those above it in the calling 

hierarchy. These doubts would seem to be confirmed by the speculative 

nature of such proposals, offering no validation for the claims made. 

3.2.1 Software Science 

One traditional metric suggested for measuring object-oriented software 

is Halstead's Software Science (Halstead 1977), which is surprising given 

the amount of criticism this metric has received and the studies refuting 

its validity (see chapter 2, section 2.5.2.1). However, (Coppick and 

21 LOC could be considered an exception. Many have question its usefulness for structured 
systems, and doubtless the same arguments can and will be raised regarding its 

application to 00 systems. It remains undeniably popular, however, and no satisfactory 
replacement has been found. 
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Cheatham 1992; Tegarden, Sheetz et al. 1992; Lee, Liang et al. 1993) have 

all proposed the use of Software Science for measuring 00 software. 
(Coppick and Cheatham 1992), for example gloss over the many studies 
debunking Software Science, citing only one study, which is positive. 
They mention briefly the lack of agreement regarding complexity, yet 

continue to use the term liberally throughout the paper without offering 

a definition for the reader. The justification for applying a traditional 

metric seems to be in the parallels drawn between object-oriented and 

structured software. That the complexity of an object (or module) is 

dependent on the number of operations (functions) it has, and just as 

structured modules are decomposed into several more cohesive 

modules, so are objects, using the inheritance mechanism. This suggests 

a rather hazy or certainly limited understanding of 00. Operations or 

responsibilities can be shared amongst classes that are not related via 

inheritance. Inheritance does not necessarily indicate that there is some 

shared responsibility for carrying out some function -a class can inherit 

data or methods and use them as appropriate to carry out a completely 

different task. Inheritance is a mechanism for reuse, avoiding the 

repetition of code, not a mechanism for decomposition in the 

conventional sense. Additionally the authors state that 00 design is data 

centred22, not function centred, but do not consider data complexity, 

preferring to attempt to apply a prediction system which was meant for 

traditional functional design. Software Science is applied to a small LISP 

Flavors graphics editor demonstration program, using a tool (presumably 

developed by the authors, which collects a number of undefined 
measures and uses them as inputs to Software Science, producing 

22 This statement is not true for all methods. It is true of, for example Shlaer and Mellor 
(Shlaer and Mellor 1988; Shlaer and Mellor 1992), who are evidently influenced by 
traditional data analysis/design, but not of the CRC approach (Wirfs-Brock, Wilkerson 
et al. 1990) which can be considered a responsibility based approach, which is quite 
unlike any traditional methods. 
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"reasonable" outputs. The estimates produced are not compared with 

actual totals, thus this claim cannot be substantiated. 

Coppick et al's work can be criticised on many points. The "results" are 

no more than the product of Halstead's prediction system, yet claims 

regarding the applicability of this metric to 00 are made without any 

attempt to compare the estimates with actual figures, or even to get a 

subjective assessment from experts (developers) of how "reasonable" the 

figures are. The authors have taken a (discredited) metric and applied it 

without making allowances for the difference between the object- 

oriented and structured paradigms. Software Science is not universal 

model, applicable to all modes of development. It was based upon 

specific inputs and subsequently shown not to be a useful indicator or 

effort, size or the many other attributes it was used to predict. The 

authors have not considered the nature of object-oriented systems that 

they work by passing messages between objects to initiate the operations, 

which fulfil some task. They have considered only internal complexity, 

ignoring completely the communications between objects, which is 

where much of the complexity in an object-oriented system lies. Thus 

the model for measuring or predicting attributes of an object-oriented 

system needs to incorporate some measurement representation of the 

mechanisms specific to object-orientation, since these are what makes a 

system object-oriented. 

Tegarden, Sheetz and Monarchi (Tegarden, Sheetz et al. 1992), give a 

number of reasons why they consider traditional metrics are applicable to 

00 software: that they are unaware of any empirical evidence rejecting 

the contention that they are applicable; that they already exist and are 

understood by researchers and practitioners; and that there is supporting 

empirical evidence regarding their use with structured systems. These 

statements can be countered easily. First, lack of supporting empirical 
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evidence refuting the usefulness of traditional metrics for 00 systems 
(particularly when due to the fact that such studies have not been carried 
out! ) does not automatically mean that they are applicable. Second, the 

authors ignore that fact that the weight of empirical evidence regarding 
Software Science (and Cyclomatic Complexity) indicates that it is not a 

useful metric for structured systems, and thus unlikely to be useful when 

applied to object-oriented systems. The fact that traditional metrics exist 

and are understood does not mean that they are valid or useful23. Again 

only the internal complexity (referred to as procedural complexity) is 

considered, ignoring object communication. The authors also seem to be 

confusing two issues, the validity of traditional metrics as indicators (of 

complexity24 - see chapter 2 for a discussion on the problems associated 

with complexity metrics) and the use of metrics to assess the relative 

complexity of four different implementations of the same problem. The 

implementations use inheritance and polymorphism, either 
individually, together, or not at all (where inheritance is not used, 

operations (methods) and operands (variables) are duplicated). The 

authors take some simple measures and calculate the Software Science 

volume metric. The volume for each implementation is compared. 
They note that volume is highest where neither inheritance nor 

polymorphism is used and lowest where both mechanisms are used. 
They claim this supports their contention that polymorphism and 
inheritance both reduce complexity. However, what they have obtained 
is an indirect measure of size, since that is all that volume is. It would be 

easier to count LOC. 

Given the problems with defining complexity, the empirical evidence 
against Software Science as a valid predictor of anything useful, and the 

u Neither can anyone be certain that many traditional metrics are "understood", that is, 
that there is any consensus as to how they are applied, for what reason, etc., given the 
ambiguities in definition, lack of validation, etc. See chapter 2. 
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lack of compelling evidence of size as a complexity measure, the authors' 

claims for the usefulness of Software Science or for the beneficial effects 

of inheritance and polymorphism cannot be upheld. Their so called 

evidence is meaningless, since Software Science is invalid. They have 

merely repeated the mistakes of early metrics researchers - of attempting 

to capture an indefinable attribute, of not really understanding what they 

are capturing and of having no actual model (they are attempting to fit 

another prediction system developed for a different situation). 

Another paper suggesting the use of metrics based on Software Science is 

that of (Lee, Liang et al. 1993), although at least they do consider object 

communication (coupling between objects) and suggest the additional 

use of information flow metrics. However, as with the other papers 

advocating the use of Software Science for object-oriented systems, the 

authors ignore, or are unaware, that the majority of empirical evidence is 

against Software Science. Misleadingly, the authors claim that 

"Empirical tests have shown Software Science (is) highly correlated with 

the number of bugs in a program, programming time, and the quality of 

a program", but give no references or supporting evidence. 

The authors use the Software Science length metric to estimate the 

complexity of a number of entities, starting with methods, despite 

admitting that methods tend to be small (the reason given for rejecting 

Cyclomatic Complexity to measure method complexity). Two definitions 

are given for class complexity. First that class complexity is equal to the 

sum of the complexity of its methods (including inherited 

methods)ZS. The second treats the class as an entity and calculates its 

complexity as the product of the length of the class (sum of length of the 

24 Which would then be used in order to try to predict a number of attributes. 
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methods) and the coupling of the class (the interactions of the methods 
defined within the class). Hierarchies are variously defined. First as 

entities (where complexity is the product of the length of the hierarchy 

and the coupling within the hierarchy). Second as a collection of 

methods (complexity being the sum of the complexity of all methods 

contained within it). Third as a collection of classes (complexity equals 

the sum of class complexities within the hierarchy). The final entity is a 

program, which is defined as the sum of the complexity of the main 

program plus the complexity of class hierarchies in the system. No 

empirical evidence is given in support of the proposed metrics. 
Weyuker's axioms (Weyuker 1988) are used to give a formal validation 
(see 2.3.1 for a critique of Weyuker's axioms). The authors do not suggest 

any guidelines for use of the metrics. As with early metrics researchers, 

they are seeking to calculate an attribute which cannot be defined and has 

no clear purpose. 

3.2.2 Cyclomatic Complexity 

(Tegarden, Sheetz et al. 1992) consider cyclomatic complexity to be a 

suitable indicator of the complexity of object-oriented systems. They 

suggest that low cyclomatic complexity indicates either a system that is 

not complex, from the point of view of the metric, or that "decisions 

normally measured in a structured module are deferred through 

message passing to other objects", indicating that few methods would 
have a high cyclomatic complexity. Firstly one cannot say something is 

"not complex from the view of this metric". A metric either accurately 
captures the intended attribute or it does not. The second explanation for 

low Cyclomatic Complexity indicates that the metric (even assuming it 

25 This seems a very simplistic view of complexity. An object, or indeed a module, is 
usually taken to mean more than the sum of its constituent methods or functionality, 
though the implications for complexity cannot be quantified. 
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was valid) is not suitable for object-oriented software because the 

structure is different and thus the attribute cannot be captured in the 

same way. (Coppick and Cheatham 1992) also propose the use of 
Cyclomatic Complexity. A complexity limit of 100 per object is suggested 
(based on a complexity limit of 10, multiplied by a maximum of 10 

methods) as "intuitively reasonable", but offer no other explanation. 
This limit indicates a limit of 90 decisions per object, which seems an 

arbitrary figure. The metric was calculated for the same small package as 
the authors' study of Software Science (see section 3.2.1). As discussed 

previously in chapter 2, we cannot rely on a shared understanding of a 

concept. Authors need to explicitly define what attribute is being 

captured, how and for what purpose, in order to allow consistency and 

validation. Again, McCabe's cyclomatic complexity has been largely 

discredited as a traditional metric26, thus cannot be said to apply for 

object-oriented systems, since we cannot be certain of what it is trying to 

achieve, or to test its effectiveness. 

3.2.3 Information Flow 

(Lee, Liang et al. 1993) consider complexity caused by communication 
between objects, and adapt Henry and Kafura's Information Flow metric 

to measure coupling between methods, which are summed to find the 

class complexity, hierarchy complexity and program complexity. Again 

Weyuker's axioms are employed (Weyuker 1988), by using additive 

operators instead of the multiplicative operators defined in the original. 

Weyuker's axioms been criticised by (Shepperd and Ince 1993) and 

(Fenton and Pfleeger 1996), amongst others (see chapter 2, section 2.3.1. 

The application of Weyuker's axioms does not demonstrate validity, and 

26 It could be said to have some merit when applied to the issue of test coverage, see section 
2.1.1 



86 

the usefulness of the metrics cannot be assessed without empirical 
evidence. 

3.2.4 Function Points 

There have recently been attempts to apply function points to object- 

oriented developments, with one such attempt being to relate "use 

cases", a description of a business function to be implemented in an 00 

system (Armour, Catherwood et al. 1996) to functions points as a 

predictor of size. The authors compared the function point count of the 

use cases with the function point size of the implementation (in 

Smalltalk), and identified an average 433% growth in the four projects 

studied. However, the criticisms of function points as a predictor of size 

still stand (see section 2.5.2.4). It must also be noted that they have 

merely identified an approximately fourfold increase in the number of 

function points captured from the projects - no more meaning can be 

attached to it than that. This study has been extended (Catherwood, Sood 

et al. 1997), where object data (number of objects, number of methods) 

was captured in order to study the relationship between objects and 

function points. Information from three more projects was added to that 

presented in (Armour, Catherwood et al. 1996), and the average growth 

recalculated as 381%. 

The results of the function point/object data study are as in table 3.1 

below (derived from (Catherwood, Sood et al. 1997)). Although explicitly 
defined, it seems that "object" could be replaced by "class". 
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# objects per # objects per # methods per #methods per 

function point function point function point function point 
based on Use based on Intel. based on Use based on Imnpl. 

Cases System Cases System 

mean 1.16 0.38 18.18 4.96 

standard 0.05 0.12 8.44 0.9 

deviation 

Table 3.1: Some summary statistics for functions point/object data study 
(derived from (Catherwood, Sood et al. 1997)) 

The authors found that by removing a particular project (with a different 

implementation language, PowerBuilder), the standard deviation could 

be reduced. From this it can be deduced that the prediction system is 

implementation dependent. Additionally, although a "tight" correlation 

is reported, neither the result, significance, nor the type of correlation 

used is stated. A repeat analysis of the figures supplied reveals that the 

result varies with the correlation test used. It can also be seen from the 

new analysis that the scatterplots of function points against number of 

objects show that one outlier has a great effect on the regression line. 

Figure 3.1 shows the regression plot and correlations for all datapoints, 

and 3.2 repeats these with the outlier removed 
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Figure 3.1: Regression plot of Function Points against Size (measured as 
no. of objects) 

Pearson Product Moment Correlation Coefficient 0.883. 

Spearman Rank Correlation Coefficient 0.700. 

The Pearson correlation is significant at the 5% confidence level, but the 

Spearman is not significant at 10%. 
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Figure 3.2: Regression plot of Function Points against Size (measured as 
no. of objects) with outlier removed 

Pearson Product Moment Correlation 0.412. 

Spearman Rank Correlation Coefficient 0.400. 

Neither are significant (Pearson at 5% and Spearman at 10% confidence 

levels). 

However, five datapoints are not really enough to draw conclusions 

from. Further, the datasets (in particular the number of projects 

included) vary according to the calculations - correlations between 

function point counts and object/method counts are based on five 

projects whereas function point growth is based on seven. The reason 

for this is not explained, thus in addition to the criticisms above, there is 

inconsistency in the dataset according to the tests performed. It is 

unfortunate, given the general shortage of completed object-oriented 

projects from which such data can be extracted, that the authors are 
focusing on one particular metric, especially since it is aimed at 

traditional systems development and is of debatable validity. 
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A related paper is (Minkiewicz 1997), which, although specifying the 

need for metrics specific to 00, presents one which is claimed to be 

analogous to function points. It appears to be made up of a number of 

metrics, including several of the Chidamber and Kemerer suite 
(Chidamber and Kemerer 1991; Chidamber and Kemerer 1994). It is not 

clear how the various components are combined to make a single POP 

(predictive object point) count, which is claimed to correlate well with 

size (SLOC) and effort. Additionally it is claimed that a relationship 
between POPs and effort has been established through regression, no data 

or results are presented and so the analysis cannot be repeated. This is an 

example of lack of /poor validation, poor definition of the prediction 

system and of how the measures are taken and the lack of a clear 

purpose. Although linear regression is used to "establish" a relationship 
between POPs and effort, we have no idea of how POPs themselves are 
derived or the reasoning behind the process. 

3.2.5 Summary on the Application of Traditional Metrics 

It is fairly obvious both from the limited number of papers suggesting 

specific traditional metrics as applicable to object-oriented systems, and 

from the speculative nature of the work, that this is not a branch of 00 

metrics research that has proved fruitful. There may well be some 

traditional measures that could be used for 00 software, but there does 

not appear, to be any published work that demonstrates this (or not). The 

papers cited above are not credible for the following reasons: they 

advocate the use of traditional complexity metrics, yet ignore the 

empirical evidence that has led to these metrics being discredited. They 

are not really looking at them afresh by examining the model and seeing 

if it could be applied more successfully to 00 software, but are merely 
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taking what they (wrongly) perceive to be acceptable traditional metrics 

and applying them to 00 software. Only the function point based 

metrics actually compare their results with actual data, to ascertain any 

correlation, and only one paper (Catherwood, Sood et al. 1997) gives 

actual figures. All are looking at the issue of complexity, which has 

obvious problems (see chapter 2). Cyclomatic Complexity and Software 

Science are code metrics, yet traditional (structured) metrics have moved 

on since then, recognising that code metrics are of limited value, and that 

design metrics provide earlier predictions and feedback. 

3.3 New Metrics for Object-Oriented Systems 

Most researchers behind the contention that object technology needs 

metrics developed specifically to take into account the features unique to 

the paradigm. A number have been proposed, but are still largely 

speculative or with little support in terms of validation or an assessment 

of their usefulness. This is partly due to the precedent set by traditional 

metrics, that it is enough to speculate, particularly if the metric can be 

accompanied by mathematics and be described as "intuitively 

reasonable", or at best be "validated" according to Weyuker's axioms. 

However, some of the proposed metrics have had some attempts at 

empirical validation. This is limited, however, by the lack of available 

data, due to the difficulties in obtaining "real", mature 27 object-oriented 

systems to study. This section considers what can be termed the "state of 

the art" of object-oriented metrics. The amount of consideration given to 

each will depend upon the material available and the interest they have 

generated. 

27 Mature in the sense of being tested, delivered and maintained, since these phases are 
necessary for those studies considering defects, maintainability and so on. 
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3.3.1 Chidamber and Kemerer's Metric Suite 

Chidamber and Kemerer were the first to publish metrics for 00 design 

(Chidamber and Kemerer 1991). They have become the de facto standard, 

and have been incorporated into code analysis tools (e. g. Logiscope). One 

reason for their popularity is undoubtedly because they were the first and 

consequently the most studied metrics (as was the case with Software 

Science). Also they were formally defined (using sets), and it was made 

clear in the original publication that work was ongoing and empirical 

validation would be forthcoming (published in (Chidamber and Kemerer 

1994)). This is not to say that the metrics are without flaws. Ambiguity 

in the definition of counting rules was highlighted by (Churcher and 

Shepperd 1995). Research contributing to this thesis found difficulties 

applying most of the metrics at design time (Cartwright and Shepperd 

1997b). They are claimed to be design complexity metrics, and thus have 

the problems of definition and purpose associated with traditional 

complexity metrics (see chapter 2). 

The Chidamber and Kemerer (CK) metrics will now be examined in 

more detail. This will include independent empirical validations as well'- 

as that published by Chidamber and Kemerer. First a description of the 

metrics suite is given. The suite is then discussed in the light of the 

"lessons learned" from the application of measurement theory to 

software metrics, as described in section 2.4.3. The discussion is based 

upon examination of the metrics, experience in using them and the 

findings of other authors. 

3.3.1.1 The Metrics Suite 

Chidamber and Kemerer published an early paper on object-oriented 
software metrics (Chidamber and Kemerer 1991), proposing a suite of six 
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design metrics, with the intention of capturing the different architectural 
features of object-oriented systems in order to assess design quality and to 

predict "managerial metrics" such as effort. Further work in the form of 

empirical studies and some refinements to the metrics as first proposed 
followed (Chidamber and Kemerer 1994; Chidamber, Darcy et al. 1997). 

The metrics are based on classes within an 00 system. The terms class 

and object are used interchangeably. 28 

WMC (Weighted Methods Per Class). This metric is intended to measure 

the complexity of a class, assuming that a class with more methods than 

another is also likely to be more complex. Weightings are not fully 

specified, thus the general approach is to assume all methods are equally 

complex and thus calculate WMC as the count of the number of methods 

in a class. The alternative is to decide upon some other method for 

calculating the internal complexity of a class. Comments in (Chidamber 

and Kemerer 1995) indicate that only methods specified in a class are 
included, that is, any methods inherited from a parent are excluded. 

DIT (Depth of Inheritance Tree). It is assumed that a class deeper in the 

inheritance hierarchy is more complex because of the number of 
definitions, methods, etc., inherited from ancestors. It is defined as the 

maximum depth of the inheritance graph of each class, thus allowing for 

multiple inheritance. The base class is DIT=zero, its children DIT=1 and 

so on. 

NOC (Number Of Children). This metric is calculated as the number of 
direct descendants for a class. It is assumed that a class with more 

children can be regarded as more complex since it directly affects more 

classes. 

29 C&K intend these as design metrics. Most methods use the term class during design (an 
object being an instantiation of a class). 
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CBO (Coupling Between Objects). This represents the number of other 
classes to which a class is coupled (here object = class since at design time 

we don't know anything about actual instantiations, i. e. objects). The 
definition of coupling between classes is that one class uses the 

methods /variables of another. In this sense, objects are instantiations of 

classes. 

RFC (Response For A Class). This is a count of the number of methods 

that could potentially be executed in response to a message received. 
This assumes that the higher the count, the more complex the class. 

LCOM (Lack Of Cohesion Of Methods). This indicates the number of 

pairs of methods without shared instance variables minus the number of 

pairs which do have shared instance variables. When the result is 

negative, the metric is set to 0. 

3.3.1.2 Goal 

Chidamber and Kemerer suggest that complexity can be used in cost 

estimation, evaluating productivity, estimating maintenance 

requirements and improving software quality (Chidamber and Kemerer 

1991). How these measures can be used in this way is not specified, that 

is, no prediction systems are defined Or validated. Additionally, whilst 
they are clearly complexity metrics, it is implied that size is also assessed, 

which is not clear from the nature of the measures defined. However, ir1 

a later technical report (Chidamber, Darcy et al. 1997), it is suggested that 

the metrics are "measurements of design complexity" and thus may be 

used to assess/predict variations in productivity, rework effort and 
design effort. Stepwise regression is used to produce an equation for each 
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of these dependant variables in terms of four of the CK metrics 
(excluding DIT and NOC). The measures have been developed with 

some consideration of measurement theory29, in that they are formally 

defined (using sets) and based upon a model of 00 design. It could be 

argued that the attribute of interest is not clearly enough defined and that 

there is some ambiguity in the definition of counting rules (Churcher 

and Shepperd 1995). The concept of objects employed in this research is 

based upon Bunge's ontology (Bunge 1977), since this deals with the 
definition of representation of the (real) world. This is consistent with 

the approach of object-oriented design, which aims to model the real 

world in a more natural way, (i. e. independent of implementation), than 

the functional approach, where artificial separations are made between 

data and processes. Graham (Graham 1995), questions the suitability of 
Bunge's ontology as a basis for object-oriented metrics, since it implies an 

object is defined by its properties, which is not necessarily the case in an 

object-oriented system. 

The metrics are presented as design metrics, thus implicitly 

implementation independent. Henderson-Sellers suggests that since 
(Henderson-Sellers 1996) the WMC metric does not consider the 

possibility of method type, there is potentially a drawback in applying the 

method to a system where the intended implementation language is 

C++, since this language does use different types of method". We cannot 
be sure that method type is or is not an issue, and Henderson-Sellers does 

not demonstrate that there is a problem with ignoring method type. It is 

29 The authors certainly consider measurement theory, but doubts have been raised as to 
how vigorously it has been applied (Ritz and Montazeri 1996). 
30 It could be argued that the weighting applied could reflect the different method types. 
However, it is still clear that we do not really know whether weightings are useful or 
whether the metric should be a simple count of methods, and if so what use is a count of 
methods? Obviously more empirical work is needed, but until counting rules, 
implementation issues and the actual purpose(s) are agreed on, studies will not 
necessarily apply the metrics consistently. 
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not clear from Chidamber and Kemerer's work whether this is due to 
lack of consideration of method type, or whether they considered it a 

non-issue.. 

Further criticism of the metrics suite with respect to its lack of 
implementation independence is offered in (Henderson-Sellers 1996), 

where DIT is considered to be more suited to a Smalltalk application, 

with a single base class, than C++ where a single base class is not 

required. However, there is no evidence that this is necessarily an issue 

where DIT is interpreted at a class level (each class having its own value 

of DIT). If DIT is interpreted as a system metric, with a single value for 

the whole system, this issue would have an impact. However, such a 

definition, although not precluded, is not what is intended by Chidamber 

and Kemerer, who present the suite as class metrics, and present 

empirical evidence which makes it clear that the metric is calculated at 

class level (Chidamber and Kemerer 1994). 

A further criticism can be levelled at the lack of clear purpose and 

guidance for use of the CBO metric. It is suggested by Chidamber and 

Kemerer that a highly coupled system is not desirable, as is already 

generally agreed within the software engineering community. However, 

some degree of coupling is not only unavoidable, but is necessary. 

Henderson-Sellers et al. (Henderson-Sellers 1996) point out that 

inheritance based coupling is an unavoidable consequence of using 

inheritance, and consider that it should be counted separately from other 

coupling (see section 3.3.1.4). 

Suggestions are necessary as to what values are acceptable, or how to 

ascertain such bounds. This is a criticism which is applicable to all of the 

metrics in the suite, and is not confined to Chidamber and Kemerer. 

Certainly the lack of guidance given in this case may well be a 



97 

consequence of the general lack of guidance and sense of purpose among 

complexity metrics in general. The previous chapter criticised the 

tendency to adopt complexity as a goal, since complexity in itself told us 
little. What was, and is still of interest, is the relationship between 

complexity and other more useful attributes, and thus information is 

needed on how the assessed complexity would affect these other 

attributes, for example how could we use CBO to assess the relative 

quality of designs. 

3.3.1.3 Validation 

Validation in the original paper (Chidamber and Kemerer 1991) is based 

on Weyuker's axioms (Weyuker 1988) (see chapter 2) the appropriateness 

of which have been questioned by (Kitchenham, Pfleeger et al. 1995) 

amongst others. However, a subsequent paper (Chidamber and Kemerer 

1994) provides preliminary results of an empirical investigation. The 

authors suggest that the metrics be used to aid: 

(i) reuse 
(ii) identifying design flaws (an example being excessive declaration of 

subclasses) 
(iii) in allocation of testing resources (for classes with high values for the 

CBO and RFC metrics) 

(iv) gain an insight into trade-offs made between maximising reuse (by 

inheritance) and ease of understanding and testing (designing a 

shallower inheritance hierarchy)". 

Interviews with developers at the two data sites involved are used to 

give an (informed) subjective evaluation of the results. Although the 

implied use of these metrics is as predictors (i. e. inputs into prediction 

31 Chidamber and Kemerer found that inheritance hierarchies tend to be shallow 
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systems), it should be noted that these are complexity measures, i. e. 
assessment metrics rather than prediction systems. This is because the 
empirical study does not compare predicted against actual values such as 
defect data, testing effort etc. Thus the implication that they are useful 
predictors of defects, testing requirements and so forth has not been 

empirically assessed. 

In the later technical report (Chidamber, Darcy et al. 1997) the authors 
find that WMC, CBO and RFC to be highly correlated. In the stepwise 

regression analysis, CBO and LCOM are statistically significant predictors 
for design effort, rework effort and productivity. 

In (Hitz and Montazeri 1996), some problems with the metrics are 
identified. The authors make it clear that they are considering the 

metrics as measures rather than as predictors. The authors suggest that 

improvements could be made to the metrics by a more rigorous 

application of measurement theory principles. They summarise the 

stages necessary for developing and validating metrics and suggest that 

Chidamber and Kemerer do not list satisfactory empirical relation 

systems for the metrics, concentrating instead on the effects of the metrics 

on other attributes. Hitz et al. emphasise the need for a "sufficient" set of 

empirical relations to be defined in order to account for the possible 

situations which may occur. A metric must successfully map the 

empirical relation system to a numerical system - if the empirical 
relation system is incomplete or poorly defined then one cannot be 

certain that the representation condition holds and thus cannot 
satisfactorily demonstrate that the metric is valid. 

(particularly in C++ applications). 
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The Chidamber and Kemerer metrics have been used in independent 

empirical studies to assess maintainability (Li and Henry 1993a; Li and 

Henry 1993b), evaluation of object-oriented analysis and design methods 

(Sharble and Cohen 1993), probability of faults in a class (Basili, Briand et 

al. 1995), size (de Champeaux 1997), quality (Binkley and Schach 1996) and 

number of defects (Cartwright and Shepperd 1997b). 

Li and Henry (Li and Henry 1993a), consider five of Chidamber and 

Kemerer's metrics (rejecting CBO), as well as five of their own, in an 

empirical study based on two commercial systems, developed in Classic 

Ada. The additional metrics will be defined in section 3.3.2.1. The 

authors collect maintenance effort data from the systems over three 

years. Unlike Basili et al. (Basili, Briand et al. 1995), Li and Henry define 

the WMC metric as the "summation of McCabe's cyclomatic complexity 

of all local measures", i. e. v(G) for the class, which can be more simply 

expressed as m+n, where m is the number of decisions in the class and n 

is the number of methods. Why two apparently different commodities 

should be added together is unclear and the validity of doing so, as well 

as the usefulness of this procedure in an object-oriented system, where 

typically methods are small (Wilde, Matthews et al. 1993), is 

questionable32. Moreover, the "object-orientedness" of Ada, might be 

better described as object based, since although it shares certain common 

features with more obviously object-oriented languages, it lacks others 

(Wegner 1990). Although the variant used in (Li and Henry 1993a), 

Classic-Ada, is described as an object-oriented language, where object- 

oriented constructs such as class and superclass have been added to the 

standard Ada constructs. 

32 Where methods are typically small and preferably fairly atomic, then the number of 
decisions is likely to equal one, thus this measure is likely to be the same as counting the 

number of methods. 
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Regression analysis is used to assess the suitability of the metrics as 

predictors of maintenance effort by using them as independent variables 
to predict the dependent variable, maintenance effort, and compare this 

with the results of using regression analysis using size measures to 

predict maintenance effort. "The number of lines changed per class" is 

the definition of maintenance effort. No information is given on time 

taken to implement changes, so maintenance is simply a count of 

modified lines of code. The authors conclude that the metrics are good 

predictors of maintenance effort. However, the various measures are not 

independently tested, all of them being included in a multiple regression 

equation, thus the validity of the Chidamber and Kemerer metrics alone 

is not satisfactorily established in this study. See 3.3.2 for a criticism of 

the empirical study. 

Basili et al. (Basili, Briand et al. 1995) use a modified version of the metric 

suite to suit C++, since indications are that it is not language 

independent and does not reflect many mechanisms peculiar to C++ 

(Chidamber and Kemerer 1994; Chidamber and Kemerer 1995; Churcher 

and Shepperd 1995). Their study is based upon an experiment with 

student programmers, with some (unspecified) experience with C++ but 

not necessarily with 00 methods, or with the libraries provided. A C++ 

programmer familiar with the libraries was available for consultation. 
Code data and defects discovered and fixed were collected. The 

Chidamber and Kemerer metrics were extracted from the code delivered 

at the end of implementation, error data during testing and fix data 

during the repair stage. The amount of modification made to a class was 

categorised as none, small or large, classes being allocated according to the 
developer's estimate of the percentage of code modified. The authors 
found all but LCOM to be "adequate" predictors of fault prone classes (in 

terms of predicting whether a class would contain one or more faults or 
none), and that they performed better than traditional code metrics. It 
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should be noted that although Basili et al. state that the metrics are 

available earlier in the lifecycle than traditional code metrics, they 

extracted them from the code, rather than design documentation. Thus 

they fail to demonstrate that they can be considered design metrics, a 

claim challenged by the empirical study carried out for this thesis (see 

chapter 5). 

Sharble and Cohen (Sharble and Cohen 1993), use the Chidamber and 
Kemerer metrics suite to compare two approaches to object-oriented 

analysis and design, data-driven and responsibility-driven. The CK 

metrics are supplemented by three others. The metrics are not validated, 
but are applied to both designs and the results compared to determine 

which approach lead to the least complex design, the conclusion being 

that the responsibility-driven design is less complex than the data-driven 

design. 

Cartwright (Cartwright and Shepperd 1997b) found a significant +ve 

correlation between DIT and error density. However, the indications 

were that involvement in an inheritance structure at whatever level was 

more relevant to error proneness than the actual depth. NOC was not 
found to have strong correlations with defects or size. The other metrics 

could not be analysed since they proved impossible to collect from the 

design documentation. A more detailed discussion of this study can be 

found in chapter 5. 

In (de Champeaux 1997), Chidamber and Kemerer's metrics are included 

in a large number of metrics applied to a case study developed by 

students. He notes a "disturbing" significant correlation between his 

adaptation of WMC and CBO, and between WMC and RFC. It is 

suggested that RFC and CBO are both measuring size rather than 

different aspects of quality. 

[OURNEMOUiIVFR 
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Four of the metrics, CBO, RFC, DIT and NOC are assessed in (Binkley and 
Schach 1996). This study uses expert opinion to compare the quality of 

alternative design solutions to a particular problem and rank them. The 

authors then apply 16 metrics; to find which confirmed the experts' 

consensus based opinion. However, the results are unclear since metrics 

are grouped according to type and the results (success rate at match 

experts' opinion) is given per category. They find that simple coupling 

metrics (which includes CBO) have a success rate of just 17%, inheritance 

based metrics (including DIT and NOC) 28% and RFC (given its own 

category), 33%. It is noted that fourteen of the sixteen metrics tested, 

including the Chidamber and Kemerer metrics, score lower than a 

random. The criticism levelled by the authors is that the metrics are 

defined at too high a level of abstraction to measure design details. 

Examined more closely the authors seem to mean that the metrics are 

too crude and do not distinguish between different types of coupling and 

inheritance. The authors conclude that the accuracy of coupling 

measures is the determining factor in their success as predictors of quality 

and that more abstract measures cannot give an accurate measure of 

complexity and thus will not give an accurate prediction. Although this 

argument is plausible, the study does not demonstrate this satisfactorily - 

- the criteria for judging designs is not given, nor the scores of the 

individual metrics. Neither is it explained how they were used as 

predictors. Calculating, CBO, for example, does not predict the quality of 

a design. In the absence of guidance on thresholds etc., from Chidamber 

and Kemerer it must be assumed that the authors supplied their own, 

but what they are and how they were arrived at is not published. 

Wilkie and Hylands (Wilkie and Hylands 1998) present the results of 

applying the metrics suite to a 25 KLOC 114 class "industrial grade" C++ 
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system. They apply two versions of the WMC metric33, WMC(SS)which 

uses Software Science (Halstead 1977; Halstead 1979) and WMC(cc), which 

uses Cyclomatic Complexity (McCabe 1976; McCabe and Butler 1989) to 

measure method complexity (see sections 3.2.1 and 3.2.2 for criticisms of 

the application of these traditional and controversial metrics to object- 

oriented software). The authors suggest that WMC(SS) and DIT alone 

"provide a significant contribution to the fault predicting capabilities of 

the C&K suite". This is the result of regression analysis involving the 

full set of classes and a subset of the classes, in which all of the classes 

included had some associated fault fixing effort. The adjusted R2 values 

for both sets are low (0.3 and 0.44 respectively) which raises some doubts 

as to their usefulness in practice. The same study suggests a relationship 

between RFC and product enhancement but does not give supporting 

figures. The analysis is repeated to take account of the effects of 

inheritance (a class which inherits will have the complexities of its 

ancestors added to its own complexity). The results differ, so that DIT 

and WMC(SS) are no longer significant indicators of fault fixing effort and 

that CBO emerges as being more significant (although once more the RZ 

is very low (0.09)). 

3.3.1.4 Definition 

The second paper (Chidamber and Kemerer 1994) makes some changes to 

the original definitions. Unfortunately there is still some ambiguity as 

suggested in (Churcher and Shepperd 1995), where an example is given 

showing the possible differing interpretations and results for the WMC 

metric. The particular problem illustrated therein was subsequently 

clarified (Chidamber and Kemerer 1995), but there is still the possibility of 

the continuing use of the earlier definitions. 

33 Ignoring inherited methods, i. e. using methods declared only in that class 



Further, the drawbacks with the original metrics have not all been 

cleared up, an example being LCOM, where any negative values are set to 
0. This seems to make the metric insensitive for highly cohesive classes 
and obviously cannot discriminate between lower values since all 
negatives are set to 0. In the absence of explicit guidelines on how to use 
the result (how do we determine if a score is acceptable or not? ), this 

metric is limited in its use as, for example, an indicator of quality, since 

all classes reaching a certain level of cohesion score the same value (i. e. 
0). Henderson-Sellers, Constantine and Graham consider this in 

(Henderson-Sellers, Constantine et al. 1996), and give an example where 

classes have the same LCOM score but, upon examination of the designs, 

appear to have different levels of cohesion. They point out that although 
high LCOM values can indicate low cohesion the converse is not 

necessarily true. From the examples presented, the authors conclude that 

it is possible for a value of LCOM =0 to indicate a highly cohesive class, a 

not very cohesive class as well as a class with no cohesion. Henderson- 

Sellers et al. suggest a new definition for LCOM to overcome this 

problem. Although the cohesiveness of a class, or indeed any unit, can 

be somewhat subjective, since it is easy enough to distinguish between a 

highly cohesive class and a non cohesive class, but harder to rank classes 

which seem similar, the argument is persuasive. It shows how very 

differently structured and sized classes can have the same score. 
Common sense tells us that it would be possible, although possibly 

somewhat contrived, to construct a class in such a way that a low score 

was obtained, but the class would not necessarily be cohesive. For 

example, methods could share variables without necessarily making any 

sensible use out of them, merely to improve the LCOM score. This 

would be consistent with the argument of Henderson Sellers et al., that a 
low score did not necessarily indicate high cohesion. Thus the definition 
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of this metric does not fulfil its stated goal of assessing cohesion, which 

means that it fails to satisfy the representation condition. 

Henderson-Sellers et al. also note the change in definition of CBO, for 

which the 1991 definition implied only bi-directional coupling was 

counted. The authors feel that Chidamber and Kemerer probably did 

mean this, but it was a possible ambiguity arising from the poor 

definition. In 1994, the definition was changed making it clear that one- 

way coupling was not precluded. However, in the redefinition, 

inheritance based coupling, i. e. between parent and child classes, is 

counted along with non inheritance coupling, where classes are 

collaborating by message passing to fulfil a task, whereas the 1991 

definition distinguished between them. Although there is no evidence 

to suggest that the type is important, we cannot know that without 

analysis, and if the types are not distinguished, this cannot be done. Li 

and Henry overcame this problem by replacing CBO with two coupling 

metrics one of which counts the types of coupling (Li and Henry 1993a). 

3.3.1.5 Summary 

Despite the relative maturity of the Chidamber and Kemerer metrics, 

they still lack sufficient independent empirical validation to judge the 

usefulness of the individual metrics. This problem is by no means 

unique to these metrics and is largely due to the immaturity of the 

paradigm; having relatively few suitable34 00 systems to study; the 

variation in design methods (and indeed lack of any design methods in 

many of the mature systems); the variation in languages used, and an 

apparent reluctance by developers to supply data for analysis. 

31 That is, real-world, reasonably large, mature, stable systems. 
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A further problem with these metrics is, as mentioned above, despite 

being described as design metrics, it is not always possible to collect them 

from design documents. Indeed, Basili et al. (Basili, Briand et al. 1995), 

collect the metrics from code, as apparently do Li and Henry (Li and 
Henry 1993a). This is an obvious drawback if the metrics are intended to 

give feedback into the design process. Some of the problems in 
definition and validity (i. e. as defined the metrics do not satisfy the stated 

goal) may occur from a limited understanding of object-orientation as 

practice. A connected issue is that Smalltalk, upon which much 

academic work, including Chidamber and Kemerer's, is based, is a "pure" 

object-oriented language, whereas C++, which is much more popular in 

industry, is regarded as a hybrid. As a hybrid, C++ employs some 

mechanisms which are peculiar to itself and are not standard 00. This 

makes it difficult to suggest generally applicable metrics for object- 

oriented systems, since the implementation of the system could well 

affect its complexity and also the way it is designed. Many very different 

analysis and design methods are available, which will also make it 

difficult to specify design metrics since the same models are not 

necessarily employed in each. Any metric which is to be considered 

generally applicable must therefore confine itself to measuring aspects 

which are common across methods and languages, such as the use of 

classes and inheritance message passing. However, the necessity of such 

an abstract view may well make such a metric of less use than one that is 

environment specific. 

3.3.2. Other Object-Oriented Metrics 

A number of other metrics, relating to both size and complexity, have 

been proposed. So far the proposals are largely speculative, few having 

convincing empirical evidence to back them up. This section will 
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consider a number of such metrics, some will be discussed in some detail, 

and others summarised in a table, for reasons of brevity. The metrics 

chosen for more detailed discussion are included on the basis of the 

amount of published material available, the detail entered into. 

3.3.2.1 Li and Henry 

Li and Henry (Li and Henry 1993a) supplement Chidamber and 
Kemerer's metrics suite with a further five metrics, three of which they 

conclude are accurate predictors of maintenance effort. The authors 

reject Chidamber and Kemerer's CBO metric, replacing it with two other 

coupling measures, MPC, message-passing coupling and DAC, coupling 

through abstract data types (ADT's). 

MPC is defined as the number of send statements defined in a class, and 
DAC as the number of ADT's defined in a class. In the absence of a 

precise textual or a formal definition, this metric is open to 

interpretation. The actual definition given is "DAC = number of ADTs 

defined in a class" where a class is defined as an implementation of an 

ADT. The textual definition given seems to imply that one class 

implements one ADT, thus giving a value of DAC = 1. 

However, reading what seems to be the motivation for defining DAC, 

the potential for coupling through ADTs, the following definition seems 

reasonable. The coupling referred to is the coupling between classes 

where a variable defined in one class is of an ADT type of another. This 

seems confirmed by the concern of the authors that such a couple means 

that the class in which the variable (of another ADT type) is defined may 

access the properties of the other class (i. e. the class implementing the 

ADT of which the defined variable is a type), and possibly violating 
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encapsulation if direct access to the private data of the ADT class is not 

prevented. DAC would benefit greatly from a clearer definition, either 
formal or textual. As it is, it is hard to determine whether we are 

capturing what is intended and if the metric collected is a reasonable 

representation of the indirect attribute of interest (presumably complexity 

which itself would be used to predict another indirect attribute 

maintainability). 

In addition they collect the number of local methods in a class (NOM), as 

a complexity metric and two size metrics, SIZE1, the number of 

semicolons in a class and SIZE2, the number of attributes plus the 

number of local methods. The reasoning behind the latter, or what it 

may offer over the more traditional size measure, (SIZE1 is essentially 

LOC), is not discussed. It is hard to see why adding two counts of 

different attributes might be of use. 

The goal behind the proposed metrics is to predict maintainability. 

Maintainability or maintenance effort, another term used, is defined by 

Li and Henry as the number of lines changed per class in its maintenance 

history and is referred to as change. It is explicitly stated that the metrics 

are intended as predictors of maintenance effort, but how this is to be 

done is not demonstrated. 

The authors use data from two industrial Ada systems of 39 and 71 

classes respectively. The empirical validation carried out can be 

questioned on a number of issues. One of these is the suitability of Ada 

as a representative object-oriented language, although as stated in 3.3.1.3, 

a non-standard variant, Classic-Ada, is used. A further point is the use of 

multiple regression as opposed to either single-variable regression or 

stepwise multiple regression. Additionally, the R2 and adjusted R2 

figures from the "full" multiple regression equation (where size 
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measures are included) are virtually the same as those from the 
"refined" multiple regression test (with size measures removed 
beforehand). From the test these figures are: 

R2 (sys A/sys B) adj. R2 (sys A/sys B) 

Full regression model 0.9096/0.8737 0.8773/0.8550 

Refined regression model 0.9030/0.8680 0.8771/0.8533 

Table 3.2: Regression models using full metrics set and refined metrics 
set. Dependent variable is change. 

Regression is a reasonable technique, but using multiple regression (as 

opposed to stepwise multiple regression) does not allow insignificant 

independent variables to be rejected, thus the effect of each variable 

cannot be independently ascertained. Additionally using 10 or even 8 

variables makes for an overcomplicated model with greater potential for 

collinearity, where it is unclear what effect on the model each variable 
has. Further including so many variables may lead to overfitting, 

making the model suitable for that particular dataset but no other. The 

advantage of using stepwise regression is that we can see the effect as 

each variable is added to the equation, plus those which are not 

significant can be rejected. Instead, Li and Henry use VIF (Variation 

Inflation Factor) to determine which if any variables should be removed 
from the "full" model. The criterion is that any variable with a VIF 

higher than 50 should be rejected. However, they do not follow this 

criterion for all variables, considering "other factors" such as a strong 

correlation between a size metric and McCabe's complexity metric as 

justification for retaining a variable with an excessive VIF and rejecting 

one with a VIF below the rejection threshold. 

Additionally, since a cross correlation for all variables is not carried out 
(or at least reported), it is hard to determine how closely related the 
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independent variables might be. For example, it is reasonable from the 
definitions given to assume there might be some relationship between 

NOM (number of methods) and WMC (weighted methods per class) 

which might effect the regression equation. The usefulness of each of the 

individual metrics has not been ascertained, and thus neither has the 

true accuracy of the prediction system (i. e. using all of the metrics added 

together). The usefulness of the prediction, even if it is accurate, is 

limited since the data is collected from source code. The conclusions 

reached by Li and Henry (Li and Henry 1993a) are over generalised, e. g. 

"There is a strong relationship between metrics and maintenance effort 

in object-oriented systems. ". Knowing which measurements to collect 

and how to use them to predict maintenance effort or changes is more 

useful and interesting. 

3.3.2.2. Lorenz and Kidd 

In, apparently the first book dedicated to object-oriented metrics (Lorenz 

and Kidd 1994), Lorenz and Kidd suggest a large number of object- 

oriented metrics, based on analysis of C++ and Smalltalk projects. These 

are divided into two categories, project and design metrics. The design 

metrics consist of 27 measures, divided into 7 categories, looking at 

methods, classes, inheritance and other "external" measures. Related 

metrics are also suggested for each of the metrics in the main list. 

Explanations for the metrics are vague, both in the sense of the indirect 

attributes they are attempting to capture and in the counting rules 

necessary to capture them. Also some of the titles of metrics do not 

match those listed under the various categories. Although it is stated 
that the metrics are based on "actual project experiences", little in the way 

of actual statistics or results appears, apart from some bar charts. We are 

presented with suggested thresholds for each measure, again with little 
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or no explanation as to why or how the figures are derived. When 

thresholds are breached, there are "Suggested actions" to be taken. The 

overall impression is the metrics, thresholds, suggestions and so on are 

anecdotal, and not based on data analysis. 

The authors then make a recommendation of which of the listed metrics 

should be used (bringing down the total of design metrics to a mere 24), 

and for what purpose, which can be one of four categories, model quality, 

class quality, method quality and management. How to use the metrics is 

not specified, although it is stated that they are "meaningful metrics that 

will help you foster better designs, develop more reusable code, and 

prepare better estimates. " 

A practitioner using the metrics would need to ascertain for themselves 

how to use them, how useful they are, which thresholds to use in which 

circumstances and what action to take. Using all of the metrics suggested 

seems potentially risky in terms of the trade off between cost to collect 

and any benefits that may be gained from their use. It is unfortunate that 

the authors have not shown how or why these metrics were derived, 

since as they are based on actual projects, presumably there is data 

available to analyse. We are unable to check for collinearity since no data 

is provided and nor do the authors indicate that this has been considered. 

No clear goal for the metrics suite is given, the authors instead making 

statements such as "The metrics should be used to support the desired 

motivations. ". 

One interpretation of this statement is that the metrics can be put to any 

use. Lorenz and Kidd do not distinguish between measurement and 

prediction systems. Many of the metrics are used to form prediction 

systems, but without empirical evidence or any clear way of checking 

predictions (the counting rules and attributes are often unclear, and the 
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data input into the predictions systems is not presented), they cannot be 

acceptable. In the absence of actual predictions, it could be assumed that 

they are to be treated as measures from which an expert can make some 
inference, but again this is not clear. The metrics suggested are derived 

from practical experience, with no reference to theoretical 
underpinnings. Certainly many of the metrics are poorly defined, both 

in terms of what is being measured and how, and purpose. Further, 

some of the definitions given could be misleading, for example a 
"comment line" defined as a physical line of code that contains a 

comment - it is possible for a physical line to contain both source code 

and a comment. Such definitions need to be more clearly thought out 
lest misleading inferences be made. 

Although it is not unreasonable to emphasise usefulness (to be 

demonstrated empirically) rather than validity in the sense of 

measurement theory, neither approach is followed. Metrics should be 

either valid (in the sense of measurement theory) or useful, or preferably 
both. These metrics demonstrate neither property. For example, method 

complexity is calculated as the total number of complexities (presumably 

for a class) divided by the total number of methods. The total number of 

complexities is calculated by counting the number of methods of each of 

a given type and multiplied by the suggested weighting associated with 

that type. These are then added to give a total for the class. Adding 

weighted counts violates scales in the same way Function Points do, by 

assuming that the weights will ensure that the different categories of 

method (as defined by (Lorenz and Kidd) are equivalent. Additionally 

one can question how representative is the data used to derive the 

weightings. However, the Function Point method is arguably sometimes 

useful as a predictor of size, whereas there is no empirical evidence to 

suggest that Lorenz and Kidd's method complexity metric is at all useful. 
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3.3.2.3. Henderson-Sellers 

In his book (Henderson-Sellers 1996), Henderson-Sellers reviews a 

number of object-oriented metrics. Various perspectives of an object- 

oriented system are considered and metrics considered suitable for each 

of these are listed (this is an elaboration on (Henderson-Sellers 1994)). 

The book offers little in the way of validation of the metrics suggested 

and is lacking in clarity - definitions and guidance on collecting the 

metrics are missing, as is the purpose of collecting the measures. Apart 

from being told they are complexity metrics, the reader is given little 

information on how to use them. Given the large numbers of measures 

suggested, this sort of information would be highly desirable before 

embarking on what could be a costly metrics collection programme. A 

count of suggested measures gives: 

per class - 20; 

system level - 22; 

reuse - 4. 

The book also refers to earlier work in the area of object-oriented metrics 

by Henderson-Sellers. In (Henderson-Sellers 1991), metrics are suggested 

for size and reuse, with the emphasis being on providing early estimates. 

The suggested metrics include "appropriate weights" and are not backed 

up with formal validation or any empirical evidence. 

3.3.5 de Champeaux 

After publishing early papers on object-oriented development, and 

methods (de Champeaux, Anderson et al. 1992; de Champeaux and Faure 
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1992; de Champeaux, Lea et al. 1992), de Champeaux extended this work 
to include metrics. The metrics are applied to an object-oriented 
development by student programmers. These cover both effort metrics 
(both effort measures and effort estimation) and product or artefact 
metrics. Well over 20 artefact metrics are defined, including Chidamber 

and Kemerer's class metrics. The metrics consider classes And above (i. e. 

subsystem, use cases, class relationships). The purpose is unclear - what 

each can be used to do (except where summed to produce other 

measures) is undefined. An example of the lack of purpose in 

measurement being "A straightforward way of measuring a class is to 

count its attributes" - the purpose of doing so is not explained. 

de Champeaux does not explicitly differentiate between measures and 

prediction systems. However, from the metrics defined, it seems that the 

ultimate aim is to predict such attributes as development effort. 

Where the metrics are applied to the development, often the "results" 

(i. e. a list of numbers) are given with little or no interpretation as to their 

meaning. The few analyses provided offer little useful information, for 

example, for the vocabulary35 metric, described as: 

µvocabulary(VE) = #attributes in VE + #states in VE + #operations in VE 

Where VE is a vocabulary entry (with each entry corresponding to a class 
description). 

35 The purpose is vague, but the vocabulary itself is described as "a set of all templated 
narratives of all classes, relationships, ensemble classes, and their instances that are 
expected to play a role in the formal model to be constructed. The identification of the 
entries for the vocabulary is a matter of good taste, experience, gut-level intuition, 
unjustified braveness, etc. " 
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This suggests that it is some sort of size metric. Presumably we are to 

assume that the larger the value, the more effort will be required to 

implement the class, although this is not explicit. The total number of 

artefacts, maximum metrics value, minimum metric value, median 

metric value and average metric value is given. A histogram showing 

the frequency of the metrics values for classes in the system is presented, 

showing a positively skewed distribution. The author suggests that 

attention should be focused on artefacts with the highest scores and it is 

to these that the most capable members of the team should be assigned. 

A major drawback for what is intended as an empirical study of effort 

estimation metrics is that there are serious omissions in data collection, 
illustrated with the following quotation. 

"... The construction of these class descriptions is the lion's share of the 

analysis effort. Unfortunately, we did not track the development effort 

per class - nor for that matter the finer granularity of the summary 

diagram, static diagram, and dynamic diagram. Our notes indicate that 

the summary diagrams together took 3 hours. We don't have figures for 

the other diagrams. A best estimate is that the static diagrams took 2 

hours and the dynamic diagrams took an additional 8 hours. " 

In the absence of information as to how these "best estimates" were 

derived, it is reasonable to assume they are "guestimates". In addition to 

being generally unsatisfactory (lack of analysis and interpretation of 

results), the study is obviously of limited use since vital actual project 

data is missing. 

3.3.2.4. Rajaraman and Lyu 



116 

In (Rajaraman and Lyu 1992a; Rajaraman and Lyu 1992b), complexity 
metrics are presented. The metrics are intended primarily to measure 

coupling in C++ systems, but the authors feel they could be used for 

other object-oriented languages, although how is not explained. As with 
Chidamber and Kemerer, the premise is that highly coupled classes 
increase the complexity of the system, in that any changes to the class are 

more likely to affect other classes and thus make maintenance more 
difficult and testing more demanding. Rajaraman and Lyu, however, 

consider the necessary trade-off between coupling and inheritance, 

noting that inheritance involves coupling between parent and child 

classes and "is crucial to achieving reusability and extendibility ... but it 

has adverse affects on code understandability. " Chidamber and Kemerer, 

on the other hand, imply that coupling inhibits reuse. These differing 

views reflect different ways of implementing reuse - reuse within an 

application, versus reuse between applications. 

The authors represent coupling as a directed multigraph, with nodes 

corresponding to classes and arcs to interaction (i. e. coupling) between 

classes, such as referencing variables or using a function or method 

defined in another class. The four metrics are: 

CIC (Class Inheritance-related Coupling) 

A count of the number of accesses to variables and/or uses of functions 

defined in an ancestor class. 

i 
CNIC (Class Non-inheritance-related Coupling) 
A count of the uses of functions or accesses of variables defined in a class 

which are not defined in that class or in any of its ancestor classes. This 

included the use of "friend" functions and global variables/functions. 
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CC (Class Coupling) 
This is a summation of inheritance and non inheritance related coupling 

of each class, and can more easily be calculated as CIC + CNIC, which 

equals the number of outward arcs from the corresponding node in the 

graph. 

AMC (Average Method Coupling) 

For a class this is the ratio of class coupling to number of functions, i. e. 
AMC = CC/n, where n is the number of member functions in the class. 

Validation of the metrics involved ranking five C++ systems in order of 

perceived difficulty of maintenance, calculating the CC and AMC metrics 

as well as LOC, Software Science and Cyclomatic Complexity scores. 
Rank correlations were computed between the metrics and the difficulty 

of maintenance ranks, the result being that the CC and AMC metrics had 

higher correlation coefficients than the other measures, although 
McCabe came close for all but one of the systems studied. The authors 

conclude that this was because the developers of this system "are more 
knowledgeable in C++ and object-oriented programming and hence have 

exploited its language constructs more fully" and suggest the developers 

of the other systems may have programmed the systems in a functional 

rather than object-oriented way. 

Criticisms can be made of the authors' approach to validation. It appears 

that not only were the developers of the systems asked to rank them in 

order of perceived difficulty, but the majority of the developers may not 
have developed the software in an object-oriented manner. They " ... 
may have programmed in C++ as they would in a language based on 
functional decomposition like COBOL". This is indeed possible in C++, 

since it is a hybrid, and is a factor to consider in developing metrics for 

C++, but in this experiment means that we may not (since the authors 
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themselves seem unsure) be comparing like with like. The metrics were 

collected from each system and the results for each class in the system 

correlated against the subjective ranking for that class. This would allow 
for the "definite" object-oriented projects to be considered separately for 

the "doubtful" projects. However, project data is not supplied, just one 

set comparing two measures against LOC, Halstead's Software Science 

and McCabe's Cyclomatic Complexity for one project, so it is not possible 

to re-evaluate the data. 

The goal or aim of the metrics are not met by the metrics as they stand. 

The stated aim is to use a measure of coupling as an indicator of 

maintenance difficulty, which seems reasonable enough. However, the 

measures defined are not used in prediction systems to obtain any 

predictions, nor is maintenance difficulty explicitly defined, instead 

subjective assessment is used as a proxy for some collectable measure. It 

seems reasonable to conclude that the authors mean either maintenance 

effort or reliability, since they state that data such as mean time to failure 

and mean time to repair would have improved the validation. The 

authors have thus not as yet demonstrated the validity or usefulness of 

their measures, but on a positive note, the definitions appear clear 

enough for the measures to be applied in other studies. 

3.3.2.5. Abreu 

Abreu presented a number of object-oriented metrics in 1993 (Abreu 

1993). Although stating that traditional metrics such as those of McCabe 

and Halstead are aimed at procedural languages and such metrics do not 

address object-oriented concepts, Cyclomatic Complexity, Halstead's 

volume metric and Henry and Kafura's information flow metrics are 

included in the proposed framework for 00 metrics (TAPROOT). 
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Subsequent work (Abreu and Carapuca 1994) does not pursue this and 

concentrates on new metrics for object-oriented systems. The metrics are 
intended to evaluate object-oriented mechanisms considered to be 

important by the authors, such as inheritance, encapsulation, 

polymorphism, in relation to quality, productivity and reuse. 

In (Abreu and Carapuca 1994), the authors list seven criteria which the 

metrics they derive should meet. The last criterion is that metrics should 
be language independent. This immediately makes the task of deriving 

valid and useful metrics more difficult, since there are considerable 

differences between languages, particularly, for example, "pure" 

languages such as Smalltalk and hybrids such as C++, which seem likely 

to have some influence on the validity or usefulness of a metric. The 

authors meet this criteria by avoiding specific language constructs, and 

using a more abstract approach. In all some 25 metrics are defined, most 

as inputs into the main metrics or factors. However, textual definitions 

are vague, and some of the inputs are undefined. The authors state that 

they wish to avoid the "YAM" (yet another metric) trap, but have 

themselves presented a long list of what must, in the absence of formal 

or empirical evidence, be regarded as speculative metrics. Little 

explanation is given as to why the measures and factors are trying to 

capture the specified attributes, save that results can be used "to compute 

design heuristics" - again, how to do so and with what limits are not 

specified. The authors state in (Abreu and Carapuca 1994) that a "study of 

correlation between MOOD metrics and quality attributes ... will be one of 

the next steps", confirming the immature nature of the work. They also 

suggest that some of the metrics "can be combined to obtain a generic 00 

software system complexity metric". The first stage in such a process is 

the evaluation of the metrics against Weyuker's axioms (Weyuker 1988). 

The inadequacies and contradictions of these axioms has been discussed 

in section 2.2.1. 
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However, the MOOD metrics have since undergone some refinement 

and empirical validation (Abreu, Goulao et al. 1995; Abreu and Melo 

1996). In (Abreu, Goulao et al. 1995) six metrics are defined and applied to 

a number of class libraries, ranging in size from 4884 LOC and 35 classes 

to 74895 LOC and 128 classes. In a further study, the metrics are applied to 

small student projects in a controlled experiment (Abreu and Melo 1996). 

The definitions given in this section will use the refined MOOD metrics. 
Notably the number of metrics defined is reduced. The equations have 

undergone some "fine tuning" and, for both the written and 

mathematical definitions, the situation with regard to inheritance is 

clarified, where appropriate. In other words the metrics have been 

refined in the light of the comments about 00 metrics in general, 

namely that there has been ambiguity as to whether or not inherited 

methods, attributes etc. have been included. 

The MOOD metrics are categorised as follows: AHF and MHF are 

measures of information hiding; MIF and AlF are measures of 
inheritance; COF is a measure of coupling (not including inheritance 

coupling) and PF measures polymorphism. The metrics are defined and 

explained as follows using the definitions in (Abreu, Goulao et al. 1995): 

(i) Method Hiding Factor (MHF) 
C 

MHF = 
_T t Mh(Ci) 

TiMd(Ci) 
TC = total number of classes in the system 
Md(Ci) = Mv(Ci) + Md(Ci) = methods defined in Ci 

Mv(Ci) = visible methods in class Ci 

Md(Ci) = hidden methods in class Ci 
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(ii) Attribute Hiding Factor (AHF) 

TC Ah(Ci) 
AHF = Tc Ii=1 Ad(Ci) 

Ad(Ci) = Av(Ci) + Ah(Ci) = attributes defined in Ci 

Av(Ci) = visible attributes in class Ci 

Ah(Ci) = hidden attributes in class Ci 

Metrics (i) and (ii) are based on the assumption that information hiding 

(encapsulation) has a positive effect on quality, by reducing the effects of 

complexity, and thus its use should be promoted. For attributes, this 

would be reflected in high values for AHF. For MHF, there is a trade off 

between abstraction and method hiding (corresponding to a high value 

of MHF) and class functionality (measured by the number of visible 

methods) indicated by a low value for MHF. Thus the developer might 

use these metrics with an upper and lower limit of acceptable values. 

(iii) Method Inheritance Factor (MIF) 

ET; Mi(Ci) 

MIF = rc 
i=1 Ma(Ci) 

Ma(Ci) = Md(Ci) + Mi(Ci) = available methods in Ci 

Md(Ci) = Ma(Ci) + Mo(Ci) = methods defined in Ci 

Ma(Ci) = new methods in Ci 

Mo(Ci) = overriding methods in Ci 

Mi(Ci) = methods inherited in Ci 

(iv) Attribute Inheritance Factor (AIF) 

ETý Ai(Ci) 
AIF = ETC 

i=i Aa(Ci) 
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Aa(Ci) = Ad(Ci) + Ai(Ci) = attributes available in Ci 

Ad(Ci) = An(Ci) + Ao(Ci) = attributes defined in Ci 

An(Ci) = new attributes in class Ci 

Ao(Ci) = overriding attributes in class Ci 

Ai(Ci) = attributes inherited in class Ci 

Metrics (iii) and (iv) are measures of inheritance. Both anecdotal and 

empirical evidence exists (Cartwright and Shepperd 1997a; Chidamber, 

Darcy et al. 1997) which suggests that use of inheritance can have adverse 

effects such as increasing the likelihood of defects (probably linked to the 

relative difficulties in understanding and testing classes in an inheritance 

tree). This evidence raises questions regarding the useful effects of 

inheritance, so these metrics should be used this knowledge in mind. 

(v) Polymorphism Factor (PF) 

nr. -L1 
MO(Ci) 

rL' = 

T; [Mn(Ci) X DC(Ci)] 

Mo(Ci) = overriding methods in Ci 

Mn(Ci) = new methods in Ci 

DC(Ci) = number of descendants of class Ci (derived classes) 

Polymorphism can be affected via inheritance, and like inheritance, there 

is a trade-off between its useful and complicating effects. Whereas 

polymorphism allows for flexibility in refining classes without affecting 

clients, it also complicates tracing control flow, making it harder to 

understand and debug code 

(vi) Coupling Factor (COF) 
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Tc [Tc is client(Ci, Cj)] 
COF = 

I`-1 ýJ-i 

TC2 -TC-2x yT DC(Ci) 

TC2 - TC = maximum number of coupling in a system with TC classes 

2x ET i DC(Ci) = maximum number of couplings due to inheritance 

is - client(Cc, Cs) = 
1 'ff Cc =* CS Cc: P- Csn -n(Cc -i Cs) 

0 otherwise 

where (Cc Cs) means client class Cc contains at least one reference to 

a method or attribute of supplier class Cs and (Cc -- Cs) indicates an 
inheritance relation. 

It has long been accepted that whilst some coupling is unavoidable, this 

should be minimised. The premise behind 00 designs is that classes will 

co-operate with each other to perform some task rather than repeating 

code or loading all the functionality necessary into one object. Thus 

coupling between communicating objects must be accepted as necessary 

and offset against the benefits of an object-oriented design. Further 

coupling will occur when inheritance is used, although it is made clear 

that this metric is not intended to capture inheritance based-coupling. 

This metric should, therefore, also be used with an upper and lower 

bound. 

In (Abreu, Goulao et al. 1995) the authors conclude that the sample to 

which they applied the metrics is too small to conduct a meaningful 

empirical study. The tests carried out on the sample indicate that AHF 

and MIF are size-dependent and that AHF has a strong negative 

correlation with MIF, and PF has a strong positive correlation with COF. 
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The authors conclude that the size dependence and correlation between 

the AHF and MIF metrics is coincidental, brought about by the small 

sample size, although this is not demonstrated. The PF/COF correlation 
is felt to be due to an outlier value of COF for one system. This 

conclusion is reached after setting the apparently anomalous value equal 

to the average COF for the other four systems and recalculating the 

correlation. With such a small sample size it is, as the authors admit, 
hard to draw any meaningful conclusions. Additionally, the method 

adopted for dealing with an outlying value is highly questionable. 
Standard procedure is to remove an outlying value completely or re- 

expressing values after applying a transformation to all. It is 

understandable that the authors feel that reducing the sample size 
further is undesirable. However, by setting the anomalous value equal 

to that of the average for the other values, they are merely causing a 
"flatter" line to be drawn among values with little correlation by adding 

one more favourable value. This conclusion can be drawn since the 

authors argue that the outlier is forcing a correlation that doesn't really 

exist and thus the other values are likely to be much lower with little 

correlation. 

In (Abreu and Melo 1996) the MOOD metrics are evaluated against eight 

small information management systems developed from identical 

requirements under controlled conditions. The MHF and AHF metrics 

are refined slightly: 

MHF = 1T y, 
mJ(l 

,) (1- v(Mn= 

TI Md(Ci) 

where 
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V(Mmi) = 
Ej i is 

_ visible(Mmi, Cj) 

TC -1 

and 
jý1 

is 
- visible(Mmi, CG) = iff Cj may -call 

Mmi 
1 otherwise 

TC ým°(ý `) (1 
AHF -- 

V(Ami)) 

IT; Ad(Ci) 

ýi is 
_ visible(Ami, Cj) 

V(Ami) = TC-1 

is 
_ visible(Ami, Cj) = 

j#1 
0 iff 

CJ may-call Ami 
1 otherwise 

The stated aim of the paper is to evaluate the impact of object-oriented 
design on the quality characteristics defect density and rework. The 

metrics are collected from the source code by the MOODKIT tool 

developed to support the MOOD metrics. Defects were detected during 

white box testing and failures during black box testing. Rework effort is 

expressed as manhours taken to correct the discovered defects. These 

quality characteristics were correlated (Pearson) against the MOOD 

metrics extracted from the source code. The highest correlations were a 

negative correlation between MIF and defect density (and thus rework) 

and a positive correlation between COF and defect density, failure density 

and rework. The first of these, the negative correlation between MIF 

(Method Inheritance Factor) and defect density/rework runs counter to 
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other studies on the effect of inheritance on maintenance activities. 

Such studies include the case study and experiment described in chapters 

four and five of this thesis, also to be found (Cartwright and Shepperd 

1997b; Harrison and Counsell 1997; Cartwright 1998). Abreu and Melo 

suggest that that the results show inheritance to be a technique to reduce 

the defect density in code when used "sparingly" but not at higher levels 

where they feel the beneficial effects will reverse, but with no evidence to 

support this claim. The authors do not, unfortunately attempt to explain 

this phenomena. In Daly's study (Daly 1996), a reduction was found in 

maintenance effort (in terms of adding functionality) in systems with up 

to three levels of inheritance (or DIT =0 in terms of the CK metrics 
(Chidamber and Kemerer 1994), when compared with a flat structure. 
This effect was reversed when systems with five levels of inheritance 

were maintained. Perhaps the failure of MIF to take depth into 

consideration might help explain the claims made. The high positive 

correlation between COF (Coupling Factor) with the density and rework 

measures supports the generally accepted contention that coupling 
increases complexity and thus increases the potential for defects and 

maintenance effort by decreasing understandability. However, further 

analysis by Abreu and Melo, which includes putting the measures into a 

multiple regression equation suggests that the two inheritance metrics 
MIF and AIF, contribute comparatively little to the regression model. 
The adjusted R square for the model is high, particularly for defect 

density and rework, although one would expect these two to correlate 

since rework is dependent on the number of defects to a large extent. 

To conclude, further empirical study is needed to establish the usefulness 

of the metrics, the coupling metric, COF looks to be the most reasonable 

and promising at present. The observed effect of the inheritance metric, 

MIF, is interesting and warrants further study to see if it negatively 

correlates with defect density in other systems. Additionally a further 
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study to test the expected result of a high MIF, that is a positive 

correlation with defect density, would be interesting. 

3.3.2.6 Hopkins 

Hopkins (Hopkins 1994), proposed complexity metrics to assess design 

quality, concentrating on class interface. The author states that 

measuring class interface complexity will "provide important 

information on the ease of understanding of the class interface (which is 

needed for reuse, maintenance, rework and redevelopment) ... (and) it 

might be reasonable to assume that the complexity of the interfaces will 

give some idea of how difficult the class will be to design (correctly) and 

implement. " 

Metrics are defined on a method and class level. Method interface 

complexity is defined as the number of different classes/types possibly 

returned from the method plus the sum of the number of classes/types 

for each of the arguments in the method. This is denoted as 

N arg s 
ICmeth = Nreturn - classes +N arg- classes(i) 

i=1 

This measure is somewhat confusing. Presumably Narg- classes refers to 

the number of classes which could possibly supply a particular argument, 

although this is not obvious from the text. The reasoning behind the 

measure is that a method is more complex if it has a large number of 

arguments, or if the arguments can be of different types or the result 

returned can be of different types. 
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Class interface complexity is considered for both the public and private 
interfaces. For the public interface this is achieved by the summation of 

the method complexities for each method in the public interface. 
Npub 

ICpub = ICmeth 
- pub(i) 

i=1 

The aim is that the value calculated for this metric is independent of the 

nature of the interface. 

The complexity of the private interface is given as: 
Nprot Iprot 

ICprot ICmeth - prot(l) _I ICiv(j) 
i=1 j=1 

In this case the complexity of instance variables is included with the 

complexity of the methods in the private interface. Complexity of 
instance variables is given as ICiv =2x Nclasses for instance variables 

with read/write access and as ICiv = Nclasses for those which are read 

only, where Nclasses is the number of different classes/types to which an 
instance variable can refer. It is suggested that the two class metrics can 
be combined as follows. 

1Cclass = ICpub + (weight x ICprot) 

A weighting is added to take account of the subclass interface which the 

author feels is more complicated to test and thus requires weighting, the 

suggested, and admittedly arbitrary, weighting is 5. 

These metrics are not validated empirically or formally, nor is the way in 

which they can be used to predict reuse, maintenance etc., which seems 

to be the implied aim. Although mathematically defined, the textual 

explanation is complicated and it is impossible to be sure exactly what is 

being measured, still less why. With empirical validation, it is 
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impossible to ascertain whether the measures capture what they purport 
to, and whether once captured, this measure is useful in any way. 

3.3.2.7 Graham's SOMA Metrics 

These metrics (Graham 1995) are proposed for use within the SOMA 

method, which is described as a full lifecycle method. Here the ideas of 
development phases, felt to be a hangover from structured methods, are 
dispensed with, and development is seen as an activity network with no 

predefined sequence, but with necessary dependencies. 

Some of the metrics are based upon those of Chidamber and Kemerer 

(Chidamber and Kemerer 1994), Lorenz and Kidd (Lorenz and Kidd 1994) 

and Henderson-Sellers and Edwards' MOSES method (Henderson-Sellers 

and Edwards 1994), the aim being to form a single metrics suite. 

The suite is divide into two sets, applicable to the two models in the 

SOMA method, the Business Object Model (BOM) and the Task Object 

Model (TOM). A total of twelve metrics are given, plus it is suggested 

that the Chidamber and Kemerer metrics (with the exception of LCOM) 

could be collected from the BOM. The metrics described are in the main, 

counts, such as number of classes, number of tasks and so on. Some of 

these counts are method specific, although from the definitions give, 

they could be generalised to some other object-oriented methods. A 

complexity metric is defined for each model, class complexity is taken 

from the BOM and task complexity from the TOM. They are defined as 

follows: 

BM1. Weighted complexity of each class (WCC) 

WCC=WA*A+WM*LM*M+WR*NR*R 
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A= number of attributes and associations 
M= number of operations /methods 

R= number of rulesets 
NR = number of rules per ruleset*average number of antecedent clauses 

per rule 
LM = proportional excess of SLOCs per method over an agreed, language 

dependent, standard 

WA, WM, WR are empirically discovered weights; 

TM1. Weighted complexity (WCT) of each task, T 

WCT=WI*I+WA*A+WE*E+WR*NR*R 

I= number of objects per task (here object is meant in the grammatical 

sense, so usually corresponds to the number of noun phrases) 
A= number of associated tasks (if any) 
E= number of exceptions or side scripts 
R= number of rulesets 
NR = number of rules per ruleset*average number of antecedent clauses 

per rule 
WI, WA, WE, WR are empirically discovered weights. 

One of the TOM metrics, TM7 or number of task points (defined as the 

number of atomic tasks, i. e. those with no component tasks, shown as 

the leaf nodes of the tree), is said by Graham to be "the most important 

and most novel SOMA metric". It can be collected at requirements 

capture, and is considered by Graham to be a possible replacement for 

function points. 
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Graham suggests metrics to be collected later, from the physical design 

and code, LCOM* (a modified version of Chidamber and Kemerer's 

LCOM, as suggested in (Henderson-Sellers 1996) and cyclomatic 

complexity of methods. Also suggested is an effort estimation prediction 

E=a+ pTk (E =a+ pT k in the earlier paper) where Eis effort in man- 

hours, T is the task point count, p is the inverse of productivity in 

task points per man-hour (to be determined empirically) and k and a are 

constants, a being start-up and overhead costs, whereas kremains 

undefined. Productivity is considered to be a function of the level of 

reuse and may depend on other factors. 

Graham seems to appreciate the need for metrics to be both formally and 

empirically sound, when he criticises Lorenz and Kidd's comment on 

Chidamber and Kemerer's metrics (Lorenz and Kidd dismissed the CK 

metrics as being too theoretical), saying "a sound approach to metrics 

must be grounded in both theory and practice". This statement concurs 

with what is one of the major themes of this thesis, namely that we need 

to take heed of measurement theory to ensure our metrics are 

mathematically valid but must also be pragmatic and ensure that they are 

empirically validated as extensively as is possible. Additionally the 

metrics are defined as part of a particular method and are not claimed to 

be generally applicable, which draws near to the argument for locally 

applicable metrics, which runs through this thesis. However, despite 

these statements it is unclear as to the level of empirical validation the 

metrics have undergone. Certainly the definitions of some of the metrics 

could be clearer, and counting rules need to be defined. There are 

omissions - no help is given with the "empirically derived" weights in 

the complexity metrics or the constants in the effort prediction system, 
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are these weights to be derived locally, if so, how? 36 It is also suggested 

that the weights for TM2, weighted complexity if each task, could be "zero 

if empirical study shows that a factor such as E has no effect. " Since this 

implies that a total score of zero for the metric is possible, the metric 

obviously need further thought - it seems reasonable to expect the 

author to discover if such factors have an effect or not before proposing a 

metric which includes them. In the absence of empirical evidence, the 

metrics must be regarded as speculative and indeed comments such as 
"Some combination of these metrics ought to correlate with cost of build 

... " reinforce this. Given that they are method specific (and consider 
implementation language to be an affecting factor) and based to some 

extent upon practical experience, there is reason to be hopeful that some 

of the metrics may, in the future, be shown to be valid or at least useful 37 

A code metric to replace LOC and token counting for C, C++ and Java is 

presented. It is presumably intended as a prediction system for size. 
Counting rules are given for each of the three languages to take into 

account the differences between them. The metric is intended as a style 
independent measure. However, no supporting evidence is given, such 

as correlations between the metric and actual size measures, although the 

author suggests that "preliminary research suggests ... program size 

measures similar to those given by professional developers. " indicating 

that any validation is assessed against expert opinion, rather than actual 

values. Neither is the prediction system(s) itself (themselves) explicitly 
defined, thus it cannot be calculated independently. The work must 

therefore be considered speculative, since it lacks both empirical and 

36 It can be assumed that Graham used locally derived weights when trying out the 
metrics at Swiss Bank, since references to data collection from a number of project across 
several large organisations are all in future tense. 
37 However, to date, I have been unable to discover subsequent publications regarding the 

practical applications and empirical experience of the metrics. A paper entitled 
(Graham 1996) covers the same ground and is extremely similar to the 1995 version. 



133 

formal validation. The lack of an explicitly defined prediction system 

means that it cannot be independently validated. 

3.3.2.8 Harrison 

Some results from a preliminary investigation into quality metrics for 

object-oriented systems are presented in (Harrison, Samaraweera et al. 

1996). A number of measures were taken from code in order to try and 

predict certain attributes considered to be indicators of quality. The 

empirical study of specially developed C++ programs indicated 

correlations between some of the measures taken and the number of 

modification requests made, and some correlation between other 

measures and errors found during testing. More recent work (Harrison, 

Counsell et al. 1997) has investigated metrics based on those proposed by 

Lorenz and Kidd (Lorenz and Kidd 1994). Twelve metrics, the majority 

purporting to measure product size, were applied to three C++ systems, 

of 1.4 KLOC, 8.9 KLOC and 24 KLOC respectively, the largest being a 

commercial retail system. 

It is interesting to note that unlike many studies on object-oriented 

metrics, the authors consider both criteria for theoretical validation of 

metrics alongside the empirical evaluation which is the main concern of 

the paper. In other words, although concentrating on empirical methods 

to assess the metrics, theoretical considerations are not ignored. In this 

study the authors present two hypotheses, firstly that the metrics are 

(indirect) measures of software complexity and secondly that all, bar one, 

of the metrics can be said to be measures of system size and thus be used 

to estimate system size. 
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The metrics are correlated 38with subjective complexity for a class, SC, 

(ranked on an ordinal scale of 1-5 where 1 is trivial and 5 is very 

complex) and with non-comment source lines, NCSL, as a measure of 

size. The results for the smallest system indicate a strong negative 

correlation between SC and the number of public methods in a class (- 

0.67) and the number of methods in a class (-0.63). The authors suggest 

this runs contrary to the expected outcome, that a class with more 

methods would be more complex. This may reflect a design decision 

where classes are kept small, with fewer methods, and thus interact with 

other classes to perform a task. The L&K metric seems to suggest this 

makes the system more complex and is thus, according to the accepted 

notions regarding complexity and coupling, not a good thing. Such a 
design, is however, typically object-oriented. Is the premise behind an 

object-oriented design the problem, or should the traditional view of 

coupling be adapted to suit object-oriented designs? The authors 

conclude that a simplistic view of this metric, leading to a decision 

regarding optimum method size could be counter-productive. For the 

8.9 KLOC system, the correlation between SC and PM, and between SC 

and NM is positive (0.50 and 0.88 respectively), more in keeping with the 

generally accepted idea that as a system increases in size, its complexity is 

likely to increase also 

For NCSL the smaller size shows a positive correlation with both NM 

and NCR (0.48 and 0.55 respectively)". The relationship between the 

number of methods and the number of lines of code needs no further 

explanation, and is confirmed by the results for the 8.9 KLOC system 

' Pearson's, Kendall's and Spearman's correlation coefficient were all used. Comments 

will concentrate on the Spearman's Rho correlation since this is a non parametric test more 
suitable for ranked and discrete data as used in these tests, than the Pearson's Product 
Moment. 
"Although at 0.48, the correlation between size and the number of methods is not 
especially strong, indicating that the methods and classes are small, again a feature of a 
typically object-oriented design. 
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(0.86). More interesting is the relationship between size and reuse, where 
larger classes are reused more than smaller classes in this system -a 
typical 00 design tends towards small methods and 00 is said to 

promote reuse. No such relationship is found in the 8.9 KLOC system. 

The authors also emphasise the problem with the ambiguous definitions 

and objective for the metrics (thus bearing out the criticisms in section 

3.3.2.2. ). 

3.3.2.9 Other metrics for object-oriented systems 

A number of other metrics have been proposed. The purpose or 

attributes to be captured vary, as do the approaches to validation (if any). 

The following table lists, by author, proposed metrics. Independent 

validations of other's metrics are included. 

theme goal measurement definition: validation valid/useful 
/lesson: or prediction attribute 

system /counting 
rules/metric 

Abbot et Cognitive Prediction Textual Against own Predicted expert 
al (Abbott, complexity system definition criteria. Uses preference 
Korson et measure seems OK. expert opinion between two 
al. ) from design rather than actual alternatives in 

to predict data. 16/20 
expert comparisons. 
preference 
among 
design 
alternatives 

Balasubr Not explicit - Measures Those based No attempt given Applied to 2 
amanlan desire to since no on CK metrics student programs 
(Balasubra improve guidance on are given as and results 
manian some of CK what to do with formulae, but compared with CK 
1996) metrics & to them is given the new metrics - results 

add to metrics has are not analysed. 
metrics that only a vague No evidence from 
are available textual which to draw 

definition. conclusion. 
Barnard Metrics to Selected Variable - Simple counts If assumptions 
(Barnard predict measures are many are OK. Measures upon which the 
1998) reusability combined to simple counts are alied to a measures are 
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Bleman & 
Zhao 
(Bieman 
and Zhao 
1995) 

Burbeck( 
Burbeck 
1996) 

Chen & 
Lu (Chen 
and Lu 
1993) 

Metrics to 
characterise 
use of 
inheritance 

Code 
metrics to 
measure 
complexity 
of Smalltalk 
methods to 
provide 
feedback 
during 
development 
/mainten- 
ance 

Complexity 
metrics to 
indicate 
candidates 
for redesign 

form a 
reusability 
score (P. S. ) 

measures 

measures 

Complexity 
measures, 
coupling & 
cohesion 
measures, &a 
reuse indicator 

so seem OK, 
but possibly 
potential for 
ambiguity. 
Others are CK 
metrics, others 
subjective 
scores 

Not explicit - 
my 
interpretation 
of data & 
comment is 
that 
inheritance 
structure 
starts at level 
1, with 0 
assigned to 
classes not 
involved. 
yes - seem well 
enough 
explained to 
apply 

The 3 
complexity 
metrics use 
supplied tables 
of seemingly 
arbitrary 
values, which 
allow a 
possible range 
of values to be 
supplied, but 
no indication of 

number of reuse 
libraries (thus 
components 
assumed to be 
reusable), where 
a common trend is 
available, metric 
is assumed to 
indicate 
reusability 

Simple counts & 
descriptive stats 
not trying to make 
predictions or 
assess in terms 
of other 
characteristics at 
this stage 

all simple counts 
on ratio scale 

Not considered. 
Values from 
tables appear 
ordinal yet are 
summed Coupling 
metrics - 
summation of 
simple counts, 
cohesions, 
seems OK, class 
hierarchy is 
adding together 

based (that the 
libraries contain 
classes that are 
good examples of 
reuse) then the 
selected metrics 
seem to capture 
attributes 
indicative of 
reusability. 
Derived 
prediction system 
is untested. 
Useful breakdown 
of use of 
inheritance by 
application type 
may lend weight 
to proposition 
that some 
problems better 
suited to 00 
approach than 
others. 

Gives suggested 
thresholds of 
acceptability. 
Emphasises 
advisory nature 
of metrics. In 
principle seems a 
good idea, 
(provided the 
assumptions 
made regarding 
complexity & 
advice given is 
correct. Would 
benefit from 
empirical study of 
how the metrics 
affect the 
development 
P- rocess. 
Experiment uses 
expert judgement 
to evaluate 
metrics. Not 
enough to 
convince. 
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how to decide. an number of 
Others metrics counts of rather 
seem clear different things so 
enough. is questionable. 

Ebert Enhance Complexity Simple Mainly simple Low R2 for model 
(Ebert and quality/ metrics to definitions but counts. of maintainability 
Morschel maintain- predict quality counting rules (from subjective 
1997) ability /maintainability could be open ratings) and no 

to comparison of 
interpretation predictions with 

actual values. 
Hudli et Evaluate Measures - Textual, many None No support 
at (Hudli, design of each said to ambiguities. offered. Seem 
Hoskins et class/progra indicate entirely 
at. 1994) m. Metrics something, but speculative and 

said to relate not how to use untried. 
to quality it. 
factors such 
as 
maintainabili 
ty 

Moser et Effort Measures as Textual and Yes but only Seems to be 
at (Moser prediction inputs into a formal, but scatterplots valid. 

and via size/ prediction confusing - given. Is out performed 
Nierstrasz complexity. system. not all by FP 
1996) components 

adequately 
defined. 

Sneed Effort "measure of Metrics None given. Not valid- 
(Sneed prediction volume" then defined but violation of 
1995) via size used to predict counting rules scales/measurem 

effort. unclear. ent theory - many 
of same problems 
as FP. 

Wilkie & Coupling Measure - how Metrics None given - No empirical 
Hylands complexity this would defined and research is "on- evidence as yet. 
(Wilkie and metrics as affect faults, simple going: 
Hylands extension to maintenance example given. 
1998) CK suite effort is 

unsp ecified. 

Table 3.2: More object-oriented metrics 

3.3.3 Conclusions 

It is evident from the literature pertaining to metrics for object-oriented 

systems that, with few exceptions, little heed has been taken of the need 

for more rigour in developing and validating measures or prediction. 

The presentation of metrics for object-oriented systems cover a spectrum 

of which the extreme can be characterised as follows: 
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" An informal approach lacking rigour in empirical validation, and often 

clarity of purpose and definition, but emphasising pragmatism as typified 

by Lorenz and Kidd, for example; 

" The other very formal, presenting mathematical formulae and proofs 

using a closed systems approach, which by its nature means that the 

metrics are dissociated from the "real", pragmatic, empirical world to 

which measures and prediction systems must ultimately be applied, via 

some representational model. This extreme is represented by (Schmidt 

and Zimmermann 1994). 

Between the extremes, publications which are not entirely speculative 

tend to favour either formal or empirical validations. Many suffer from 

lack of clarity either in the purpose of the measures or prediction systems 

proposed, and/or in the definition of counting rules and attributes. 

Such speculation, immaturity of definition and of evaluation is 

acceptable in a very new field. After all, a starting point is needed, and 

the products of software development do not have direct parallels with 

the products of other disciplines. There is however, a legacy of what not 

to do in terms of the development of software measures and prediction 

systems (see chapter 2), as well as some examples of how to apply a degree 

of rigour to their development and validation (see the work of 

Kitchenham, Fenton and Pfleeger in particular). 

Admittedly, a demand for absolute proof of a metrics worth and validity 

would be counterproductive, and indeed not possible to the satisfaction 

of all. It would preclude metrics which appear useful but are not valid' 

according to measurement theory, such as Function Points. However, a 

certain amount of discipline, along the lines of the five problems 

highlighted in this thesis (see the introduction, 3.1 for a recap) would be 

helpful. It would show that the metrics had been developed with some 
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aim in mind, that thought had been given to their practical application, 

to whether they were capturing and/or predicting numerically what they 

purported to and whether they were ultimately of any use, at least in 

certain situations. 

The following chapter (4) will assess the current state of software metrics, 

concentrating on the application of metrics for object-oriented systems. 
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Chapter 4 An Empirical Study of An Object-Oriented System 

Synopsis 

The aim of this chapter is to add to existing empirical knowledge of object- 

oriented software by analysing a large, industrial object-oriented system using 

data collected from design and maintenance phases of the same system. The 

analysis uncovers patterns in the data which indicate relationships between some 

attributes, notably inheritance and defects. This chapter also considers the 

problems which were encountered in trying to apply predefined metrics and 

demonstrates the ease with which an accurate locally applicable prediction 

system can be derived. 

4.1 Introduction 

Chapter 2 concluded with a list of lessons to be learnt from past metrics 

development and validation. In chapter 3, research into metrics for 

object-oriented software was examined with regard to these themes or 

lessons and a number of metrics were critically evaluated according to 

the list. To recap, the lessons/themes are summarised below: 

1. Lack of clear goal or aim; 

2. Confusion between measurement and prediction systems; 

3. Poor definition of attributes and counting rules; 

4. Lack of or poor validation (formal and in terms of empirical 

evaluation); 
5. Failure to determine validity and/or usefulness of metrics. 

The desiderata can be derived: 
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Desideratum Explanation 
1. A clear goal The goal of the measurement or prediction 

system must be clearly stated 
2. Distinction between measurement and It should be made clear whether the 

prediction system "metric" is a measure (direct) or a prediction 
system (using direct measurements of 
attributes in order to predict other, indirect 
attributes) 

3. Clear definition of attributes and counting The attributes of interest and the counting 
rules rules for obtaining them must be explicitly 

and unambiguously defined either by means 
of a formula or ba clear textual definition 

4. Acceptable standard of formal validation Formal validations should use measurement 
and empirical evaluation theory to establish that a measure is a 

proper numerical representation of the 
empirically observed attribute and to ensure 
calculations do not violate scales, or if the 
authors feel there is a good reason for doing 
so, explain why. Empirical studies should 
use techniques and tests appropriate to the 
data that has been collected, demonstrating 

usefulness by comparing predictions against 
actual results. 

5. Demonstration of validity and/or The validity can be assessed formally and 
usefulness. usefulness empirically. N. B. a metric may 

be useful without being valid, and vice 
versa. 

Table 4.1: Ideal standards for metrics development 

It was therefore felt important to incorporate the above into the 

empirical investigation, as far as circumstances allowed. It must be 

reiterated however, that the above are ideals. Certainly, it is reasonable 
to expect that the first two should be attained. The third is also 
important. To some extent the level of ambiguity depends upon the 

person reading/applying the metric, but the developer of the metric must 
look for possible ambiguity in the definition. The final two are more 
difficult to achieve. 

The original aim of the empirical study was to assess the Chidamber and 
Kemerer (CK) metrics by seeing if they could be used to predict 

maintainability, measured by defects. However, due to difficulties in 

collecting the majority of the metrics from the available data, a 
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subsequent aim was introduced. The problems experienced with 

collecting the CK metrics will be described in section 4.4. 

The new aim was to investigate the process of developing locally 

applicable metrics using available data and tool support. To clarify, the 

aim was not to propose new metrics for 00 systems, but to demonstrate 

that reasonable, locally applicable prediction systems could easily be 

developed in situ. If the process of developing accurate metrics locally 

could be shown to be straightforward, this would allow project or quality 

managers to develop their own metrics rather than depend upon 

predefined metrics. Such predefined metrics may be based upon 

experience of applications, environments or projects not relevant to 

other organisations, and as such may not work as well for other 

organisations and may also require significant investment in tools such 

as analysers in order to collect the metrics. This study will be described in 

section 4.7. 

4.2 System Background 

The system to be analysed was a large subsystem (132+ KLOC, 32 classes) 

of a much larger telecommunications product. The subsystem was 

designed using Shlaer and Mellor's Object-Oriented Analysis (Shlaer and 

Mellor 1992) and coded in C++. Design documentation, incident reports 

and maintenance data (where a particular defect had been identified and 

corrected) were made available. The system had been delivered and the 

data supplied referred to defects identified from integration testing (when 

the software was placed under change control) onwards. This included 

12 months post delivery usage. The organisation supplying the data was 

a large (around 20 000 employees), company well established in the 

industry and experienced in the development of telecommunications 
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systems. The company is ISO 9000 accredited and places a high emphasis 

on reliability. Extensive effort and resources are put into testing. Testing 

does not rely on simulation alone, model rooms containing "mock ups" 

of the system under test are also used. The system under study was the 

first 00 development for a team of experienced C developers. All had 

undergone thorough training in C++, object-oriented concepts and the 

Shlaer-Mellor method. 

4.3 Provisos for the Empirical Study 

The goal of the empirical study was to use empirical techniques to 

discover simple size and defect prediction metrics for use within the co- 

operating section of Company X, with the following provisos: 

The metrics must be easy and cheap to collect, utilising existing 

mechanisms, such as code analysers, CASE tools, fault logs, change 

requests etc.; 

The measures taken should be available early in the lifecycle in order to 

predict attributes of interest not available until later in the life cycle, 

namely size and defects. 

The following section, 4.4, is concerned with the attempt to apply the 

Chidamber and Kemerer metrics suite. It describes the problems 

encountered with collecting the metrics. 

4.4 Application of the Chidamber and Kemerer Metrics Suite 

The metrics suite consists of six metrics, namely 



145 

WMC (Weighted Methods Per Class) 

DIT (Depth of Inheritance Tree) 

NOC (Number Of Children) 

CBO (Coupling Between Objects) 

RFC (Response For A Class) 

LCOM (Lack Of Cohesion Of Methods) 

For a more detailed discussion refer to section 3.3.1, and to the original 

papers (Chidamber and Kemerer 1991; Chidamber and Kemerer 1994). 

It was found that only two of the metrics, DIT and NOC could be collected 
from the available analysis/design documentation (both were collected 
from the Shlaer/Mellor Information model). The other metrics could 

only be collected by analysing code. It was decided to abandon the 

attempt to collect the remaining four metrics for the following reasons: 

(i) the CK metrics are described as design metrics, any value they may 
have been proved to have had would be reduced if they could not be 

collected until the coding stage; 
(ii) the static code analyser used at Company X did not collect the CK 

metrics, nor could the measures collected be used or adapted to suit; 
(iii) there was little merit in recommending metrics which would cost 

the company in effort (in collecting) and/or financially (investing in a 

new analyser) if, as the experience indicated, so few could be collected by 

the analysis/design stage. It is well known and widely accepted that 

metrics are more valuable at earlier stages allowing designs to be 

revisited before coding, or allowing informed decisions regarding 

allocation of coding and testing resources. 

It was not possible, then, to make an empirical "validation" of the CK 

metrics - they are presented as a suite of metrics and the individual role 
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of each is not clear. Those collected, DIT and NOC, could be analysed, 

along with the other independent measures taken. The results of the 

analysis are presented in section 4.5. 

4.4.1 Initial Conclusions on the Usefulness of DIT and NOC 

Little use was made of inheritance in the system, so mean values were 

very low and median values were nil. Such low levels limit the 

feasibility of such measures as predictors (they were not intended merely 

to indicate the presence or absence of a feature in the system, but to 

quantify the feature, in this case inheritance). On reflection, the value of 

NOC for a class and even a system overall is always likely to be low. 

Where low levels of inheritance are used, few classes will have children, 

and even where inheritance is used, it seems that more classes will be 

children than parents. In the context of this case study, however, higher 

levels of DIT have indicated a higher incidence of defects per KLOC. 

4.5 The Effects of Inheritance on Defects 

The CK metrics successfully collected, DIT and NOC, are both measures 

of inheritance. DIT measure the depth of the inheritance hierarchy and 

NOC measures the number of child classes belonging to a parent class. 

Both of these measures were collected from the Shlaer/Mellor 

Information Model, which could be described as an extended entity- 

relationship model, with entities becoming classes (Shlaer and Mellor 

use the term object rather than class). The relationships between the 

classes are described, indicating how a class uses another in some way 

and also where a class inherits from another. 
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Also collected (per class) were the number of defects and LOC (lines of 
code, counted as the number of end of line markers, "; "). LOC was 

chosen as a measure of size because it is a valid measure and was already 
in use within the organisation. 

The DIT and NOC for each class were compared with the number of 
defects and LOC for each class. To allow for the affects of size, the 

number of defects was size normalised to give defects per KLOC per class. 

There were just two inheritance trees or structures in the system (figures 

4.1 and 4.2), one of two levels consisting of seven classes and the other of 

one level, consisting of five classes. There are two possible explanations 
for this. Firstly that there is little in the problem area that naturally lends 

itself to inheritance. This is probably true of many problem areas outside 

of the examples in 00 texts, which often feature simple examples with 

naturally extensive specialisation, e. g. GUIs, simple drawing packages, 

classification structures etc. A paper by Bieman and Zhao (Bieman and 

Zhao 1995) examines 19 C++ systems totalling 2744 classes and concludes 

that the use of inheritance tends to be greater in GUI applications than 

the others in the study, with the mean depth of inheritance for GUIs 

being more than twice that for other systems. Secondly the analysis and 
design method used, Shlaer/Mellor, does not provide explicit support for 

inheritance - it is not discouraged, but there is no guidance in how to 

look for possible inheritance hierarchies as in some other 00 methods. 

Furthermore, the highest defect densities calculated were for classes at 

the lowest level of their respective inheritance hierarchies. Compare 

defects/KLOC in figures 4.1 and 4.2 below with a median defects/KLOC of 
0 for the non-inheritance classes in the system. This suggests that classes 

which utilise inheritance should be thoroughly tested since they are 
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more likely to contain defects. This in turn indicates that the developers 

were right to be cautious about using inheritance for this project. One 

question raised by this is whether the developers were using inheritance 

"properly". Since there is little guidance available on what constitutes 
"proper" use of inheritance, the question can be answered thus; the 
developers were experienced (although this was their first object-oriented 
development) and "stuck rigidly" to the Shlaer/Mellor method. As has 

been mentioned this method does not explicitly support or encourage 
inheritance, though neither does it prevent or discourage its use. It 

seems likely that the caution of the team, lack of support by the method 

and the lack of obvious candidates for inheritance in the problem area 

were all factors in what would seem to be low levels of inheritance in the 

system. 

class 22 
2.3 defects / kloc 

class 23 
2.1 defects/ kloc 

class 28 

.S 
defects / kloc 

ýý ýý 
class 29 

5.9 defects / kloc 
class 30 

5.1 defects/ kloc 
class 32 

4.9 defects / kloc 
class 31 

5 
.2 

defects / kloc 

Figure 4.1: Larger inheritance hierarchy giving defects/KLOC 



149 

class 21 

0 defect / kloc 

class 24 

1.3 defect / kloc 
class 25 

1.4 defects / klioc 
class 26 

4.2 defects/ kloc 
class 27 

1.8 dcfects/ kloc 

Figure 4.2: Smaller inheritance hierarchy giving defects/KLOC 

Other summary statistics, with inheritance classes separated out from 

non-inheritance classes are shown in tables 4.2 and 4.3 below. It was 

suspected that defect density would be higher for classes within an 

inheritance structure than for those outside, since prior to size 

normalisation, obviously higher levels of defects tended to be associated 

with classes belonging to inheritance hierarchies. The raw data indicated 

means of 2.97 defects per KLOC for classes in an inheritance hierarchy 

and 0.5 defects per KLOC for those not involved in inheritance, a 

threefold increase in the incidence of defects/KLOC in inheritance classes 

compared with non inheritance classes (table 4.3). In order to test the 

hypothesis that the classes involved in inheritance structures were truly 

from a distinct sub-population, or whether the apparent increase in 

defects in inheritance classes occurred by chance, a two tailed unpaired t- 

test was applied. The result confirmed that they were indeed from a 

distinct sub-population, the F-value being calculated at 6.33, compared 

with a tabled value of 4.17 and with less than 1: 1000 chance of this 

occurring by chance (2-tail prob. 0.00). 
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Group Count Mean 

No inheritance 20 3.05 

Inheritance 12 16.50 

Table 4.2: Defects by classes 

Group Count Mean N 

No inheritance 20 0.90 0 

Inheritance 12 3.00 2. 

Table 4.3: Defect densities by classes 

Group Count Mean Median Min Max 

No inheritance 

Inheritance 

20 

12 

3.05 

16.50 

0 

17 

0 

0 

14 

47 

Group count Mean Median Min Max 

No inheritance 

Inheritance 

20 

12 

0.90 

3.00 

0 

2.20 

0 

0 

2.70 

5.85 

This analysis of the effects of inheritance was followed up with a small 

scale student experiment on the effects of inheritance on maintenance. 

This study was carried out using an experiment conducted by Daly (Daly, 

Brooks et al. 1996; Daly 1996). The experiment and results will be 

discussed in Chapter 5. 

4.6 An Examination of the Data Distribution 

A number of variables were extracted from the analysis/design models, 

incident reports and change control data. A factor in deciding what to 

collect was the ease of collection from the available documentation - 

the effort required to collect metrics is as much part of their "usefulness" 

as their accuracy in capturing or predicting information about the system. 

All of the variables were either automatically extracted from the 

TEAMWORK" model, or taken from incident report/change log data 

'0 Casetool, CADRE Technologies Inc. 
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Mnemonic Variable Explanation 

ATTRIB Attributes Count of attributes per class from the information 

model. 
STATES States Count of states per class in the state model 
EVNT Events Count of events per class in the state model 

READS Reads Count of all read accesses by a class contained in the 

CASE tool. 

WRITES Writes Ditto writes 

DELS Deletes Ditto deletes 

RWD Read/write/delete Count of synchronous accesses (i. e. the sum of 

s READS, WRITES and DELS) per class from the 
CASE tool. 

DIT Depth Inheritance Depth of a class in the inheritance tree where the 

Tree root class is zero. 

NOC Number of Children Number of child classes. 

LOC Lines of code C++ lines of code per class. 

LOC_B Lines of code (body) C++ body file lines of code per class. 

LOC_H Lines of code C++ header file lines of code per class. 

(header) 

DEFECT Defects Count of defects identified per class. 

Table 4.4: Variables collected 

Table 4.4 lists the 13 variables collected, including the two CK metrics, 

DIT and NOC discussed in section 4.4. The first nine variables 

characterise the 00 system architecture or structure and may be collected 

at analysis or design time. Duplicates are eliminated from the counts of 

events and synchronous accesses. The remaining four variables can be 

regarded as management variables since they represent the size and 

defect proneness of the system. 
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The following table shows summary statistics (mean, median, 

minimum, maximum) of the variables collected. (Raw data is in 

appendix A) 

Variable Mean Median Min Max Skew 

ATTRIB 8.00 4.5 1 32 1.27 

STATES 18.03 13 0 114 2.56 

EVNT 20.53 10.5 0 122 2.13 

READS 16.25 11.5 0 83 1.93 

WRITES 14.22 8.5 0 56 1.09 

DELS 1.50 1 0 5 0.95 

RWD 31.97 22 0 131 1.3 

DIT 0.44 0 0 2 1.29 

NOC 0.25 0 0 4 3.45 

LOC 4178.50 3524.5 603 20165 2.26 

DEFECT 8.09 2 0 47 1.63 

Table 4.5: Summary statistics of variables collected 

It is apparent that since the median value is in all cases lower than the 

mean, all variables are exhibiting some tendency to skew. This is 

confirmed by the skewness figure in the final column, revealing a 

positive skew, confirmed by the skewness coefficients. This is the 

consequence of a few very large classes. Even excluding these few very 

large classes, it is clear that classes have an unexpectedly high KLOC 

values, typically in excess of 3.5 KLOC. It also confirms the observation 

in section 4.5, that inheritance is not widely used, since median DIT and 

NOC values are zero. Lastly, the median number of defects is 2 although 
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there is wide variation with the maximum value of 29 defects in a single 

class. 

Data skew can also be illustrated using boxplots examples of which are 

shown in figures 4.3 and 4.4 below. 

50.0-r 

37.5 

25.0 

12.5 

0.0 

* 

DEFECT T 
Figure 4.3: Boxplots of defects per class 
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Figure 4.4: Boxplots of LOC per class 

P 

Note that 'o' represents an outlier and '*' an extreme outlier. Figure 4.3 

indicates a number of very defect prone classes and indeed a mere 22% of 

the classes account for 75%41 of all defects, more evidence of an 

approximate 20: 80 "rule". Figure 4.4 indicates several unusually large 

classes, one in excess of 20000 LOC. The extreme outlier for DEFECT and 
LOC is the same class (class 22, see figure 4.1), thus emphasising the need 

to size normalise the defect data. 

Class 22 is by far the largest class in the system ( 114 possible states, total 

LOC 20165, compared with the next largest, class 23,60 possible states, 

total LOC 12101 and with average class size of 18.03 possible states and 

" 22`%, of 32 classes is 7.04. This was rounded up to the nearest integer, making 8 classes. 
When rounded down to the top 7 classes the figure is 73°/, of defects. 
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total LOC of 1178.5). This makes it obvious that almost all of the 

measures taken were size driven. 

4.7 Correlating Variables 

Preliminary analysis indicates relationships between size and defects and 

also inheritance and defects. However, DIT is not useful to estimate the 

number of defects which might occur. Thus other direct measures need 

investigation to ascertain whether they could be used as predictors of 

defects, as well as looking for predictors of LOC. 

The first stage was to enter the variables collected into a cross correlation. 

Spearman Rank was chosen because of the skewed distribution of data. 

This is reproduced in part, below. The full table can be found in 

appendix A. 

ATTRIB STATES EVNT RWD LOC DEFECT 

ATTRIB 1.000 

STATES 0.562 1.000 

EV NT 0.318 0.898 1.000 

RWD 0.508 0.858 0.859 1.000 

LOC 0.563 0.968 0.910 0.848 1.000 

DEFECT 0.166 0.751 0.838 0.769 0.759 1.000 

Table 4.6: Results of Spearman Rank Correlation 

Although correlation coefficients outside the range 0.296 to -0.296 are 

significant, it was decided only to consider those 0.75 and above/-0.75 and 

below since these could be considered strong correlations. Interestingly 

all of these variables correlate significantly with LOC (and for the most 
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part, with each other). This, together with the other inter item 

correlation suggests that as the size of a class increases, so does the 

number of states, events, synchronous accesses and the number of 

defects. This again underlines the need to use size normalised data to 

uncover effects which may be dominated by size (note the correlation 

coefficient of 0.759 for DEFECT/LOC). 

4.8 Building Prediction Systems 

The next stage was to build simple prediction systems for defects 

proneness (DEFECT) and size (LOC). The independent variables were 

chosen using the information from the cross correlation and fed into a 

stepwise multiple regression equation42. The R2 and adjusted R2 for any 

equation must be high (this indicates that the model fits the data well). 

Simple equations (using only one independent variable) were chosen 

over more complex equations using more variables. The reasons behind 

this were: adding in a second or third variable did not greatly increase the 

R2 value; given that so many of the variables were quite highly 

correlated, collinearity may have been a problem; simple equations are 

preferable since the less effort needed to collect data and calculate 

equations, the more likely it is that data collection will be timely and 

calculation successful. Additionally, the variables selected for input into 

the equation were all available at the analysis and design stage, allowing 

for earlier (and thus potentially more valuable) predictions. Below is the 

resulting equation for predicting DEFECT 

42 This is the approach advocated by (Kitchenham, Pleeger et al. 1995)to ensure that only 

aspects that contribute to the model are included. 
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Dependent variable is: DEFECT 
No Selector 
R squared = 87.6% R squared (adjusted) = 87.2% 
s=4.240 with 32 -2= 30 degrees of freedom 

Source Sum of Squares df Mean Square F-ratio 
Regression 3821.50 1 3821.50 213 
Residual 539.221 30 17.9740 

Variable Coefficient s. e. of Coeff t-ratio prob 
Constant -0.575487 0.9566 -0.602 0.5520 
EVNT 0.422246 0.0290 14.6 s 0.0001 

DEFECT = -0.58 + 0.42(EVNT). 

Table 4.7: Regression equation and R2/adjusted R2 for DEFECT 

The high R2 shows that the equation can be considered a good predictor 

of defects. Since the constant and multiplier are both less than zero they 

are rounded to two decimal places at this stage, since it is obvious that 

rounding to the nearest integer would have a serious distorting affect. 

Consequently rounding to integer figures will be performed upon the 

predictions themselves. 

The standard error of coefficient for the constant is high, indicating a 

potentially large spread of values around the intercept, borne out by the 

probability that indicates that the intercept given is not significantly 

different from zero. This confirms a lack of confidence in a negative 

intercept, offering some support for the rounding up of negative defect 

predictions (produced using this equation) to zero, which occurs in 

section 4.9.1.1. 

The standard error for EVNT is low, as is the probability that it is 

significant, so we may have confidence in this figure. 
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Figure 4.5: Scatterplot with regression line for DEFECT against EVNT 
(x=inheritance, o=no inheritance) 

Out of interest the addition of DIT into the equation improves the 

adjusted RZ value. See Table 4.8 below. However, the larger negative 

intercept is less pleasing, as is the fact that it is significantly different from 

zero (probability = 0.028). 
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Dependent variable is: DEFECT 
No Selector 
R squared = 93.8% R squared (adjusted) = 93.4% 

s=3.052 with 32 -3= 29 degrees of freedom 

Source Sum of Squares df Mean Square F-ratio 
Regression 4090.66 2 2045.33 220 
Residual 270.062 29 9.31250 

Variable Coefficient s. e. of Coeff t-ratio prob 
Constant -1.65497 0.7173 -2.31 0.0284 
DIT 4.38205 0.8151 5.38 < 0.0001 
EVNT 0.381447 0.0222 17.2 < 0.0001 

DEFECT = -1.6 + 4.38(DIT) + 0.38(EVNT) 

Table 4.8: Adding DIT to the regression equation and R2/adjusted R2 for 
DEFECT 

This seems to confirm that inheritance classes in this system seem to be 

more defect prone, shown by the positive coefficient for DIT. Again from 

the dataset used, it was seen that the highest densities of faults came from 

classes at the lowest levels of their inheritance hierarchies. It may thus 

be fair to say that the fact that classes inherit (i. e. those for which DIT=1 or 

above) are the most interesting. Thus the inheritance as measured by 

DIT may also be of use in indicating the presence of a higher incidence of 

defects, although not in predicting how many. 
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Dependent variable is: LOC 
No Selector 
R squared = 96.7% R squared (adjusted) = 96.6% 
s= 737.0 with 32 -2= 30 degrees of freedom 

Source Sum of Squares df Mean Square F-ratio 
Regression 475082696 1 475082696 875 
Residual 16296130 30 543204 

Variable Coefficient s. e. of Coeff t-ratio prob 
Constant 1101.01 166.7 6.60 <_ 0.0001 
STATES 170.676 5.771 29.6 < 0.0001 

LOC = 1101 + 170(STATES) 

Table 4.9: Regression equation and R2/adjusted R2 for LOC 

Note that figures in the equation for LOC are rounded to the nearest 

integer. This must be done at some point, since we must have integer 

values (0.6 of a line of code would be nonsensical). In this case large 

integers are involved, the loss of the decimal places is unlikely to have 

any untoward effect. Note also the large positive intercept, which is 

significant. This indicates that any class will have a certain amount of 

code associated with it before any functionality is added. In C++ classes 

are divided into header and body files, with the header containing class 

declarations (e. g. data, template, function) and some definitions (e. g. type, 

constant, but not data or ordinary functions). Stroustrup (Stoustrup 1997) 

lists 14 types of information which may be included in a header file, 

which accounts for a overhead in terms of class header code, before 

functionality is added (in the body file). 
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Figure 4.6: Scatterplot with regression line for LOC against STATES 
(x=inheritance, o=no inheritance) 

Figure 4.6 shows the distribution of values along the regression line. The 

is obviously little scatter, indicating a strong relationship between the 

number of states and size in LOC. 

4.9 Testing Prediction Systems 

Since historical project data was available, the prediction systems 

(regression equations) could be applied to and tested against actual data 

from the same project i. e. the number of states for a class could be entered 

into the equations and the result compared against the actual LC)C for 

that class, likewise for the other prediction system. 

A means of testing the overall accuracy of prediction for the dataset was 

needed. A common test is MMRE (mean magnitude of relative error). 
However, the nature of much of the data (particularly for defects), being 
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small, discrete values made it unsuitable. For example, if a prediction 

was made of 2 defects for a particular class, and the actual number was 1, 

this would seem a reasonable estimate. However, using MMRE, the 

conclusion would, quite correctly, be that the estimate was 100% out. 

Another approach might be the chi-square test. Again this proved 

unsuitable given the nature of the raw data (integer values, large gaps). 

The need to show accuracy led to the ranges or bins specified being 

narrow. Narrow bins in turn meant that many of these bins remained 

empty, since there were only thirty-two data predictions. Thus the test 

could not be carried out as the number of occurrences in each bin is used 

as a divisor in the test. The only way to avoid the divide by zero problem 

would have been to make the range for each bin wider. This would in 

turn, mean that the accuracy of each prediction was less apparent. To 

illustrate, for the number of defects, if the size of a bin had to be extended 

to the range 0-19, for example, this tells us less about the accuracy of 

predictions than smaller bins of say, 0-4,5-9, etc. 

One avenue would be to re-express the data in such a way as to preserve 

the order and size of the ratio between values. The following section 

discusses data re-expression. 

4.9.1 Data Re-expression 

Re-expression of data is an accepted technique for data analysis. The 

purpose being to make data analysis easier, by making the data more 

symmetrical (i. e. less skewed). Certain patterns which may not be 

obvious in raw data, for example, may become more apparent after data 

is re-expressed. However, not all manipulation is acceptable. It is 

important, for example, to preserve order. Tukey (Tukey 1977), gives 
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categories of data, such as ranks, counts, counted fractions, amongst 

others, and suggests appropriate re-expressions in order to facilitate 
analysis. 

4.9.1.1 Re-expressions Applied 

The predictions for DEFECT were rounded to the nearest integer value. 
There is a possibility that low values for EVNT (i. e. number of events 

equal to 0 or 1)will result in a negative value for DEFECT, because of the 

negative intercept on the regression line. 

It is reasonable to "round up" to the nearest positive integer, i. e. 0, since 

there clearly cannot be a negative number of defects. There is further 

justification for this since there is little confidence in the negative 

intercept. The premise upon which the prediction system is based is that 

the greater the number of events generated by a class, the greater the 

number of defects is likely to be. If the number of events is 0 or 1, then 

clearly a low, but non-negative prediction would be a reasonable 

outcome. Thus the decision was made that any negative predictions 

should be considered to be predictions of zero. This is born out by a 

comparison - predicted negative defect values correspond to an actual 
defect value of zero. 

Re-expressing the data (actual and predicted) using logs is a simple 

technique which will make a more normal distribution whilst 

preserving order. For LOC and LOC prediction, logs of the data will be 

taken (0 values are not possible using the regression equation derived), 

whereas with DEFECT and the predictions for DEFECT, the data will be 

"started" before re-expression by adding 1. This is because 0 values are 

possible and using lower values to "start" the data would lead to non 
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integer values. " Tukey suggests this procedure where small counts are 

involved. 

Re-expression using square root is regarded as being halfway between raw 

data and log re-expression. This will also be shown in the following 

section for comparison purposes. 

4.9.2 Comparing Transformed Actual and Predicted Values 

Some exploratory analysis comparing the transformed actual and 

predicted data was carried out. 

It was necessary to allocate unique names to each variable to reflect the 

transformation or change that took place. The following table may be 

used to trace the relationships between variables. 

" The reader is referred to (Tukey 1977) chapter 3 on easy re-expression and chapter seven 

on choice of expression 

A 
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Mnemonic Description 

LOC lines of code per class (actual value) 

PREDLOC predicted lines of code per class 

LLOC log of LOC 

LPRC log of PREDLOC 

AIL OC square root of LOC 

J PR C square root of PREDLOC 

DEFECT no. of defects per class 

PDFCTRND predicted no. of defects per class where -ve values are set to 0 and other 

non integer values rounded to nearest integer 

DEFECT+ DEFECT+1 (to allow log transformation) 

PDFCT+ PDFCTRND+1 (ditto) 

LD+ log of DEFECT+ 

LP+ log of PDFCT+ 

-JDFCT square root of DEFECT 

J PR D square root of PDFCTRND 

LDFCT log defect 

Table 4.10: Definitions of variables 

4.9.2.1 Comparing LOC and PREDLOC 

The correlation tests in table 4.11 all reveal a high correlation between 

values of LOC and PREDLOC. Concentrating on Spearman as a robust 

test for a skewed distribution (we know LOC is skewed and can see the 

same skew for PREDLOC in Figure 4.7), we see a correlation of 0.968. 

Since we know already that there is strong evidence of a relationship 

between the two, from the high adjusted R` value (96.6) shown in table 

4.9, we can say that this high correlation indicates an accurate prediction 

system for this data. This is quite striking when represented as a 

scatterplot with regression line in figure 4.8. Most points are on or 

touching the regression line, the rest are very close. 
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Correlation Test: Pearson Spearman Kendall 

LOC/PREDLOC 0.983 0.968 0.887 

Table 4.11: Correlations for LOC/PREDLOC 
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Figure 4.7: Histogram of PREDLOC 
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Figure 4.8: Scatterplot LOC/PREDLOC 



167 

r 
e 
s 

d 
u 
a 

s 

1500 

750 

0 

-750 

x 

x 

X 

36c 
x 

5000 10000 

predicted 

x 

Figure 4.9: Residuals for LOC/PredLOC regression 

Figure 4.9 shows that the model tends to perform less well for smaller 

classes. An explanation for this is the high value of the intercept, 

meaning that the prediction will never be less than 1101 LOC. There are 

a number of actual LOC values in the 700 LOC to 800 LOC range, these 

show as the clump of values at the -300/400 mark on the y-axis. A 

reasonable conclusion to be drawn is that classes with few or no states 

will also have smaller header files, thus the model will tend to over 

predict for such classes. 

4.9.2.2 Comparing Re-expressed Values 

Although the raw data provided sufficient indication of a relationship in 

itself, it is also interesting to look at the transformed data, since it will be 

used for hypothesis testing because the raw data is not amenable to a chi- 

square test (as explained at the start of 4.9) 

x 
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4.9.2.2.1 Re-expressed values for LOC and predictions of LOC 

As expected, the correlations (table 4.12) remain consistent with the raw 

data, since it has merely been re-expressed or transformed, giving a more 

normal distribution (see figure 4.10), rather than changed, and this re- 

expression has been consistent between LOC and PREDLOC, to give LLOC 

and LPRC. The scatterplot (figure 4.11) shows that the data is now more 

normally spread along the regression line, rather than concentrated at 

one end. Nevertheless, the datapoint remain strikingly close to the 

regression line, demonstrating that the relationship between the actual 

and predicted values is retained. The analysis of residuals (figure 4.12) 

shows a more random scatter, suggesting the effects of the overprediction 

for low values has less effect for the transformed values. 

Correlation Test: Pearson Spearman Kendall 

LLOC/LPRC 0.973 0.968 0.887 

Table 4.12: Correlations for LLOC/LPRC 
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Figure 4.9: Histogram of LLOC 
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Figure 4.11: Residuals for LLOC/LPRC regression 
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It is also interesting to consider the square-root transformation, which 
Tukey described as a re-expression fitting halfway between raw values 
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and logs (Tukey 1977). Again, as expected, the correlations (table 4.13) 

remain consistent, the more robust tests, Spearman's rank and Kendall's 

tau remain the same for raw values, logs and square roots. The 

histogram (figure 4.13) show that there the distribution is still somewhat 

skewed. The scatterplot (figure 4.14) also demonstrates this; there is a 

concentration of datapoints at the lower end, although far less 

pronounced than on the scatterplot of raw values (figure 4.8). The 

residuals (figure 4.15) still show a tendency to clump as do the raw values 

(figure 4.9). 

Correlation Test: Pearson SPearanan Kendall 

'JLOCNPRC 0.976 0.968 0.887 

Table 4.13: Correlations iLOC/NPRC 
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Figure 4.12: Histogram of 'JLOC 
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Figure 4.13: Scatterplot \1LOC and'IPRC 
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Figure 4.14: Residuals for VLOC and'PRC regression 

Further evidence of the value of re-expression can be seen from the 

following boxplots. Figure 4.16 shows the distribution of the raw values, 

LOC and PREDLOC. It is obvious for both variables, that the data is 
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skewed, since the main body of data, represented by the box, is 

concentrated at one end of the distribution. There is one extreme and 

one very extreme outlier for each. The medians of the two variable 
(indicated by the horizontal bar) seem comparable. The overall 
impression is of two very similar sets of data, which in turn, with other 

evidence so far, is indicative of the accuracy of the prediction for LOC, 

PREDLOC. 
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Figure 4.15: Boxplots of PREDLOC and LOC 

P 

Boxplots for LPRC and LLOC show that the data is a more normal 
distribution (from the overall size of both the boxes and whiskers). 

Interestingly, the spread of data is more pronounced in LLOC. This is 

explained by the fact that the values from which it is derived, LOC, are 

not constrained by a formula, unlike LPRC, derived from PREDLOC. The 

predicted values will never be smaller than the constant, due to the non 

zero intercept (actually 1101), this is shown on the plot by the short 

whisker on the boxplot for LPRC. This shows that the lower values are 

all higher than for LLOC. The actual values have no such constraints, 
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and so there is a potentially a wider distribution in values. Indeed the 

two plots are very similar from the middle up. Again the medians of the 

two seem comparable, which could indicate that the accuracy of the 

predictions is higher around the central values, than for outliers. The 

extreme and very extreme outliers are no longer apparent in this re- 

expression. 
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Figure 4.16: Boxplots of LLOC and LPRC 

Pleasingly, the boxplots for the square-root re-expression (figure 4.18) 

indicate that it is indeed "halfway" between raw values and log 

transformation. The main body of the data is again more concentrated at 

the lower end, though not as markedly as for the raw values (figure 4.16). 

The very extreme outliers shown in figure 4.13 are now extreme outliers 

(which as stated above, are not outliers in the log re-expression shown in 

figure 4.17). Again, the position of the medians of each variable is 

comparable, and the naturally occurring variable ('iLOC) shows a wider 

distribution in values) 
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Figure 4.17: Boxplot AOC and'PRC 
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4.9.2.2.2 Re-expressed values for DEFECT and predictions for DEFECT 

The predictions for the number of defects per class had additional 
transformations prior to re-expression by log and square-root, since 

values had to be rounded to the nearest integer, negative values re- 

expressed as zero and the data was "started" ready for the log 

transformation by adding 1 (to avoid taking log of 0, this being 

undefined). 

Therefore raw values of DEFECT were compared with rounded and non- 

negative values for the prediction of number of defects, terms 

PDFCTRND. Although less striking than correlations for LOC and 

related values in the previous section, the correlations are still 

significant, so that when taken with the high adjusted R2 value shown in 

table 4.8, there is an indication that the two are related. This is also 

shown in the scatterplot, figure 4.19. The residuals for the raw data 
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(figure 4.20) show a reasonable degree of scatter, although there is a slight 
tendency to be more crowded around the lower end. 

Correlation Test: Pearson Spearman Kendall 

DEFECT/PDFCTRND 0.938 0.860 0.742 

Table 4.14: Correlations DEFECT/PDFCTRND 

Figure 4.18: Scatterplot of DEFECT and PDFCTRND 
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Figure 4.19: Residuals for DEFECT / PDFCTRND regression 

The log-re-expressed values, LD+ and LP+ display correlation's consistent 

with the values for DEFECT and PDFCTRND, with Spearman and 

Kendall correlations giving the same value, again indicating that re- 

expression does not change order or relationships. 

Correlation Test: Pearson Spearman Kendall 

LD+/LP+ 0.878 0.860 0.742 

Table 4.15: Correlations LD+/LP+ 

The scatterplot shows a more normal distribution with a less obvious 

regression line. This plot also demonstrates the higher incidence of 

defects in inheritance classes (as indicated by the "x") since most fall 

above the regression line. The residuals (figure 4.22) are far more 

randomly scattered. 



Figure 4.20: Correlations LD+/LP+ 
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Figure 4.21: Residuals for LD+ and LP+ regression 
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Again for square-root re-expression the correlation remains consistent 

with those for the log re-expressed values (see table 4.15). 
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Correlation Test: Pearson Spearman Kendall 

VDFCTNPRD 0.878 0.860 0.742 

Table 4.16: Correlations 'DFCTNPRD 

Again the inheritance classes fall mainly above the regression line (figure 

4.23), indicating a tendency towards a higher incidence of defects. The 

residuals (figure 4.24) look randomly scattered, as with the residuals for 

log-re-expression in figure 4.22. 

Figure 4.22: Scatterplot IDFCT andýPRD 
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Figure 4.23: Residuals for )DFCT andJPRD regression 

The boxplot (see fig 4.25) for raw defects, DEFECT shows an extreme skew, 

indicting the most classes contain few, if any, defects. This is further 

emphasised by the fact that the median occurs towards the bottom of the 

box. Likewise, the boxplot for PDEFECTRND is skewed, but with fewer 

outliers, indicating its predictions fall mainly within the main body of 

the data. The shaded area around the medians have a large overlap, 

indicating similarity around the median. 
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Figure 4.24: Boxplot PDEFECTRND and DEFECT 

The boxplots for log re-expressed data (figure 4.26) and (figure 4.27) for 

square-root re-expressed data are more comparable. Firstly the 

distributions are more normal, with no outliers, and the boxes and 

whiskers of a similar size. Again the medians on each plot overlap, 

indicating a degree of similarity. 
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Figure 4.26: Boxplots of /PRD and qDFCT 
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4.9.2.2.3 General Conclusions on the Re-expression and Comparison of 
Actual and Predicted Data 

The above plots and correlations provide sufficient evidence to suggest 

that the re-expressions have not affected relationships between data 

items whilst giving a more normal distribution. Thus hypothesis testing 

using the re-expressed values will be valid, since the order and 

relationships between data have not been changed. 

4.9.3 Hypotheses and Hypothesis Testing 

From the exploratory analysis and comparisons of the actual and 

predicted data there arose the following hypotheses: 

The prediction system for DEFECTS gives an accurate prediction of the 

number of defects contained in a class; 

The prediction system for LOC gives an accurate prediction of the 

number of lines of code contained in a class. 

4.9.3.1 Chi -square 

Although Chi-square proved unsuitable for use on the raw data it was 

possible to apply the test to the data when re-expressed as logarithms. 

Chi-square for goodness of fit can be used to test whether the prediction 

(expected value) is a good predictor of the actual (observed) value by 

determining whether the two factors are independent of each other or 

are dependent. 
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For the hypotheses formulated above we wish the test to show that the 

two are dependent. The results from the Data Desk44 contingency tables 

are based on a null hypothesis that the two factors are statistically 
independent and the alternative hypothesis of dependence. In both 

tables it can be seen that there is a probability <= 1 in 1000 of 
independence, i. e. in both cases, the factors are statistically dependent. 

Each table shows the number of occurrences in each cell (from the data) 

and the expected value for that cell (if the null hypothesis were true). If 

the null hypothesis is true then the expected values will approximate the 

actual values, and conversely if the null hypothesis is false, the two will 

tend to differ. As can be seen from the tables (4.17 and 4.18) both show an 

overall tendency to differ. 

The x2 value for LOC is 81.88. The probability, of gaining a x2 value this 

high is less than 1: 10000, so the null hypothesis can be rejected. 

For defects the x2 value is 54.86. Again the probability of obtaining a 

value of this size is less than 1: 10000, so the null hypothesis can be 

rejected. 

It can be concluded that the models make reasonable predictions for both 

LOC and DEFECT. 

" The stats package used. 
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Rows are levels of actual LOC 
Columns are levels of predicted LOC 
No Selector 

2.70-3.10 3.10-3.40 3.40-3.70 3.70-4.10 4.10-4.40 total 

70-3.10 540009 
1.40625 2.53125 2.53125 2.25000 0.281250 9 
3.03052 0.923167 -1.59099 -1.50000 -0.530330 0 

3.10-3.40 040004 
0.625000 1.12500 1.12500 1 0.125000 4 

-0.790569 2.71058 -1.06066 -1 -0.353553 0 

3.40-3.70 017109 
1.40625 2.53125 2.53125 2.25000 0.281250 9 

-1.18585 -0.962451 2.80879 -0.833333 -0.530330 0 

3.70-4.10 002709 
1.40625 2.53125 2.53125 2.25000 0.281250 9 

-1.18585 -1.59099 -0.333912 3.16667 -0.530330 0 

4.10-4.40 000011 
0.156250 0.281250 0.281250 0.250000 0.031250 1 

-0.395285 -0.530330 -0.530330 -0.500000 5.48008 0 

otal 59981 32 
59981 32 
000000 

able contents: 
Count 
Expected Values 
Standardized Residuals 

Chi-square = 81.88 with 16 df 
p <_ 0.0001 

Table 4.17: Chi-square test actual LOC and predicted LOC (re-expressed as 
logs) 
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Rows are levels of actualDefect 
Columns are levels of expected Defect 
No Selector 

0-0.5 0.5-1 1 -1 .51 . 5-2 total 

p- 0.5 1080018 
6.18750 5.62500 5.62500 0.562500 18 
1.53268 1.00139 -2.37171 -0.750000 0 

ý0.5-1 01102 
0.687500 0.625000 0.625000 0.062500 2 

-0.829156 0.474342 0.474342 -0.250000 0 

1-1.5 1190 11 
3.78125 3.43750 3.43750 0.343750 11 

-1.43028 -1.31469 3.00019 -0.586302 0 

1.5-2 00011 
0.343750 0.312500 0.312500 0.031250 1 

-0.586302 -0.559017 -0.559017 5.48008 0 

total 1110101 32 
11 10 10 1 32 

00000 

able contents: 
count 
Expected Values 
Standardized Residuals 

hi-square = 54.86 with 9df 

S 0.0001 

Table 4.18: Chi-square test actual defect and predicted defect (re-expressed 

as logs) 

4.10Conclusions 

This case study of a large industrial C++ system has demonstrated a 

number of points. 
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" First, that it not necessarily straightforward to apply pre-defined 

metrics. There seems still a tendency for metrics to be complex, vaguely 
defined and/or method independent. This is shown by the lack of 

success in applying the CK metrics. Although among the most mature 

and well defined of the metrics on offer, it still proved impossible to 

collect the majority of them from the design documentation available. A 

number of static code analysers now implement the CK metrics, but since 

they were intended as design metrics, this detracts from their potential 

usefulness. 

" Second, that inheritance is less used than might be expected from the 

prominence given to the mechanism in 00 textbooks. This was 

confirmed by examining the design documentation and from anecdotal 

evidence from the developers. 

" Third, that inheritance has an effect on the number of defects in a class. 
Classes in an inheritance hierarchy had three times the defect density of 

classes not part of an inheritance hierarchy. Tests also confirmed the 

inheritance classes were a distinct sub-population of the dataset. Defects 

were also size driven, hence the use of defect densities. This seems to 

confirm anecdotal evidence that developers avoided the use of 
inheritance because they found it difficult to understand. 

" Fourth, deriving locally applicable metrics from local data is not a 
difficult task, providing suitable tool support is available. This of course 

assumes that data, such as incident reports, change requests, 
developmental effort etc. is collected as a matter of course. In this case 

study, readily available design data was correlated against the dependent 

variables of interest, SIZE and DEFECT. The most promising of these 

were used to derive regression equations, of which the most simple with 
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high adjusted RZ values were selected. In order to demonstrate the 

predictions made were reasonable, a chi-square test was carried out, 

which demonstrated that the values were dependent. 

As discussed in chapter 1, the results of a single case study by itself are not 

generalizable. It has however, added to the empirical evidence on "real" 

object-oriented systems, particularly regarding the use of inheritance. 

The findings linking the use of inheritance has also lead to the formation 

of a further hypothesis, that the use of inheritance will effect the effort 

required to maintain software, such that software using inheritance will 

take more effort to maintain than software which does not use 

inheritance. This hypothesis will be tested in chapter 5. 
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Chapter 5 An Experiment into the Effects of Inheritance on 
Maintenance Changes 

Synopsis 

An experiment investigating the effects of inheritance on software maintenance 

activities was carried out by a final year undergraduate' using material designed 

at the University of Strathclyde and fellow undergraduates as subjects. The aim 

of the experiment was twofold. Firstly it offered a means of testing the 

hypothesis formulated in chapter 4, that the use of inheritance increased the 

effort needed to maintain the software as compared with classes which did not 

use inheritance. Second it offered a partial replication to the experiments carried 

out at Strathclyde and added to the available empirical evidence on the 

maintenance of object-oriented software. This chapter describes the experiment 

and analysis of the data collected. It found that at three levels of inheritance, 

the effort needed to carry out the maintenance change was more than that 

required for the equivalent flat structure. 

5.1 Reasons for the experiment 

The empirical case study described in chapter 4 indicated that inheritance 

was associated with a higher level of defects than classes which were not 
involved in an inheritance relationship. Further, in the case study 
described, the classes with the highest densities were found at the bottom 

of their respective inheritance hierarchies, which would confirm the 

perceptions of the developers concerning the difficulties involved in 

using inheritance46, as well as publications on maintenance of object- 

as The analysis presented here was carried out by the author. The student, Claire Joyce, 
was, of course, expected to carry out an independent analysis as part of her project. 
Happily our conclusions concur. 
46 Such as difficulty in understanding classes using inheritance, which obviously has 
implications for testing and maintenance 
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oriented software and inheritance, such as (Lejter, Meyers et al. 1992; 

Wilde, Matthews et al. 1993; Dvorak 1994). It was therefore interesting to 

repeat an experiment by(Daly, Brooks et al. 1996; Daly 1996) concluding 

that software with an inheritance hierarchy three levels deep seemed to 

be more maintainable than equivalent software not using inheritance, 

and that it was not until five levels of inheritance were used that this 

phenomenon was no longer apparent. Since this was inconsistent with 

the results of the case study, the developers experience and indeed much 

of the anecdotal evidence available, it was decided to investigate further 

by replicating the experiment in part. The original work consisted of two 

systems, using three levels, each compared against a 'flat' (i. e. no use of 

inheritance) equivalent. This was followed by a further experiment 

using an extended version of one of the systems, using five levels of 

inheritance, again with an equivalent flat version. This experiment 

would use one of the three-level systems. A full replication was not 
feasible since the experiment would rely on volunteers and thus needed 

to minimise the time commitment made. The subjects of the Strathclyde 

experiment were under assessment, and so were compelled to take part. 

5.2. Differences from the original experiment 

It was decided to conduct the experiment following the original as far as 

practicable . The experiment was invigilated by and data collected by a 

final year undergraduate on fellow software engineering students. 
Although intended as an external replication of the work at Strathclyde, 

there were inevitably some differences, although these were minimised 

as far as was possible. The following differences between this experiment 

and the original remained: 

sample size - this experiment had ten subjects, the original had 30; 
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experience - all had some training in 00, although this is unlikely to be 

precisely the same as the training given to the Strathclyde students; 

material used - this experiment used only the three level version; 
time - this experiment extended the time to two hours from one and 
three quarter hours. 

experimental design - this experiments required each group to carry out 

one set of changes on one treatment (inheritance or flat), Strathclyde 

required groups to carry out both treatments. 

5.3. Description of the experiment 

There follows a brief description of the experimental procedure, 

materials, subjects and the actual task to be completed. 

5.3.1 Procedure 

Each subject received a sheet of instructions regarding the experiment, 

and two packs, one containing the maintenance change and the other the 

source code listing. Subjects worked independently 

Ten minutes were allowed for reading and clarifying the instructions. 

The subjects then proceeded to open the first pack, containing details of 

the maintenance change required and were. given a further ten minutes 
for reading and clarification of the requirements. Once this was 

complete, the subjects opened the remaining pack, containing the source 

code listing. On opening this pack, the subjects could begin the task and 

timing began. Completion of the task was dependent upon successful 

compilation and testing against required output (using supplied data), 

which was checked by the invigilator. If this was confirmed as correct by 

the invigilator, timing was stopped, else the subject was asked to 
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continue. Once their task was complete, the subjects were asked to 

complete a debriefing questionnaire, a copy of which is included in 

appendix B. 

5.3.2 Materials 

Each subject was provided with: 

" instruction sheet; 
" packs containing maintenance task requirements and source code 

listing; 

" test data; 

" HP work station, with Emacs editor and C++ compiler; 
" source code. 

5.3.3 Subjects' background 

All ten subjects had a minimum of 6 months experience of object- 

orientation using C++, all belonged to the same degree course and thus 

received the same introduction to 00 and C++. Variations occurred 

where subjects had outside experience, such as from work placements 
during their sandwich year. 

Subjects were randomly assigned into two groups; group A were given 
the inheritance version (with three levels) and group B the flat version. 

5.3.4 Maintenance task 
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The program to be modified was a simple library database system, 
allowing the creation, display, modification and deletion of records. 
Three categories of record were supported, book, conference and thesis. 

The software was designed "in an object-oriented fashion" (Daly 1996) 

and coded in C++ using single inheritance. The flat version was derived 

from the inheritance version by removing inheritance links and then 

adding the data and functions that would have been inherited directly to 

the relevant classes (thus repeating code in each class). Any abstract 

classes (i. e. those existing for the sole purpose of allowing classes to 

inherit from them) were then removed from the flat version. 

The flat version consisted of approximately 440 lines of code and four 

classes (each class made up of a header and implementation or body file), 

whilst the inheritance version consisted of approximately 390 lines of 

code and six classes. 

The task given to the subjects was to add a new class to the library system. 
PhD-Thesis. This consisted of seven different fields and was intended as 

a specialisation of the Thesis class. Subjects were to create an instance of 
the new class with initial and default values, modify some values then 

display the results. 

5.4 Data Collection 

Data collection was automated using a shell script designed for the 

experiment. This was initiated at login and kept running throughout the 

experiment to record the process of modification. To recap; the data 

collected from the experiment was: time to complete, the final version of 
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the solution (to allow the number of LOC added to be calculated) and the 

completed debriefing questionnaire. 

5.5 Preliminary Analysis 

The table below summarises the time (TIME) taken to complete the task 

(in minutes), lines of code added (XTRALOC) and experience (EXP) in 

using C++ in years for each subject (SUBJ). 

SUBJ TREATMENT TIME XTRALOC EXP 

I Inherit 63 42 2 

2 Inherit 58 39 1 

3 Inherit 63 57 1 

4 Inherit 93 36 0.5 

5 Inherit 109 35 0.5 

6 Flat 31 77 1 

7 Flat 40 76 1 

8 Flat 61 76 1 

9 Flat 32 79 1 

10 Flat 69 79 2 

Table 5.1: Quantitative data collected 

The following tables, 5.2,5.3,5.4 give the summary statistics for the raw 

data in table 5.1. 

variable count mean median variance SD min. max 

TIME 10 61.90 62 620.32 24.91 31 109 

XTRALOC 10 59.60 66.50 388.49 19.71 35 79 

EXP 10 1.10 1 0.27 0.52 0.50 2 

Table 5.2: Summary statistics for data collected 
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variable count mean median variance SD min max 
i-time 5 77.20 63 508.20 22.54 58 109 

i-loc 5 41.80 39 79.70 8.93 35 57 
i-exp 5 1 1 0.38 0.61 0.50 2 

Table 5.3: Summary statistics for inheritance version 

variable count mean median variance SD inin max 

f-time 5 46.6 40 302.30 17.30 31 

f-loc 5 77.4 77 2.30 1.52 76 79 
f-exp 5 1.20 1 0.20 0.44 1 2 

Table 5.4: Summary statistics for flat version 

The data presented in tables 5.1-5.4 show a number of points of interest. 

Firstly, the inheritance version has the most compact changes (in terms 

of lines of code added, XTRALOC), for subjects 4 and 5 less than half of 

the smallest change for the flat version. This is as expected, because the 

use of inheritance removes the need to repeat sections of code since the 

classes can use code (data or functions) declared in another class via the 

inheritance mechanism. In the flat structure, this mechanism is 

disabled, so the code must be repeated in any class that wishes to reuse 

that code. The size of changes made in the flat group is similar (min 76, 

max 79), whereas the inheritance group ranges from min 35 max 57. For 

the population as a whole, the data is not normally distributed. 

Time taken tends to be less for the flat group than the inheritance group. 

It is interesting to note that those with the most experience in C++ did 

not finish more quickly. In the case of the flat group, the most 

experienced subject took the longest time. One explanation may be that 

the use of inheritance meant that the subjects found it harder to 



comprehend the code (which would be de-localised, i. e. relevant 

information would be spread among ancestor classes, necessitating more 

effort to be spent on understanding the code and how to implement the 

changes than the flat group who did not have to consider the use of 

inheritance). For the population as a whole, the time is normally 

distributed. 

Also interesting is that the least experienced programmers made the 

most compact changes (both were in the inheritance group). The reasons 

for this are unclear, possibly these subject relied more on their training in 

C++, following "good practice" more closely. 

The boxplots in figure 5.1 below show a difference in the time taken by 

each group, with the inheritance group tending to take longer. There is 

some degree of overlap of the confidence interval around the median for 

each group (represented by the shaded area), but the medians themselves 

do not correspond, (as can be seen from tables 5.3 and 5.4. There is some 

overlap with the whiskers, indicating that the higher values for the flat 

treatment are comparable with the lower values for the inheritance 

treatment. 
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Figure 5.1: Boxplots of time taken by flat group and time taken by 
inheritance group 

More striking are the boxplots of the lines of code added in order to make 

the change (figure 5.2). Firstly there is absolutely no overlap between the 

two, indicating a considerable difference in the values, with the flat 

group obviously adding more code. Ignoring the extreme outlier for the 

inheritance group (denoted by an "o") we can see a gap of around thirty 

lines of code between the groups. There is little variation or spread in 

the figures for the flat group, as evidenced by the absence of whiskers. 

For the inheritance group, there is a little more variation (again ignoring 

the outlier) but not a great deal. What figure 5.2 shows is that there is a 

very definite difference in the number of lines of code added to effect a 

solution according to whether inheritance was used or not. 



198 

  
70 4- 

X 60 ý 
T 
R 
A 
L 50 

O 
C 

40+ 

0 

Flat Inherit 

TREATMENT 

Figure 5.2: Boxplots of lines of code added by flat group and time taken by 
inheritance group 

5.6 Hypothesis formulation and testing 

From the raw data and summary statistics, there appears to be a 

difference between the inheritance group and the flat group, both in 

terms of size and time. The inheritance group tended to take longer to 

make the changes (median=63) than the flat group (median=40), and the 

changes made by the inheritance group were more compact (median=39) 

than the flat group (median=77). The time data is normally distributed 

so a two tailed t-test7 was run to ascertain if there was a statistically 

significant difference between the two groups (by comparing the 

47 The variances are known not to be equal 
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medians). The data for lines of code added is not normal distributed so, a 
Mann-Whitney U test was run as a non parametric test to compare 

medians. 

5.6.1 Effort (TIME) 

The hypothesis can be summarised as follows: 

Ho: the use of a hierarchy at 3 levels of inheritance does not affect the 

time taken to modify the software 

Ha: the use of a hierarchy at 3 levels of inheritance does affect the time 

taken to modify the software. 

Ho is rejected at alpha=0.05 (the confidence limits used at Strathclyde), 

with p=0.0449, just inside the limit. Thus for this study working with an 

inheritance structure has a significantly positive effect on time taken to 

complete the change (i. e. it took longer to complete the task). 

2-Sample t-Test of µ1-µ2 

No Selector 

Individual Alpha Level 0.0500 

Ho: µ1-µ2 =0 Ha: µ1-µ2 #- 0 

i-time - f-time: 

Test Ho: µ(i-time)-µ(f-time) =0 vs Ha: µ(i-time)-µ(f-time) ý0 
Difference Between Means = 30.600000 t-Statistic = 2.403 w/7 df 
Reject Ho at Alpha = 0.0500 
lp = 0.0449 

Table 5.5: Two-sample T-test time taken for inheritance version against 
time taken for flat version 
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5.6.2 Size (LOC) 

Ho: the use of a hierarchy at 3 levels of inheritance does not affect the 

number of extra lines of code added to the software during the 

modification 

Ha: the use of a hierarchy at 3 levels of inheritance does affect the 

number of extra lines of code added to the software during the 

modification 

Ho is again rejected at alpha=0.05, with p=0.0086, thus for this study there 

is a very significant difference between the two samples. This indicates 

that for this study, using the inheritance structure leads to more compact 

changes. 

To recap, the test indicates that changes to the inheritance version took 

longer to complete than the flat version but were more compact than 

those made to the flat version. This confirms what can be seen from the 

raw data in table 5.1. It contradicts the result at Strathclyde that three 

levels of inheritance made no difference to the maintainability of object- 

oriented programs. 
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Mann-Whitney U 

No Selector 

Individual Alpha Level 0.0500 

Ho: Medianl = Median 2 Ha: Medianl s Median2 

Ties Omitted 

lnherit: XTRALOC - FIat: XTRALOC : 
est Ho: Median(Inherit: XTRALOC) = Median(FIat: XTRALOC) vs Ha: Median (Inherit : XTRALOC) ;t Median (Flat: XTRALOC) 

Rank Totals Cases Mean Rank 

nherit: XTRALOC 15 53 
Flat: XTRALOC 40 58 

otal 55 10 5.500 
ies Between Groups 0 

U-Statistic: 0.000 

U-prime: 25.000 

Sets of ties between all included observations 2 

ariance: 22.917 

djustment To Variance For Ties: -0.278 
Expected Value: 12.500 

-Statistic: -2.627 

= 0.0086 
Reject Ho at Alpha = 0.0500 

Table 5.6: Mann-Whitney U test for inheritance version against size for 
flat version 

5.7 Analysis of the Effects of Experience 

One obvious potential problem with the data is that as a result of being 

randomly placed into groups, there was an imbalance in terms of 

experience. Whereas with a larger sample, any problems would probably 

be balanced out, with such a small sample, "unbalanced" groups are 

more obvious. In this experiment, the subjects' experience (of C++) 

could have been ascertained in advance, so in retrospect, it would have 

been prudent to use some blocking technique, such as defining two 

blocks "experienced" and "inexperienced" then allocating treatments 

randomly to each block. However, given the small number of subjects, it 

would not be possible to "randomly allocate" the versions among the 

inexperience block since it would contain just two subjects. 



LUL 

As noted previously, in the experiment the two least experienced subjects 

made the most compact changes as well as taking the longest time. 

Presuming compact changes are good (since this seems to be one of the 

"pros" of using inheritance), then we cannot conclude that relative 
inexperience means relatively lower ability48. 

To help discover any relationship between experience and performance, 
in terms of the time taken to complete and the size of change made, the 
data can be entered into scatterplots 

5.7.1 Effects of Experience on Time Taken 

In figure 5.3 below, the time taken is plotted against the experience. "x" 

represented inheritance treatment and "o" the flat treatment. From so 

few datapoints it is not possible to draw firm conclusions. 

" It has been suggested that these subjects were "more thorough". Since their 6 months 

experience was gained at university, and presuming the training received was "best 

practice", it may be that they would implement a "good" change however long it took, 

where the more experienced subjects (with this additional experience gained in industry) 

would be more inclined to value speed over style. After all, productivity is still often 

measured in terms of LOC ... 
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Figure 5.3: Scatterplot of TIME against EXP 

5.7.2 Effects of experience on size 

X 

f 

As in 5.7.1 above, the number of datapoints is too small to allow firm 

conclusions to be drawn. Again there is no obvious relationship shown 

in the scatterplot. 
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Figure 5.4: Scatterplot of XTRALOC against EXP 
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5.6.3 Conclusions on the relationship between experience and time taken 
and experience and LOC added 

Regression of the data in figures 5.3 and 5.4 are not significant, i. e. they do 

not indicate a relationship between the variables. As stated in section 5.6 

we cannot safely regard experience as a proxy for ability. Thus we cannot, 

from this study, draw firm conclusions on the relationship between 

experience and time taken or LOC added. Thus the imbalance of 

experience between treatments may not be too serious. 

5.7 Debriefing Questionnaire 
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Each subject completed a debriefing questionnaire after their solution 

was signed off as successful. 

Appendix B contains a copy of the questionnaire and a summary of the 

responses. Some questions have more than 10 responses (where a 

subject gave more than one answer), some may have less (where a 

response was not given or was inappropriate). 

"i" refers to responses given by the inheritance subjects and "f" responses 
by the flat subjects 

As for quantitative data, there are too few datapoints to draw any certain 

conclusions, but the data could raise a number of questions. Overall 

there is a relatively even balance among the respondents. However, 

question five indicates that the flat group took longer only in the editing 

of the code (this group were naturally expected to cut and paste code since 

inheritance was not used) than the inheritance treatment group who 

tended to have problems in understanding and debugging of code. 

It is interesting to note that although the problem was a natural 

specialisation, suited to the use of inheritance, the inheritance group 

tended to have more trouble with understanding the code (q 5) and had 

less confidence in their understanding of the code (q9), which tends to 

support the contention that inheritance makes code harder to 

understand. Additional comments by participants in the inheritance 

treatment suggest that class hierarchy diagrams are important in 

understanding code which utilises inheritance. 

5.8 Conclusion 
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As stated previously, the size of the dataset is too small for the results to 
be considered to counter the conclusions of Daly et al (Daly, Brooks et al. 
1996; Daly 1996), but it can be viewed as an attempt at replication that 

raises questions regarding the conclusions of the original. In other 

words, the results of the original cannot be regarded as proof that 

inheritance of three levels does not adversely affect maintainability or 

that it is beneficial. 

Obviously the nature of experimentation and particularly replication (as 

expounded at some length in Daly's thesis (Daly 1996)), means that even 

with an identical number of subjects, one cannot claim to carry out an 

exact replication (thus whether the findings agree with/rebut the original 

are always open to debate). However, attempts such as the experiment 
described in this chapter provide material which can be used as evidence 
towards a counter argument. Evidence for both sides needs to be built up 
before one can decide, on the weight of evidence, which side is more 
plausible. For this experiment it is interesting that even with the design 

of experiment being biased in favour of inheritance49, this application 
suggested some adverse effects, which are more in keeping with 

anecdotal evidence from professional software developers. 

It is interesting to note that when Daly repeated the experiment with an 
inheritance structure at five levels the mean time for changes by the 

inheritance group increased on average by 19.8 minutes per subject, 

compared with an increase of just 3.5 for the mean time to complete the 

change for the flat group. 

49 It is not possible to say whether or not this is intentional. However, factors that point 
to a bias are first, the nature of the task, which is a natural specialisation encouraging 
the use of inheritance to add a class at the bottom of an inheritance hierarchy, rather 
than a routine maintenance task , such as fixing a bug, or a task with the potential of 
"ripple through" effects such as changing data nearer the root of the class. Second the 
Strathclyde subjects were taught by those involved in the experiment, which could be 

considered as preparation and training for the purposes of the experiment. 
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The experimental findings, that three levels of experiment have a 

positive effect in the time taken to complete a maintenance task, offer 

some support to the contention that the use of inheritance makes the 

program structure harder for developers to understand. Developers of 

the system examined in chapter 4 confirmed that inheritance was little 

used because it made things more difficult. This was borne out by 

analysis showing classes which were part of an inheritance hierarchy to 

have a higher incidence of defects. It seems reasonable to conclude that if 

fewer extra lines of code were added (compared with the flat group), that 

the extra time taken was not spent in editing or typing, and thus must 

have gone into understanding the problem and developing a solution. 

We can conclude that it would be well worth the effort to attempt to 

replicate the experiment again, or possibly to introduce a new, less trivial 

maintenance task. 
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Chapter 6 Conclusions 

Synopsis 

From the literature review in chapter 2, a number of themes or lessons to be 

learned were derived. These were applied to the literature representing research 
into object-oriented software metrics in chapter 3. From this it could be concluded 
that 00 metrics development seems to have been undergoing the same learning 

curve as traditional metrics, rather than benefiting from past experience and 

mistakes. Chapter 4 showed problems with the traditional approach of 

applying predefined metrics and suggested that it was relatively easy to derive 

measures and prediction systems to be applied locally as well as presenting the 

results of a empirical analysis of an object-oriented software system. Chapter 5 

follows on from one of the interesting observations on inheritance resulting from 

the analysis in chapter 4, by describing an experiment looking into inheritance in 

object-oriented software. This final chapter will look at the conclusions of this 

work in more detail and suggest further work. 

6.1 Summary of work done 

The work carried out for this thesis involved an extensive literature 

survey of object-oriented and traditional software metrics and related 

subjects (including other object-orientated issues, measurement theory), 

in excess of 300 references were examined, of these at least 55 pertained to 

object-oriented software metrics. 

From the survey some deficiencies with past approaches to metric 
development and validation were uncovered. A number of publications 

on object-oriented software metrics development and/or validation 
(taken here to be either formal validation or empirical assessment) were 

considered in the light of these deficiencies. 
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The case study was based on a large (132+ KLOC) industrial object- 

oriented software system, designed using Shlaer-Mellor OOA and coded 

in C++. This involved collecting and sorting though 39 metrics and 

reducing them to a manageable number without losing interesting 

information. Exploratory analysis was performed to find attributes of the 

design which could affect maintainability. From the data collected, 

prediction systems were developed and tested to demonstrate that it was 

possible to derive local prediction systems from simple measures. 

As a consequence of some of the results from this analysis, which 

suggested a link between inheritance and errors in the system under 

study, an experiment was conducted into the impact of inheritance on 

object-oriented software maintainability. 

6.2 Summary of problem area 

The problem faced was twofold. 

First, relatively little empirical evidence regarding the impact of object- 

orientation on software development and maintainability exists. Thus 

much of the literature dealing with object-orientation has tended to 

display a very positive attitude, giving rise to a widely held belief that the 

object-oriented paradigm offers advantages over conventional methods 

in all respects (Fichman and Kemerer 1993). A more specific claim is 

object-oriented systems are easier to maintain (Booch 1986). A body of 

empirical evidence, either case study or experimentation, is needed to 

provide information on how 00 affects important software attributes, 

such as maintainability and quality. 
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Second, despite numerous metrics being put forward, many would be 

unsuitable for our purpose; of predicting errors and size in an object- 

oriented software system. There are four reasons why metrics /prediction 

systems might be unsuitable: 

" metrics having been developed for structured software and are thus 

unlikely to be suitable for 00 software; 
" metrics being speculative or of dubious validity/usefulness; 

" metrics being specific to a particular language, environment or method; 

" metrics seemingly suitable and valid/useful but difficult to collect (lack 

of tool support or not available early enough in the development 

process). 

These problems are not all necessarily easy to avoid. The first is simple 

enough - consider only those metrics which have been developed for 

object-oriented software. However, the immaturity of such metrics 

makes the second, third and fourth pitfalls more likely to occur. All 

metrics will go through a speculative phase, before some demonstration 

of their validity or usefulness can be made. As has been emphasised in 

previous chapters (2 and 3), validity and usefulness are not the same 

thing, so even if a metric can be shown to be valid, showing that it is 

useful can be difficult. In order to show usefulness, empirical studies 

need to be carried out. These would require suitable data. The more 

studies carried out, the more confidence we can have in the results. 

The third reason, that of metrics being suited only to a particular 

language, method and so on, is also connected with the lack of data 

available to empirical studies. It is likely that developers of metrics will 
be familiar with and have data available for one particular language, 

method environment and so on, and thus any development and testing 

will be based upon that available data. Many metrics should not be 
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generalised, but frequently are. It is rare for metrics to be presented as 
metrics for C++ systems, but more commonly they are presented as 
metrics for 00 systems. In some cases it is obvious that certain features 

are specific to, say, a particular programming language, but not always. 

The fourth problem or reason for unsuitability with many proposed 

metrics is difficulty in collection. With speculative metrics, little thought 

tends to be given to collection (or even counting rules, in all too many 

cases). Even where some validation or empirical evaluation is carried 

out, it is not infrequent that a tool needs to be written specially to collect 

the metrics. This constitutes additional effort on the part of the user 

wishing to apply such metrics. Either they must write software to collect 

the metrics or wait for tool vendors to incorporate them into case tools. 

Furthermore, if, as in many cases, metrics are extracted from code (via 

static code analysers, for example), the value is reduced, since they cannot 
be used for early warnings or predictions. 

It can be seen that predefined metric suites can suffer from a number of 
disadvantages. That is not to say that they are without value. Interesting 
things about the nature of the software systems under scrutiny can be 

more easily uncovered. They provide the basis for other, independent 

empirical studies (the Chidamber and Kemerer metrics and the Lorenz 

and Kidd metrics have been applied independently, for example). They 

may also provide ideas which can be adapted by users to suit the specific 
needs of their environment or project. 

6.3 Summary of aims 

The aims of the thesis (section 1.1) were 
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i) To investigate the impact of key 00 mechanisms, specifically 
inheritance, on software maintenance. 

This aim was motivated by several factors: 

" inheritance can be closely associated with "object-orientedness" - 
looking at an object-oriented program one would expect to see some 

use of inheritance; 

" Grady Booch's claim in 1986 that object-oriented software is easier to 

understand and maintain (Booch 1986). In this paper Booch tends not 
to concern himself much with inheritance and explains the claims for 

maintainabilty and understandabilty as being "due to the fact that 

objects and their related operations are localised" and so "reduce the 

scope of change upon the system". Whilst this applies to encapsulation 

and data hiding (which are not peculiar to 00), clearly the inheritance 

mechanism leads to some degree of delocalisation, where variables and 

operations may be declared in one class and used in another; 

" Such concerns are voiced in a small number of papers, primarily 

concerned with tool support, and are the third factor to influence the 

aim. Papers by (Lejter, Meyers et al. 1992; Wilde and Huitt 1992; Wilde, 

Matthews et al. 1993; Li and Henry 1993a) consider the effects of 
inheritance (among other mechanisms) on maintainability and 

understandability. 

The aim has been achieved by the analysis of error data in a C++ system, 

as described in chapter 4. The distribution of errors and error densities 

was analysed. The findings can be summarised as follows: 
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" the Chidamber and Kemerer metrics could not all be collected from the 

design documentation; 

" there is some evidence in support of the "20: 80" rule, since 22% of 

classes accounted for 75% of defects; 

" it was found that classes involved in an inheritance hierarchy had 

three times the defect density of non inheritance classes, that the highest 

defect densities of all could be mapped to classes at the bottom of their 

respective hierarchy (i. e. classes with no descendants), and that little use 

was made of inheritance, with the median figure for DIT being 0; 

" that size can be predicted very well from a simple measure available 

early in the analysis/design phase, in this case by counting the number of 

states, and this measure could be easily and automatically extracted from 

the case tool model; 

" that defects can be predicted well from a simple measure available from 

the analysis/design phase, and this measure could be extracted 

automatically from the case tool model. 

" the value of building local prediction systems has been demonstrated, 

since it was easier to collect simple, readily available measures and derive 

prediction systems from them than to use pre-defined metric suites, and 

these prediction systems could be shown to be accurate. 

The significance of the findings will now be discussed. It is worth 

emphasising that the extent to which the results of a case study can be 

generalised continues to be a subject of debate. Yin's view, (Yin 1994), 

that a case study can be generalised into theory, but not to other 

populations, seems sensible. 
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Firstly it appears that not all of the Chidamber and Kemerer metrics can 
be regarded as design metrics. This makes no comment on their accuracy 

or validity; because they could not be collected, they could not be assessed. 
However, their usefulness can be disputed. It is accepted that the earlier a 

metric can be collected, the more use it can be since it can be used to make 
decisions regarding the remainder of the development process. If a 

metric is difficult to collect then its usefulness can be questioned in view 

of the amount of effort expended in order to collect it. The two metrics 

collected were of limited use. NOC (number of children) was not found 

to correlate with any attribute of interest. Although DIT (depth of 

inheritance tree) had some correlation with errors, it ignores the finding 

that simply being part of an inheritance structure had an effect on the 

number of errors. This is because the root of an inheritance hierarchy is 

counted at 0, and is thus allocated the same value as a class which is not 

involved in an inheritance hierarchy. Perhaps if the root were counted 

as 1, the metric would more accurately reflect the finding that inheritance 

impacts upon errors. 

The 20: 80 "rule" is often quoted to illustrate that a relatively small 

proportion of, say, modules are responsible for a large number of 

problems, such as maintenance effort. This case study confirms this 

ratio, albeit slightly adjusted at 22: 75 for classes : errors. Thus in the 

context of object-oriented system, if the troublesome 20ish % of classes 

can be identified early on, then this can be fed into the decision making 

process with regard to testing effort, design reviews and so on. 

The concentration of errors in inheritance hierarchies suggests that a 
higher proportion of resources e. g. testing effort should be devoted to 

classes in an inheritance hierarchy. As with the point above, if we are 

able to pinpoint the most problematic classes, then we can more 
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efficiently and effectively allocate resources to find/eradicate errors. This 

concentration of errors also raises questions about the use of inheritance. 

Bearing in mind that there is little use made of the mechanism in the 

case study, it may be that inheritance leads to designs and/or code which 

is harder to understand. This seems feasible, since there is inevitably 

some delocalisation, whereby data or methods declared in one class may 

be used in a descendant of that class. In order to understand what a class 

is doing and how, the delocalized data and functionality must be brought 

back together. This is not necessarily an easy task, it may involve several 

levels of inheritance and even multiple inheritance in some situations. 

Consequently, software that is harder to understand will be harder to 

test/maintain because of the ability to understand software requisite to 

those tasks. 

The low levels of inheritance may be due to the difficulties that 

developers had in understanding inheritance (this is confirmed by 

anecdotal evidence), which in turn may in some part be due to their 

relative inexperience (this being their first 00 development, although it 

must be stressed that they had received training), but is also likely to be 

influenced by the points made in the paragraph above, that the 

declocalization which occurs when inheritance is employed makes the 

software harder to comprehend. It is possible that the problem area to 

which 00 was applied had an influence on the low levels of inheritance. 

It is possible that some areas do not "lend" themselves naturally to the 

use of inheritance, a possibility which may gain some credence from the 

fact that examples given in text books are fairly limited, with GUIs 

(where shapes and buttons etc. can be classified), chemical/ bottling 

plants (different types of sensor, and so on) being popular. It may be that 

many other real life applications require less classification and thus 

require less inheritance. This may mean that in some situations it is 

used as a mechanism for code reuse within the application, which may 
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in itself cause comprehension problems where classes which do not 

appear to be related conceptually are placed in a hierarchy purely to 
facilitate code sharing. " 

The relationship between the position in the hierarchy and error density 

is also worth further consideration. A feasible explanation is that classes 

at the bottom of the hierarchy are "concrete", they are the classes that 

"do" things. Superclasses may on the other hand be abstract. In other 

words such classes were written to allow subclasses to inherit (and 

probably add to) the behaviour of the parent class behaviour, so these 

classes do not actually "do" anything. Indeed their methods may not be 

complete and may not be able to be implemented without redefinition. 

In the absence of other datasets or case studies to work on", a small scale 

experiment was carried out, comparing an C++ program using 

inheritance with an equivalent flat version. Its findings were: 

" it took longer to implement the changes to the inheritance version; 

" that the changes made to the inheritance version were more compact. 

Again we cannot generalise these results, particularly since student 

volunteers and small scale artefacts were used, so the population sample 

cannot be regarded as representative of the "real world". 

The experiment considered another type of maintenance, namely 

perfective maintenance, where software is changed or augmented to 

meet a change in user requirements. Since it does not consider errors, 
the results cannot be considered as a confirmation (or repudiation) of the 

It must be emphasised that this is not so for this case study. 
si By which I mean datasets I could use or case studies I could apply the same approach to 
rather than those carried out and published by others. 
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case study findings. They can be considered complementary to the case 

study. It can be inferred that these developers/ maintainers; find 

inheritance takes more effort to work with, compared with a flat 

structure. In the case study, defects density for the inheritance classes was 

three times the level for non-inheritance (i. e. "flat") classes. In the 

experiment, the subjects took longer to complete the changes to the 

inheritance version of the program, despite the change being a natural 

specialisation of an existing class, and thus not disruptive of the existing 
inheritance structure. It would not be unreasonable to conclude that the 

problem is, at least in part, one of comprehension. In the experiment the 

subjects working on the inheritance version took longer but produced 

many fewer additional lines of code than the "flat" subjects. In the case 

study the errors were concentrated on the inheritance classes. It is 

certainly not unreasonable to suggest the errors are more likely if a 
developer finds it harder to understand a class, and likewise it will be 

harder to test and trap errors. 

The ability to predict attributes of interest before they can be measured is 

valued as a useful input into the project management function. The 

prediction systems were derived from readily available measures, both of 

which were available from the case tool analysis/design model. Both 

predictions systems can be considered accurate (from the high adjusted R2 

values of 96.6% for the prediction of LOC and 87.2% for the prediction of 

errors). These metrics cannot be said to be generalizable, but the 

approach could be, and the direct measurements taken could perhaps 
hold as indicators of size and errors for other 00 systems. 2 

sz This, of course, would need further empirical study with other datasets. The point is 
that the constant and multipliers are unlikely to remain the same but it is possible that 
the direct attributes may be suitable indicators of size and errors in other projects. 
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More importantly than the actual prediction systems presented, is that 
this case study has demonstrated that deriving simple, local prediction 

systems is possible. This is more significant than adding yet another set 

of metrics to the public domain, it shows that there are ways of deriving 

predictions without the need to have expert knowledge of measurement 

theory, of the application type, of the paradigm and so on. It also suggests 

that it is not always necessary to have an intermediate measure, such as 

complexity, which would then be used to indicate maintenance effort. 
Here we have taken a simple direct measure and used it to estimate the 

number of errors, which is one aspect of maintenance effort. There will 
be more discussion and a summary of the approach under aim (iv) 

below. 

ii) To examine previous work in the area of complexity metrics 
development and identify any problems with the approach. These 

problems could be used to derive "lessons to be learned", which would be 

considered when assessing the metrics proposed for object-oriented 

software. 

Chapter 2 considered some of the important traditional metrics and 
important themes in metrics development, such as measurement theory 

and empirical validation/evaluation. From this five problems with 

traditional metrics were identified, which could be translated as lessons 

to be learned from past mistakes or inadequacies. These were: 

" the lack of a clearly defined goal; 

" the failure to distinguish between measures and prediction systems 
(metrics can be taken to mean either); 

" poor definition of attributes to be captured and the counting rules for 

doing so; 
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" poor validation; 

" failure to establish validity and/or usefulness of metrics. 

iii) To consider the available 00 metrics in the light of what was 
discovered from the above aims (examination of previous work and the 

impact of inheritance on maintainability) and ascertain which, if any 

metrics fulfilled the criteria of easy to obtain, useful metrics. 

A large number of metrics were considered, some in more detail than 

others. From this it could be seen that a majority of these metrics had 

inadequacies, many of which could have been addressed if past 

experience and problems had been heeded, for example the lack of a clear 

goal. It is true that for practical reasons it may be difficult to avoid all of 

the criticisms on the list above, particularly the latter two, to the 

satisfaction of all. Sadly, many of the proposed metrics /predictions 

systems were unclear on what was being measured and why. In order to 

be taken seriously a metric should at least have its purpose made clear. 
Secondly a number of the metrics proposed were simply traditional 

metrics applied to 00 with little consideration for new features, such as 

inheritance. Again this is not acceptable, particularly since the traditional 

metrics suggested, such as McCabe, had already been largely discredited. 

To some extent, the desire to be first to publish will lead to the 

presentation of speculative metrics, with no empirical validation, and at 

best some formal validation according to measurement theory. To be 

taken seriously, such speculative metrics need to be followed up by 

empirical validation. This has happened with the more popular metrics, 

such as Chidamber and Kemerer and Lorenz and Kidd (a subset of 

measures were investigated in (Harrison and Counsell 1997)). 

iv) To show how local prediction systems can be easily derived from local 

data, and the accuracy of these predictions ascertained. 
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Chapter 4 describes the process of selecting measures, deriving and 
testing a prediction system. It shows that simple measures can be used to 

predict attributes of interest without resorting to complex metrics with 

multiple inputs or trying to capture complex intermediate attributes such 

as complexity. A simple regression procedure was used to formulate the 

equation using the selected input and a set of historical data, all of which 

can be collected from existing electronic data sources, such as case tool, 

incident reports, change logs and so on. This meant that little effort was 

required to collect the input measures, since they already existed. Many 

metrics require more unusual measures to be collected, which must be 

done by hand or requires tool support incorporating the particular metric 

set to be available. With many, if not most, metrics, the difficulty lies 

not in the actual calculation but in the collection. By utilising measures 

which are readily available since they are already collected for other 

purpose, the effort of data collection is reduced. Data can be fed into a 

statistics package which will formulate a regression equation to be used as 

a prediction system. 

6.4 Weaknesses/problems 

(i) Neither the study nor the experiment can be considered definitive. 

" Firstly there is just one small experiment and one case study. The 

experiment would need further replication before we could feel 

confident that the findings would hold for further studies, 

particularly since the results of the experiment differed from the 

original carried out at Strathclyde. Likewise using a number of case 

studies allows for more confidence in the case study results - the 
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more case studies for which a hypothesis holds, the more likely that it 

can be generalised. 

In mitigation, it is in the nature of empirical work that we cannot 

have a definitive answer to a question - we can build up a body of 

evidence which will support the probability of a particular hypothesis, 

but cannot claim to have proved it. 

(ii) Additionally, it is always possible to criticise the use of student 

programmers and question the effect of experimental conditions on the 

subjects' behaviour. An experiment allows more control, but suffers in 

that it cannot be said to mirror "real" software. By necessity, the 

problems will be small scale, and more likely than not use student 

programmers as subjects. In this experiment we were further hampered 

by the need to rely on volunteers, since it was not possible to incorporate 

the experiment into a taught unit and compel students to take part. 
Subsequently numbers were smaller than had been hoped. This means 

that the study cannot be said to support or refute the claims made by the 

developers of the experiment at Strathclyde. 

(iii) An additional problem lies with the experimental procedure, in the 

way in which the subjects were allocated. With the benefit of hindsight it 

would have been sensible to reduce the potential for problems with 

random allocation and small groups. Ideally a blocking mechanism 

would have been employed to ensure that the experience of the subjects 

would have been better balanced between the two groups, by sampling 

randomly from two blocks (one block of experienced subjects and one 

block of inexperienced subjects). 

(iv) It is in the nature of case studies that they cannot be generalised to 

other populations. Firstly what can be collected is limited to what is 
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available or what the company will permit. Secondly the success of a case 

study can be greatly affected by the enthusiasm of the industrial contacts, 

which in turn can be affected by changes in personnel, workload etc.. The 

case study gives "real data" but at the loss of control. In this case, data 

from another project initially offered did not materialise following a 

reorganisation of the company. The same problems with obtaining 
further data were experienced when trying to obtain qualitative data to 

enhance the understanding of the case study. This case study was 

originally envisaged as a pilot study, allowing the examination of a larger 

system with less disruption to the company. Second time around the 

"right" or relevant questions to ask, measures to collect etc. would be 

known in advance, allowing most data to be collected at the start of the 

study when enthusiasm (that is the enthusiasm of the industrial 

, 
collaborators) for the project would be highest. This approach would 
have been considerably more valuable than a single case study. 

A further criticism is that the case study was based on the first 00 project 
built by the team. This would almost certainly have some influence on 

the data. However, it must be emphasised that the team were 

experienced software developers and had all undergone training. 

Additionally many companies are still in the early stages of migration to 

00, so the case study may be of particular interest to them. 

However, the case study and experimental results do confirm anecdotal 

evidence that software designed using inheritance can be hard to 

understand and thus maintain. Both the study and the experiment 

suggest interesting avenues for further research, namely further 

empirical research into the effects of inheritance on defects, and into the 

effects of inheritance on maintenance effort. 
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6.5 Suggestions for further work 

Further datasets/case studies are needed if results are to be generalizable. 
It would be interesting to include data from projects where the 

developers had experience of developing 00 software. This would 
indicate if the concentration of errors in the inheritance hierarchy were 
influenced by the inexperience of the team or were entirely due to the 

use of the inheritance mechanism. 

The experiment should be repeated using larger groups of subjects53 and/ 
a blocking technique to ensure a more even distribution of experience (if 

the sample size demands this). Replication helps build a body of 
evidence and could help ascertain whether 00 maintenance changes do 

take longer to complete and avoid the possibility that the effect is due to 
inexperience rather than the use of inheritance. 

The case study and experiment have led to other ideas for related 

research. It would be interesting to see the effects of maintenance 

changes on the inheritance hierarchy. The changes to be made for the 

experiment were natural specialisation of a class at the deepest level of 

the existing hierarchy, allowing for a class to be added without disrupting 

or affecting the rest of the hierarchy. This would not always be the case. 

A maintenance change may well involve making changes to a class 
higher up in the hierarchy or possibly inserting a class between two 

existing classes. This is particularly true of "real" systems where non 

trivial changes occur. It would be interesting to study the effect on and 
disruption to the rest of the hierarchy, in terms of the stability of the 

structure and potential for "ripple through" effects to subclasses and 

collaborating classes. . 

53 Also larger systems and more difficult changes, as recently carried out by Dr Rachel 
Harrison at Southampton (verbal communication). 
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It would also be interesting to study the effect of feedback on the 
development process. For example, if an inheritance hierarchy was 

predicted to have an increased likelihood of defects at say design time, 

how would this affect the development of the system (presuming action 

was taken such as increasing resources, testing effort etc. ) when compared 

with the development of an identical system without the feedback. 

It may also be of interest to separate the post delivery defects from those 

found by pre-delivery testing. This may indicate if defects related to 

inheritance are more likely to be missed during testing (possibly 

indicating inappropriate or inadequate testing strategies), or whether the 

high incidence of inheritance related defects found post delivery are due 

to the sheer number of defects to be found there. 

6.6 Contribution to knowledge of the thesis 

The thesis has contributed the following: 

"a hypothesis and empirical evidence on the effects of inheritance on 

defects (via case study); 

" empirical evidence, via an experiment, on the effects of inheritance on 

maintenance effort, which will add to limited existing empirical 

evidence since it is a replication of a previous experiment; 

"a demonstration that it is possible to derive simple yet accurate locally 

applicable prediction systems from existing data, without recourse to 

complex pre-defined suites of metrics; 
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"a list of potential short comings of metrics (measures /predictions 

systems); 

9 an extensive review of object-oriented software metrics. 

All contributions should be of interest to academia. In particular the case 

study has led to a firm hypothesis and supporting empirical evidence 
from a "real" system. This is a foundation for future research to deal 

with an important issue (maintenance and perhaps testing) applied to a 

paradigm which continues to dominate commercial software 
development. The review of object-oriented software metrics is 

extensive and covers not only the more popular metrics, but also 

relatively obscure contributions, providing a good starting point for 

anyone unfamiliar with the area of object-oriented software metrics. The 

list of potential short comings, derived from the review of traditional 

metrics development, provide a useful checklist for metrics 
development and validation. 

The first three points may also be of interest and of practical use to 

industry. Firstly the link between inheritance and defects and 
inheritance and maintenance effort, may cause extra care to be taken in 

inspections, walkthroughs, reviews and testing of systems or parts of 

systems which utilise inheritance. This in turn may lead to more defects 

being spotted and fixed pre-delivery, and thus alleviate increased 

maintenance effort to some extent. The third contribution, the 

demonstration that it is possible to derive useful, local metrics without 

recourse to predefined metrics, requiring new tools should perhaps 

reassure quality and project managers that measurement and analysis 

can provide useful project information without the need for a great deal 

of effort or expense. 
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6.7 Final conclusions 

The thesis has demonstrated that the aims outlined in chapter 1 have 

been met (section 6.3). It has led to a number of potential avenues for 

future research (section 6.5). It has resulted in papers and presentations 
(section 1.6) which have generated interest from both academia and 
industry. 
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Appendix A: Raw data for attributes collected 

-RIB -ES -ECT _B 

C 

_H 
27 14 12 14 1 3213 0 11 0 0 2 2512 701 
12 3 8 3 1 2699 0 7 0 0 12 2127 572 
4 3 0 3 1 1041 0 2 0 0 0 729 312 
6 5 0 5 1 1169 0 3 0 0 2 825 344 

55 27 27 27 1 4675 2 15 0 0 10 3852 823 
35 17 17 17 1 3655 1 18 0 0 10 2874 781 
27 13 13 13 1 3394 0 16 0 0 11 2677 717 
47 19 27 19 1 7946 10 46 0 0 31 6632 131 
6 5 0 5 1 1168 0 3 0 0 1 827 341 
55 27 27 27 1 4198 0 15 0 0 10 3406 792 

0 3 0 0 0 761 0 0 0 0 0 529 232 
0 3 0 0 0 754 0 0 0 0 0 514 240 
0 4 0 0 0 788 0 0 0 0 0 564 224 

2 3 2 0 0 4701 0 9 4 0 12 3988 713 
23 10 12 10 1 5181 14 21 0 0 21 4287 894 

75 1 35 37 3 4445 26 15 0 2 55 3747 698 

131 32 74 56 1 20165 47 114 2 0 122 1717 298 
74 5 32 39 3 5114 26 17 0 2 53 4287 827 

11 24 83 31 0 12101 25 60 2 1 71 1032 1781 
21 1 11 7 3 4630 6 27 0 0 23 3818 812 

34 11 15 16 3 6299 9 35 0 0 33 5220 107 
16 2 9 5 2 1490 2 4 0 1 8 1119 371 
17 2 10 5 2 1440 2 4 0 1 8 1058 382 

11 3 3 6 2 2161 9 6 0 1 5 1652 509 

8 2 1 5 2 1116 2 3 0 1 4 785 331 
0 2 0 0 0 730 0 0 0 0 0 511 219 
0 1 0 0 0 603 0 0 0 0 1 396 207 
35 7 21 11 3 8155 9 33 0 0 26 6897 125 
38 16 16 19 3 6813 10 37 0 0 33 5604 120 
10 6 4 6 0 1940 3 7 2 1 11 1464 476 

66 3 27 34 5 5239 27 23 0 2 39 4343, 896 
74 3 34 35 5 5928 29 26 0 2 43 4942 986 
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Appendix A (cont): Spearman Rank Correlation for Metrics Collected 
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Appendix B: Copy of debriefing questionnaire 

Questionnaire 

Personal Details 

Name: 

Qualifications: 

Programming Experience: 

1. How long into the test did it take you to grasp what was required e. g. 
after reading instructions, examining the code etc. 

2. How much trouble, if any, did you have with the C++ syntax? 

3. On a scale of 1- 10 how difficult would you say the modification was (1 = 
very easy, 10 = very difficult) 

4. What caused you the most difficulty? 

5. Overall what action would you say took you the most time to perform 
i. e. understanding the code, removing syntax errors, editing the changes 
etc. 

6. What approach did you adopt to tackle the modification? 

Understanding the code first, then tackling the task? 

Tackle task immediately and attempt to understand the code as 
required. 

Cutting and pasting the existing files to meet required specification 



IV 

Other, please specify 

7. Did you use inheritance or not? Explain why 

8. If you answered yes to 7, which class did you use as the parent for the 
class director? Why did you use this class and how long did it take to 
make this decision? 

9. How well did you understand the code? 

10. What parts of the code, if any, did you not understand? 

11. How would you judge the quality of the code you produced compared 
to the code you were given? 

12. Having performed the modification, would you do anything different 
next time around? If yes, what? 

13. Any other comments? 
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Appendix B (cont): Summary of Responses to Debriefing Questionnaire 

1) Time taken to understand what was required 
<=5 mins Tiff 
10 mins f 
30 mins Tiff 

2) Trouble with syntax? 
yes iiif 
no iiffff 

3) Difficulty of change (1=very easy, 10=very difficult) 
1 iff 
2 ifff 
3i 
4 
5 ii 

4) What caused the most difficulty? 
understanding syntax/language Tiff 
inheritance i 
typos ff 
other iif 

5) What took up the most time? 
editing iffff 
debugging/typos iif 
understanding code iii 
coding f 

6) Approach used? 
understand first then tackle i 
tackle first then understand as necessary iiif 
cut and paste to meet spec iiffff 

7) Inheritance used? 

yý 
Hill 

no fffff 

8) If inheritance used what was the parent class? 
thesis iiiii 

9) Understanding of code? 
good/well ifffff 
reasonably well iiii 

10) Was any of the code hard to understand? 
none iiifffff 



VI 

some i 
most i 

11) Quality of code added compared with original? 
same iiiifffff 
worse i 

12) What would you do differently if given the chance? 
nothing iiif 
use inheritance ff 
not use inheritance i 
understand requirements /code better if 
other f 


