
An Empirical Investigation into Metrics for Object-

Oriented Software

Michelle Helen Cartwright

A thesis submitted in partial fulfillment of the requirements of
Bournemouth University for the degree of Doctor of Philosophy

October 1998

Bournemouth University

Abstract

Object-Oriented methods have increased in popularity over the last decade, and are now
the norm for software development in many application areas. Many claims were made for

the superiority of object-oriented methods over more traditional methods, and these claims
have largely been accepted, or at least not questioned by the software community. Such was

the motivation for this thesis. One way of capturing information about software is the use

of software metrics. However, if we are to have faith in the information, we must be

satisfied that these metrics do indeed tell us what we need to know. This is not easy when

the software characteristics we are interested in are intangible and unable to be precisely
defined.

This thesis considers the attempts to measure software and to make predictions regarding

maintainabilty and effort over the last three decades. It examines traditional software

metrics and considers their failings in the light of the calls for better standards of

validation in terms of measurement theory and empirical study. From this five lessons were

derived. The relatively new area of metrics for object-oriented systems is examined to

determine whether suggestions for improvement have been widely heeded.

The thesis uses an industrial case study and an experiment to examine one feature of object-

orientation, inheritance, and its effect on aspects of maintainability, namely number of

defects and time to implement a change. The case study is also used to demonstrate that it

is possible to obtain early, simple and useful local prediction systems for important

attributes such as system size and defects, using readily available measures rather than

attempting predefined and possibly time consuming metrics which may suffer from poor

definition, invalidity or inability to predict or capture anything of real use.

The thesis concludes that there is empirical evidence to suggest a hypothesis linking

inheritance and increased incidence of defects and increased maintenance effort and that

more empirical studies are needed in order to test the hypothesis. This suggests that we

should treat claims regarding the benefits of object-orientation for maintenance with some

caution. This thesis also concludes that with the ability to produce, with little effort,

accurate local metrics, we have an acceptable substitute for the large predefined metrics

suites with their attendant problems.

: 3p=KD 1 Li-C) 'D O

ý o2611953 I

oo5, i2cAPý

CHAPTER I INTRODUCTION ... 1

1.1 THE RESEARCH PROBLEM
... 1

1.2 SCOPE AND DEFINITION
..

4
1.3 RESEARCH METHODOLOGY

..
11

1.4 STRUCTURE OF THE THESIS
...

13

1.5 BACKGROUND KNOWLEDGE
..

14

1.6 REPORTS RESULTING FROM THIS RESEARCH .. 15
1.7 SUMMARY

..
16

CHAPTER 2 THE HISTORY OF SOFTWARE METRICS IN 57 PAGES......... 17

2.1 INTRODUCTION ..
1 7

2.2 STRUCTURAL METRICS ..
1 9

2.2.1 COMPLEXITY METRICS ... 1 9

2.2.2 DESIGN METRICS ...
22

2.2.3 SPECIFICATION METRICS ... 25
2.2.4 DATABASE METRICS

...
26

2.2.5 SUMMARY .. 26
2.3 VALIDATING METRICS

.. 28
2.3.1 THE AXIOMATIC APPROACH

...
29

2.3.2 THE EMPIRICAL APPROACH
..

32
2.3.3 SUMMARY

...
36

2.3.4. DIFFICULTIES IN VALIDATION
...

37
2.4 THE 1990'5: MEASUREMENT THEORY AND PREDICTION SYSTEMS

.......................................
38

2.4.1 MEASUREMENT THEORY AND ITS APPLICATION TO SOFTWARE METRICS
............................

42
2.4.1.1 REPRESENTATION THEORY

...
42

2.4.1.2 SCALES
...

44

2.4.1.3 SUMMARY
...

48

2.4.2 PREDICTION SYSTEMS
..

49

2.4.3 LESSONS TO BE DRAWN FROM MEASUREMENT THEORY
...

51

2.5 METRICS REVISITED
...

56

2.5.1 DESCRIBING THE INDESCRIBABLE
..

57
2.5.2 How METRICS "MEASURE UP" -- NO PUN INTENDED ..

58
2.5.2.1 HALSTEAD'S SOFTWARE SCIENCE

..
59

2.5.2.2 MCCABE'S CYCLOMATIC COMPLEXITY
...

62
2.5.2.3 HENRY AND KAFURA'S INFORMATION FLOW METRIC

...
64

2.5.2.4 FUNCTION POINTS
..

68
2.5.2.5 SUMMARY OF COMMON PRODUCT METRICS

...
7 1

2.5.3 THE STATE WE'RE IN / PREDICTING THE FUTURE
..

71
2.6 SUMMARY .. 72

CHAPTER 3 METRICS FOR OBJECT-ORIENTED SOFTWARE
...................

77

3.1 INTRODUCTION ..
77

3.2 RECYCLING METRICS (THE APPLICATION OF TRADITIONAL COMPLEXITY METRICS TO OBJECT-

ORIENTED SYSTEMS) ...
78

3.2.1 SOFTWARE SCIENCE
...

79

3.2.2 CYCLOMATIC COMPLEXITY ...
84

3.2.3 INFORMATION FLOW
..

85

3.2.4 FUNCTION POINTS
...

86

3.2.5 SUMMARY ON THE APPLICATION OF TRADITIONAL METRICS
..

90

3.3 NEW METRICS FOR OBJECT-ORIENTED SYSTEMS
...

91

3.3.1 CHIDAMBER AND KEMERER'S METRIC SUITE
..

92

3.3.1.1 THE METRICS SUITE
..

92

3.3.1.2 GOAL
...

94
3.3.1.3 VALIDATION

.. 97
3.3.1.4 DEFINITION

...
103

3.3.1.5 SUMMARY
...

105
3.3.2. OTHER OBJECT-ORIENTED METRICS

...
106

3.3.2.1 LI AND HENRY
...

107
3.3.2.2. LORENZ AND KIDD

...
110

3.3.2.3. HENDERSON-SELLERS ...
113

3.3.5 DE CHAMPEAUX
..

113

3.3.2.4. RAJARAMAN AND LYU
..

115

3.3.2.5. ABREU
...

118

3.3.2.6 HOPKINS
...

127

3.3.2.7 GRAHAM'S SOMA METRICS
...

129

3.3.2.8 HARRISON
...

133

3.3.2.9 OTHER METRICS FOR OBJECT-ORIENTED SYSTEMS ...
135

3.3.3 CONCLUSIONS
...

137

CHAPTER 4 AN EMPIRICAL STUDY OF AN OBJECT-ORIENTED SYSTEM141

4.1 INTRODUCTION
..

141

4.2 SYSTEM BACKGROUND
..

143

4.3 PROVISOS FOR THE EMPIRICAL STUDY
..

144

4.4 APPLICATION OF THE CHIDAMBER AND KEMERER METRICS SUITE
.....................................

144

4.4.1 INITIAL CONCLUSIONS ON THE USEFULNESS OF DIT AND NOC
.......................................

146

4.5 THE EFFECTS OF INHERITANCE ON DEFECTS ...
146

4.7 CORRELATING VARIABLES
...

155

4.8 BUILDING PREDICTION SYSTEMS
...

156

4.9 TESTING PREDICTION SYSTEMS
...

161

4.9.1 DATA RE-EXPRESSION
..

162

4.9.1.1 RE-EXPRESSIONS APPLIED ...
163

4.9.2 COMPARING TRANSFORMED ACTUAL AND PREDICTED VALUES
164

4.9.2.2 COMPARING RE-EXPRESSED VALUES
...

167

4.9.2.2.1 RE-EXPRESSED VALUES FOR LOC AND PREDICTIONS OF LOC
....................................

168

4.9.2.2.2 RE-EXPRESSED VALUES FOR DEFECT AND PREDICTIONS FOR DEFECT
.......................

174

4.9.2.2.3 GENERAL CONCLUSIONS ON THE RE-EXPRESSION AND COMPARISON OF ACTUAL AND

PREDICTED DATA
..

1 82

4.9.3 HYPOTHESES AND HYPOTHESIS TESTING ..
182

4.1 OCONCLUSIONS
...

185

CHAPTER S AN EXPERIMENT INTO THE EFFECTS OF INHERITANCE ON

MAINTENANCE CHANGES ...
189

5.1 REASONS FOR THE EXPERIMENT ...
189

5.2. DIFFERENCES FROM THE ORIGINAL EXPERIMENT ..
190

5.3. DESCRIPTION OF THE EXPERIMENT ..
191

5.3.2 MATERIALS ..
192

5.3.3 SUBJECTS' BACKGROUND ..
192

5.3.4 MAINTENANCE TASK ..
192

5.4 DATA COLLECTION ..
193

5.5 PRELIMINARY ANALYSIS ...
194

5.6 HYPOTHESIS FORMULATION AND TESTING ...
198

5.6.1 EFFORT (TIME) ...
199

5.6.2 SIZE (LOC) ..
200

5.7 ANALYSIS OF THE EFFECTS OF EXPERIENCE
..

201

5.7.2 EFFECTS OF EXPERIENCE ON SIZE ...
203

5.6.3 CONCLUSIONS ON THE RELATIONSHIP BETWEEN EXPERIENCE AND TIME TAKEN AND EXPERIENCE

AND LOC ADDED ..
204

5.7 DEBRIEFING QUESTIONNAIRE
...

204

5.8 CONCLUSION ...
205

CHAPTER 6 CONCLUSIONS
...

209

6.1 SUMMARY OF WORK DONE ...
209

6.2 SUMMARY OF PROBLEM AREA ...
210

6.3 SUMMARY OF AIMS ... 212
6.4 WEAKNESSES/PROBLEMS

.. 221
6.5 SUGGESTIONS FOR FURTHER WORK .. 224
6.6 CONTRIBUTION TO KNOWLEDGE OF THE THESIS ... 225
6.7 FINAL CONCLUSIONS ... 227
REFERENCES

... 228

APPENDIX A ... I

APPENDIX B .. I I

FIGURE 1.1: PARTIAL QUALITY MODEL FOR MAINTAINABILITY 6
FIGURE 2.1: A PREDICTION SYSTEM 49
FIGURE 4.1: LARGER INHERITANCE HIERARCHY GIVING DEFECTS/KLOC 148
FIGURE 4.2: SMALLER INHERITANCE HIERARCHY GIVING DEFECTS/KLOC 149
FIGURE 4.3: BOXPLOTS OF DEFECTS PER CLASS 153
FIGURE 4.4: BOXPLOTS OF LOC PER CLASS 154
FIGURE 4.5: SCATTERPLOT WITH REGRESSION LINE FOR DEFECT AGAINST EVNT

(X=INHERITANCE, O=NO INHERITANCE) 158
FIGURE 4.6: SCATTERPLOT WITH REGRESSION LINE FOR LOC AGAINST STATES

(X=INHERITANCE, O=NO INHERITANCE) 161
FIGURE 4.7: HISTOGRAM OF PREDLOC 166
FIGURE 4.8: SCATTERPLOT LOC/PREDLOC 166
FIGURE 4.9: HISTOGRAM OF LLOC 168
FIGURE 4.10: SCATTERPLOT LLOC/LPRC 169
FIGURE 4.11: RESIDUALS FOR LLOC/LPRC REGRESSION 169
FIGURE 4.12: HISTOGRAM OF BLOC 170
FIGURE 4.13: SCATTERPLOT VLOC AND'IPRC 171
FIGURE 4.14: RESIDUALS FOR qLOC AND'IPRC REGRESSION 171
FIGURE 4.15: BOXPLOTS OF PREDLOC AND LOC 172
FIGURE 4.16: BOXPLOTS OF LLOC AND LPRC 173
FIGURE 4.17: BOXPLOT 4LOC AND4PRC 174
FIGURE 4.18: SCATTERPLOT OF DEFECT AND PDFCTRND 175
FIGURE 4.19: RESIDUALS FOR DEFECT / PDFCTRND REGRESSION 176
FIGURE 4.20: CORRELATIONS LD+/LP+ 177
FIGURE 4.21: RESIDUALS FOR LD+ AND LP+ REGRESSION 177
FIGURE 4.22: SCATTERPLOT 'IDFCT AND'IPRD 178
FIGURE 4.23: RESIDUALS FOR 4DFCT AND4PRD REGRESSION 179
FIGURE 4.24: BOXPLOT PDEFECTRND AND DEFECT 180
FIGURE 4.25: BOXPLOTS OF LP+ AND LD+ 181
FIGURE 4.26: BOXPLOTS OF qPRD AND 4DFCT 182
FIGURE 5.1: BOXPLOTS OF TIME TAKEN BY FLAT GROUP AND TIME TAKEN BY

INHERITANCE GROUP 197
FIGURE 5.2: BOXPLOTS OF LINES OF CODE ADDED BY FLAT GROUP AND TIME TAKEN

BY INHERITANCE GROUP 198
FIGURE 5.3: SCATTERPLOT OF TIME AGAINST EXP 203
FIGURE 5.4: SCATTERPLOT OF XTRALOC AGAINST EXP 204

TABLE 1.1: COMPARISON OF CHARACTERISTICS OF EMPIRICAL APPROACHES 13
TABLE 2.1: WEYUKER'S AXIOMS 30
TABLE 2.2: MEASUREMENT SCALES, LEGITIMATE OPERATIONS AND EXAMPLES 44
TABLE 2.3: SUMMARY OF FAILINGS IN SOFTWARE ENGINEERING MEASUREMENT 51
TABLE 2.4: COMPARISON OF TRADITIONAL METRICS 75
TABLE 3.1: SOME SUMMARY STATISTICS FOR FUNCTIONS POINT/OBJECT DATA STUDY

(DERIVED FROM (CATHERWOOD, SOOD ET AL. 1997)) 87
TABLE 3.2: MORE OBJECT-ORIENTED METRICS 137

TABLE 4.1: IDEAL STANDARDS FOR METRICS DEVELOPMENT 142
TABLE 4.2: DEFECTS BY CLASSES 150
TABLE 4.3: DEFECT DENSITIES BY CLASSES 150
TABLE 4.4: VARIABLES COLLECTED 151
TABLE 4.5: SUMMARY STATISTICS OF VARIABLES COLLECTED 152
TABLE 4.6: RESULTS OF SPEARMAN RANK CORRELATION 155
TABLE 4.7: REGRESSION EQUATION AND R2/ADJUSTED R2 FOR DEFECT 157
TABLE 4.8: ADDING DIT TO THE REGRESSION EQUATION AND R2/ADJUSTED R2 FOR

DEFECT 159
TABLE 4.9: REGRESSION EQUATION AND R2/ADJUSTED R2 FOR LOC 160
TABLE 4.10: DEFINITIONS OF VARIABLES 165
TABLE 4.11: CORRELATIONS FOR LOC/PREDLOC 166
TABLE 4.12: CORRELATIONS FOR LLOC/LPRC 168
TABLE 4.13: CORRELATIONS qLOChIPRC 170
TABLE 4.14: CORRELATIONS DEFECTIPDFCTRND 175
TABLE 4.15: CORRELATIONS LD+/LP+ 176
TABLE 4.16: CORRELATIONS 4DFCT/ IPRD 178
TABLE 4.17: CHI-SQUARE TEST ACTUAL LOC AND PREDICTED LOC (RE-EXPRESSED AS

LOGS) 184
TABLE 4.18: CHI-SQUARE TEST ACTUAL DEFECT AND PREDICTED DEFECT (RE-

EXPRESSED AS LOGS) 185
TABLE 5.1: QUANTITATIVE DATA COLLECTED 194
TABLE 5.2: SUMMARY STATISTICS FOR DATA COLLECTED 194
TABLE 5.3: SUMMARY STATISTICS FOR INHERITANCE VERSION 195
TABLE 5.4: SUMMARY STATISTICS FOR FLAT VERSION 195
TABLE 5.5: TWO-SAMPLE T-TEST TIME TAKEN FOR INHERITANCE VERSION AGAINST

TIME TAKEN FOR FLAT VERSION 199
TABLE 5.6: MANN-WHITNEY U TEST FOR INHERITANCE VERSION AGAINST SIZE FOR

FLAT VERSION 201

Acknowledgements

Thanks first and foremost to Martin Shepperd for his help and support,
without which I would never have completed this thesis, and probably
wouldn't even have started it.

Next thanks to Dan Simpson, for his help in getting me this far.

Thanks to DEC, particularly David Knight and Peter Hogarth, for having
me here and for the financial support, and to Jacqui Holmes for making
life much easier than it would otherwise have been.

Thanks to Claire Joyce, who supervised the experiment and collected the
data.

Last but not least thanks to my fellow researchers, especially Chris
Schofield for answering various questions and going through all this with
me.

Finally a pox on Bill Gates and his organisation (yes, this thesis was
produced in spite of Microsoft Word).

Author's Declaration

The following publications are based on this thesis:

(i) Cartwright, M. H. and M. J. Shepperd. "Maintenance the Future of
Object-Orientation. " In Durham 95 Ninth European Workshop on
Software Maintenance in Durham. UK, 1995.

(ii) Cartwright, M and M. J. Shepperd. An Empirical Study of Object-
Oriented Metrics. Bournemouth University, 1997. Technical Report

(iii) Cartwright, M. and M. J. Shepperd. "Building Predictive Models from
Object-Oriented Metrics. " In Proc 8th European Software Control and
Metrics Conf. in Berlin, 1997.

i)li)ea Drxsnop

(iv) Cartwright, M. H. "An Empirical View of Inheritance. " Information
and Software Technology (accepted for publication) (1998)

1

Chapter 1 Introduction

Synopsis

This chapter describes the research problem undertaken by this doctoral research,

namely the need to redress the lack of empirical evidence regarding the

application of object-oriented (00) technology, with the emphasis on software

maintenance. Next the chapter explains the need for such an investigation.

Various 00 concepts are defined and the scope of the research delineated. The

research approach is outlined and the chapter concludes by summarising the

structure of the remainder of the thesis.

1.1 The Research Problem

Although the original ideas behind 00 technology derive from work on

the programming language Simula in the 1960s, it was not until the

1980s when the work was popularised and its use became more

widespread. Presently, C++ and Java are widely used and widely taught.

The 00 paradigm could be regarded as the orthodoxy of the late 1990s.

One reason for its pre-eminence is that proponents of the 00 paradigm

makes a number of claims as to its benefits. Those pertaining to

maintainabilty are considered here below.

The common thread running through many of the textbooks and papers

on 00 is that 00 leads to a simpler solution to a problem, or at least

more complex problems can be tackled than with more conventional

methods, because object-oriented methods provide ways of abstracting

out information leading to a system that is relatively easy to understand.

Wirfs-Brock, Wilkerson and Weiner (Wirfs-Brock, Wilkerson et al. 1990)

feel that the use of 00 methods leads to a software system which is more

2

maintainable and extensible. They claim that encapsulation and
information hiding constrain communication between objects (lower

coupling), enabling communication patterns between objects to be more

easily understood and so making it easier for the maintainer to locate

errors and to assess where side effects of changes could occur.

Rumbaugh et al. (Rumbaugh, Blaha et al. 1991) claim that the use of 00

analysis and design methods will lead to "better understanding of

requirements, cleaner designs, and more maintainable systems".

Encapsulation is again highlighted as a concept which promotes

maintainability by minimising interdependency between objects and

thus the effects that changing one object will have on others in the same

system.

Rao (Rao 1993) claims the 00 results in "improved programmer

productivity and ease of software maintenance" and considers

information hiding to be a factor which effects maintainability, since it

limits the effects of change.

Booch (Booch 1991) feels the use of object-oriented methods leads to

smaller systems where code is reused and also systems that have a

simpler structure. He feels that the process by which 00 software is

developed "reduces the risk of building complex software systems,
because they are designed to evolve incrementally from smaller systems

in which we already have confidence". In his earlier work, (Booch 1986)

he concludes that since 00 "captures a model of the real world" the

resulting software will be more understandable and maintainable.

However, we have concerns that these claims are largely unverified.
Unfortunately, we have comparatively little empirically based

knowledge of the behaviour of systems that have been implemented

3

using 00 technology, with a few notable exceptions such as (Wilde,

Matthews et al. 1993; Cartwright and Shepperd 1997b; Harrison, Counsell

et al. 1997; Hatton 1997). Thus as OOT (object-oriented technology), and

particularly the use of C++, continues to be heavily invested in, research
into better understanding, and prediction, of the behaviour of object-

oriented software is a matter of some urgency.

Despite the need for empirical research into large scale 00 systems, the

majority of object-oriented metrics research has concentrated upon
defining sets of structural metrics, (e. g. (Abreu and Carapuca 1994;

Chidamber and Kemerer 1994)). The structural metrics are measures of a

range of attributes, in the main pertaining to various architectural aspects

of 00 systems. Without empirical evidence it is not possible to say how

useful these measures are, particularly in the sense of being inputs to

prediction systems (e. g. of defects, reliability, cost etc.) that can yield

sufficiently accurate results to aid in the process of developing software.
It seems, therefore reasonable to conclude that there is a need to study 00

systems including those drawn from industry without restricting

ourselves to predefined sets of metrics, which may or may not be useful.
We can then make best use of the available data, rather than discarding

something potentially useful because it is not required or considered by a

particular metrics set.

The aims of this research are:

i) To investigate the impact of key 00 mechanisms, specifically
inheritance, on software maintenance.

ii) To examine previous work in the area of traditional,

complexity metrics development and identify any problems

with this approach. These problems could be used to derive

4

"lessons to be learned", which would be considered when

assessing the metrics proposed for object-oriented software.

iii) To consider the available 00 metrics in the light of what was

discovered from the above aims (examination of previous

work and the impact of inheritance on maintainability) and

ascertain which, if any, metrics fulfilled the criteria of being

easy to obtain and useful.

iv) To develop simple local prediction systems for size and

maintainabilty (in terms of defects) and assess their accuracy.

1.2 Scope and Definition

This research concentrates on the effects of object-oriented software

(designed using an object-oriented analysis and design method (OOAD)

and coded with an object-oriented programming language (OOPL)), upon

software maintenance. Here it is worth clarifying what is meant by

maintainability. In the literature dealing with 00 and maintenance, the

term is rarely clarified. From their context, it is sometimes taken to

mean corrective maintenance or more often, perfective maintenance

(Lientz and Swanson 1980). In terms of the case study, we are considering

corrective maintenance, the fixing of errors or defects. In the experiment

the maintenance changes are intended to be perfective (adding new

requirements) although it was not impossible that some corrective

maintenance might be required.

Figure 1.1 below shows a McCall inspired model (see van Vliet (1993),

one of many possible secondary references, since the original McCall

reference is somewhat obscure). This indicates the aspects of

5

maintainability with which this thesis is concerned. In the experiment
described in chapter 5, time to implement a change is used as a measure

of maintainability. The case study uses the number of defects (and defect

density) as a measure of correctness. Both maintainability and

correctness are affected by the understandability of the solution and

familiarity with the problem domain. This thesis is concerned only with

the former. The model shows three issues that impact upon

understandability. These are size, which has been measured in the case

study by LOC, STATES and EVENTS, amongst others; architectural and

structural mechanisms, which can be further categorised, and

documentation, which is outside the scope of this thesis. Inheritance,

coupling and cohesion are architectural / structural mechanisms. This

thesis is concerned with inheritance, measured by the Chidamber and
Kemerer (Chidamber and Kemerer (1994)) metrics, DIT and NOC (see

section 3.3.1 and chapter 5). The case study suggests then, a link between

inheritance and correctness, but of course, the findings of a case study

cannot be generalised (see section 1.3).

6

ffiietric:
TIME TO
IMPLEMEN

quality
factors:

ý...
maintainabilit

correctness

'metric:
#DEFECTS

LOC e ncs.
metrics: EVENTS DIT

STATES etc NOC

criteria:
size

inheritance
understandabilit, / architectural /
of solution -/ structural coupling

familiarity with

\documentation\cohesion

problem domain

Figure 1.1: Partial Quality Model for Maintainability

A case study and an experiment were chosen as research methods. Both

are based on C++ systems, since, at this time (of carrying out the

research) C++ is the most successful' and widely used 00 language for

industrial systems.

The object-oriented paradigm exhibits three characteristics recognised as

important to the development of good quality software, namely

encapsulation or information hiding, abstraction and modularity

' In terms of industrial interest, usage, number of systems developed and variety of
application areas. This was indicated by a small survey carried out by the author in 1992.
There are journals either dedicated to or giving prominent coverage to C++, including
some aimed at a more mass market as opposed to special interest groups.

7

((Pressman 1992)). (Booch 1991) adds others to this list - hierarchy, typing,

concurrency and persistence.

As mentioned in section 1.1,00 concepts were first included in the

language Simula. This language never achieved the popularity of

subsequent OOPLs such as Smalltalk, C++, and more recently, Java.

Object-oriented analysis and design (OOAD) methods have developed

from object-oriented programming languages and are therefore very

different from traditional methods in terms of both the way that

problems are decomposed and in the architecture of any system

developed using an 00 method. However, there is no universal

agreement on what features an object-oriented language should include,

what exactly each concept should entail or how it should be used. Thus,

since what constitutes 00 programming is interpreted differently among

different practitioners (Rentsch 1982; Booch 1991), OOADs have

developed different ideas and emphasise different aspects of 00, and 00

terminology is not standardised across programming languages or

development methods.

(Booch 1991) feels that the object-oriented approach is more than a

software development method. In addition to programming languages

and analysis and design methods, 00 is applicable to user interfaces,

databases, knowledge bases and computer architecture and as such offers

a more integrated approach to system design.

Some of the terms used in this report are explained. Due to the lack of

uniformity in the terms used to describe concepts, an effort will be made

to give commonly used synonyms, which, throughout the remainder of

the report, may be used interchangeably.

8

(i) Object

An object has identity (data) and behaviour (operations.) It may be

concrete or conceptual. It may represent an entity in the real world, such

as a device, something which exists only in the context of the system, a

role played by a person and so on. Booch (Booch 1991) defines an object

as "a tangible entity that exhibits some well defined behavior".

(ii) Class

A class is a collection of objects sharing a common data structure and

behaviour. Each object is said to be an instance of the class. The data or

attributes for all objects in a class are common but the specific values may

differ.

(iii) Operation

This term is used interchangeably with method An operation is simply

an action which an object may perform and is invoked using a message.

(iv) Abstraction

This is a way of dealing with complexity, where essentially, a simplified

view of a problem is created, with unnecessary details suppressed. Booch

(Booch 1991)defines abstraction in the context of 00 thus: " An

abstraction denotes the essential characteristics of an object that

distinguishes it from all other kinds of objects and thus provide crisply

defined conceptual boundaries, relative to the perspective of the user".

Abstraction allows the separation of an object's behaviour or what it does

from its implementation or how it does something.

9

(v) Encapsulation

This is the grouping of data and operations which affect the data into an

object. The information encapsulated may be hidden from external

view. The external view of an object, or its public face consists of what it

offers or can do, whereas the internal view or private face is concerned

with the implementation or how things are done. This is known as
information hiding.

(vi) Inheritance

This is a further means of classification. Objects may be grouped into

classes, classes may be arranged into an inheritance hierarchy, whereby

new classes may be created as refinements of existing classes. In other

words inheritance provides a mechanism for the creation of a taxonomy

of classes, where classes inherit behaviour from others and refine or add

something more to form a unique class.
Inheritance is usually taken to mean that each class inherits from only

one other, unless specifically defined as multiple inheritance.

(vii) Sub and Superclasses

These arise out of the use of inheritance. A subclass inherits properties
from a superclass and refines them i. e. adds its own behaviour.

(viii) Polymorphism

This abstraction allows an object to send out a message without needing
to specify which object should implement it. Two or more objects may be

capable of responding to the message, depending upon the data or

parameters supplied. For example, an object can send out a print

10

message, without concerning itself with deciding which object should
carry out this task. There will be two or more objects (normally related by

inheritance) which can implement the command, each in its own way,
appropriate to a particular type of document. Thus when the client sends

out a print message along with information that, for example, it is a

graphics file, and its required destination (printer or screen), the

appropriate object can respond and implement the method to print that
document. Another example is the "+" operator, it will be implemented
in different ways according to what is being added. This is also known as

overloading. There are various classifications of polymorphism. The

interested reader is referred to (Booch 1994).

It is also necessary to consider what is meant by the term metric. In this

thesis it is used as a generic term for both measurement and prediction

system, applied to software. It is used when it is not necessary to
distinguish between these more specific terms, where the particular term

intended is obvious from the context, or where the work of others is

being discussed and the work in question does not distinguish between

the terms measurement or prediction system. The metric may be

derived from code, design or some other artefact or process arising from

the activity of software development. A measure is taken to mean a

measurement taken from some software artefact (e. g. the number of

classes taken from design documentation) or some combination of

measures used together, perhaps as a proxy for a less tangible concept. (e. g.

the number of classes + the number of couplings between classes) being

used as a proxy measure for the complexity of a design. A prediction

system uses measurements in some way to provide a prediction about

some attribute which at that time is unmeasurable (e. g. using the

measure of the number of methods in a design to predict the number of
lines of code in the finished system).

11

So, to summarise, this thesis is concerned with the investigation of fully

00 systems, as defined above, and excludes what is sometimes referred to

as object based systems such as Ada 83. In practice the focus is C++ which
is currently the most widely adopted 00 programming language.

1.3 Research Methodology

This section will briefly define and discuss the approach taken

1)case study

The more traditional area of application for this research method
is in the field of social science research. It is, however used in

object-oriented systems research, examples of which include

(Booch 1986; Mancl and Havanas 1990; de Champeaux, Anderson

et al. 1992; Wilde, Matthews et al. 1993; Capper, Colgate et al. 1994;

Pomberger and Pree 1994).

The working definition used in this thesis is taken from Yin (Yin

1994):

A case study is an empirical enquiry that investigates a

contemporary phenomenon within its real-life context, especially

when the boundaries between phenomenon and context are not

clearly evident. This suggests that contextual conditions may be

relevant to the investigation. Case studies are also likely to

encounter situations where there are more variables of interest

than there are datapoints. Case studies may also utilise multiple

sources of evidence (and if so data should triangulate).

12

As with any approach, case study has its strengths and weaknesses.
It facilitates the study of a phenomenon in its real context, playing
down the need for distinction between the boundaries of

phenomenon and context, but sacrifices control. Pre-established

theories and propositions can guide data collection and analysis,

and it is flexible enough not to exclude the unexpected. However,

a case study suffers in its potential for generalisation, in that the

results from one case can not necessarily be generalised to another

(similar) situation. Yin (Yin 1994) suggests that "case studies, like

experiments, are generalizable to theoretical propositions and not

to populations or universes. " In this thesis, the case study will be

used to formulate a hypothesis or hypotheses, which can be

further tested by experimentation and analysis. Yin (Yin 1993)

describes this approach as an exploratory case study. Ideally a

number of case studies could be used to build up a body of

evidence in support of a particular contention. In the absence of

further industrial case studies during the time available, an

experiment, also looking at object-oriented software maintenance

was conducted.

2)experiment

An experiment answers the same type of research question,

namely "how? " and "why? ", as a case study (Yin 1994), and can

thus be complementary. It allows the researcher to isolate the

phenomena from its context and thus is able to filter out

extraneous factors to some extent. This control is gained at the

expense of reality. A laboratory setting will be artificial and what
happens in the lab may not happen in the real life context. The

most typical experiment, and the type used in this research is a

factorial design where the independent variables are varied

13

systematically and the dependent variables are quantitative,

objective measures (Adelman 1991).

Factor Case study Experiment

scale Large phenomena small well defined events

No. of cases few many

control little much

inference local generalizable if replicated

setting In situ laboratory

Table 1.1: Comparison of characteristics of empirical approaches

1.4 Structure of the Thesis

Chapter two provides a review of the development of software metrics

since the earliest reported work in the 1950s. It traces the progress, and

sometimes lack of it, over the subsequent four decades. It considers the

two main approaches to the development and validation of metrics, the

axiomatic approach and the empirical approach and also the application

of measurement theory to the development and validation of metrics.
From this history and critique, five major problems and thus lessons to
be learned are derived.

Chapter three considers many of the metrics proposed for object-oriented

systems. The metrics fall into two categories, traditional metrics, that is

metrics already proposed for structured systems, and new metrics
developed specifically for object-oriented systems. These are examined in

the light of the five lessons to be learned (chapter 2), to give an

assessment of the current state of object-oriented software metrics.

14

Chapter four describes the case study carried out on a large industrial

object-oriented telecommunications system. The aims of the case study
are given. From the analysis a hypothesis is drawn that classes that are
part of an inheritance hierarchy contain a higher density of defects than

classes that are not involved in an inheritance relationship. The case
study is also used to demonstrate that simple local prediction systems can
be derived easily, without the need to use predefined metrics which are

sometimes complicated, difficult to collect at design time or part of a large

suite of similar metrics. Measures collected are defined and the process
by which the prediction systems are derived and tested is described and

the results presented.

Chapter five describes the experiment carried out to investigate the

impact of inheritance on maintenance effort. The experiment used is a

partial replication of an experiment designed and implemented by John

Daly for his doctoral thesis at the University of Strathclyde (Daly 1996).

The hypotheses under test are presented and tested.

Chapter six is the final chapter with the summary and conclusions to be

drawn from the research program. It also outlines the weaknesses of the

research and suggests further research that could be carried out to build

up a body of empirical evidence and to complement the work carried out

so far.

1.5 Background Knowledge

The reader is expected to have some knowledge of object-oriented
concepts, although practical experience is not necessary. Readers are
referred to the following texts on object-oriented analysis and design:
(Wirfs-Brock, Wilkerson et al. 1990; Shlaer and Mellor 1992). Shlaer and

15

Mellor describes the analysis and design method used in the industrial

case study described in chapter 4. Wirfs-Brock et al provides a more
"pure" introduction to object-orientation, having evolved from the

experience of Smalltalk designers, as opposed to the former method,

which developed from a structured approach. The reader is provided

with the necessary aspects of measurement theory in sections 2.4.1.1 and
2.4.1.2. Chapters 4 and 5 require a basic knowledge of statistics for

exploratory data analysis and hypothesis testing. One recommended
book is Tukey's book on exploratory data analysis (Tukey 1977), but any
book covering hypothesis testing and non parametric statistics should

suffice, since the tests and plots employed are in common use.

1.6 Reports resulting from this research

The following reports have been produced:

(i) Cartwright, M. H. and M. J. Shepperd. "Maintenance the Future of
Object-Orientation. " In Durham 95 Ninth European Workshop on
Software Maintenance in Durham. UK. 1995.

(ii) Cartwright, M and M. J. Shepperd. An Empirical Study of Object-
Oriented Metrics. Bournemouth University, 1997. Technical Report

(iii) Cartwright, M. and M. J. Shepperd. "Building Predictive Models
from Object-Oriented Metrics. " In Proc 8th European Software Control
and Metrics Conf. in Berlin. 1997.

(iv) Cartwright, M. H. "An Empirical View of Inheritance. " Information
and Software Technology (accepted for publication) (1998).

Also presentations at
Durham '95 (i);

16

BMW '96 Bournemouth Metrics Workshop, 18th-19th April 1996;
ESCOM 97 (ii);

EASE '98 (iv).

1.7 Summary

Empirical research on the application of object-oriented development has

lagged far behind the uptake of object-oriented methods and languages.

This thesis aims to provide empirical evidence on the impact of object-

orientation on software maintenance. Software metrics are an important

resource for assessing attributes such as maintenance effort and related

attributes such as software quality. Therefore in addition to the empirical

evidence provided via the case study and the experiment, an extensive

review of metrics for object-oriented systems is given. The metrics

considered are maintenance related in that they purport to capture or

predict attributes directly or indirectly related to software maintenance.

17

Chapter 2 The History of Software Metrics in 57 Pages.

Synopsis

We can all learn from the mistakes of the past. Software metrics proves

no exception. This chapter considers the development of software metrics,

how researchers have identified problems in metrics and the way in

which metrics (both measures and prediction systems) were developed,

and how research in other fields can be utilised to improve the

development and validation process.

2.1 Introduction

The history of software metrics is a much covered topic almost any book

or paper in this area will include some sort of description, critique or

overview (see (Pressman 1992; Shepperd and Ince 1993), for examples).
In this thesis it is included for the following reason. The major
developments that have occurred in the field of software will

undoubtedly have influenced the way in which software metrics

applicable to the object-oriented paradigm have so far developed and will

continue to be developed. Thus, background information on the past
development of software metrics will provide a context in which current

research, development and practice can be analysed and discussed.

Therefore, this chapter does not contain an exhaustive list of software

metrics over the last three decades, but takes the form of a critique of the

major developments and themes of software metrics to date, thus

providing a framework for the examination and critique of object-

oriented software metrics which began to appear in the early 1990's.

The need for software engineering techniques, including measurement,

in order to plan and control software projects, especially with regard to

cost was recognised as far back as 1956, with the SAGE air defence system,

18

which was probably the first large (around 500,000 LOC) system to be
developed and was also probably one of the first to require teams of

programmers as opposed to individuals (Benington 1956; Benington
1983). However, the techniques Benington describes were not taken up
by his contemporaries; as he notes, there was no attempt by the

computing industry to apply engineering management, despite its

success in the SAGE project, possibly because as Benington notes, at the

time programmers were regarded as "different" and unable to work

under such control. Another notable point in this paper is the statement
"the time and cost required to prepare a system program are comparable

with the time and cost of building the computer itself. " This seems to be

ahead of its time - it was not until the late 1960s/early 1970s that software
development costs surpassed hardware costs, making the planning,

control and cost of software development into a major issue.

Section 2.2 considers the main themes and influential metrics in the

1970's and early 1980's. Section 2.3 examines approaches to validation.

Section 2.4 discusses the emergence of the application of classical

measurement theory to software metrics, in particular the work of

Fenton and Kitchenham published in 1991. In section 2.5 we revisit the

previous developments covered in 2.1 and discuss them in the light of

measurement theory and prediction systems covered in section 2.4. The

focus is on structural metrics - this mirrors the state of object-oriented

metrics, which have also tended to be mainly structural/ complexity

measures. However, not all metrics fall completely into popular
categories such as structural/complexity, or cost/effort. See (Fenton and
Pfleeger 1996) for a breakdown of areas which go under the banner of

software metrics. So although some of the metrics covered (notably
Function Points and Bang) are usually considered as cost/effort metrics
(prediction systems), they are included here because they require some

19

structural knowledge as input to the model and thus in a sense, can be

considered structural metrics.

2.2 Structural Metrics

Structural metrics are those which measure some aspect of software, such

as coupling between components, for example, but are more than simple

counts, such as LOC. Structural metrics do not include measures of

performance. Structural measures would then normally be used to make

some prediction or inference regarding another attribute, such as quality

or size. Traditional structural metrics can be categorised in a number of

ways, although there will be an inevitable overlap in some cases. The

division of this section reflects the concerns of a maturing development

process. It can be seen the earlier metrics concentrate on code complexity,
followed by design metrics a few years later, with metrics for database

systems appearing relatively recently.

2.2.1 Complexity Metrics

As stated above, the need to plan and control software development was

recognised as long ago as the 1950s by Benington (Benington 1956;
Benington 1983). This opinion did not appear to be widely shared, since
the first published attempt at measuring software (structural as opposed
to cost estimation or performance) did not appear until 1972. Halstead's

Software Physics (Halstead 1972), later Halstead's Software Science

(Halstead 1977) was an early attempt to measure code complexity and

generated a great deal of interest. It was the first attempt to draw together

a variety of factors thought to affect code complexity in order to provide a
framework for software measurement to predict other, more useful,

measures such as effort and time. Halstead postulated the idea that, as in

20

other disciplines, such as physics, there were fundamental laws that

would hold for software, whatever the environment or development

process.

There is little doubt of Halstead's influence on the development of

software metrics, since the metrics still continue to be cited and used,

despite criticism of its underlying theory and the empirical evidence

offered as support (Hamer and Frewin 1982; Shepperd and Ince 1993). Its

value lies in the fact it was the first published attempt to provide a
framework for measuring software, as opposed to a simple measure such

as LOC and the first metric to attempt to measure or quantify

characteristics "scientifically". ' Its legacy is the drive to quantify

complexity and thus create a generally applicable complexity metric.

Halstead's Software Science was not only welcomed, it also shaped

subsequent software metrics research. For the rest of the decade, and
indeed into the next, research effort concentrated entirely on code

complexity metrics which were implicitly assumed to be language and

environment independent. This was not the case3, however, which

contributed to the list of problems with code metrics. Complexity was

perceived as the key to predicting such factors as maintainability, effort,
development costs etc.

The simplest metric, LOC has tended to be rejected, partly because what

constitutes a line of code can vary with programming style (see (Software

2 Although Benington's original paper of 1956 predates Haltead's publication by almost
twenty years, it was not widely read (see (Benington 1983)), plus it does not give
sufficient details of how to use measurements to make a prediction to allow the reader to
apply it in practice.
3 An example of metrics not being language and environment independent is that both
Software Science and Cyclomatic Complexity paid little heed to modulariztion of
software. SS assumes systems to consist of one module (Hamer and Frewin 1982) and CC
tends to increase with modularization (Shepperd 1988).

21

Metrics Definition Working Group 1991), which is just one of a number

of publications), and partly because the metric is regarded as too

simplistic to characterise something as complex as complexity.
However, the concept of complexity remains at best, loosely defined. In

keeping with the ad hoc approach to metrics development in the 1970's,

measures were suggested without a clear idea of what was being

measured, how the measures were to be used, what they were to predict

or what to do with such predictions.

One reason for this rather casual approach is the rather hazy concept of

complexity. At first glance its meaning may seem straight forward, but it

becomes obvious that it is not. First there are different types of

complexity and second there are many issues, many of which are human

factors, which affect the perception of complexity. As we well know,

where human factors become involved things become somewhat more

complicated. It is thus debatable whether complexity is actually a

property of the software itself or whether it is dependent upon the

interaction of individuals, the task they are performing and the software

product upon which they are performing it.

From the literature it can be seen that there have been attempts to

categorise the different types of complexity such as computational (based

on the difficulties in performing the various mathematical computations
in an algorithm) and psychological or conceptual, which considers the

difficulties in the interaction between programmer and software.
However, these do little to clarify the situation, since intuitively,

software complexity must be an interaction of the two, and the

classification does little to determine to what extent either affects the

development or maintenance of a program.

22

We are left with a situation as follows. Software complexity cannot easily
be formally defined, if at all. It means different things to different people.
A variety of factors are involved, many of them human factors. Even if

we could agree upon the factors involved and upon an acceptable
definition, such intangible characteristics would be difficult, if not

impossible, to capture using measurement. Complexity in itself seems to

be of little use. We would then need to know how complexity affects, for

example, maintainability, and work out some prediction system.

Thus complexity metrics are attempting to capture an intangible concept

based on various factors, many of which (particularly those involving

cognition) cannot be satisfactorily measured. Without a definition of

what we are trying to capture, we cannot validate a measure or assess its

usefulness.

Notwithstanding the problems outlined above, the goal of software

metrics research in the 1970's (and beyond) was to measure complexity.

Another influential, widely cited and used code complexity metric was

McCabe's Cyclomatic Complexity (McCabe 1976). Here programs are

represented as directed graphs showing executable statements as nodes

and control flow as the edges between them. The complexity works out

to be the number of decisions plus one. The result is intended to provide

an upper bound beyond which subdivision of the module should occur,

and to indicate the amount of testing effort needed. Cyclomatic

Complexity has subsequently been used to predict other complexity

related features (see (Curtis, Sheppard et al. 1979; Shepperd 1988; Gill and

Kemerer 1991)).

2.2.2 Design Metrics

23

The realisation that taking measurements earlier in the development

process would be of more benefit than code metrics in the planning and

control of a project came about in the very late 1970's / early 1980's. The

first published attempt at system design metrics seems to be Yin and
Winchester's complexity metric (Yin and Winchester 1978). This

considers only the complexity of the interconnections between modules
in the design by treating the module hierarchy chart as a graph and

representing complexity as the extent to which it departs from a tree

structure. Similar is Benyon-Tinker's graph-based metric (Benyon-

Tinker 1979) which also represents modules as nodes and calls as edges.
Here a module will be considered only once by the metric, however often
it is invoked, therefore, the representation will always be a pure tree.

Complexity is instead regarded as a function of the length and breadth of

the tree.

Another attempt is Yau and Collofello's system stability metric (Yau and
Collofello 1980), where design's "resistance to change" is assessed. In a

poor design a simple change will ripple through the design whereas a

good design will contain the change within the module. This approach

was flawed, since it cannot be reliably calculated purely from design

information. Thus, the publication of Henry and Kafura's paper on

system design (Henry and Kafura 1981a), based on Henry's doctoral thesis,

completed 1979, could be regarded as the first complete design metric in

that it cdnsidered both the internal complexity of a module as well as that

of connections between modules.

Henry and Kafura's Information Flow metric is based on the idea that a

good design should be modular with little coupling between modules, an

idea adapted for software architecture by (Stevens, Myers et al. 1974) from

the work of (Alexander 1964). The complexity of a module is calculated

from the number of information flows entering (fanin) and leaving

24

(fanout) a module (multiplied together and then squared) multiplied by

the internal complexity, measured in LOC. This is expressed as:

length * (fi * fo)2.

An obvious drawback is that if applied at the design stage actual LOC will

not be available'. The authors offer some results from an empirical

validation of industrial software, using a collection of changes made to

the UNIX system to determine whether the metric can predict which

procedures are likely to need changes made to them. The authors

present the results of a correlation between changes and high procedure
(module) complexity as measured by the metric. The results show a high

correlation between the metric and changes (r=0.94), which improves

when the length parameter is removed (r=0.98). Various uses were

suggested : identifying outliers (modules of unusually high complexity)

and system "hot spots" where an unusual amount of "traffic" occurs.
Increases in complexity could indicate a missing level of abstraction.
Thus, the metric could be used to improve the design, with the

subsequent benefits being, of course, the software would be easier to

implement, test and maintain.

Post Henry and Kafura came further information flow metrics, IF4

(Shepperd 1989; Shepperd 1990; Shepperd and Ince 1993) and Card and
Agresti's design complexity measures (Card and Agresti 1988). IF4 is

based on Henry and Kafura's measure, but the definitions of information

flow are modified in accordance with criticisms of Henry and Kafura's

original metric (Kitchenham 1988; Ince and Shepperd 1989; Shepperd
1990a). Card and Agresti propose separate metrics for structural and
internal module complexity. Fanin was discarded since it was not so

In practice it is often omitted. Its contribution is questionable - see section 2.5.2.3 .

25

significant an indicator as fanout and also since counting just one way
(i. e. fanin or fanout) ensures that a connection between two modules is

not double counted. The significance of inter module (structural) metrics
is supported by Troy and Zweben's study of 21 design measures (Troy and
Zweben 1981), relating to five categories, including coupling. It was

concluded that coupling had the most influence on error counts.

2.2.3 Specification Metrics

Albrecht (Albrecht and Gaffney 1983), proposed a metric, (referred to as
Function Points or simply FP) which can be extracted from a

specification. It is intended to be used to predict development effort, as

an alternative to predicting LOC. The different functions described are
identified and then weighted according to the complexity of the function

type. The advantages are obvious - the earlier feedback is made, the

better. The model has been well received and successfully used in

industry (Behrens 1983; Kemerer 1987). It has been subject to

modification (Symons 1988) for use with entity-relationship models and

for use with real-time systems (Jones 1987). '

Another specification metric is DeMarco's Bang metric (DeMarco 1982)

which utilises such specification notations as data flow diagrams, entity-

relationship diagrams and state transition diagrams. The systems are

classified as function strong (a count based on low level data flow

diagram bubbles or processes) or data strong (derived from the number of

entities in the entity-relationship diagram), or a hybrid. The metric can

be used to produce a product size estimate. There is little published work

validating the metric, although one by (Rask, Laamanen et al. 1993)

suggests that Bang offers advantages over Albrecht's Function Points.

s This point seems to have been retracted (verbally during discussion at meetings).

26

2.2.4 Database Metrics

The metrics considered so far are largely functional metrics. In other

words they consider function or processing rather than data. This reflects

metrics research as a whole. The focus has been almost exclusively on
functional systems, with few database metrics being proposed. The

earliest seems to be (Geritsen, Morgan et al. 1977) which considers both

network and relational databases. Function points (Albrecht and Gaffney

1983) consider both internal data and exported/shared data. Mk II

function points (Symons 1991) uses entity-relationship models to derive

counts. The Bang metric (DeMarco 1982) also uses entity-relationship

models for "data strong" systems. Other work has been carried out by

(MacDonnell 1992; MacDonnell 1993), who suggests a large number of

measures which can be extracted automatically from the various models

used to describe a database system. Later work with Shepperd

(MacDonnell, Shepperd et al. 1997) concentrates on a smaller number of

measures taken from the entity-relationship model and the functional

model in order to make a size prediction. Another study (Gray, Carey et

al. 1991) suggests database design metrics, emphasising the need to be able

to automatically extract them using CASE tools. Among the metrics

suggested is an extension to IF4 (Shepperd 1990b), called IF4+, and an

entity-relationship or ER metric.

2.2.5 Summary

During the 1970's and early 1980's, many software metrics were proposed.
The main area of interest was software complexity, because of its effects

on activities such as maintainability and testing. There was, however no

27

general agreement on what constituted complexity, or how it could be

measured.

The metrics examined in this section were all subject to attempts at
"validation". Many papers have been published in support of, for

example, Software Science, the authors claiming they have evidence to
back this up. The high correlation found between Software Science and

actual data have tended to be the result of misuse of, or incorrectly

applied, statistics. For example, the study by Funami and Halstead

(Funami and Halstead 1976), used data containing errors and the

calculations of the parameters n, and n2 are unreliable and thus so are

estimates of effort (E) on which they depend (see (Hamer and Frewin

1982)). Ottenstein's validation (Ottenstein 1979), used the same data.

Accurate calculations were produced (which varied considerably from

those produced by Funami and Halstead), but since the estimates did not

correspond well with the actual counts, it has not proved possible to

reproduce the desired result without some sort of manipulation. Hamer

and Frewin (Hamer and Frewin 1982)), reasonably state that "the claimed

experimental support is largely illusory. ". The results cannot be relied

upon since even when calculations are performed on the same data,

different results can occur, depending upon the interpretation.

Additionally, a truly independent validation needs to use a different data

set to that from which the metric is derived. Hamer and Frewin found

that when a different data set was used for validation, the relationship
between V (volume) and bugs was non-linear (a linear relationship was

observed by Funami and Halstead) and so a high correlation coefficient
does not necessarily mean that the number of bugs will rise in direct

proportion to size (as represented by volume, V). However, this desire

to validate the metric by whatever means should not be surprising. An

intuitively pleasing metric, both easily collectable and accurate is

something that developers and project managers would naturally crave.

28

However, metrics need to be rigorously examined and validated (with
due regard to measurement theory, thus ensuring correct use of relevant
statistics), and, if they do not stand up to this validation, discarded. This
is the attitude which emerged in the mid to late 1980's, where the widely
cited and used metrics of the 1970's/early 1980's were critically examined
and, in many cases, debunked.

The lack of definition, the lack of rigour in deriving metrics and indeed

the lack of guidance on how such measures should be used, were typical

of an era of confusion. Those who proposed metrics realised the need for

measurement in the software development process, but not of the need
for definition and validation, so that practitioners could understand

what characteristics were being measured, how this was to be done, and
have a reasonable degree of certainty that the metric actually did what

was claimed.

It can be seen that validity is central to software metrics. The next section

(2.3) will consider the issue in some depth. Two approaches to validating

metrics will be considered, as will their effectiveness when used in

isolation and as complementary techniques. Section 2.4 will consider the

application of measurement theory to software metrics and validation.

2.3 Validating Metrics

The mid to late 1980's saw moves to improve techniques for validating

metrics. Two strands emerged, the axiomatic approach and the empirical

approach. Although evidence had been offered in support of metrics
before, the approach which emerged at this time was to more critically

validate existing metrics using either a more formal technique, axiomatic

validation, as explained in section 2.3.1, or using suitable statistical

29

techniques (see section 2.3.2), which addressed the usefulness of software

metrics. In this context "critically validate" means to provide a
demonstration that the metrics worked (i. e. captured what they

purported to or gave accurate predictions). Purely speculative work was

no longer sufficient. The critical eye cast over metrics that had been

accepted almost without question was long overdue. However, metrics
development, validation and usage still suffered from confusion, which

was not addressed.

2.3.1 The Axiomatic Approach

The axiomatic approach was a more formal6 way of validating a metric

than the empirical approach. It does not deal with the usefulness of the

metric in practice, but whether a metric behaves as required in theory. It

is a deductive way of reasoning i. e. the metric must be formally defined,

and then judged against a set of axioms which describe the desired

properties of the metric, which allows us to "see" how the metric would

behave in practice. This is the opposite to the empirical approach which

is inductive (the results of applying the metric to data are analysed to

deduce the effectiveness /validity of the metric). The axiomatic approach

allows metrics to be validated without collecting data, which can be

difficult and is invariably time consuming, thus it allows for a "quick and

easy" validation of a proposed metric. However, the approach has

drawbacks which detract from the intuitively appealing notion of

proving formally and mathematically whether a metric is or is not valid.

Firstly there is the problem of the definition of an axiom set. It is a task

requiring rather more skill than proposing software metrics. Defining

axioms requires some appreciation of measurement theory. Early work

6 Here formal means that the metrics are tested using a set of rules (axioms) and their
compliance or otherwise to these rules can be demonstrated mathematically.

30

in the area was carried out by Prather, (Prather 1984), who proposed a set

of three axioms and applied them to complexity measures. Criticism of

the work centres on the weakness of the axioms, since they "validate"

measures which are not actually acceptable (Weyuker 1988; Shepperd

1992) as can be seen from that fact that McCabe's Cyclomatic measure

satisfies all three axioms, despite its weaknesses (see (Prather 1984)).

More extensively quoted, and used to validate software metrics, are

Weyuker's axioms (Weyuker 1988), a set of nine axioms for the

evaluation of complexity measures. These are reproduced in table 2.1

below, where M is a metric applied to a program, and c is complexity.

PROPERTY NUMBER:

I there are programs P and Q for which M(P)x M(Q)

2 if c is a non-negative number, then there are only finitely

many distinct programs P for which M(P)=c

3 there are distinct programs P and Q for which M(P)=M(Q)

4 there are functionally equivalent programs P and Q for which

M(P)m M(Q)

5 for any program bodies P and Q, we have M(P)<_M(P; Q) and

M(Q)<_M(P; Q)

6 there exist program bodies P, Q, and R such that M(P)=M(Q)

and M(P; R)* M(Q; R)

7 there are program bodies P and Q such that Q is formed by

permuting the order of the statements of P and M(P)x M(Q)

8 if P is a renaming of Q then M(P)=M(Q)

9 there exist program bodies P and Q such that

M(P)+M(Q)<M(P; Q)

Table 2.1: Weyuker's Axioms

This work has also been criticised since whereas Prather's axioms accept

weak metrics, Weyuker's axioms reject reasonable metrics (Shepperd

1992; Zuse 1992; Fenton and Pfleeger 1996). Additionally the axioms have

been shown to be inconsistent. Zuse, for example has proved, using

31

representation theory', that properties 5 and 6 are contradictory. Property

5 implies that size is a major factor in complexity, since a program cannot
(according to this) reduce complexity by adding code (i. e. must be

monotonistic). It reflects the received wisdom that we can understand

smaller programs better than large ones because we can see more of them

at once, but ignores comprehensibility as a factor (i. e. the lower the

comprehensibility the higher the complexity). However, property 6 states

that two programs of equal complexity can each be concatenated to a third

program, the resulting two programs having differing complexities. This

axiom covers comprehensibility and not size. Thus the two contradictory

views of complexity lead to a situation where no single measure can

satisfy both, in other words the notions of low comprehensibility and size

embodied in the properties cannot be captured in one measure since they

contradict each other. Zuse also shows that the two properties require

different measurement scales8, ratio for property 5 but explicitly not for

property 6. This has been disputed by Weyuker, amongst others

(Morasca, Briand et al. 1997), but the weight of opinion tends to back

Zuse's criticisms (Kitchenham, Pfleeger et al. 1997).

Aside from the issue of flaws in an axiom set, the problem is that the

"desirable" properties of a metric are subjective. What is desirable is

dependent on what the author of the set considers to be so, not upon

universal truths9. Weyuker did not claim that the properties she

proposed were sufficient as they stand. However, the likelihood of

evolving a complete and generally acceptable axiom set for validating

complexity metrics is no more likely than arriving upon a generally

Representation theory is discussed in section 2.4.1.1.
s Measurement scales are considered in section 2.4.1.2.

The notion of universal truths or laws has plagued software metrics development since
Halstead. Software Science was based upon the notion that there were fundamental
truths/laws about software that would hold, independent of environment, application
area etc.

32

acceptable definition of software complexity itself. As discussed above,
differing views on complexity can lead to contradictory statements.

Secondly the axiomatic approach cannot demonstrate the usefulness of a

metric, only that the model meets certain criteria, thus is inadequate

when used in isolation. The issue of usefulness is separate from that of

validity, to be deduced from empirical analysis, which must therefore be

considered at least as a complementary technique. The usefulness of a

metric is as much an issue as its validity (in the sense that the metric

represents what it claims to and does not violate mathematical rules).
Usefulness can only be assessed via an empirical study since this is the

only technique to try to apply metrics in practice. The formal/ axiomatic

approach can represent the "real world" mathematically and thus can

model what should happen in predefined circumstances. It cannot, as

empirical observation can, discover unforeseen phenomena nor assess
the practicality and ease of applying the measures.

To summarise: the axiomatic approach introduces pleasing formality

into software metrics validation, enabling us to ascertain the likely

behaviour of a metric without having to apply it. It deals with general

principles, unlike the empirical approach it cannot assess the usefulness

of the said metric nor indicate whether or not it is applicable in practice
(i. e. the axiomatic approach is deductive not inductive); in addition the

axioms sets available (Prather's and Weyuker's) have drawbacks as
discussed above, neither able to strike the right balance, either accepting
weak measures (Prather) or rejecting reasonable metrics (Weyuker).

2.3.2 The Empirical Approach

33

The empirical approach requires data to be collected in order to validate a
metric. Therefore it has the drawback of being a more time consuming

approach to metrics validation than the use of axioms. However, it has a

number of advantages. It allows the investigator to observe how things
behave in reality, which of course can be rather different from how they

"should" behave, software development being a cerebral, human centred

activity, thus not conforming to mathematical or physical rules as do

other activities, e. g. structural engineering. By collecting data and

analysing it in order to discover the patterns within it, inferences may be

drawn about what is occurring during the software development process,

the effects on program structure on error rates and maintenance

activities. "

The empirical approach to metrics validation can take the form of

industrial data collection or of controlled experiments. Both of these

have been used in order to validate metrics. Both suffer from some
inadequacy, in the former, the difficulty in replication of results, and in

the latter the difficulty of simulating "real" software development under

experimental conditions. Further problems with empirical validation

occur when the investigation is unfocused or ill defined. It is important

to know what you are looking for, and to define what measurements are
being taken and how (counting rules - so that measurements are taken

consistently). Where such clarity is lacking, spurious correlations can be

mistaken as meaningful. An example is Software Science, where

measurements were taken to represent complexity, in order to then

predict effort, but the metric was also used in other studies, without

modification, to predict other complexity related characteristics such as

quality and defects (e. g. (Fitzimmons 1978)). Such a lack of clarity and

10 In others words it is an open systems approach, which admits the possibility of
external, unknown events. The opposite, closed system is represented by the formal

34

focus leads to confusion regarding the actual result, where the direct

measurement taken can be used to represent another characteristic, or

whether is should be used as an input to an equation (see section 2.4

regarding the confusion between measures and predictions systems).

An empirical study is the best technique to assess the usefulness of a

metric (axiomatic techniques can't and intuition can't be proved), but this

does not happen automatically. The metrics need to be tested by

replication, using appropriate statistical tests, with actual data, in order to

show accuracy and statistical significance.

Further, there are problems of replication. This is a problem particularly

apparent in industrial-based studies. The cost and effort involved in

developing software and also in collecting metrics, mean that replicating

the study is not an option. Thus although a study may show a metric to

work in one situation, it will not necessarily work as well, or at all in

another situation, where, for example, the environment is different.

Therefore, the effects of such factors cannot be assessed empirically in an

industrial setting, since companies will not, understandably, commit

resources to, for example, developing a product in two different ways to

assess the effect of design method or language upon prediction systems.

This can be done in a laboratory based experiment, but still with practical

difficulties - if the products were developed simultaneously, the teams

would differ in terms of experience, if consecutively, the team would
have gained in domain knowledge from the first project, and so on. This

can be balanced by assessing the experience of team members and using

this knowledge in team selection, but other factors cannot be overcome,

such as the size and nature of the system under development (many

approach, since all events must be known and defined within the system in order for
validation to take place.

35

industrial systems take years to complete, involve millions of lines of

code etc.), this cannot be matched in a laboratory based experiment.

Other problems can occur with experimental design and the statistical

techniques used to analyse results. Common examples include the use of

statistical techniques inappropriate to the measurement scale (see section

2.4 on measurement theory) or to the data distribution, lack of focus to

the experiment (trying to find out too many things in one go),

insufficient cases, experimental bias, Hawthorne Effect and so on.

However, contrasting results do not necessarily mean one or other study

was poorly designed, an allowance must be made for external variation

between different environments etc. Taking time to design experiments

and to choose appropriate statistics, using the considerable amount of

published material on both subjects will alleviate many problems, but

some cannot be removed nor their effects be calculated in order to make

allowances.

There is frequently a conflict been the need for control and the need for

reality. Laboratory based experiments allow more control and the

opportunity for replication of experiments in order to strengthen

conclusions. However, they are contrived, and cannot compensate for

the lack of reality. Empirical observation in the field means reality is in

built but the trade off is surrender of control and the opportunity to

replicate.

However imperfect, the empirical approach at least satisfied the desire for

evidence with regard to metrics. The use of sound statistical techniques

to analyse data and test hypotheses lends credence to the conclusions

drawn from the results. Additionally, use of "good" experimental

practice such as triangulation (i. e. where the study involves measuring

the same attribute in more than one way) and replication (attempting to

36

replicate results using other datapoints/datasets) can help improve the
standard of empirical studies. Statistics can be misused, of course.
Statistical analysis of the data collected does not necessarily provide
absolute proof of a theory. Take Halstead's measures, for example
((Halstead 1972; Halstead 1977; Halstead 1979)) - his results appeared to

support the usefulness and accuracy of the measures he proposed, but his

metrics are now widely discredited, after the findings of other empirical
studies disagreed with the results and queried the experimental design

and statistics used((Hamer and Frewin 1982; Shepperd and Ince 1993)). In

short, when attempting to validate software metrics we will always fall

short of the accepted desiderata for an empirical study 11, thus for any

validation, criticisms may be made of the conclusions drawn, the data

collected, the techniques used and the assumptions made during

analysis. With limited resources we must be pragmatic and accept trade

offs, such as giving up control of how the software development process
is carried out in return for getting data from industrial software, or by

accepting student developed software in return for greater control on the

empirical study.

2.3.3 Summary

It is implicit in the above sections on axiomatic and empirical techniques,

that while many favour one over the other, and presumably my own
bias towards empirical methods shows, they can be used most effectively
as complementary techniques. An axiomatic validation can help to focus

an empirical one, by demonstrating what should happen, and thus what

" The idea of "accepted" desiderata has evolved from the "good" and "bad" examples
published in software engineering particularly. Good examples take problems into
account, bad ones get criticised by other empiricists. The perfect empirical validation
would be large scale, in situ, with controls, with an explicit hypothesis. Results would
need to be repeatable, i. e. in other studies, be able to take into account the affects of

37

to look for. An empirical study can demonstrate whether or not the

mathematical models are applicable in practice.

2.3.4. Difficulties in Validation

As discussed above, both of the available approaches to metrics

validation have limitations. This is essentially because of the nature of

software and the processes by which it is developed. Although we use

the terms "science" and "engineering" with regard to software, attempt to

build formal models and to impose discipline on the process of

development, software is intangible. In science and engineering,

predictions can be made based on what is known about the physical

properties of a substance, prototype models can be built and tested,

experiments can be carried out and results replicated, allowing reliable

and useful formal models or prediction systems to be built specifying

what would happen under what conditions.

Software, however, has little in the way of physical properties. There are

some measurements that can be taken, the amount of disk space it takes

up, the time taken to execute, for example. But they can tell us little

about how the program will behave, how error prone it will be, how easy

to maintain. We need to assign numbers to intangible properties in

order to provide the management information required in order to plan,

allocate resources, assess the success or otherwise of a project. We cannot

know for sure what all of the factors that have affected the end software

product are, or how much each has contributed. Therefore assigning

meaningful numbers to these factors and assessing the end result is

impossible to do with 100% accuracy or certainty. We must be satisfied

with probabilities, significance, feasible explanations.

various factors upon the results such as the environment, problem area, personnel and so

38

Moreover, we must accept that a valid metric (empirically or formally

valid) does not mean it is useful, and that a metric that is useful in one

situation will not necessarily be useful in another, because of the myriad

of affecting factors that are either unknown or unquantifiable. The goal

or purpose behind the metric affects its usefulness - it may be valid in

that it accurately captures a particular attribute, but if the goal is really to

measure or predict something different, then the metric is not useful for

that purpose.

It has been shown, however, that improvements can be made to the

development and validation of software metrics. A number of papers

were published on the subject of measurement theory and its relevance

to software engineering. Some aspects of classical measurement theory,

namely those that have been applied to software engineering

measurement, will be discussed in the following section 2.4.

2.4 The 1990's: Measurement Theory and Prediction Systems

The 1980's saw empirical validation of software metrics and some

unsatisfactory attempts to formally validate them. Measurement theory

has been promoted as a way of formally validating metrics to

complement the empirical approach which assesses the usefulness and

applicability of metrics. Although measurement theory is not new, its

application to the problem of software metrics validation started at the

end of the 1980's ((Zuse and Bollmann 1989)), gaining momentum in the

early 1990's which saw a number of publications on the subject, primarily
by Fenton and Kitchenham, also Pfleeger and Zuse. This helped to clarify
the terms in use, since the term metric has and continues to be applied to

on

39

both a measure of some attribute and to a model which uses measures in

order to generate a prediction about the software in question. The term

"prediction system" was introduced to enable a distinction to be drawn

between a metric as a measure of an attribute and metric being used as a

predictor of an, as yet, unobtainable attribute.

The confusion between measures and prediction systems can be

illustrated with the much maligned measure, LOC. It is a valid measure,

which captures what it purports to, i. e., the number of lines of code in a

program. Counting rules can be specified, such as not counting blank

lines, but that aside, it properly represents the attribute code length.

However, as a measure of complexity, for which it was often used, it is

clearly unsatisfactory as it stands. It might to be used as an input into a

prediction system which can then, for example, give an estimate of error

rates. Of course, even if the prediction system into which it is input is

not useful, LOC is still a valid measure.

Additionally a distinction between "valid" and "useful" is drawn

(Fenton and Kitchenham 1991). Broadly speaking measurement theory

can determine the validity of a measure and empirical studies can

determine its usefulness. Fenton and Kitchenham (Fenton and

Kitchenham 1991) give an informal definition of validity. A measure is

considered valid if it "accurately characterises the proposed attribute" and

a prediction system is valid "if it makes accurate predictions".

Further work by Kitchenham, Pleeger and Fenton (Kitchenham, Pleeger

et al., 1995), breaks down measures (terms used are direct measures,

indirect measures and predictive measures) and the measurement

process into more elementary components, and discusses them with

regard to their properties, in order to define a measurement structure

model as part of a framework for validating software measurement. They

40

present a list of guidelines which they suggest should be applied in order

to avoid major problems. The authors emphasise that attempts at

software measurement should not stop until researchers can be certain

the are correctly validate their measures. The suggestions made by the

authors are ideals to aim for. The theoretical suggestions, such as

satisfying the representation condition and using scale types correctly can

be met by paying due attention to measurement theory. Suggestions

involving empirical corroboration ("validation" by use of empirical

techniques) are harder to comply with due to practical issues, such as

availability of data.

Clearly empirical validation is necessary to effectively validate a measure

in the fullest sense. An empirical validation will not give proof in the

formal, mathematical sense, but will give evidence so that a hypothesis

can confidently be confirmed or rejected. Additionally, since the validity

of prediction systems is based upon their accuracy, the question of an

acceptable margin of error is raised (how accurate must something be) as

is the number of cases used in the hypothesis testing (how many are

needed before the hypothesis can be accepted/ rejected with confidence).

There seems to be no one answer to either question. Acceptable accuracy

will depend on the person using the system. The minimum number of

cases will depend on a number of factors: on the test being carried out;

on the quality of the data (e. g. student programmers as opposed to "real"

programmers); on the plausibility of the hypothesis being tested.

Conventionally confidence limit are set at alpha=0.05, i. e. we can be 95%

confident of the correct outcome. Setting alpha too low means although

we are unlikely to wrongly reject an the null hypothesis, we are less

likely to correctly accept the alternative hypothesis. There will also be a

personal view regarding accuracy and confidence, thus the validity of a

prediction will always be open to question - it is as much a question of

persuasion as "proof". The validation of a measure (metric for

41

assessment) can be carried out according to representation theory of
measurement (see (Fenton 1991) or (Fenton and Pfleeger 1996)), by

ensuring that the mathematical representation (measure or metric) of
the attribute corresponds to the empirical world.

There has been a failure to recognise that a measure does not have to be

valid (in the measurement theory sense) to be useful. Valid and useful

are not one and the same thing. An example of this is Function Points

(Albrecht 1979; Albrecht and Gaffney 1983; Albrecht 1984) and Mark II

Function Points (Symons 1991). Both are very widely used metrics.
These measures are not considered valid, one reason being the way in

which the metrics are constructed, another the instability of model upon

which the metrics are based (Kitchenham, Pfleeger et al. 1995). This

means that both Function Point metrics could behave unpredictably, as
demonstrated by a number of conflicting empirical studies (Low and
Jeffery 1990; Kemerer 1993). However, the metrics enjoy widespread use

and support among practitioners. Conversely there are any number of

perfectly valid measures which can be taken directly from software,

which are of little or no use, either because they are not available until
late in the development process, because they do not tell us anything of
interest nor are used in a useful prediction system, or because they are

closely related to (i. e. tell us the same thing as) a more readily available

measure. Pfleeger has published extensively on metrics validation and

the application of measurement theory to software, but admits "a

measure can be useful as a predictor without being valid in the sense of

measurement theory" (Pfleeger, Jeffery et al. 1997).

Appearing to be useful does not necessarily mean that a metric really is

useful. This is particularly true of many of the early complexity metrics,

such as Software Science (Halstead 1977) or Cyclomatic Complexity

(McCabe 1976). Both of which were the subject of many independent

42

empirical studies which supported the claims made to the metrics'

usefulness with respect to a number of features (see (Shepperd and Ince

1993) for a discussion and review of work concerning both of these

metrics). Such results are now regarded largely as erroneous 'Z, either
because of flaws in the analysis, or because it is unclear as to what is being

measured or tested.

2.4.1 Measurement Theory and its Application to Software Metrics

This section considers some of the concepts of measurement theory and

examines how it has been applied to the measurement of software. The

aim of the section is to provide a basis for any further discussion or

application of aspects of measurement theory in this or subsequent

chapters. It will provide a context within with metrics can be examined

and criticised.

The essence of measurement theory is to provide rules and definitions

for the process of measurement and the measures themselves.
Measurement can be defined as the process of assigning numbers (or

sometimes other mathematical entities or symbols) to some attribute of

an entity in order to describe that attribute (Pfanzagl 1968; Krantz, Luce et

al. 1971; Roberts 1979). The two main strands of measurement theory

applicable to software metrics are representation theory and scales.

2.4.1.1 Representation Theory

This aspect of measurement theory is concerned with the mapping
between the real, empirical world and the mathematical, theoretical

world. Its purpose is to ensure that the "real" relationships between

12 It seems that McCabe's v(G) may be able to predict branch coverage testing effort.

43

"real" artefacts and the rules which govern these relationships are

represented accurately and are preserved in the mathematical model.

The formal explanation is as follows (from (Finkelstein and Leaning

1984)):

an empirical relation system is Q= (Q, R);

Q is the set of observations;

R is the set of relations on Qsuch that R= [R1, R2,..., Rn };

a numerical system is N= (N, P);

N is the set of real numbers;

Pis the set of relations on N such that P= {P1
9 P2 , ..., P,

z
};

the measurement function M maps Q to N, M: Q --> N.

The mapping must be done so that the observed relationships between

empirical entities hold for the numbers representing them. This is

described by the following Representation Theorem:

P.
.
is a relation on N which corresponds to the relation R, on Q;

if q, r,... EQ,

R; (q, r, ...) t'
P" [M(q), M(r),...]

for all ii 1, n

(1)

The conditions under which this holds are representation conditions,

thus if M satisfies the representation conditions, there exist other

mappings, Al' which satisfy these conditions and are related to via a

transformation f, such that M=f (M). It follows from (1) that:

44

R. (9, r,...) P[[f[M(9)], f[M(r)],...)] (2)

All f belong to the set of admissible transformations, a. k. a. the

uniqueness condition. The scale of measurement, can be denoted as

S= (Q, N, M) (see section 2.4.1.2 below for a discussion of measurement

scales).

2.4.1.2 Scales

This process is governed by rules which determine the appropriate

measurement scale and thus the legitimate operations or

transformations which can be applied to the measures. Here we are

primarily concerned with direct measures, such as length (i. e. those

which do not depend on the measurement of any other attribute), as

opposed to indirect measures (those depending on the measurement of

one or more other attributes, such as density).

Stevens (Stevens 1946), introduced a classification of scales of

measurement, on which the table below (table 2.2) is based.

Scale Basic Empirical Operations Example

Nominal equality (-) labelling

Ordinal equality, greater or less >) Beaufort Scale

Interval equality, greater or less, equality of intervals or women's dress sizes

differences (. -, <, >, (X, Y~V, W))

Ratio equality, greater or less, equality of intervals, length

equality of ratios >, (X, Y-V, W),

(X/Y--V/W))

Table 2.2: Measurement scales, legitimate operations and examples

45

The nominal scale allows numbers to be assigned as labels, (where words

letters or symbols could also be used), the only rule being "do not assign

the same numeral to different classes or different numerals in the same

class" (Stevens 1946). The Nominal scale is a binary system, so that an

entity either has some property or does not. Using the notation in

section 2.4.2.1:

the empirical relational system is (Q, -), where - is a binary equivalence

relation;

for q, r,..., E Q, the representation theorem is

q -- ra M(q) = M(r) (3)

The ordinal scale is an extension to the nominal scale in that it allows

rank ordering of classes or categories which must be preserved. In the

example given above, the Beaufort Scale assigns a number (which

represents an estimate of wind speed) according to observed effects on

land, e. g. smoke rising vertically is assigned 0, a hurricane is 12 on the

scale. This is also a binary system. In addition to the relation given for

the Nominal scale above (3), in the Ordinal scale the relation set, R also

contains r, thus:

qrra M(q) > M(r) (4)

The interval scale builds on the ordinal scale in that it preserves

ordering, as in the ordinal scale, and also captures information about the

size of the interval between classes. The classic example being

temperature measured on the Fahrenheit or Celsius scales, a different

example is women's dress sizes. If R contains the relation >- where

46

(q, r)>(s, t) means the interval (q, r) between q and r is greater than or
equal to the interval (s, t), then

1. (q, r)ý: (s, t) a M(q, r) _> M(s, t) and
2. M(q, s) = M(q, r) + M(r, s) (5)

As its name suggests, the ratio scale preserves the ratio between entities

allowing us to say, for example, that one piece of string is twice as long as

another. The starting point is an absolute zero (the total lack of attribute),
increasing at regular intervals. We can therefore meaningfully add two

measurements to create a third. So

1. q-ra M(q) = M(r) and
2. qor-sa M(q) + M(r) = M(s) (6)

Another is the absolute scale, the most restrictive scale, where the actual

count (of the number of occurrences of x in y) is the only possible

measurement. An example of this might be the number of entities in an

entity-relationship diagram see (Fenton and Pfleeger 1996).

The classification of scales allows us to determine which statements
regarding measurements are meaningful, and which statistical or
mathematical operations can be legitimately performed. Thus

measurement theory applied to software metrics allows us to determine

whether or not the measure is valid and meaningful. It does not
however, ensure that a measure is useful. This needs to be demonstrated

empirically, to test if a valid, measure or prediction system gives us
useful, meaningful information or predictions about software. There are
occasions where useful measurements are not meaningful according to
Stevens' scales, for example the mean of a set of exam marks is

47

commonly used, despite the argument that marks can be assumed to be

ordinal and thus mean would not be considered legitimate or

meaningful (Finkelstein and Leaning 1984).

There are opposing views. Stevens' work on scales has been criticised by

some statisticians and psychologists. (Baker, Hardyck et al. 1966) cite
"statistically minded" psychologists and a statistician who argue that

statistics apply to numbers not objects and thus statistical operations need

not be limited to what is consistent with the scale properties of what is

observed. Baker et al carry out a study using t values, as an example of a

robust and commonly used statistic. The data was transformed to

simulate typical situations (in psychological analysis) where
inconsistencies with measurement scales might occur. The authors

conclude that with minor reservations, the probabilities estimated from

the t distribution vary little according to the measurement scale used.

Doubts regarding the issue of measurement scale are raised by Briand et

al (Briand, El Emam et al. 1996), who cite a number of statisticians /data

analysts holding the dissenting view that a pragmatic approach to

measurement and analysis is necessary since an inflexible application of

measurement theory has a detrimental effect on the volume of results.

Briand et al consider this a to be a serious problem in software

engineering, since as a relatively immature discipline, results of software

measurement are scarce. The paper presents the view that since

parametric tests have more power than non-parametric tests, then these

should be used where possible, to avoid the possibility of not rejecting

the null hypothesis because of a lack of statistical power, noting that

researchers are more likely to conclude that the metric is not valid than

to conclude that the weakness of non-parametric tests is the problem.
However there is of course the opposing view that researchers are more
likely to reject the null hypothesis anyway, since they are not necessarily

48

strictly impartial if their research has been geared towards supporting the

alternative hypothesis.

2.4.1.3 Summary

Valid measures must represent a defined attribute of a defined entity.
Measurement theory demands a rigour not previously associated with

software engineering metrics, ensuring that we clearly state what we will

measure and how, facilitating a common understanding of what we are

trying to capture. Therefore, measurement theory leads us to question

whether attributes such as complexity, the target of so many metrics, can

ever successfully be captured. It is evident that complexity cannot be

defined to the satisfaction of all and since it cannot be defined, for any

measures claiming to capture complexity, it will be hard to demonstrate

that they satisfy the representation theorem.

Measurement theory has clarified measures and prediction systems.

Prior to the movement to apply measurement theory to software

engineering, the distinction between a basic measure, capturing a

definable attribute (e. g. lines of code) and a prediction of some as yet

unknown characteristic (e. g. errors) was not made. With hindsight, it is

inconceivable that this confusion went on for so many years and that few

researchers /practitioners recognised the problem. Undoubtedly some

recognised the problem but could not provide a solution, but the whole

research area at the time was characterised by confusion and lack of

clarity of purpose.

The contribution made by the application of measurement theory can be

summarised as follows:

49

" it defines measurement, allowing us to differentiate between a

measurement and prediction system, and thus appropriate tests can be

applied;

" it can demonstrate validity of a proposed metric, via

representation theory;

" it emphasises meaningfulness, since the use of appropriate

statistical tests allow us to draw meaningful conclusions.

2.4.2 Prediction Systems-

In order to classify a "metric" as the more specific "prediction system", it

must be of the following form:

Figure 2.1: A prediction system

A prediction system must have at least one input and can have one or

more outputs. The inputs undergo a transformation process, such as

being fed into a predefined equation (or a series of equations), the output

of which is the predicted software attribute. All parts of the prediction

system must be clearly and unambiguously defined. This applies to the

measurement unit used for the input and output, counting rules for

collecting inputs, what steps are to be taken during the transformation

process, using which inputs and producing which outputs.

50

Validation for a prediction system is different from that of a

straightforward measurement (assuming inputs are validated separately).

Prediction systems are probabilistic, and thus whether a prediction

system is valid or invalid is of lesser importance than whether it is

useful or not useful. However, the terms can still be used, especially

validation process, but we are interested more in the accuracy of

predictions than whether stringent measurement theory standards are

met throughout. Therefore the emphasis must be on empirical

validation, since this is the way to assess usefulness. The problems do

not end there, since prediction systems can utilise widely different

measurements as inputs in order to produce different types of output.

Thus the techniques used will vary according to the type of data available

and what is being predicted. We must be pragmatic in our selection,

using the best techniques we can apply, but not rejecting validations
because the techniques which can be used in one particular study are less

sophisticated or sensitive than those used in another. An example of

this is the validation of cost estimating prediction systems compared

with validation of defect prediction systems. Because cost estimation
involves data which is continuous, likely to contain a large number of

data points, with high values, a large number of fairly sophisticated

techniques can be applied to test the accuracy of its predictions. However,

for a defect prediction system, the data is discrete, sparse and actual

values tend to be low. Also the data tends to be skewed. Therefore the

same range of techniques are not available. In this situation, although,

for example MMRE (mean magnitude relative error) could be applied, it

would not be useful because of the nature of the data - predicting one

defect where there are actually two is a fairly close estimate, but in terms

of MMRE it would be 100% wrong. Thus, for prediction systems such as

defects, adjusted R2 is often used. It is a test in which we can have some

confidence, since it gives us the amount of variation in the dependent

51

variable which can be explained in terms of the independent variable. A

problem which often occurs with empirical studies is that they present

no explicit prediction system and rely on the correlation coefficient alone
to indicate a relationship. This cannot be considered to have

demonstrated the usefulness of a particular measure since it can be seen
from measurement theory (and common sense) that without knowing

exactly what is being assessed and how, we cannot adequately test the

hypothesis nor repeat experiments for confirmation.

2.4.3 Lessons to be Drawn from Measurement Theory

Consideration of both classical measurement theory and the application

of measurement to traditional science and engineering disciplines has

highlighted failings in software engineering measurement and in the

validation of software engineering metrics.

failing:

1 failure to distinguish between a measurement and a prediction system

2 attempts to capture poorly defined attributes

3 inadequacy, and often absence of validation for metrics

4 lack of goal or motive for using metrics or prediction systems

5 failure to establish validity and/or usefulness (since these are not one and the same)

Table 2.3: Summary of failings in software engineering measurement

1. First and most important is the failure to distinguish between a

measurement and a prediction system, which is closely related to the

fourth point, the tendency to overlook the need for goal or motive for

using metrics. Where measurements are unavailable, e. g. number of

errors per KLOC at design time, we require a prediction system. In the

past, metrics have tended to stop short of this. For example many

52

metrics have attempted to capture system complexity in order to predict
effort, defects etc. However, although various uses for complexity
measures have been mooted, few have shown how they think

complexity should be used in order to predict such attributes. " Thus,

notwithstanding the issues regarding complexity measures, since in this

case complexity is merely used as an example, these cannot be regarded as

prediction systems.

2. The attempts to capture poorly defined attributes, or those

attributes which are intangible and thus cannot satisfactorily be defined

(quality and complexity being two such attributes). It follows that

without a clear definition, the attribute cannot successfully be captured, at

least with any consensus. Such "complexity" and "quality" metrics have

captured other, more specific or definable attributes felt to have an effect

on the complexity/ quality of software. These measurements have then

been used as a proxy for the desired attribute, the implication being that

there is a high correlation between the two attributes, for example, the

number of decisions plus one representing complexity according to

McCabe's Cyclomatic Complexity metric. In order to be validated, one

must be clear whether a measure is a direct one, or indirect (and thus

needs to undergo some sort of transformation). Lack of definition can be

extended to counting rules, where how or what to collect is often not

explicitly defined, leading to a situation where different results can be

obtained according to the practitioner's interpretation.

3. The inadequacy, and often absence, of validation for metrics.
Measurement theory can assess the validity of a metric in how it captures
the defined attribute, appropriateness of the chosen scale, etc. A further

flaw in metrics development has been unsatisfactory (or entirely absent)

13 Of course one might not always require a prediction, one may wish to compare two
systems.

53

validation. There were attempts to address this problem during the
1980's, using axiomatic validation (Prather 1984; Weyuker 1988) (see

section 2.3.1) and empirical validation (see section 2.3.2). Neither

approach turned out to be satisfactory. First both approaches had flaws,

and second they did not share the same criteria for validation and tended

to be used in isolation, not as complementary techniques.

Both Prather's and Weyuker's axioms concentrate on complexity metrics.
The rationale is that a valid metric will conform to the axiom set.
Initially this seems a pleasing and formal way to validate a metric, but in

practice, both axioms sets fail to give a satisfactory validation, although
for very different reasons.

Prather's set of three axioms have limited applicability, being appropriate

only for structured programs and control flow metrics. They are also

weak, for example, despite known weaknesses in McCabe's Cyclomatic

Complexity, the metric is valid according to Prather's axioms.

Conversely Weyuker's axioms are highly restrictive, none of the metrics

used to demonstrate the set satisfy all of the axioms. See (Shepperd and

Ince 1993) for a detailed criticism.

Both axioms sets are artificial, favouring mathematical formality over

reality, avoiding real world problems. Thus the empirical approach is

favoured by many. It has the benefit of being able to assess the usefulness

of a metric and since it is a practical approach, observes how metrics

behave in reality. Criticisms can and have been levelled at this approach,

such as the lack of rigour in some empirical studies and the conflict

between reality and control (the industrial vs. the laboratory setting), see

section 2.3.2. Also, inappropriate use of statistical tests may result in

54

misleading conclusions being drawn, since results are invested with a

significance they do not possess (see section 2.5.2.3, as an example).

Clearly neither approach can demonstrate the validity of a metric,
Prather's axioms are too weak, Weyuker's too restrictive, and the

empirical approach can be poorly designed or poorly conducted in

practice. Measurement theory improves the situation, in that it offers a

formal mathematical approach which need not be highly restrictive. It

can become impractical and impenetrable, such as some of the work of

Zuse (Zuse 1991), and has not been universally accepted, many

statisticians feeling that the interpretation of measurement theory is

overly restrictive and not pragmatic. See (Briand, El Emam et al. 1996)

for a criticism of measurement theory when applied strictly.

The implication is that any approach loses value when taken to

extremes. It seems sensible to apply measurement theory to ensure a

well defined attribute and measurement and the use of appropriate

statistical techniques. However, the real world vs. mathematical world

debate is still an issue, and so pragmatism (as embodied by the empirical

approach to validation) is also called for. The two are complementary

and exert a modifying influence over each other, with the empirical

approach introducing an element of practicality and the concept of

usefulness, and measurement theory ensuring that the empirical

approach conforms to acceptable levels of mathematical rigour. It is after

all important to ensure that the metric are actually measuring what they

are intended to measure. We need to assess that the mathematical

model captures what we see in the real or empirical world.

The two approaches have been exploited to suit metrics research.
Statistical tests and data have been chosen to give support to the desired

outcome (as with Henry and Kafura, above, where inappropriate

55

methods of analysis have been used) or have been ignored in favour of

an entirely formal validation (often using Weyuker's axioms) where lack

of data, time or resources means an empirical validation cannot be

carried out. Since the two approaches are complementary, ideally a

combination of the two would be used to lead to a validation in which

we can have confidence: use measurement theory to ensure that

appropriate statistical tests are used, and thus meaningful conclusions

can be drawn; use empirical validation to determine how the metric
behaves in reality, its usefulness14 and practicality (such as ease of

collection and ease of calculation). This thesis concentrates on the more

time consuming empirical approach at the expense of the formal,

measurement theory approach, simply because that is my bias. It should
be reiterated that I am aware of the principles of measurement theory

and thus have attempted not to violate them, even though this thesis

does not include a measurement theoretic validation of the metrics

presented.

4. The lack of a goal or motive for using metrics or prediction

systems. The need for a goal, besides being common sense, has been

highlighted in the GQM (goal question metric) method (Basili and

Rombach 1988; Rombach and Basili 1990). Where metrics are chosen

according to the goals or aims of measurement (identification of goals is

the first step in the process). Unfortunately, all too often the primary

focus has been on the metric alone, with apparently little or no thought

given to the model on which the metric or prediction system is based or

as to why measurement is required. Metrics are only useful as part of a

larger activity, assessing software quality or making predictions for

project management, resource allocation and so on. It is not uncommon

to read a metrics text book or paper (those aimed at practitioners) and see

14 Pfleeger et al., admit that measures can be useful "without being valid in the sense of
measurement theory" (Pfleeger, Jeffery et al. 1997)

56

lists of metrics to collect, with little or no explanation as to how and why

they are to be collected, nor how the results are to be used (recent

examples being those by (Lorenz and Kidd 1994; Henderson-Sellers 1996)).

It would therefore be reasonable to assume that there is no clear goal or

motive, nor explicit definitions, and thus no validation. After all, if the

authors had done such work, then surely they would publish whatever

they could in order to bolster their claims for the metrics they propose.
There seems to be a tendency to propose lists of metrics covering every

aspect of, for example, code, rather than considering what information is

important, how it can be obtained, and how to use the results and to

what purpose. Presumably this is because it is easier to suggest

measures /prediction systems, even seemingly complicated ones, than it

is to define its purpose and to validate the metric against this i. e. does it

satisfactorily fulfil its purpose.

5. Finally, failure to establish validity and/or usefulness (since these

are not one and the same) A measure may be valid, but convey little

useful information. For example LOC has been criticised as a poor

metric. However it is valid, since it captures precisely the length of a

program in terms of the number of lines of code. It's usefulness in

conveying other information (on its own or as part of a prediction

system) is a different issue, to be assessed by empirical observation.

2.5 Metrics Revisited

We can now re-examine metrics development using the insights

provided by the application of measurement theory as discussed in 2.4

above. This section will examine the main themes and most influential

metrics (as outlined in section 2.2 above) in the light of what has been

learnt from the application of measurement theory to software

57

engineering. The first section, 2.5.1 is a general criticism of the hazy

concepts which software measures and prediction systems attempt to

capture. The second section, 2.5.2 applies these issues (detailed in 2.4.3) to

the metrics. Section 2.6 summarises the approach and emphasis metrics
development and validation should take if it is to move from an

undisciplined, arbitrary field, to one where proposed measures and

prediction systems can be accepted with some confidence as to their

validity and usefulness.

2.5.1 Describing the Indescribable

Complexity, quality, and so on are much used terms by researchers and

practitioners. Both groups are guilty of devoting time, attention and

resources to considering and measuring these attributes without having

first satisfactorily defining them e. g. (Jones 1978; Henry and Kafura 1981;

Weyuker 1988; McCabe and Butler 1989; Henry and Selig 1990; Maus 1992;

Lee, Liang et al. 1993; Lorenz and Kidd 1994; Constantine 1997; de

Champeaux 1997). This is, of course extremely difficult. The concepts are

subjective. Although a group may have some general agreement on, for

example, whether one program is more complex than another, they

would be hard pressed to quantify this, and could not produce a set of
desiderata which would be applicable in all situations and satisfy all those

involved. Even for tangible objects, the concept of "acceptable quality"

varies from person to person. For example, the US Food and Drug

administration, sets "acceptable" levels of contamination of food stuffs
(i. e. below which the food is considered to be of "unacceptable quality"),

such as: tomato paste, 30 fly eggs or 15 fly eggs plus one lava in a 100g

sample; peanut butter average of 30 or more insect fragments, or one or

more rodent hairs per 100g sample; canned mushrooms, up to 20

maggots per 100g of drained mushrooms. It is questionable that anyone

58

would happily eat a mushroom pizza if they were informed that it

contained up to 30 fly eggs and 20 maggots!

Thus for software, something that is intangible, the situation is even less

clear. We can model the software according to "good" design practice and

test the end product in an attempt to remove faults, but we cannot

produce universally acceptable criteria by which to measure concepts

such as complexity or quality because we cannot define it's

Unfortunately much of the work in the field of software metrics has

concentrated on the pursuit of software quality or software complexity

metric. These are the metrics which have been taken up by industry, in

preference to more simple measures or prediction systems.

2.5.2 How metrics "measure up" -- no pun intended

The metrics considered in sections 2.1 and 2.2 purport to capture

complexity or a related characteristic. The definitions and factors thought

to contribute to software complexity vary. We will now re-examine

some of the more popular metrics. Recurring themes/criticisms will run

throughout the following sections, since each has something in common

with others, such as poor definition or poor empirical evidence, for

example. In particular, the inadequacies summarised in 2.4.3 will be

considered as applicable. These are listed below, refer to 2.4.3 for more
detail:

" failure to distinguish between a measure and a prediction

system;

' Gilb suggests that operational definitions, which can be measured, should be produced
(Gilb 1988). However, we still face the problem of an agreed definition, subjectivity etc.,
and so would need to accept that there can be no single, universal commodity. A workable
definition may still fail to capture important aspects of the attribute.

59

" poor definitions;

" inadequate validation;

" absence of clear goal or purpose;
" failure to establish validity and/or usefulness (since these are not

one and the same).

2.5.2.1 Halstead's Software Science

Halstead intended Software Science as a prediction system, the

assumption that complexity was the goal for all of the Software Science

metrics is an error or misinterpretation which must be blamed on others,

since although the language level is related to complexity, many

subsequent researchers have treated Software Science as a whole as a set

of complexity measures. Although the distinction between

measurement and prediction system was not current at the time, it was

clear, that however flawed its assumptions, Software Science was

intended primarily to predict effort. Confusion may have arisen from its

emphasis on complexity, with some practitioners and researchers
(including Halstead himself) assuming that complexity could be used as a

proxy for other attributes, such as bugs and quality.

However, the allegation of having poorly defined attributes, can indeed

be levelled at Software Science. Halstead made a comprehensive attempt

to draw together various factors (Halstead 1972; Halstead 1977; Halstead

1979) affecting software. He believed that, as with the physical sciences, a

set of fundamental laws, which would remain true whatever the

development environment, could be produced for software
development. Halstead did not study the code in isolation, but also
included the idea of cognitive complexity. This was an attempt to

60

include the programmer's perspective on the code. Halstead felt that in

addition to the structure of the code, the cognitive effort of the

programmer needed to be included before the complexity, and thus,

effort could be predicted. This is a valid point. Complexity is subjective;

what one programmer regards as complex may not be a problem for

another. Halstead claimed to use the results of cognitive psychology

studies in his prediction system. However, subsequent examination of
his theories suggests that the theories have been incorrectly and

selectively applied (and are themselves questionable). Halstead proposed

that the number of parameters in a module should be six (five input and

one output), based upon his interpretation of Miller's research into short

term memory and sensory stimulation (see (Coulter 1983)). However,

this is not the same sort of activity as programming. Additionally it

cannot be assumed that parameters necessarily indicate the complexity or

type of function. Cognitive research indicates that the amount of

information which can be held in short term memory when carrying out

a task depends on the task itself. With an easy task all of the brain's

resources can be used to maintain the necessary information in short

term memory, but a more complex task means more resources are

needed for processing and thus cannot maintain as many items in short

term memory.

Another misinterpretation seems to concern the "Stroud Number".

Stroud conducted research into sensory memory processing. He used the

term "psychological time" defined as "the time in which we are aware of

things happening" with regard to sensory input and operations upon the

input. He stated the ratio was somewhere between 5 and 20 moments of

psychological time to each second of physical time, suggesting a figure of
10 as most likely. Halstead again generalised the research and applied it

to programming, suggesting that between 5 and 20 mental
discriminations with regard to programming were possible, suggesting

61

an average figure of 18 from an empirical study. Clearly programming is

not an activity based in sensory memory. A further problem is that

Halstead assumed that human memory used a binary search which is not

supported by cognitive psychology research.

Halstead did posit a model for Software Science and saw the importance

of having a model, presumably from his studies of other sciences, where

the notion of defining theory and a model, from which a hypothesis can

be derived and tested has long been the norm. Indeed the process

followed by Halstead is laudable, considering that software metrics

research was still very much in its infancy, and even more so when

compared with other metrics development around the same period.

However, as is now generally known and accepted, Halstead's metric is

invalid. Supporting empirical evidence has been shown to be dubious

(Hamer and Frewin 1982; Coulter 1983; Shepperd and Ince 1993). Hamer

and Frewin, for example, criticise the standard of experimental design,

and conclude that the experiments to test the hypotheses "are virtually

incapable of rejecting the hypotheses - they simply do not have the

power to identify false hypotheses. " They also report errors in the test

data used in (Funami and Halstead 1976), which was based on (Akiyama

1971).

Thus although Halstead's model was inspired by cognitive research, it

was ill founded. Further criticism of Halstead's metric can be found in

(Hamer and Frewin 1982). It's value lies in the way it was presented -

an explicitly defined model of program complexity. Although both the

theory behind Software Science and the validity of this prediction system

has been debunked, Software Science is noteworthy in that it was based

upon a theory and model, and attempted to draw together the various

factors which contribute to software complexity. Its most negative effect

62

was that it laid down the challenge to other researchers to discover the
ideal complexity metric", which could be used to predict all complexity
related software attributes, such as maintainability and effort.

2.5.2.2 McCabe's Cyclomatic Complexity

McCabe's Cyclomatic Complexity Metric (McCabe 1976) is a code
complexity metric which has less to commend it than Software Science,
in terms of definition and theory. How to apply it as a predictor of errors,
development effort, and so on, is not defined, but that has not prevented
its use as a prediction system for almost any attribute thought to be

related to complexity, e. g. "programmer performance", defined as the
time taken to locate and fix bugs (Curtis, Sheppard et al. 1979),

maintenance effort (Gill and Kemerer 1991). Research, reflecting on its

application as a prediction system, suggests Cyclomatic Complexity is
little more than a size indicator, since it correlates strongly with LOC
(Shepperd 1988), though of course, since it is a code metric, LOC would be

readily available anyway. Basili and Perricone, found it a poor indicator

of error density, in fact error density decreased with increasing
Cyclomatic complexity (Basili and Perricone 1984). In general, the
independent empirical validations carried out are unsupportive. An

exception is Henry et al, (Henry and Kafura 1981), whose study shows a

strong correlation between Cyclomatic Complexity and error rates by

module. However, error free modules were not included in the study,
thus making the results questionable.

Essentially the Cyclomatic Complexity is equal to the number of decisions

in a procedure or module plus one. McCabe suggested an upper limit to

16 Given Halstead metric had no real goal nor use, the need for a metrics or prediction
system to have a goal and to be demonstrably useful in some situation, seemed not to be
picked up on by the next wave of metrics researchers.

63

program complexity (10 in most situations). Shepperd criticises the

metric on a number of points, including that it is inconsistent with the

accepted thinking on modular software - Cyclomatic Complexity

increases with modularisation and other accepted notions of good

programming style for improving program structure (Shepperd 1988),

which is borne out by other studies (Baker and Zweben 1980; Prather

1984). This confirms that the underlying model, such as it is, is flawed,

since relying on the metric for guidance regarding program structure

would be misleading.

Cyclomatic Complexity also suffers from being ill defined. McCabe is

suggesting that most software properties can be derived from, and thus

are linked in some way to the number of decisions in the program code

and does not adequately describe what a decision can be. For example, IF

statements are counted but not ELSE statements. Without well defined

counting rules, the metric may not be applied as intended, and further

empirical work may be based upon incorrect data. Indeed no attempt was

made to explicitly define complexity, or even some of the factors which

might contribute to code complexity (a criticism which cannot be levelled

at Software Science), it was simply assumed that readers had a shared

understanding of the issue, illustrated by McCabe's statement that his

complexity measure "is designed to conform to our intuitive notion of

complexity". He seems to have missed the point of a complexity metric;

if everyone were able to rely upon their intuition and shared

understanding of complexity, there would be no need to quantify it.

In conclusion, Cyclomatic Complexity could be regarded as a measure

which counts the number of decisions in a program, which could go

some way to indicating complexity, but it adds 1 to the count, causing

problems (loses additivity). However many factors are ignored, and as
discussed previously (see 2.2.1), complexity itself is both difficult to define

64

and capture, thus Cyclomatic Complexity cannot be considered as a
prediction system. This means its usefulness is, to say the least, limitedl'.

Its potential usefulness and its validity are further compromised by the

absence of a clear and explicitly defined goal. Without a goal, any

empirical validations carried out are somewhat speculative, depending

on what the investigators think the goal to be, else the investigation is

carried out to see to what use the metric can be put. "' This is apparent to

the wide variety of attributes that empirical studies have attempted to

link to Cyclomatic Complexity.

2.5.2.3 Henry and Kafura's Information Flow Metric

The search for a code complexity metric influenced subsequent metrics

research. It was recognised that metrics applied earlier in the

development cycle would be of more use, but researchers into design

metrics still aimed to develop complexity metrics, the idea being that a

complex design is indicative of complex code. The classic system design

metric, Henry and Kafura's information flow measure (Henry and

Kafura 1981) considers both the internal complexity of a module, and the

external complexity in terms of the information flows between it and

other modules in the system. It is meant then, as a prediction system, to

predict module code complexity at design time. However, the purpose of

the prediction remains unclear, what can be indicated from the module

complexity? In the papers concerning the metric (Henry and Kafura 1981;

Henry and Kafura 1984) and in Henry's doctoral thesis, a number of

motives are given, such as controlling complexity, high development

costs, high maintenance costs, providing guidelines for software design

"It seems that the only conceivable use would be to predict effort for branch coverage
testing.

65

and improving software reliability, but how the module complexity

measure should be used to predict such attributes remains undefined.

Internal complexity is measured in LOC. An obvious drawback is that

actual LOC is not available at design time, limiting the usefulness of the

information flow metric, as originally defined, as a prediction system.
Another drawback is the usefulness of LOC as a complexity measure,

although, some studies have shown LOC to outperform complexity

measures such as Cyclomatic Complexity, as a predictor of some quality

measures (Kitchenham 1981). Studies on the effect (of using LOC as a

measure of internal complexity) on the performance of the information

flow measure are varied, some finding that using LOC improves the

performance of the metric (Kafura and Reddy 1987; Rombach 1987) and

others finding that its use detracts from the metric's performance (Henry

and Kafura 1981; Shepperd and Ince 1991). External complexity is based

on the desiderata for good design of minimising coupling and

maximising cohesion (Stevens, Myers et al. 1974) and is calculated by

counting the flows19 into and out of a module and squaring the total In

addition to attempting to capture a concept so difficult to define as

complexity, the metric suffers from further ambiguity since the counting

rules are open to interpretation, due to hazy and apparently conflicting
definitions of indirect flows. In other words it is not clear the inputs to

the metric are to be calculated. Thus we can not be sure of what we are

attempting to capture indirectly, nor whether the means by which we are

attempting to do so is correct.

Unlike Cyclomatic complexity, the model associated with Henry and
Kafura's information flow measure considers modularity and system

18 Although it makes far more sense to define a goal and then attempt to reach it, it is
common to find that a metric is first devised and then attempts made to see what use it
can be put to.

66

architecture by incorporating both internal complexity (of a module) and
external complexity (connections to other modules and data structures
within the same system. A number of flaws can be seen when the metric
is applied.

It is not clear what it is trying to measure/predict and for what purpose
(see the introductory paragraph in this section). A second criticism is that

internal complexity is defined as LOC, which has been widely criticised as

a complexity metric and is unavailable at design time (see the second

paragraph in this section), LOC for the internal complexity component

would therefore need to be estimated. Alternatives to LOC, suggested by

Henry and Kafura, Software Science and Cyclomatic Complexity, are also

code metrics, thus suffering from the same problem of availability,
(Henry and Kafura were presumably unaware of the flaws in these

metrics, see sections 2.5.2.1 and 2.5.2.2 above]. Much more attention has

been given to the external complexity component of the model, but the

definitions of the inputs to this part of the model are hazy and conflict,

particularly regarding indirect flows. The terminology used is

inadequately defined, as with other metrics, a shared understanding is

relied on. Shepperd (Shepperd and Ince 1993) points out that some cases

of indirect flows will be detected only on analysis of a module's code, i. e.

they will not show up at design time. In addition, Henry and Kafura

make the decision that a flow should be followed (and counted) over no

more than two levels of the system. There is no reason given for this.

Questions have also been raised as to what indirect flows correspond to

in the real world (Ince and Shepperd 1989). Other flaws become apparent

when attempting to apply the model. One is that it penalises reuse
where the reused module has information flowing in or out of it, since
the flows between the module and all that use it are counted, making it

19 Unfortunately, control flow and information flow are not distinguished.

67

appear more complicated than it is, since the more it is used, the higher

its complexity becomes. (Benyon-Tinker's metric (Benyon-Tinker 1979),

counts a module only once, however many times it is called, but this

distorts the picture, since the system will always appear as a tree

structure). Conversely, modules communicating via a "global data

structure", are not calculated using flows, but instead a simple count of

accesses is used, potentially leading to a lower figure (and thus seemingly

encouraging the used of global data over local data). Any module with a

zero fan-in or fan-out will have a complexity measure of zero because of

the formulation of the model equation, where clearly a module can have

functionality (and thus complexity) even if information flow is one way.

Further, no consideration seems to have been given to the type of

information flow. All flows are assumed equal, when this will clearly

never be the case in reality.

The poor definition of the Information Flow metric makes validation
difficult, since studies are not necessarily assessing the same metric (its

value will depend on the definitions and counting rules used). Henry

and Kafura's own empirical validation of the information flow metric

(Henry and Kafura 1981; Henry and Kafura 1981), assumes a normal

distribution of data and thus uses parametric tests when in fact the data is

skewed, necessitating the use of non parametric tests and also remove

two observations (from a total of eight) as outliers. When reinstated, the

correlation coefficient drops considerably (to the extent it can no longer

be considered significant). A further point, connected with poor

definition of attributes, is the lack of clarity regarding the hypothesis

under test. There is also the possibility of manipulating statistics and

data (removing data points, for example), in order to increase the

statistical significance of results. Shepperd (Shepperd and Ince 1993)

suggests at the very least, an empirical validation must posit an

68

unambiguous hypothesis which it is possible to reject, and use
appropriate statistical techniques.

2.5.2.4 Function Points

Beside the functional design/code complexity metrics considered above,

other metrics are open to the same criticisms.

One such metric is Function Points (Albrecht 1979), as introduced in

section 2.2.3. Function points has been much debated, since despite the
lack of supporting validation, it is widely used in industry, and

considered a useful metric, with a user's group dedicated to its

application and improvement.

Problems exist both with the "model" and the validation of the metric. It

is not possible to interpret function points as a measure since it has

inputs, suggesting that it is intended as a prediction system. As a

prediction system it lacks clarity of purpose and of definition, both in its

collecting procedure and in its counting rules. As such there will be

differences between practitioners' calculations. Function point users

would counter such criticism by drawing attention to the official user

groups (e. g. the International Function Point User Group) who publish

counting practices and the fact that function point counters can take an

exam and be certified as proficient in function point counting.

Shepperd (Shepperd 1994) summarises the results of eight empirical
studies which report widely varying results for function points as a
predictor of effort, with RZ values from 0.9 to 0.18, although typically the
RZ value is low, thus indicating it is of dubious value. Where MMRE is

performed, these tend to be disturbingly high (103 % for Kemerer

69

(Kemerer 1987) and 99% for Shepperd and Turner (Shepperd and Turner

1993)). Studies also report variation in variation in the range of counts

(i. e. different counts for the same system) (Low and Jeffery 1990; Kemerer

and Porter 1992), since some aspects are subjective.

Function points certainly would not survive a formal validation since

the model, such as it is, is poorly thought out. When described in simple

terms it can be seen for what it is - playing with numbers rather than a

well thought out process. The following summary is taken from

(Kitchenham, Pfleeger et al. 1995) "Albrecht's model involves classifying

each input using an ordinal scale (simple, average, complex) according to

the number of data elements and logical files involved, mapping those

values to numbers and summing the numbers. "

Measurement theory (scale types - see section 2.4.1.2) tells us (and it is

common sense) that we cannot sum ordinal measures, thus this is

meaningless. (Kitchenham, Pfleeger et al. 1995) point out a further

violation, since the smallest value a non-null system can take is 3, thus

function point values are discontinuous (moves from 0 to 3,4,5 etc.) and

is without a unit value, thus comparisons such as system x is twice as

complex as system y cannot hold.

Further criticisms of the model/theory upon which it is based can be

made. Function points are intended to be adjusted to suit the local

environment. In the empirical studies summarised in (Shepperd 1994),

unadjusted function points perform at least as well as the adjusted

function points. This would indicate that the adjustments have no

beneficial effect on the predictive power of the prediction system.

Additionally, studies (Jeffery and Stathis 1993; Kitchenham and Kansala

1993) have found dependencies between the inputs (function types)

which form the unadjusted function point, indicating instability, since if

70

such inputs are strongly correlated, they effectively capture the same

phenomenon, and thus its impact will be increased, as demonstrated by

the fact that the two studies found different correlations between

function point elements. Further, the values for the weights supplied

were based upon project data from IBM in the 1970s, which is not

necessarily applicable to other environments. Albrecht describes the

weights as reflecting the value of the function from the customer's point

of view, but in reality this has little bearing on effort or cost. Another

criticism of the model and validation upon it, is that although it is

claimed to be language independent this is not borne out in Symons'

evaluation (Symons 1988), which indicates that it is, in fact, dependent, a

point reiterated by (Verner, Tate et al. 1989).

Symons introduced Mark II Function Points (Symons 1991) to improve

upon the inadequacies of Albrecht's function points, but some remain,

particularly confusion over what is being measured and the complexity

of the system making calibration difficult (Shepperd 1994). (Kitchenham,

Pfleeger et al. 1995) identify three size attributes present in Mark II

function points, which are then individually weighted to represent
development effort, and then summed. The authors consider this

process acceptable if Mark II function points are used as an effort model,

otherwise the authors' measurement validation framework (based on

measurement theory) is violated. The reason being that there is no

theoretical model of the relationship needed in order to convert function

points into a unit of size or functionality. There are also inconsistencies

in the weights given, an example being input and output size are

measured in the same unit but are given different weights.

Thus for both types of function points there is confusion about what is

actually being measured, and until this is established it cannot be

successfully validated. Such criticisms appear to carry little weight with

71

practitioners - as illustrated by a recent article (Furey 1997) claiming that
function points were technology independent, repeatable and consistent

and could provide valid estimates and the basis for valid comparisons.
These statements appear to be based wholly on personal observation and

possibly anecdotal evidence. Perhaps Pfleeger's statement, "a measure

can be useful as a predictor without being valid in the sense of

measurement theory" (Pfleeger, Jeffery et al. 1997), could be applicable
here.

2.5.2.5 Summary of Common Product Metrics

The metrics criticised above are merely well known examples of the

many complexity metrics proposed. All complexity metrics can be

criticised for attempting to capture an inadequately defined attribute.

Some, such as Halstead's Software Science have attempted to define and
include the various facets of complexity with regard to software, but it is

an impossible task. It is hard to believe that so much effort has been

expended on such an ill defined goal, particularly since software

complexity itself is not what we wish to predict. It is of interest because of

the perceived relationship between complexity and other attributes, such

as maintainability, errors, and effort.

2.5.3 The State We're In / Predicting the Future

As mentioned previously, there has been a lack of clarity in the

derivation and use of metrics. Firstly the term metric has been used to

cover both direct measurement (e. g. LOC) and prediction systems, (e. g.

Haltead's E metric). This has been especially true with complexity

metrics. Metrics requiring hard to capture or calculate inputs or even

estimations of inputs (consider Henry and Kafura's information flow

72

metric, or function points), have been proposed in order to assess or

predict complexity. However, a measure of complexity is of little use in

itself, since the information required is a prediction of something more

tangible, the number of errors, development time in person-days and

cost to develop, for example. However, researchers (and the practitioners

who embraced the metrics) seem to have been content to leave this

matter unresolved for many years, since it was not until the work by the

likes of Fenton, Kitchenham and Pfleeger published in the early 1990's

that the distinction was drawn and definitions offered. An excellent

example is Fenton and Kitchenham's paper (Fenton and Kitchenham

1991) which considers the use of measurement theory in validation.

They emphasise the necessity for clear and unambiguous definitions of

what is being measured, how and for what purpose before a satisfactory

validation can take place. It is noted by (Fenton and Kitchenham 1991)

that in some cases the distinction between an indirect measurement and

a prediction system are not always obvious and so validation in both

senses should be performed.

2.6 Summary

To date, many metrics have been proposed and debunked. Measurement

theory has identified areas which metrics validation and construction

must address. Empirical evidence is vital in order to assess the

usefulness of prediction systems, since mathematical validity alone

cannot tell us how accurate a prediction system is. The following lessons

learned from the successes and failures of over twenty five years of

software metrics research are summarised as follows (see section 2.4.3 for

a fuller explanation):

73

" failure to distinguish between a measure and a prediction

system;

" poor definitions;

" inadequate validation;

" absence of clear goal or purpose;
" failure to distinguish between validity and usefulness.

These lessons must be applied to future developments in order to

prevent the same mistakes being made. However, it is obvious that even
today, these mistakes are continue to be made and warnings must be

repeated (Pfleeger, Jeffery et al. 1997).

The process of metrics development and the application of measurement

theory to this process holds true whatever the software paradigm used.
Thus although different characteristics need to be assessed, and different

inputs will be used to make different predictions, the way in which we
derive these measures and predictions systems and validate them need

not change.

The analysis of software metrics development and validation presented

in this chapter emphasises the need for validity in three respects.

First, measures should be valid, ideally, whether they are simple

measures of assessment or inputs to prediction systems. This can be

achieved by the application of measurement theory, to ensure that the

metric satisfies the representation conditions. Axiomatic validation can
be used to ensure it does not violate the belief of how it should behave20.

20 As previously discussed, axioms themselves can be proved/validated since they come
from beliefs of how the world should behave, although, as in the case of Weyuker
(Weyuker 1988), sets can be shown to be inconsistent or contradictory. Thus the axioms
should be carefully chosen - since they can only demonstrate the metric's consistency with
the axiom set, we need to be satisfied with the validity of the axiom set itself.

74

Second we need to ensure that the goal and process model of the

measurement or prediction system is clearly stated. If not, testing its

validity or usefulness will prove difficult, because of the likelihood of
differing interpretations.

Third, we must ensure that prediction systems are useful, in that they

make accurate predictions and predict something useful. This can be

tested by empirical studies, though we are limited to determining the

probability that a prediction system is accurate. Additionally the scope of

the prediction system, that is, in what situation and environment can it

be applied with confidence, must be made clear. This indicates the need

to move away from the traditional quest for a metric applicable in all

situations and environments.

Thus, metrics proposed for the object-oriented paradigm, examined in

the next chapter, need to conform to the same standards of validity and

usefulness as traditional metrics. These metrics must be clear whether

they are prediction systems or measures of assessment. The attributes to

be captured (for assessment or as inputs to a prediction system) must be

clearly defined, as must the rules by which they are derived and the

purpose of the measure or prediction system must be made clear. Metrics

must be associated with a model, to provide meaning and a means by

which to validate the mathematical representation of the real-world

entity or attribute, which together with the empirical validation will

allow us to make a reliable assessment of the metric's accuracy in

capturing the intended attribute (in the case of a measure) or the accuracy

of its predictions (in the case of a prediction system). The following

chapter (chapter 3) will bear these points in mind when examining the

metrics proposed for object-oriented systems.

75

Theme/Lesson Software

Science

Cyclomatic

Complexity

Henry and

Kafura's

Information

Flow

Function Points

distinction between not explicit, no no ro

measurement/prediction

system

definition: poor/poor poor/OK poor/contradict poor/contradictory

attribute/counting rules ory

validation (supporting) empirical empirical empirical empirical
unsatisfactory unsatisfactory, unsatisfactory,

unsatisfactory
not compelling not compelling

clearly defined goal effort no no (give many t-r
and varied

possible)

applications

valid/useful no/no no/in one no/could be no/possibly in some
situation useful for

situations
maintainability
(Rombach 1987)

Table 2.4: Comparison of Traditional Metrics

Blank
In

Original

77

Chapter 3 Metrics for Object-Oriented Software

Synopsis

The widespread uptake of object technology has ensured that a significant number

of metrics researchers and practitioners have turned their attention to measuring

object-oriented software. Despite calls advocating the use of empirical

evaluation and validation, many metrics continue to be proposed with little

empirical evidence to support them. In fact, it can be seen that despite there being

lessons to learn from the earlier years of metrics development, the message seems

not to have reached many of those working in the area. This chapter will

consider some of the object-oriented metrics proposed so far, paying particular

attention to design complexity and quality metrics. The metrics will be described

and assessed according to the points raised in 2.4.3.

3.1 Introduction

Although applying measurement to a new paradigm, we still need to

consider why we are measuring and how this is to be done. Despite prior

experience in software metrics to look back on, the answers to these

questions remain, in the majority of work, as hazy as they ever were for

the metrics developed, applied and validated prior to the advent of

object-orientation.

This chapter will consider a number of metrics for object-oriented

software. Firstly we will examine the attempts to apply traditional

metrics to object-oriented systems (section 3.2). Then we will consider

the exclusively object-oriented metrics (section 3.3). The previous

chapter (2) highlighted a number of points to consider, or lessons to be

learned, based on past mistakes and the application of measurement

theory to software metrics, namely:

78

(i) The lack of a clearly defined goal;
(ii) The failure to distinguish between measures and prediction systems
(metrics can be taken to mean either);
(iii) Poor definition of attributes to be captured and the counting rules for

doing so;
(iv) Poor validation;
(v) Failure to establish validity and/or usefulness.

These will be considered throughout the examination of object-oriented
software metrics.

3.2 Recycling Metrics (the application of traditional complexity metrics to
object-oriented systems)

A minority of the research into measurement of object-oriented systems

has attempted to apply traditional metrics to object-oriented software.
Unsurprisingly, activity in this area does not seem to have been

sustained. These early attempts were quite possibly influenced by tool

support. Inevitably there will be a lag between the introduction of a

technology and the tools necessary to support it. Until there is some call

for object-oriented metrics to be incorporated into a tool, the developers

of such tools are unlikely to include "new" metrics and are of course
limited to those metrics already proposed, since they tend not to be in the

business of developing and validating metrics themselves. Thus metrics

practitioners working on an object-oriented project, probably for the first

time, would need to make do with what was available and the suggestion
that familiar metrics would work for object-oriented software
measurement would be very appealing. The first published analysis and
design method, Shlaer-Mellor (Shlaer and Mellor 1988; Shlaer and
Mellor 1992), deliberately used familiar notations and models, specifically
an entity-relationship model (known as an information model), state

79

models, using a familiar state-transition notation and a dataflow

diagram, again familiar to those involved in structured design. This

could give the impression that object-oriented design was not so very
different and that traditional metrics would still be applicable.

The idea that traditional metrics (i. e. for structure design and code) could

be successfully applied to object-oriented software, is intuitively

implausible". Two of the selling points of object-oriented technology

have been as follows. First, that it is a new and better way of developing

software, that it is a different way of modelling the real world (by

focusing upon objects as the "building blocks" and encapsulating the

associated data and processes within them, rather than creating an

artificial division between data and process). Second, it is a different way

of executing a program (using mechanisms such as dynamic binding and

polymorphism). Thus metrics based on a structured, top-down approach

to design and coding seem unlikely to be useful for a technology which

works by interaction or co-operation between objects rather than

requiring a module to be controlled by those above it in the calling

hierarchy. These doubts would seem to be confirmed by the speculative

nature of such proposals, offering no validation for the claims made.

3.2.1 Software Science

One traditional metric suggested for measuring object-oriented software

is Halstead's Software Science (Halstead 1977), which is surprising given

the amount of criticism this metric has received and the studies refuting

its validity (see chapter 2, section 2.5.2.1). However, (Coppick and

21 LOC could be considered an exception. Many have question its usefulness for structured
systems, and doubtless the same arguments can and will be raised regarding its

application to 00 systems. It remains undeniably popular, however, and no satisfactory
replacement has been found.

80

Cheatham 1992; Tegarden, Sheetz et al. 1992; Lee, Liang et al. 1993) have

all proposed the use of Software Science for measuring 00 software.
(Coppick and Cheatham 1992), for example gloss over the many studies
debunking Software Science, citing only one study, which is positive.
They mention briefly the lack of agreement regarding complexity, yet

continue to use the term liberally throughout the paper without offering

a definition for the reader. The justification for applying a traditional

metric seems to be in the parallels drawn between object-oriented and

structured software. That the complexity of an object (or module) is

dependent on the number of operations (functions) it has, and just as

structured modules are decomposed into several more cohesive

modules, so are objects, using the inheritance mechanism. This suggests

a rather hazy or certainly limited understanding of 00. Operations or

responsibilities can be shared amongst classes that are not related via

inheritance. Inheritance does not necessarily indicate that there is some

shared responsibility for carrying out some function -a class can inherit

data or methods and use them as appropriate to carry out a completely

different task. Inheritance is a mechanism for reuse, avoiding the

repetition of code, not a mechanism for decomposition in the

conventional sense. Additionally the authors state that 00 design is data

centred22, not function centred, but do not consider data complexity,

preferring to attempt to apply a prediction system which was meant for

traditional functional design. Software Science is applied to a small LISP

Flavors graphics editor demonstration program, using a tool (presumably

developed by the authors, which collects a number of undefined
measures and uses them as inputs to Software Science, producing

22 This statement is not true for all methods. It is true of, for example Shlaer and Mellor
(Shlaer and Mellor 1988; Shlaer and Mellor 1992), who are evidently influenced by
traditional data analysis/design, but not of the CRC approach (Wirfs-Brock, Wilkerson
et al. 1990) which can be considered a responsibility based approach, which is quite
unlike any traditional methods.

81

"reasonable" outputs. The estimates produced are not compared with

actual totals, thus this claim cannot be substantiated.

Coppick et al's work can be criticised on many points. The "results" are

no more than the product of Halstead's prediction system, yet claims

regarding the applicability of this metric to 00 are made without any

attempt to compare the estimates with actual figures, or even to get a

subjective assessment from experts (developers) of how "reasonable" the

figures are. The authors have taken a (discredited) metric and applied it

without making allowances for the difference between the object-

oriented and structured paradigms. Software Science is not universal

model, applicable to all modes of development. It was based upon

specific inputs and subsequently shown not to be a useful indicator or

effort, size or the many other attributes it was used to predict. The

authors have not considered the nature of object-oriented systems that

they work by passing messages between objects to initiate the operations,

which fulfil some task. They have considered only internal complexity,

ignoring completely the communications between objects, which is

where much of the complexity in an object-oriented system lies. Thus

the model for measuring or predicting attributes of an object-oriented

system needs to incorporate some measurement representation of the

mechanisms specific to object-orientation, since these are what makes a

system object-oriented.

Tegarden, Sheetz and Monarchi (Tegarden, Sheetz et al. 1992), give a

number of reasons why they consider traditional metrics are applicable to

00 software: that they are unaware of any empirical evidence rejecting

the contention that they are applicable; that they already exist and are

understood by researchers and practitioners; and that there is supporting

empirical evidence regarding their use with structured systems. These

statements can be countered easily. First, lack of supporting empirical

82

evidence refuting the usefulness of traditional metrics for 00 systems
(particularly when due to the fact that such studies have not been carried
out!) does not automatically mean that they are applicable. Second, the

authors ignore that fact that the weight of empirical evidence regarding
Software Science (and Cyclomatic Complexity) indicates that it is not a

useful metric for structured systems, and thus unlikely to be useful when

applied to object-oriented systems. The fact that traditional metrics exist

and are understood does not mean that they are valid or useful23. Again

only the internal complexity (referred to as procedural complexity) is

considered, ignoring object communication. The authors also seem to be

confusing two issues, the validity of traditional metrics as indicators (of

complexity24 - see chapter 2 for a discussion on the problems associated

with complexity metrics) and the use of metrics to assess the relative

complexity of four different implementations of the same problem. The

implementations use inheritance and polymorphism, either
individually, together, or not at all (where inheritance is not used,

operations (methods) and operands (variables) are duplicated). The

authors take some simple measures and calculate the Software Science

volume metric. The volume for each implementation is compared.
They note that volume is highest where neither inheritance nor

polymorphism is used and lowest where both mechanisms are used.
They claim this supports their contention that polymorphism and
inheritance both reduce complexity. However, what they have obtained
is an indirect measure of size, since that is all that volume is. It would be

easier to count LOC.

Given the problems with defining complexity, the empirical evidence
against Software Science as a valid predictor of anything useful, and the

u Neither can anyone be certain that many traditional metrics are "understood", that is,
that there is any consensus as to how they are applied, for what reason, etc., given the
ambiguities in definition, lack of validation, etc. See chapter 2.

83

lack of compelling evidence of size as a complexity measure, the authors'

claims for the usefulness of Software Science or for the beneficial effects

of inheritance and polymorphism cannot be upheld. Their so called

evidence is meaningless, since Software Science is invalid. They have

merely repeated the mistakes of early metrics researchers - of attempting

to capture an indefinable attribute, of not really understanding what they

are capturing and of having no actual model (they are attempting to fit

another prediction system developed for a different situation).

Another paper suggesting the use of metrics based on Software Science is

that of (Lee, Liang et al. 1993), although at least they do consider object

communication (coupling between objects) and suggest the additional

use of information flow metrics. However, as with the other papers

advocating the use of Software Science for object-oriented systems, the

authors ignore, or are unaware, that the majority of empirical evidence is

against Software Science. Misleadingly, the authors claim that

"Empirical tests have shown Software Science (is) highly correlated with

the number of bugs in a program, programming time, and the quality of

a program", but give no references or supporting evidence.

The authors use the Software Science length metric to estimate the

complexity of a number of entities, starting with methods, despite

admitting that methods tend to be small (the reason given for rejecting

Cyclomatic Complexity to measure method complexity). Two definitions

are given for class complexity. First that class complexity is equal to the

sum of the complexity of its methods (including inherited

methods)ZS. The second treats the class as an entity and calculates its

complexity as the product of the length of the class (sum of length of the

24 Which would then be used in order to try to predict a number of attributes.

84

methods) and the coupling of the class (the interactions of the methods
defined within the class). Hierarchies are variously defined. First as

entities (where complexity is the product of the length of the hierarchy

and the coupling within the hierarchy). Second as a collection of

methods (complexity being the sum of the complexity of all methods

contained within it). Third as a collection of classes (complexity equals

the sum of class complexities within the hierarchy). The final entity is a

program, which is defined as the sum of the complexity of the main

program plus the complexity of class hierarchies in the system. No

empirical evidence is given in support of the proposed metrics.
Weyuker's axioms (Weyuker 1988) are used to give a formal validation
(see 2.3.1 for a critique of Weyuker's axioms). The authors do not suggest

any guidelines for use of the metrics. As with early metrics researchers,

they are seeking to calculate an attribute which cannot be defined and has

no clear purpose.

3.2.2 Cyclomatic Complexity

(Tegarden, Sheetz et al. 1992) consider cyclomatic complexity to be a

suitable indicator of the complexity of object-oriented systems. They

suggest that low cyclomatic complexity indicates either a system that is

not complex, from the point of view of the metric, or that "decisions

normally measured in a structured module are deferred through

message passing to other objects", indicating that few methods would
have a high cyclomatic complexity. Firstly one cannot say something is

"not complex from the view of this metric". A metric either accurately
captures the intended attribute or it does not. The second explanation for

low Cyclomatic Complexity indicates that the metric (even assuming it

25 This seems a very simplistic view of complexity. An object, or indeed a module, is
usually taken to mean more than the sum of its constituent methods or functionality,
though the implications for complexity cannot be quantified.

85

was valid) is not suitable for object-oriented software because the

structure is different and thus the attribute cannot be captured in the

same way. (Coppick and Cheatham 1992) also propose the use of
Cyclomatic Complexity. A complexity limit of 100 per object is suggested
(based on a complexity limit of 10, multiplied by a maximum of 10

methods) as "intuitively reasonable", but offer no other explanation.
This limit indicates a limit of 90 decisions per object, which seems an

arbitrary figure. The metric was calculated for the same small package as
the authors' study of Software Science (see section 3.2.1). As discussed

previously in chapter 2, we cannot rely on a shared understanding of a

concept. Authors need to explicitly define what attribute is being

captured, how and for what purpose, in order to allow consistency and

validation. Again, McCabe's cyclomatic complexity has been largely

discredited as a traditional metric26, thus cannot be said to apply for

object-oriented systems, since we cannot be certain of what it is trying to

achieve, or to test its effectiveness.

3.2.3 Information Flow

(Lee, Liang et al. 1993) consider complexity caused by communication
between objects, and adapt Henry and Kafura's Information Flow metric

to measure coupling between methods, which are summed to find the

class complexity, hierarchy complexity and program complexity. Again

Weyuker's axioms are employed (Weyuker 1988), by using additive

operators instead of the multiplicative operators defined in the original.

Weyuker's axioms been criticised by (Shepperd and Ince 1993) and

(Fenton and Pfleeger 1996), amongst others (see chapter 2, section 2.3.1.

The application of Weyuker's axioms does not demonstrate validity, and

26 It could be said to have some merit when applied to the issue of test coverage, see section
2.1.1

86

the usefulness of the metrics cannot be assessed without empirical
evidence.

3.2.4 Function Points

There have recently been attempts to apply function points to object-

oriented developments, with one such attempt being to relate "use

cases", a description of a business function to be implemented in an 00

system (Armour, Catherwood et al. 1996) to functions points as a

predictor of size. The authors compared the function point count of the

use cases with the function point size of the implementation (in

Smalltalk), and identified an average 433% growth in the four projects

studied. However, the criticisms of function points as a predictor of size

still stand (see section 2.5.2.4). It must also be noted that they have

merely identified an approximately fourfold increase in the number of

function points captured from the projects - no more meaning can be

attached to it than that. This study has been extended (Catherwood, Sood

et al. 1997), where object data (number of objects, number of methods)

was captured in order to study the relationship between objects and

function points. Information from three more projects was added to that

presented in (Armour, Catherwood et al. 1996), and the average growth

recalculated as 381%.

The results of the function point/object data study are as in table 3.1

below (derived from (Catherwood, Sood et al. 1997)). Although explicitly
defined, it seems that "object" could be replaced by "class".

87

objects per # objects per # methods per #methods per

function point function point function point function point
based on Use based on Intel. based on Use based on Imnpl.

Cases System Cases System

mean 1.16 0.38 18.18 4.96

standard 0.05 0.12 8.44 0.9

deviation

Table 3.1: Some summary statistics for functions point/object data study
(derived from (Catherwood, Sood et al. 1997))

The authors found that by removing a particular project (with a different

implementation language, PowerBuilder), the standard deviation could

be reduced. From this it can be deduced that the prediction system is

implementation dependent. Additionally, although a "tight" correlation

is reported, neither the result, significance, nor the type of correlation

used is stated. A repeat analysis of the figures supplied reveals that the

result varies with the correlation test used. It can also be seen from the

new analysis that the scatterplots of function points against number of

objects show that one outlier has a great effect on the regression line.

Figure 3.1 shows the regression plot and correlations for all datapoints,

and 3.2 repeats these with the outlier removed

88

i
z

1500

1200

900

600

1200 1600 2000 2400

FP

size = -381.53+0.61(FP)

Figure 3.1: Regression plot of Function Points against Size (measured as
no. of objects)

Pearson Product Moment Correlation Coefficient 0.883.

Spearman Rank Correlation Coefficient 0.700.

The Pearson correlation is significant at the 5% confidence level, but the

Spearman is not significant at 10%.

89

i

550+

eý . 4004-

4

4

1200 1400 1600 1800

FP

size = 340.75+0.098(FP)

Figure 3.2: Regression plot of Function Points against Size (measured as
no. of objects) with outlier removed

Pearson Product Moment Correlation 0.412.

Spearman Rank Correlation Coefficient 0.400.

Neither are significant (Pearson at 5% and Spearman at 10% confidence

levels).

However, five datapoints are not really enough to draw conclusions

from. Further, the datasets (in particular the number of projects

included) vary according to the calculations - correlations between

function point counts and object/method counts are based on five

projects whereas function point growth is based on seven. The reason

for this is not explained, thus in addition to the criticisms above, there is

inconsistency in the dataset according to the tests performed. It is

unfortunate, given the general shortage of completed object-oriented

projects from which such data can be extracted, that the authors are
focusing on one particular metric, especially since it is aimed at

traditional systems development and is of debatable validity.

90

A related paper is (Minkiewicz 1997), which, although specifying the

need for metrics specific to 00, presents one which is claimed to be

analogous to function points. It appears to be made up of a number of

metrics, including several of the Chidamber and Kemerer suite
(Chidamber and Kemerer 1991; Chidamber and Kemerer 1994). It is not

clear how the various components are combined to make a single POP

(predictive object point) count, which is claimed to correlate well with

size (SLOC) and effort. Additionally it is claimed that a relationship
between POPs and effort has been established through regression, no data

or results are presented and so the analysis cannot be repeated. This is an

example of lack of /poor validation, poor definition of the prediction

system and of how the measures are taken and the lack of a clear

purpose. Although linear regression is used to "establish" a relationship
between POPs and effort, we have no idea of how POPs themselves are
derived or the reasoning behind the process.

3.2.5 Summary on the Application of Traditional Metrics

It is fairly obvious both from the limited number of papers suggesting

specific traditional metrics as applicable to object-oriented systems, and

from the speculative nature of the work, that this is not a branch of 00

metrics research that has proved fruitful. There may well be some

traditional measures that could be used for 00 software, but there does

not appear, to be any published work that demonstrates this (or not). The

papers cited above are not credible for the following reasons: they

advocate the use of traditional complexity metrics, yet ignore the

empirical evidence that has led to these metrics being discredited. They

are not really looking at them afresh by examining the model and seeing

if it could be applied more successfully to 00 software, but are merely

91

taking what they (wrongly) perceive to be acceptable traditional metrics

and applying them to 00 software. Only the function point based

metrics actually compare their results with actual data, to ascertain any

correlation, and only one paper (Catherwood, Sood et al. 1997) gives

actual figures. All are looking at the issue of complexity, which has

obvious problems (see chapter 2). Cyclomatic Complexity and Software

Science are code metrics, yet traditional (structured) metrics have moved

on since then, recognising that code metrics are of limited value, and that

design metrics provide earlier predictions and feedback.

3.3 New Metrics for Object-Oriented Systems

Most researchers behind the contention that object technology needs

metrics developed specifically to take into account the features unique to

the paradigm. A number have been proposed, but are still largely

speculative or with little support in terms of validation or an assessment

of their usefulness. This is partly due to the precedent set by traditional

metrics, that it is enough to speculate, particularly if the metric can be

accompanied by mathematics and be described as "intuitively

reasonable", or at best be "validated" according to Weyuker's axioms.

However, some of the proposed metrics have had some attempts at

empirical validation. This is limited, however, by the lack of available

data, due to the difficulties in obtaining "real", mature 27 object-oriented

systems to study. This section considers what can be termed the "state of

the art" of object-oriented metrics. The amount of consideration given to

each will depend upon the material available and the interest they have

generated.

27 Mature in the sense of being tested, delivered and maintained, since these phases are
necessary for those studies considering defects, maintainability and so on.

92

3.3.1 Chidamber and Kemerer's Metric Suite

Chidamber and Kemerer were the first to publish metrics for 00 design

(Chidamber and Kemerer 1991). They have become the de facto standard,

and have been incorporated into code analysis tools (e. g. Logiscope). One

reason for their popularity is undoubtedly because they were the first and

consequently the most studied metrics (as was the case with Software

Science). Also they were formally defined (using sets), and it was made

clear in the original publication that work was ongoing and empirical

validation would be forthcoming (published in (Chidamber and Kemerer

1994)). This is not to say that the metrics are without flaws. Ambiguity

in the definition of counting rules was highlighted by (Churcher and

Shepperd 1995). Research contributing to this thesis found difficulties

applying most of the metrics at design time (Cartwright and Shepperd

1997b). They are claimed to be design complexity metrics, and thus have

the problems of definition and purpose associated with traditional

complexity metrics (see chapter 2).

The Chidamber and Kemerer (CK) metrics will now be examined in

more detail. This will include independent empirical validations as well'-

as that published by Chidamber and Kemerer. First a description of the

metrics suite is given. The suite is then discussed in the light of the

"lessons learned" from the application of measurement theory to

software metrics, as described in section 2.4.3. The discussion is based

upon examination of the metrics, experience in using them and the

findings of other authors.

3.3.1.1 The Metrics Suite

Chidamber and Kemerer published an early paper on object-oriented
software metrics (Chidamber and Kemerer 1991), proposing a suite of six

93

design metrics, with the intention of capturing the different architectural
features of object-oriented systems in order to assess design quality and to

predict "managerial metrics" such as effort. Further work in the form of

empirical studies and some refinements to the metrics as first proposed
followed (Chidamber and Kemerer 1994; Chidamber, Darcy et al. 1997).

The metrics are based on classes within an 00 system. The terms class

and object are used interchangeably. 28

WMC (Weighted Methods Per Class). This metric is intended to measure

the complexity of a class, assuming that a class with more methods than

another is also likely to be more complex. Weightings are not fully

specified, thus the general approach is to assume all methods are equally

complex and thus calculate WMC as the count of the number of methods

in a class. The alternative is to decide upon some other method for

calculating the internal complexity of a class. Comments in (Chidamber

and Kemerer 1995) indicate that only methods specified in a class are
included, that is, any methods inherited from a parent are excluded.

DIT (Depth of Inheritance Tree). It is assumed that a class deeper in the

inheritance hierarchy is more complex because of the number of
definitions, methods, etc., inherited from ancestors. It is defined as the

maximum depth of the inheritance graph of each class, thus allowing for

multiple inheritance. The base class is DIT=zero, its children DIT=1 and

so on.

NOC (Number Of Children). This metric is calculated as the number of
direct descendants for a class. It is assumed that a class with more

children can be regarded as more complex since it directly affects more

classes.

29 C&K intend these as design metrics. Most methods use the term class during design (an
object being an instantiation of a class).

94

CBO (Coupling Between Objects). This represents the number of other
classes to which a class is coupled (here object = class since at design time

we don't know anything about actual instantiations, i. e. objects). The
definition of coupling between classes is that one class uses the

methods /variables of another. In this sense, objects are instantiations of

classes.

RFC (Response For A Class). This is a count of the number of methods

that could potentially be executed in response to a message received.
This assumes that the higher the count, the more complex the class.

LCOM (Lack Of Cohesion Of Methods). This indicates the number of

pairs of methods without shared instance variables minus the number of

pairs which do have shared instance variables. When the result is

negative, the metric is set to 0.

3.3.1.2 Goal

Chidamber and Kemerer suggest that complexity can be used in cost

estimation, evaluating productivity, estimating maintenance

requirements and improving software quality (Chidamber and Kemerer

1991). How these measures can be used in this way is not specified, that

is, no prediction systems are defined Or validated. Additionally, whilst
they are clearly complexity metrics, it is implied that size is also assessed,

which is not clear from the nature of the measures defined. However, ir1

a later technical report (Chidamber, Darcy et al. 1997), it is suggested that

the metrics are "measurements of design complexity" and thus may be

used to assess/predict variations in productivity, rework effort and
design effort. Stepwise regression is used to produce an equation for each

95

of these dependant variables in terms of four of the CK metrics
(excluding DIT and NOC). The measures have been developed with

some consideration of measurement theory29, in that they are formally

defined (using sets) and based upon a model of 00 design. It could be

argued that the attribute of interest is not clearly enough defined and that

there is some ambiguity in the definition of counting rules (Churcher

and Shepperd 1995). The concept of objects employed in this research is

based upon Bunge's ontology (Bunge 1977), since this deals with the
definition of representation of the (real) world. This is consistent with

the approach of object-oriented design, which aims to model the real

world in a more natural way, (i. e. independent of implementation), than

the functional approach, where artificial separations are made between

data and processes. Graham (Graham 1995), questions the suitability of
Bunge's ontology as a basis for object-oriented metrics, since it implies an

object is defined by its properties, which is not necessarily the case in an

object-oriented system.

The metrics are presented as design metrics, thus implicitly

implementation independent. Henderson-Sellers suggests that since
(Henderson-Sellers 1996) the WMC metric does not consider the

possibility of method type, there is potentially a drawback in applying the

method to a system where the intended implementation language is

C++, since this language does use different types of method". We cannot
be sure that method type is or is not an issue, and Henderson-Sellers does

not demonstrate that there is a problem with ignoring method type. It is

29 The authors certainly consider measurement theory, but doubts have been raised as to
how vigorously it has been applied (Ritz and Montazeri 1996).
30 It could be argued that the weighting applied could reflect the different method types.
However, it is still clear that we do not really know whether weightings are useful or
whether the metric should be a simple count of methods, and if so what use is a count of
methods? Obviously more empirical work is needed, but until counting rules,
implementation issues and the actual purpose(s) are agreed on, studies will not
necessarily apply the metrics consistently.

96

not clear from Chidamber and Kemerer's work whether this is due to
lack of consideration of method type, or whether they considered it a

non-issue..

Further criticism of the metrics suite with respect to its lack of
implementation independence is offered in (Henderson-Sellers 1996),

where DIT is considered to be more suited to a Smalltalk application,

with a single base class, than C++ where a single base class is not

required. However, there is no evidence that this is necessarily an issue

where DIT is interpreted at a class level (each class having its own value

of DIT). If DIT is interpreted as a system metric, with a single value for

the whole system, this issue would have an impact. However, such a

definition, although not precluded, is not what is intended by Chidamber

and Kemerer, who present the suite as class metrics, and present

empirical evidence which makes it clear that the metric is calculated at

class level (Chidamber and Kemerer 1994).

A further criticism can be levelled at the lack of clear purpose and

guidance for use of the CBO metric. It is suggested by Chidamber and

Kemerer that a highly coupled system is not desirable, as is already

generally agreed within the software engineering community. However,

some degree of coupling is not only unavoidable, but is necessary.

Henderson-Sellers et al. (Henderson-Sellers 1996) point out that

inheritance based coupling is an unavoidable consequence of using

inheritance, and consider that it should be counted separately from other

coupling (see section 3.3.1.4).

Suggestions are necessary as to what values are acceptable, or how to

ascertain such bounds. This is a criticism which is applicable to all of the

metrics in the suite, and is not confined to Chidamber and Kemerer.

Certainly the lack of guidance given in this case may well be a

97

consequence of the general lack of guidance and sense of purpose among

complexity metrics in general. The previous chapter criticised the

tendency to adopt complexity as a goal, since complexity in itself told us
little. What was, and is still of interest, is the relationship between

complexity and other more useful attributes, and thus information is

needed on how the assessed complexity would affect these other

attributes, for example how could we use CBO to assess the relative

quality of designs.

3.3.1.3 Validation

Validation in the original paper (Chidamber and Kemerer 1991) is based

on Weyuker's axioms (Weyuker 1988) (see chapter 2) the appropriateness

of which have been questioned by (Kitchenham, Pfleeger et al. 1995)

amongst others. However, a subsequent paper (Chidamber and Kemerer

1994) provides preliminary results of an empirical investigation. The

authors suggest that the metrics be used to aid:

(i) reuse
(ii) identifying design flaws (an example being excessive declaration of

subclasses)
(iii) in allocation of testing resources (for classes with high values for the

CBO and RFC metrics)

(iv) gain an insight into trade-offs made between maximising reuse (by

inheritance) and ease of understanding and testing (designing a

shallower inheritance hierarchy)".

Interviews with developers at the two data sites involved are used to

give an (informed) subjective evaluation of the results. Although the

implied use of these metrics is as predictors (i. e. inputs into prediction

31 Chidamber and Kemerer found that inheritance hierarchies tend to be shallow

98

systems), it should be noted that these are complexity measures, i. e.
assessment metrics rather than prediction systems. This is because the
empirical study does not compare predicted against actual values such as
defect data, testing effort etc. Thus the implication that they are useful
predictors of defects, testing requirements and so forth has not been

empirically assessed.

In the later technical report (Chidamber, Darcy et al. 1997) the authors
find that WMC, CBO and RFC to be highly correlated. In the stepwise

regression analysis, CBO and LCOM are statistically significant predictors
for design effort, rework effort and productivity.

In (Hitz and Montazeri 1996), some problems with the metrics are
identified. The authors make it clear that they are considering the

metrics as measures rather than as predictors. The authors suggest that

improvements could be made to the metrics by a more rigorous

application of measurement theory principles. They summarise the

stages necessary for developing and validating metrics and suggest that

Chidamber and Kemerer do not list satisfactory empirical relation

systems for the metrics, concentrating instead on the effects of the metrics

on other attributes. Hitz et al. emphasise the need for a "sufficient" set of

empirical relations to be defined in order to account for the possible

situations which may occur. A metric must successfully map the

empirical relation system to a numerical system - if the empirical
relation system is incomplete or poorly defined then one cannot be

certain that the representation condition holds and thus cannot
satisfactorily demonstrate that the metric is valid.

(particularly in C++ applications).

99

The Chidamber and Kemerer metrics have been used in independent

empirical studies to assess maintainability (Li and Henry 1993a; Li and

Henry 1993b), evaluation of object-oriented analysis and design methods

(Sharble and Cohen 1993), probability of faults in a class (Basili, Briand et

al. 1995), size (de Champeaux 1997), quality (Binkley and Schach 1996) and

number of defects (Cartwright and Shepperd 1997b).

Li and Henry (Li and Henry 1993a), consider five of Chidamber and

Kemerer's metrics (rejecting CBO), as well as five of their own, in an

empirical study based on two commercial systems, developed in Classic

Ada. The additional metrics will be defined in section 3.3.2.1. The

authors collect maintenance effort data from the systems over three

years. Unlike Basili et al. (Basili, Briand et al. 1995), Li and Henry define

the WMC metric as the "summation of McCabe's cyclomatic complexity

of all local measures", i. e. v(G) for the class, which can be more simply

expressed as m+n, where m is the number of decisions in the class and n

is the number of methods. Why two apparently different commodities

should be added together is unclear and the validity of doing so, as well

as the usefulness of this procedure in an object-oriented system, where

typically methods are small (Wilde, Matthews et al. 1993), is

questionable32. Moreover, the "object-orientedness" of Ada, might be

better described as object based, since although it shares certain common

features with more obviously object-oriented languages, it lacks others

(Wegner 1990). Although the variant used in (Li and Henry 1993a),

Classic-Ada, is described as an object-oriented language, where object-

oriented constructs such as class and superclass have been added to the

standard Ada constructs.

32 Where methods are typically small and preferably fairly atomic, then the number of
decisions is likely to equal one, thus this measure is likely to be the same as counting the

number of methods.

100

Regression analysis is used to assess the suitability of the metrics as

predictors of maintenance effort by using them as independent variables
to predict the dependent variable, maintenance effort, and compare this

with the results of using regression analysis using size measures to

predict maintenance effort. "The number of lines changed per class" is

the definition of maintenance effort. No information is given on time

taken to implement changes, so maintenance is simply a count of

modified lines of code. The authors conclude that the metrics are good

predictors of maintenance effort. However, the various measures are not

independently tested, all of them being included in a multiple regression

equation, thus the validity of the Chidamber and Kemerer metrics alone

is not satisfactorily established in this study. See 3.3.2 for a criticism of

the empirical study.

Basili et al. (Basili, Briand et al. 1995) use a modified version of the metric

suite to suit C++, since indications are that it is not language

independent and does not reflect many mechanisms peculiar to C++

(Chidamber and Kemerer 1994; Chidamber and Kemerer 1995; Churcher

and Shepperd 1995). Their study is based upon an experiment with

student programmers, with some (unspecified) experience with C++ but

not necessarily with 00 methods, or with the libraries provided. A C++

programmer familiar with the libraries was available for consultation.
Code data and defects discovered and fixed were collected. The

Chidamber and Kemerer metrics were extracted from the code delivered

at the end of implementation, error data during testing and fix data

during the repair stage. The amount of modification made to a class was

categorised as none, small or large, classes being allocated according to the
developer's estimate of the percentage of code modified. The authors
found all but LCOM to be "adequate" predictors of fault prone classes (in

terms of predicting whether a class would contain one or more faults or
none), and that they performed better than traditional code metrics. It

101

should be noted that although Basili et al. state that the metrics are

available earlier in the lifecycle than traditional code metrics, they

extracted them from the code, rather than design documentation. Thus

they fail to demonstrate that they can be considered design metrics, a

claim challenged by the empirical study carried out for this thesis (see

chapter 5).

Sharble and Cohen (Sharble and Cohen 1993), use the Chidamber and
Kemerer metrics suite to compare two approaches to object-oriented

analysis and design, data-driven and responsibility-driven. The CK

metrics are supplemented by three others. The metrics are not validated,
but are applied to both designs and the results compared to determine

which approach lead to the least complex design, the conclusion being

that the responsibility-driven design is less complex than the data-driven

design.

Cartwright (Cartwright and Shepperd 1997b) found a significant +ve

correlation between DIT and error density. However, the indications

were that involvement in an inheritance structure at whatever level was

more relevant to error proneness than the actual depth. NOC was not
found to have strong correlations with defects or size. The other metrics

could not be analysed since they proved impossible to collect from the

design documentation. A more detailed discussion of this study can be

found in chapter 5.

In (de Champeaux 1997), Chidamber and Kemerer's metrics are included

in a large number of metrics applied to a case study developed by

students. He notes a "disturbing" significant correlation between his

adaptation of WMC and CBO, and between WMC and RFC. It is

suggested that RFC and CBO are both measuring size rather than

different aspects of quality.

[OURNEMOUiIVFR
. qITV

102

Four of the metrics, CBO, RFC, DIT and NOC are assessed in (Binkley and
Schach 1996). This study uses expert opinion to compare the quality of

alternative design solutions to a particular problem and rank them. The

authors then apply 16 metrics; to find which confirmed the experts'

consensus based opinion. However, the results are unclear since metrics

are grouped according to type and the results (success rate at match

experts' opinion) is given per category. They find that simple coupling

metrics (which includes CBO) have a success rate of just 17%, inheritance

based metrics (including DIT and NOC) 28% and RFC (given its own

category), 33%. It is noted that fourteen of the sixteen metrics tested,

including the Chidamber and Kemerer metrics, score lower than a

random. The criticism levelled by the authors is that the metrics are

defined at too high a level of abstraction to measure design details.

Examined more closely the authors seem to mean that the metrics are

too crude and do not distinguish between different types of coupling and

inheritance. The authors conclude that the accuracy of coupling

measures is the determining factor in their success as predictors of quality

and that more abstract measures cannot give an accurate measure of

complexity and thus will not give an accurate prediction. Although this

argument is plausible, the study does not demonstrate this satisfactorily -

- the criteria for judging designs is not given, nor the scores of the

individual metrics. Neither is it explained how they were used as

predictors. Calculating, CBO, for example, does not predict the quality of

a design. In the absence of guidance on thresholds etc., from Chidamber

and Kemerer it must be assumed that the authors supplied their own,

but what they are and how they were arrived at is not published.

Wilkie and Hylands (Wilkie and Hylands 1998) present the results of

applying the metrics suite to a 25 KLOC 114 class "industrial grade" C++

103

system. They apply two versions of the WMC metric33, WMC(SS)which

uses Software Science (Halstead 1977; Halstead 1979) and WMC(cc), which

uses Cyclomatic Complexity (McCabe 1976; McCabe and Butler 1989) to

measure method complexity (see sections 3.2.1 and 3.2.2 for criticisms of

the application of these traditional and controversial metrics to object-

oriented software). The authors suggest that WMC(SS) and DIT alone

"provide a significant contribution to the fault predicting capabilities of

the C&K suite". This is the result of regression analysis involving the

full set of classes and a subset of the classes, in which all of the classes

included had some associated fault fixing effort. The adjusted R2 values

for both sets are low (0.3 and 0.44 respectively) which raises some doubts

as to their usefulness in practice. The same study suggests a relationship

between RFC and product enhancement but does not give supporting

figures. The analysis is repeated to take account of the effects of

inheritance (a class which inherits will have the complexities of its

ancestors added to its own complexity). The results differ, so that DIT

and WMC(SS) are no longer significant indicators of fault fixing effort and

that CBO emerges as being more significant (although once more the RZ

is very low (0.09)).

3.3.1.4 Definition

The second paper (Chidamber and Kemerer 1994) makes some changes to

the original definitions. Unfortunately there is still some ambiguity as

suggested in (Churcher and Shepperd 1995), where an example is given

showing the possible differing interpretations and results for the WMC

metric. The particular problem illustrated therein was subsequently

clarified (Chidamber and Kemerer 1995), but there is still the possibility of

the continuing use of the earlier definitions.

33 Ignoring inherited methods, i. e. using methods declared only in that class

Further, the drawbacks with the original metrics have not all been

cleared up, an example being LCOM, where any negative values are set to
0. This seems to make the metric insensitive for highly cohesive classes
and obviously cannot discriminate between lower values since all
negatives are set to 0. In the absence of explicit guidelines on how to use
the result (how do we determine if a score is acceptable or not?), this

metric is limited in its use as, for example, an indicator of quality, since

all classes reaching a certain level of cohesion score the same value (i. e.
0). Henderson-Sellers, Constantine and Graham consider this in

(Henderson-Sellers, Constantine et al. 1996), and give an example where

classes have the same LCOM score but, upon examination of the designs,

appear to have different levels of cohesion. They point out that although
high LCOM values can indicate low cohesion the converse is not

necessarily true. From the examples presented, the authors conclude that

it is possible for a value of LCOM =0 to indicate a highly cohesive class, a

not very cohesive class as well as a class with no cohesion. Henderson-

Sellers et al. suggest a new definition for LCOM to overcome this

problem. Although the cohesiveness of a class, or indeed any unit, can

be somewhat subjective, since it is easy enough to distinguish between a

highly cohesive class and a non cohesive class, but harder to rank classes

which seem similar, the argument is persuasive. It shows how very

differently structured and sized classes can have the same score.
Common sense tells us that it would be possible, although possibly

somewhat contrived, to construct a class in such a way that a low score

was obtained, but the class would not necessarily be cohesive. For

example, methods could share variables without necessarily making any

sensible use out of them, merely to improve the LCOM score. This

would be consistent with the argument of Henderson Sellers et al., that a
low score did not necessarily indicate high cohesion. Thus the definition

105

of this metric does not fulfil its stated goal of assessing cohesion, which

means that it fails to satisfy the representation condition.

Henderson-Sellers et al. also note the change in definition of CBO, for

which the 1991 definition implied only bi-directional coupling was

counted. The authors feel that Chidamber and Kemerer probably did

mean this, but it was a possible ambiguity arising from the poor

definition. In 1994, the definition was changed making it clear that one-

way coupling was not precluded. However, in the redefinition,

inheritance based coupling, i. e. between parent and child classes, is

counted along with non inheritance coupling, where classes are

collaborating by message passing to fulfil a task, whereas the 1991

definition distinguished between them. Although there is no evidence

to suggest that the type is important, we cannot know that without

analysis, and if the types are not distinguished, this cannot be done. Li

and Henry overcame this problem by replacing CBO with two coupling

metrics one of which counts the types of coupling (Li and Henry 1993a).

3.3.1.5 Summary

Despite the relative maturity of the Chidamber and Kemerer metrics,

they still lack sufficient independent empirical validation to judge the

usefulness of the individual metrics. This problem is by no means

unique to these metrics and is largely due to the immaturity of the

paradigm; having relatively few suitable34 00 systems to study; the

variation in design methods (and indeed lack of any design methods in

many of the mature systems); the variation in languages used, and an

apparent reluctance by developers to supply data for analysis.

31 That is, real-world, reasonably large, mature, stable systems.

106

A further problem with these metrics is, as mentioned above, despite

being described as design metrics, it is not always possible to collect them

from design documents. Indeed, Basili et al. (Basili, Briand et al. 1995),

collect the metrics from code, as apparently do Li and Henry (Li and
Henry 1993a). This is an obvious drawback if the metrics are intended to

give feedback into the design process. Some of the problems in
definition and validity (i. e. as defined the metrics do not satisfy the stated

goal) may occur from a limited understanding of object-orientation as

practice. A connected issue is that Smalltalk, upon which much

academic work, including Chidamber and Kemerer's, is based, is a "pure"

object-oriented language, whereas C++, which is much more popular in

industry, is regarded as a hybrid. As a hybrid, C++ employs some

mechanisms which are peculiar to itself and are not standard 00. This

makes it difficult to suggest generally applicable metrics for object-

oriented systems, since the implementation of the system could well

affect its complexity and also the way it is designed. Many very different

analysis and design methods are available, which will also make it

difficult to specify design metrics since the same models are not

necessarily employed in each. Any metric which is to be considered

generally applicable must therefore confine itself to measuring aspects

which are common across methods and languages, such as the use of

classes and inheritance message passing. However, the necessity of such

an abstract view may well make such a metric of less use than one that is

environment specific.

3.3.2. Other Object-Oriented Metrics

A number of other metrics, relating to both size and complexity, have

been proposed. So far the proposals are largely speculative, few having

convincing empirical evidence to back them up. This section will

107

consider a number of such metrics, some will be discussed in some detail,

and others summarised in a table, for reasons of brevity. The metrics

chosen for more detailed discussion are included on the basis of the

amount of published material available, the detail entered into.

3.3.2.1 Li and Henry

Li and Henry (Li and Henry 1993a) supplement Chidamber and
Kemerer's metrics suite with a further five metrics, three of which they

conclude are accurate predictors of maintenance effort. The authors

reject Chidamber and Kemerer's CBO metric, replacing it with two other

coupling measures, MPC, message-passing coupling and DAC, coupling

through abstract data types (ADT's).

MPC is defined as the number of send statements defined in a class, and
DAC as the number of ADT's defined in a class. In the absence of a

precise textual or a formal definition, this metric is open to

interpretation. The actual definition given is "DAC = number of ADTs

defined in a class" where a class is defined as an implementation of an

ADT. The textual definition given seems to imply that one class

implements one ADT, thus giving a value of DAC = 1.

However, reading what seems to be the motivation for defining DAC,

the potential for coupling through ADTs, the following definition seems

reasonable. The coupling referred to is the coupling between classes

where a variable defined in one class is of an ADT type of another. This

seems confirmed by the concern of the authors that such a couple means

that the class in which the variable (of another ADT type) is defined may

access the properties of the other class (i. e. the class implementing the

ADT of which the defined variable is a type), and possibly violating

108

encapsulation if direct access to the private data of the ADT class is not

prevented. DAC would benefit greatly from a clearer definition, either
formal or textual. As it is, it is hard to determine whether we are

capturing what is intended and if the metric collected is a reasonable

representation of the indirect attribute of interest (presumably complexity

which itself would be used to predict another indirect attribute

maintainability).

In addition they collect the number of local methods in a class (NOM), as

a complexity metric and two size metrics, SIZE1, the number of

semicolons in a class and SIZE2, the number of attributes plus the

number of local methods. The reasoning behind the latter, or what it

may offer over the more traditional size measure, (SIZE1 is essentially

LOC), is not discussed. It is hard to see why adding two counts of

different attributes might be of use.

The goal behind the proposed metrics is to predict maintainability.

Maintainability or maintenance effort, another term used, is defined by

Li and Henry as the number of lines changed per class in its maintenance

history and is referred to as change. It is explicitly stated that the metrics

are intended as predictors of maintenance effort, but how this is to be

done is not demonstrated.

The authors use data from two industrial Ada systems of 39 and 71

classes respectively. The empirical validation carried out can be

questioned on a number of issues. One of these is the suitability of Ada

as a representative object-oriented language, although as stated in 3.3.1.3,

a non-standard variant, Classic-Ada, is used. A further point is the use of

multiple regression as opposed to either single-variable regression or

stepwise multiple regression. Additionally, the R2 and adjusted R2

figures from the "full" multiple regression equation (where size

109

measures are included) are virtually the same as those from the
"refined" multiple regression test (with size measures removed
beforehand). From the test these figures are:

R2 (sys A/sys B) adj. R2 (sys A/sys B)

Full regression model 0.9096/0.8737 0.8773/0.8550

Refined regression model 0.9030/0.8680 0.8771/0.8533

Table 3.2: Regression models using full metrics set and refined metrics
set. Dependent variable is change.

Regression is a reasonable technique, but using multiple regression (as

opposed to stepwise multiple regression) does not allow insignificant

independent variables to be rejected, thus the effect of each variable

cannot be independently ascertained. Additionally using 10 or even 8

variables makes for an overcomplicated model with greater potential for

collinearity, where it is unclear what effect on the model each variable
has. Further including so many variables may lead to overfitting,

making the model suitable for that particular dataset but no other. The

advantage of using stepwise regression is that we can see the effect as

each variable is added to the equation, plus those which are not

significant can be rejected. Instead, Li and Henry use VIF (Variation

Inflation Factor) to determine which if any variables should be removed
from the "full" model. The criterion is that any variable with a VIF

higher than 50 should be rejected. However, they do not follow this

criterion for all variables, considering "other factors" such as a strong

correlation between a size metric and McCabe's complexity metric as

justification for retaining a variable with an excessive VIF and rejecting

one with a VIF below the rejection threshold.

Additionally, since a cross correlation for all variables is not carried out
(or at least reported), it is hard to determine how closely related the

110

independent variables might be. For example, it is reasonable from the
definitions given to assume there might be some relationship between

NOM (number of methods) and WMC (weighted methods per class)

which might effect the regression equation. The usefulness of each of the

individual metrics has not been ascertained, and thus neither has the

true accuracy of the prediction system (i. e. using all of the metrics added

together). The usefulness of the prediction, even if it is accurate, is

limited since the data is collected from source code. The conclusions

reached by Li and Henry (Li and Henry 1993a) are over generalised, e. g.

"There is a strong relationship between metrics and maintenance effort

in object-oriented systems. ". Knowing which measurements to collect

and how to use them to predict maintenance effort or changes is more

useful and interesting.

3.3.2.2. Lorenz and Kidd

In, apparently the first book dedicated to object-oriented metrics (Lorenz

and Kidd 1994), Lorenz and Kidd suggest a large number of object-

oriented metrics, based on analysis of C++ and Smalltalk projects. These

are divided into two categories, project and design metrics. The design

metrics consist of 27 measures, divided into 7 categories, looking at

methods, classes, inheritance and other "external" measures. Related

metrics are also suggested for each of the metrics in the main list.

Explanations for the metrics are vague, both in the sense of the indirect

attributes they are attempting to capture and in the counting rules

necessary to capture them. Also some of the titles of metrics do not

match those listed under the various categories. Although it is stated
that the metrics are based on "actual project experiences", little in the way

of actual statistics or results appears, apart from some bar charts. We are

presented with suggested thresholds for each measure, again with little

111

or no explanation as to why or how the figures are derived. When

thresholds are breached, there are "Suggested actions" to be taken. The

overall impression is the metrics, thresholds, suggestions and so on are

anecdotal, and not based on data analysis.

The authors then make a recommendation of which of the listed metrics

should be used (bringing down the total of design metrics to a mere 24),

and for what purpose, which can be one of four categories, model quality,

class quality, method quality and management. How to use the metrics is

not specified, although it is stated that they are "meaningful metrics that

will help you foster better designs, develop more reusable code, and

prepare better estimates. "

A practitioner using the metrics would need to ascertain for themselves

how to use them, how useful they are, which thresholds to use in which

circumstances and what action to take. Using all of the metrics suggested

seems potentially risky in terms of the trade off between cost to collect

and any benefits that may be gained from their use. It is unfortunate that

the authors have not shown how or why these metrics were derived,

since as they are based on actual projects, presumably there is data

available to analyse. We are unable to check for collinearity since no data

is provided and nor do the authors indicate that this has been considered.

No clear goal for the metrics suite is given, the authors instead making

statements such as "The metrics should be used to support the desired

motivations. ".

One interpretation of this statement is that the metrics can be put to any

use. Lorenz and Kidd do not distinguish between measurement and

prediction systems. Many of the metrics are used to form prediction

systems, but without empirical evidence or any clear way of checking

predictions (the counting rules and attributes are often unclear, and the

112

data input into the predictions systems is not presented), they cannot be

acceptable. In the absence of actual predictions, it could be assumed that

they are to be treated as measures from which an expert can make some
inference, but again this is not clear. The metrics suggested are derived

from practical experience, with no reference to theoretical
underpinnings. Certainly many of the metrics are poorly defined, both

in terms of what is being measured and how, and purpose. Further,

some of the definitions given could be misleading, for example a
"comment line" defined as a physical line of code that contains a

comment - it is possible for a physical line to contain both source code

and a comment. Such definitions need to be more clearly thought out
lest misleading inferences be made.

Although it is not unreasonable to emphasise usefulness (to be

demonstrated empirically) rather than validity in the sense of

measurement theory, neither approach is followed. Metrics should be

either valid (in the sense of measurement theory) or useful, or preferably
both. These metrics demonstrate neither property. For example, method

complexity is calculated as the total number of complexities (presumably

for a class) divided by the total number of methods. The total number of

complexities is calculated by counting the number of methods of each of

a given type and multiplied by the suggested weighting associated with

that type. These are then added to give a total for the class. Adding

weighted counts violates scales in the same way Function Points do, by

assuming that the weights will ensure that the different categories of

method (as defined by (Lorenz and Kidd) are equivalent. Additionally

one can question how representative is the data used to derive the

weightings. However, the Function Point method is arguably sometimes

useful as a predictor of size, whereas there is no empirical evidence to

suggest that Lorenz and Kidd's method complexity metric is at all useful.

113

3.3.2.3. Henderson-Sellers

In his book (Henderson-Sellers 1996), Henderson-Sellers reviews a

number of object-oriented metrics. Various perspectives of an object-

oriented system are considered and metrics considered suitable for each

of these are listed (this is an elaboration on (Henderson-Sellers 1994)).

The book offers little in the way of validation of the metrics suggested

and is lacking in clarity - definitions and guidance on collecting the

metrics are missing, as is the purpose of collecting the measures. Apart

from being told they are complexity metrics, the reader is given little

information on how to use them. Given the large numbers of measures

suggested, this sort of information would be highly desirable before

embarking on what could be a costly metrics collection programme. A

count of suggested measures gives:

per class - 20;

system level - 22;

reuse - 4.

The book also refers to earlier work in the area of object-oriented metrics

by Henderson-Sellers. In (Henderson-Sellers 1991), metrics are suggested

for size and reuse, with the emphasis being on providing early estimates.

The suggested metrics include "appropriate weights" and are not backed

up with formal validation or any empirical evidence.

3.3.5 de Champeaux

After publishing early papers on object-oriented development, and

methods (de Champeaux, Anderson et al. 1992; de Champeaux and Faure

114

1992; de Champeaux, Lea et al. 1992), de Champeaux extended this work
to include metrics. The metrics are applied to an object-oriented
development by student programmers. These cover both effort metrics
(both effort measures and effort estimation) and product or artefact
metrics. Well over 20 artefact metrics are defined, including Chidamber

and Kemerer's class metrics. The metrics consider classes And above (i. e.

subsystem, use cases, class relationships). The purpose is unclear - what

each can be used to do (except where summed to produce other

measures) is undefined. An example of the lack of purpose in

measurement being "A straightforward way of measuring a class is to

count its attributes" - the purpose of doing so is not explained.

de Champeaux does not explicitly differentiate between measures and

prediction systems. However, from the metrics defined, it seems that the

ultimate aim is to predict such attributes as development effort.

Where the metrics are applied to the development, often the "results"

(i. e. a list of numbers) are given with little or no interpretation as to their

meaning. The few analyses provided offer little useful information, for

example, for the vocabulary35 metric, described as:

µvocabulary(VE) = #attributes in VE + #states in VE + #operations in VE

Where VE is a vocabulary entry (with each entry corresponding to a class
description).

35 The purpose is vague, but the vocabulary itself is described as "a set of all templated
narratives of all classes, relationships, ensemble classes, and their instances that are
expected to play a role in the formal model to be constructed. The identification of the
entries for the vocabulary is a matter of good taste, experience, gut-level intuition,
unjustified braveness, etc. "

115

This suggests that it is some sort of size metric. Presumably we are to

assume that the larger the value, the more effort will be required to

implement the class, although this is not explicit. The total number of

artefacts, maximum metrics value, minimum metric value, median

metric value and average metric value is given. A histogram showing

the frequency of the metrics values for classes in the system is presented,

showing a positively skewed distribution. The author suggests that

attention should be focused on artefacts with the highest scores and it is

to these that the most capable members of the team should be assigned.

A major drawback for what is intended as an empirical study of effort

estimation metrics is that there are serious omissions in data collection,
illustrated with the following quotation.

"... The construction of these class descriptions is the lion's share of the

analysis effort. Unfortunately, we did not track the development effort

per class - nor for that matter the finer granularity of the summary

diagram, static diagram, and dynamic diagram. Our notes indicate that

the summary diagrams together took 3 hours. We don't have figures for

the other diagrams. A best estimate is that the static diagrams took 2

hours and the dynamic diagrams took an additional 8 hours. "

In the absence of information as to how these "best estimates" were

derived, it is reasonable to assume they are "guestimates". In addition to

being generally unsatisfactory (lack of analysis and interpretation of

results), the study is obviously of limited use since vital actual project

data is missing.

3.3.2.4. Rajaraman and Lyu

116

In (Rajaraman and Lyu 1992a; Rajaraman and Lyu 1992b), complexity
metrics are presented. The metrics are intended primarily to measure

coupling in C++ systems, but the authors feel they could be used for

other object-oriented languages, although how is not explained. As with
Chidamber and Kemerer, the premise is that highly coupled classes
increase the complexity of the system, in that any changes to the class are

more likely to affect other classes and thus make maintenance more
difficult and testing more demanding. Rajaraman and Lyu, however,

consider the necessary trade-off between coupling and inheritance,

noting that inheritance involves coupling between parent and child

classes and "is crucial to achieving reusability and extendibility ... but it

has adverse affects on code understandability. " Chidamber and Kemerer,

on the other hand, imply that coupling inhibits reuse. These differing

views reflect different ways of implementing reuse - reuse within an

application, versus reuse between applications.

The authors represent coupling as a directed multigraph, with nodes

corresponding to classes and arcs to interaction (i. e. coupling) between

classes, such as referencing variables or using a function or method

defined in another class. The four metrics are:

CIC (Class Inheritance-related Coupling)

A count of the number of accesses to variables and/or uses of functions

defined in an ancestor class.

i
CNIC (Class Non-inheritance-related Coupling)
A count of the uses of functions or accesses of variables defined in a class

which are not defined in that class or in any of its ancestor classes. This

included the use of "friend" functions and global variables/functions.

117

CC (Class Coupling)
This is a summation of inheritance and non inheritance related coupling

of each class, and can more easily be calculated as CIC + CNIC, which

equals the number of outward arcs from the corresponding node in the

graph.

AMC (Average Method Coupling)

For a class this is the ratio of class coupling to number of functions, i. e.
AMC = CC/n, where n is the number of member functions in the class.

Validation of the metrics involved ranking five C++ systems in order of

perceived difficulty of maintenance, calculating the CC and AMC metrics

as well as LOC, Software Science and Cyclomatic Complexity scores.
Rank correlations were computed between the metrics and the difficulty

of maintenance ranks, the result being that the CC and AMC metrics had

higher correlation coefficients than the other measures, although
McCabe came close for all but one of the systems studied. The authors

conclude that this was because the developers of this system "are more
knowledgeable in C++ and object-oriented programming and hence have

exploited its language constructs more fully" and suggest the developers

of the other systems may have programmed the systems in a functional

rather than object-oriented way.

Criticisms can be made of the authors' approach to validation. It appears

that not only were the developers of the systems asked to rank them in

order of perceived difficulty, but the majority of the developers may not
have developed the software in an object-oriented manner. They " ...
may have programmed in C++ as they would in a language based on
functional decomposition like COBOL". This is indeed possible in C++,

since it is a hybrid, and is a factor to consider in developing metrics for

C++, but in this experiment means that we may not (since the authors

118

themselves seem unsure) be comparing like with like. The metrics were

collected from each system and the results for each class in the system

correlated against the subjective ranking for that class. This would allow
for the "definite" object-oriented projects to be considered separately for

the "doubtful" projects. However, project data is not supplied, just one

set comparing two measures against LOC, Halstead's Software Science

and McCabe's Cyclomatic Complexity for one project, so it is not possible

to re-evaluate the data.

The goal or aim of the metrics are not met by the metrics as they stand.

The stated aim is to use a measure of coupling as an indicator of

maintenance difficulty, which seems reasonable enough. However, the

measures defined are not used in prediction systems to obtain any

predictions, nor is maintenance difficulty explicitly defined, instead

subjective assessment is used as a proxy for some collectable measure. It

seems reasonable to conclude that the authors mean either maintenance

effort or reliability, since they state that data such as mean time to failure

and mean time to repair would have improved the validation. The

authors have thus not as yet demonstrated the validity or usefulness of

their measures, but on a positive note, the definitions appear clear

enough for the measures to be applied in other studies.

3.3.2.5. Abreu

Abreu presented a number of object-oriented metrics in 1993 (Abreu

1993). Although stating that traditional metrics such as those of McCabe

and Halstead are aimed at procedural languages and such metrics do not

address object-oriented concepts, Cyclomatic Complexity, Halstead's

volume metric and Henry and Kafura's information flow metrics are

included in the proposed framework for 00 metrics (TAPROOT).

119

Subsequent work (Abreu and Carapuca 1994) does not pursue this and

concentrates on new metrics for object-oriented systems. The metrics are
intended to evaluate object-oriented mechanisms considered to be

important by the authors, such as inheritance, encapsulation,

polymorphism, in relation to quality, productivity and reuse.

In (Abreu and Carapuca 1994), the authors list seven criteria which the

metrics they derive should meet. The last criterion is that metrics should
be language independent. This immediately makes the task of deriving

valid and useful metrics more difficult, since there are considerable

differences between languages, particularly, for example, "pure"

languages such as Smalltalk and hybrids such as C++, which seem likely

to have some influence on the validity or usefulness of a metric. The

authors meet this criteria by avoiding specific language constructs, and

using a more abstract approach. In all some 25 metrics are defined, most

as inputs into the main metrics or factors. However, textual definitions

are vague, and some of the inputs are undefined. The authors state that

they wish to avoid the "YAM" (yet another metric) trap, but have

themselves presented a long list of what must, in the absence of formal

or empirical evidence, be regarded as speculative metrics. Little

explanation is given as to why the measures and factors are trying to

capture the specified attributes, save that results can be used "to compute

design heuristics" - again, how to do so and with what limits are not

specified. The authors state in (Abreu and Carapuca 1994) that a "study of

correlation between MOOD metrics and quality attributes ... will be one of

the next steps", confirming the immature nature of the work. They also

suggest that some of the metrics "can be combined to obtain a generic 00

software system complexity metric". The first stage in such a process is

the evaluation of the metrics against Weyuker's axioms (Weyuker 1988).

The inadequacies and contradictions of these axioms has been discussed

in section 2.2.1.

120

However, the MOOD metrics have since undergone some refinement

and empirical validation (Abreu, Goulao et al. 1995; Abreu and Melo

1996). In (Abreu, Goulao et al. 1995) six metrics are defined and applied to

a number of class libraries, ranging in size from 4884 LOC and 35 classes

to 74895 LOC and 128 classes. In a further study, the metrics are applied to

small student projects in a controlled experiment (Abreu and Melo 1996).

The definitions given in this section will use the refined MOOD metrics.
Notably the number of metrics defined is reduced. The equations have

undergone some "fine tuning" and, for both the written and

mathematical definitions, the situation with regard to inheritance is

clarified, where appropriate. In other words the metrics have been

refined in the light of the comments about 00 metrics in general,

namely that there has been ambiguity as to whether or not inherited

methods, attributes etc. have been included.

The MOOD metrics are categorised as follows: AHF and MHF are

measures of information hiding; MIF and AlF are measures of
inheritance; COF is a measure of coupling (not including inheritance

coupling) and PF measures polymorphism. The metrics are defined and

explained as follows using the definitions in (Abreu, Goulao et al. 1995):

(i) Method Hiding Factor (MHF)
C

MHF =
_T t Mh(Ci)

TiMd(Ci)
TC = total number of classes in the system
Md(Ci) = Mv(Ci) + Md(Ci) = methods defined in Ci

Mv(Ci) = visible methods in class Ci

Md(Ci) = hidden methods in class Ci

121

(ii) Attribute Hiding Factor (AHF)

TC Ah(Ci)
AHF = Tc Ii=1 Ad(Ci)

Ad(Ci) = Av(Ci) + Ah(Ci) = attributes defined in Ci

Av(Ci) = visible attributes in class Ci

Ah(Ci) = hidden attributes in class Ci

Metrics (i) and (ii) are based on the assumption that information hiding

(encapsulation) has a positive effect on quality, by reducing the effects of

complexity, and thus its use should be promoted. For attributes, this

would be reflected in high values for AHF. For MHF, there is a trade off

between abstraction and method hiding (corresponding to a high value

of MHF) and class functionality (measured by the number of visible

methods) indicated by a low value for MHF. Thus the developer might

use these metrics with an upper and lower limit of acceptable values.

(iii) Method Inheritance Factor (MIF)

ET; Mi(Ci)

MIF = rc
i=1 Ma(Ci)

Ma(Ci) = Md(Ci) + Mi(Ci) = available methods in Ci

Md(Ci) = Ma(Ci) + Mo(Ci) = methods defined in Ci

Ma(Ci) = new methods in Ci

Mo(Ci) = overriding methods in Ci

Mi(Ci) = methods inherited in Ci

(iv) Attribute Inheritance Factor (AIF)

ETý Ai(Ci)
AIF = ETC

i=i Aa(Ci)

122

Aa(Ci) = Ad(Ci) + Ai(Ci) = attributes available in Ci

Ad(Ci) = An(Ci) + Ao(Ci) = attributes defined in Ci

An(Ci) = new attributes in class Ci

Ao(Ci) = overriding attributes in class Ci

Ai(Ci) = attributes inherited in class Ci

Metrics (iii) and (iv) are measures of inheritance. Both anecdotal and

empirical evidence exists (Cartwright and Shepperd 1997a; Chidamber,

Darcy et al. 1997) which suggests that use of inheritance can have adverse

effects such as increasing the likelihood of defects (probably linked to the

relative difficulties in understanding and testing classes in an inheritance

tree). This evidence raises questions regarding the useful effects of

inheritance, so these metrics should be used this knowledge in mind.

(v) Polymorphism Factor (PF)

nr. -L1
MO(Ci)

rL' =

T; [Mn(Ci) X DC(Ci)]

Mo(Ci) = overriding methods in Ci

Mn(Ci) = new methods in Ci

DC(Ci) = number of descendants of class Ci (derived classes)

Polymorphism can be affected via inheritance, and like inheritance, there

is a trade-off between its useful and complicating effects. Whereas

polymorphism allows for flexibility in refining classes without affecting

clients, it also complicates tracing control flow, making it harder to

understand and debug code

(vi) Coupling Factor (COF)

123

Tc [Tc is client(Ci, Cj)]
COF =

I`-1 ýJ-i

TC2 -TC-2x yT DC(Ci)

TC2 - TC = maximum number of coupling in a system with TC classes

2x ET i DC(Ci) = maximum number of couplings due to inheritance

is - client(Cc, Cs) =
1 'ff Cc =* CS Cc: P- Csn -n(Cc -i Cs)

0 otherwise

where (Cc Cs) means client class Cc contains at least one reference to

a method or attribute of supplier class Cs and (Cc -- Cs) indicates an
inheritance relation.

It has long been accepted that whilst some coupling is unavoidable, this

should be minimised. The premise behind 00 designs is that classes will

co-operate with each other to perform some task rather than repeating

code or loading all the functionality necessary into one object. Thus

coupling between communicating objects must be accepted as necessary

and offset against the benefits of an object-oriented design. Further

coupling will occur when inheritance is used, although it is made clear

that this metric is not intended to capture inheritance based-coupling.

This metric should, therefore, also be used with an upper and lower

bound.

In (Abreu, Goulao et al. 1995) the authors conclude that the sample to

which they applied the metrics is too small to conduct a meaningful

empirical study. The tests carried out on the sample indicate that AHF

and MIF are size-dependent and that AHF has a strong negative

correlation with MIF, and PF has a strong positive correlation with COF.

124

The authors conclude that the size dependence and correlation between

the AHF and MIF metrics is coincidental, brought about by the small

sample size, although this is not demonstrated. The PF/COF correlation
is felt to be due to an outlier value of COF for one system. This

conclusion is reached after setting the apparently anomalous value equal

to the average COF for the other four systems and recalculating the

correlation. With such a small sample size it is, as the authors admit,
hard to draw any meaningful conclusions. Additionally, the method

adopted for dealing with an outlying value is highly questionable.
Standard procedure is to remove an outlying value completely or re-

expressing values after applying a transformation to all. It is

understandable that the authors feel that reducing the sample size
further is undesirable. However, by setting the anomalous value equal

to that of the average for the other values, they are merely causing a
"flatter" line to be drawn among values with little correlation by adding

one more favourable value. This conclusion can be drawn since the

authors argue that the outlier is forcing a correlation that doesn't really

exist and thus the other values are likely to be much lower with little

correlation.

In (Abreu and Melo 1996) the MOOD metrics are evaluated against eight

small information management systems developed from identical

requirements under controlled conditions. The MHF and AHF metrics

are refined slightly:

MHF = 1T y,
mJ(l

,) (1- v(Mn=

TI Md(Ci)

where

125

V(Mmi) =
Ej i is

_ visible(Mmi, Cj)

TC -1

and
jý1

is
- visible(Mmi, CG) = iff Cj may -call

Mmi
1 otherwise

TC ým°(ý `) (1
AHF --

V(Ami))

IT; Ad(Ci)

ýi is
_ visible(Ami, Cj)

V(Ami) = TC-1

is
_ visible(Ami, Cj) =

j#1
0 iff

CJ may-call Ami
1 otherwise

The stated aim of the paper is to evaluate the impact of object-oriented
design on the quality characteristics defect density and rework. The

metrics are collected from the source code by the MOODKIT tool

developed to support the MOOD metrics. Defects were detected during

white box testing and failures during black box testing. Rework effort is

expressed as manhours taken to correct the discovered defects. These

quality characteristics were correlated (Pearson) against the MOOD

metrics extracted from the source code. The highest correlations were a

negative correlation between MIF and defect density (and thus rework)

and a positive correlation between COF and defect density, failure density

and rework. The first of these, the negative correlation between MIF

(Method Inheritance Factor) and defect density/rework runs counter to

126

other studies on the effect of inheritance on maintenance activities.

Such studies include the case study and experiment described in chapters

four and five of this thesis, also to be found (Cartwright and Shepperd

1997b; Harrison and Counsell 1997; Cartwright 1998). Abreu and Melo

suggest that that the results show inheritance to be a technique to reduce

the defect density in code when used "sparingly" but not at higher levels

where they feel the beneficial effects will reverse, but with no evidence to

support this claim. The authors do not, unfortunately attempt to explain

this phenomena. In Daly's study (Daly 1996), a reduction was found in

maintenance effort (in terms of adding functionality) in systems with up

to three levels of inheritance (or DIT =0 in terms of the CK metrics
(Chidamber and Kemerer 1994), when compared with a flat structure.
This effect was reversed when systems with five levels of inheritance

were maintained. Perhaps the failure of MIF to take depth into

consideration might help explain the claims made. The high positive

correlation between COF (Coupling Factor) with the density and rework

measures supports the generally accepted contention that coupling
increases complexity and thus increases the potential for defects and

maintenance effort by decreasing understandability. However, further

analysis by Abreu and Melo, which includes putting the measures into a

multiple regression equation suggests that the two inheritance metrics
MIF and AIF, contribute comparatively little to the regression model.
The adjusted R square for the model is high, particularly for defect

density and rework, although one would expect these two to correlate

since rework is dependent on the number of defects to a large extent.

To conclude, further empirical study is needed to establish the usefulness

of the metrics, the coupling metric, COF looks to be the most reasonable

and promising at present. The observed effect of the inheritance metric,

MIF, is interesting and warrants further study to see if it negatively

correlates with defect density in other systems. Additionally a further

127

study to test the expected result of a high MIF, that is a positive

correlation with defect density, would be interesting.

3.3.2.6 Hopkins

Hopkins (Hopkins 1994), proposed complexity metrics to assess design

quality, concentrating on class interface. The author states that

measuring class interface complexity will "provide important

information on the ease of understanding of the class interface (which is

needed for reuse, maintenance, rework and redevelopment) ... (and) it

might be reasonable to assume that the complexity of the interfaces will

give some idea of how difficult the class will be to design (correctly) and

implement. "

Metrics are defined on a method and class level. Method interface

complexity is defined as the number of different classes/types possibly

returned from the method plus the sum of the number of classes/types

for each of the arguments in the method. This is denoted as

N arg s
ICmeth = Nreturn - classes +N arg- classes(i)

i=1

This measure is somewhat confusing. Presumably Narg- classes refers to

the number of classes which could possibly supply a particular argument,

although this is not obvious from the text. The reasoning behind the

measure is that a method is more complex if it has a large number of

arguments, or if the arguments can be of different types or the result

returned can be of different types.

128

Class interface complexity is considered for both the public and private
interfaces. For the public interface this is achieved by the summation of

the method complexities for each method in the public interface.
Npub

ICpub = ICmeth
- pub(i)

i=1

The aim is that the value calculated for this metric is independent of the

nature of the interface.

The complexity of the private interface is given as:
Nprot Iprot

ICprot ICmeth - prot(l) _I ICiv(j)
i=1 j=1

In this case the complexity of instance variables is included with the

complexity of the methods in the private interface. Complexity of
instance variables is given as ICiv =2x Nclasses for instance variables

with read/write access and as ICiv = Nclasses for those which are read

only, where Nclasses is the number of different classes/types to which an
instance variable can refer. It is suggested that the two class metrics can
be combined as follows.

1Cclass = ICpub + (weight x ICprot)

A weighting is added to take account of the subclass interface which the

author feels is more complicated to test and thus requires weighting, the

suggested, and admittedly arbitrary, weighting is 5.

These metrics are not validated empirically or formally, nor is the way in

which they can be used to predict reuse, maintenance etc., which seems

to be the implied aim. Although mathematically defined, the textual

explanation is complicated and it is impossible to be sure exactly what is

being measured, still less why. With empirical validation, it is

129

impossible to ascertain whether the measures capture what they purport
to, and whether once captured, this measure is useful in any way.

3.3.2.7 Graham's SOMA Metrics

These metrics (Graham 1995) are proposed for use within the SOMA

method, which is described as a full lifecycle method. Here the ideas of
development phases, felt to be a hangover from structured methods, are
dispensed with, and development is seen as an activity network with no

predefined sequence, but with necessary dependencies.

Some of the metrics are based upon those of Chidamber and Kemerer

(Chidamber and Kemerer 1994), Lorenz and Kidd (Lorenz and Kidd 1994)

and Henderson-Sellers and Edwards' MOSES method (Henderson-Sellers

and Edwards 1994), the aim being to form a single metrics suite.

The suite is divide into two sets, applicable to the two models in the

SOMA method, the Business Object Model (BOM) and the Task Object

Model (TOM). A total of twelve metrics are given, plus it is suggested

that the Chidamber and Kemerer metrics (with the exception of LCOM)

could be collected from the BOM. The metrics described are in the main,

counts, such as number of classes, number of tasks and so on. Some of

these counts are method specific, although from the definitions give,

they could be generalised to some other object-oriented methods. A

complexity metric is defined for each model, class complexity is taken

from the BOM and task complexity from the TOM. They are defined as

follows:

BM1. Weighted complexity of each class (WCC)

WCC=WA*A+WM*LM*M+WR*NR*R

130

A= number of attributes and associations
M= number of operations /methods

R= number of rulesets
NR = number of rules per ruleset*average number of antecedent clauses

per rule
LM = proportional excess of SLOCs per method over an agreed, language

dependent, standard

WA, WM, WR are empirically discovered weights;

TM1. Weighted complexity (WCT) of each task, T

WCT=WI*I+WA*A+WE*E+WR*NR*R

I= number of objects per task (here object is meant in the grammatical

sense, so usually corresponds to the number of noun phrases)
A= number of associated tasks (if any)
E= number of exceptions or side scripts
R= number of rulesets
NR = number of rules per ruleset*average number of antecedent clauses

per rule
WI, WA, WE, WR are empirically discovered weights.

One of the TOM metrics, TM7 or number of task points (defined as the

number of atomic tasks, i. e. those with no component tasks, shown as

the leaf nodes of the tree), is said by Graham to be "the most important

and most novel SOMA metric". It can be collected at requirements

capture, and is considered by Graham to be a possible replacement for

function points.

131

Graham suggests metrics to be collected later, from the physical design

and code, LCOM* (a modified version of Chidamber and Kemerer's

LCOM, as suggested in (Henderson-Sellers 1996) and cyclomatic

complexity of methods. Also suggested is an effort estimation prediction

E=a+ pTk (E =a+ pT k in the earlier paper) where Eis effort in man-

hours, T is the task point count, p is the inverse of productivity in

task points per man-hour (to be determined empirically) and k and a are

constants, a being start-up and overhead costs, whereas kremains

undefined. Productivity is considered to be a function of the level of

reuse and may depend on other factors.

Graham seems to appreciate the need for metrics to be both formally and

empirically sound, when he criticises Lorenz and Kidd's comment on

Chidamber and Kemerer's metrics (Lorenz and Kidd dismissed the CK

metrics as being too theoretical), saying "a sound approach to metrics

must be grounded in both theory and practice". This statement concurs

with what is one of the major themes of this thesis, namely that we need

to take heed of measurement theory to ensure our metrics are

mathematically valid but must also be pragmatic and ensure that they are

empirically validated as extensively as is possible. Additionally the

metrics are defined as part of a particular method and are not claimed to

be generally applicable, which draws near to the argument for locally

applicable metrics, which runs through this thesis. However, despite

these statements it is unclear as to the level of empirical validation the

metrics have undergone. Certainly the definitions of some of the metrics

could be clearer, and counting rules need to be defined. There are

omissions - no help is given with the "empirically derived" weights in

the complexity metrics or the constants in the effort prediction system,

132

are these weights to be derived locally, if so, how? 36 It is also suggested

that the weights for TM2, weighted complexity if each task, could be "zero

if empirical study shows that a factor such as E has no effect. " Since this

implies that a total score of zero for the metric is possible, the metric

obviously need further thought - it seems reasonable to expect the

author to discover if such factors have an effect or not before proposing a

metric which includes them. In the absence of empirical evidence, the

metrics must be regarded as speculative and indeed comments such as
"Some combination of these metrics ought to correlate with cost of build

... " reinforce this. Given that they are method specific (and consider
implementation language to be an affecting factor) and based to some

extent upon practical experience, there is reason to be hopeful that some

of the metrics may, in the future, be shown to be valid or at least useful 37

A code metric to replace LOC and token counting for C, C++ and Java is

presented. It is presumably intended as a prediction system for size.
Counting rules are given for each of the three languages to take into

account the differences between them. The metric is intended as a style
independent measure. However, no supporting evidence is given, such

as correlations between the metric and actual size measures, although the

author suggests that "preliminary research suggests ... program size

measures similar to those given by professional developers. " indicating

that any validation is assessed against expert opinion, rather than actual

values. Neither is the prediction system(s) itself (themselves) explicitly
defined, thus it cannot be calculated independently. The work must

therefore be considered speculative, since it lacks both empirical and

36 It can be assumed that Graham used locally derived weights when trying out the
metrics at Swiss Bank, since references to data collection from a number of project across
several large organisations are all in future tense.
37 However, to date, I have been unable to discover subsequent publications regarding the

practical applications and empirical experience of the metrics. A paper entitled
(Graham 1996) covers the same ground and is extremely similar to the 1995 version.

133

formal validation. The lack of an explicitly defined prediction system

means that it cannot be independently validated.

3.3.2.8 Harrison

Some results from a preliminary investigation into quality metrics for

object-oriented systems are presented in (Harrison, Samaraweera et al.

1996). A number of measures were taken from code in order to try and

predict certain attributes considered to be indicators of quality. The

empirical study of specially developed C++ programs indicated

correlations between some of the measures taken and the number of

modification requests made, and some correlation between other

measures and errors found during testing. More recent work (Harrison,

Counsell et al. 1997) has investigated metrics based on those proposed by

Lorenz and Kidd (Lorenz and Kidd 1994). Twelve metrics, the majority

purporting to measure product size, were applied to three C++ systems,

of 1.4 KLOC, 8.9 KLOC and 24 KLOC respectively, the largest being a

commercial retail system.

It is interesting to note that unlike many studies on object-oriented

metrics, the authors consider both criteria for theoretical validation of

metrics alongside the empirical evaluation which is the main concern of

the paper. In other words, although concentrating on empirical methods

to assess the metrics, theoretical considerations are not ignored. In this

study the authors present two hypotheses, firstly that the metrics are

(indirect) measures of software complexity and secondly that all, bar one,

of the metrics can be said to be measures of system size and thus be used

to estimate system size.

134

The metrics are correlated 38with subjective complexity for a class, SC,

(ranked on an ordinal scale of 1-5 where 1 is trivial and 5 is very

complex) and with non-comment source lines, NCSL, as a measure of

size. The results for the smallest system indicate a strong negative

correlation between SC and the number of public methods in a class (-

0.67) and the number of methods in a class (-0.63). The authors suggest

this runs contrary to the expected outcome, that a class with more

methods would be more complex. This may reflect a design decision

where classes are kept small, with fewer methods, and thus interact with

other classes to perform a task. The L&K metric seems to suggest this

makes the system more complex and is thus, according to the accepted

notions regarding complexity and coupling, not a good thing. Such a
design, is however, typically object-oriented. Is the premise behind an

object-oriented design the problem, or should the traditional view of

coupling be adapted to suit object-oriented designs? The authors

conclude that a simplistic view of this metric, leading to a decision

regarding optimum method size could be counter-productive. For the

8.9 KLOC system, the correlation between SC and PM, and between SC

and NM is positive (0.50 and 0.88 respectively), more in keeping with the

generally accepted idea that as a system increases in size, its complexity is

likely to increase also

For NCSL the smaller size shows a positive correlation with both NM

and NCR (0.48 and 0.55 respectively)". The relationship between the

number of methods and the number of lines of code needs no further

explanation, and is confirmed by the results for the 8.9 KLOC system

' Pearson's, Kendall's and Spearman's correlation coefficient were all used. Comments

will concentrate on the Spearman's Rho correlation since this is a non parametric test more
suitable for ranked and discrete data as used in these tests, than the Pearson's Product
Moment.
"Although at 0.48, the correlation between size and the number of methods is not
especially strong, indicating that the methods and classes are small, again a feature of a
typically object-oriented design.

135

(0.86). More interesting is the relationship between size and reuse, where
larger classes are reused more than smaller classes in this system -a
typical 00 design tends towards small methods and 00 is said to

promote reuse. No such relationship is found in the 8.9 KLOC system.

The authors also emphasise the problem with the ambiguous definitions

and objective for the metrics (thus bearing out the criticisms in section

3.3.2.2.).

3.3.2.9 Other metrics for object-oriented systems

A number of other metrics have been proposed. The purpose or

attributes to be captured vary, as do the approaches to validation (if any).

The following table lists, by author, proposed metrics. Independent

validations of other's metrics are included.

theme goal measurement definition: validation valid/useful
/lesson: or prediction attribute

system /counting
rules/metric

Abbot et Cognitive Prediction Textual Against own Predicted expert
al (Abbott, complexity system definition criteria. Uses preference
Korson et measure seems OK. expert opinion between two
al.) from design rather than actual alternatives in

to predict data. 16/20
expert comparisons.
preference
among
design
alternatives

Balasubr Not explicit - Measures Those based No attempt given Applied to 2
amanlan desire to since no on CK metrics student programs
(Balasubra improve guidance on are given as and results
manian some of CK what to do with formulae, but compared with CK
1996) metrics & to them is given the new metrics - results

add to metrics has are not analysed.
metrics that only a vague No evidence from
are available textual which to draw

definition. conclusion.
Barnard Metrics to Selected Variable - Simple counts If assumptions
(Barnard predict measures are many are OK. Measures upon which the
1998) reusability combined to simple counts are alied to a measures are

136

Bleman &
Zhao
(Bieman
and Zhao
1995)

Burbeck(
Burbeck
1996)

Chen &
Lu (Chen
and Lu
1993)

Metrics to
characterise
use of
inheritance

Code
metrics to
measure
complexity
of Smalltalk
methods to
provide
feedback
during
development
/mainten-
ance

Complexity
metrics to
indicate
candidates
for redesign

form a
reusability
score (P. S.)

measures

measures

Complexity
measures,
coupling &
cohesion
measures, &a
reuse indicator

so seem OK,
but possibly
potential for
ambiguity.
Others are CK
metrics, others
subjective
scores

Not explicit -
my
interpretation
of data &
comment is
that
inheritance
structure
starts at level
1, with 0
assigned to
classes not
involved.
yes - seem well
enough
explained to
apply

The 3
complexity
metrics use
supplied tables
of seemingly
arbitrary
values, which
allow a
possible range
of values to be
supplied, but
no indication of

number of reuse
libraries (thus
components
assumed to be
reusable), where
a common trend is
available, metric
is assumed to
indicate
reusability

Simple counts &
descriptive stats
not trying to make
predictions or
assess in terms
of other
characteristics at
this stage

all simple counts
on ratio scale

Not considered.
Values from
tables appear
ordinal yet are
summed Coupling
metrics -
summation of
simple counts,
cohesions,
seems OK, class
hierarchy is
adding together

based (that the
libraries contain
classes that are
good examples of
reuse) then the
selected metrics
seem to capture
attributes
indicative of
reusability.
Derived
prediction system
is untested.
Useful breakdown
of use of
inheritance by
application type
may lend weight
to proposition
that some
problems better
suited to 00
approach than
others.

Gives suggested
thresholds of
acceptability.
Emphasises
advisory nature
of metrics. In
principle seems a
good idea,
(provided the
assumptions
made regarding
complexity &
advice given is
correct. Would
benefit from
empirical study of
how the metrics
affect the
development
P- rocess.
Experiment uses
expert judgement
to evaluate
metrics. Not
enough to
convince.

137

how to decide. an number of
Others metrics counts of rather
seem clear different things so
enough. is questionable.

Ebert Enhance Complexity Simple Mainly simple Low R2 for model
(Ebert and quality/ metrics to definitions but counts. of maintainability
Morschel maintain- predict quality counting rules (from subjective
1997) ability /maintainability could be open ratings) and no

to comparison of
interpretation predictions with

actual values.
Hudli et Evaluate Measures - Textual, many None No support
at (Hudli, design of each said to ambiguities. offered. Seem
Hoskins et class/progra indicate entirely
at. 1994) m. Metrics something, but speculative and

said to relate not how to use untried.
to quality it.
factors such
as
maintainabili
ty

Moser et Effort Measures as Textual and Yes but only Seems to be
at (Moser prediction inputs into a formal, but scatterplots valid.

and via size/ prediction confusing - given. Is out performed
Nierstrasz complexity. system. not all by FP
1996) components

adequately
defined.

Sneed Effort "measure of Metrics None given. Not valid-
(Sneed prediction volume" then defined but violation of
1995) via size used to predict counting rules scales/measurem

effort. unclear. ent theory - many
of same problems
as FP.

Wilkie & Coupling Measure - how Metrics None given - No empirical
Hylands complexity this would defined and research is "on- evidence as yet.
(Wilkie and metrics as affect faults, simple going:
Hylands extension to maintenance example given.
1998) CK suite effort is

unsp ecified.

Table 3.2: More object-oriented metrics

3.3.3 Conclusions

It is evident from the literature pertaining to metrics for object-oriented

systems that, with few exceptions, little heed has been taken of the need

for more rigour in developing and validating measures or prediction.

The presentation of metrics for object-oriented systems cover a spectrum

of which the extreme can be characterised as follows:

138

" An informal approach lacking rigour in empirical validation, and often

clarity of purpose and definition, but emphasising pragmatism as typified

by Lorenz and Kidd, for example;

" The other very formal, presenting mathematical formulae and proofs

using a closed systems approach, which by its nature means that the

metrics are dissociated from the "real", pragmatic, empirical world to

which measures and prediction systems must ultimately be applied, via

some representational model. This extreme is represented by (Schmidt

and Zimmermann 1994).

Between the extremes, publications which are not entirely speculative

tend to favour either formal or empirical validations. Many suffer from

lack of clarity either in the purpose of the measures or prediction systems

proposed, and/or in the definition of counting rules and attributes.

Such speculation, immaturity of definition and of evaluation is

acceptable in a very new field. After all, a starting point is needed, and

the products of software development do not have direct parallels with

the products of other disciplines. There is however, a legacy of what not

to do in terms of the development of software measures and prediction

systems (see chapter 2), as well as some examples of how to apply a degree

of rigour to their development and validation (see the work of

Kitchenham, Fenton and Pfleeger in particular).

Admittedly, a demand for absolute proof of a metrics worth and validity

would be counterproductive, and indeed not possible to the satisfaction

of all. It would preclude metrics which appear useful but are not valid'

according to measurement theory, such as Function Points. However, a

certain amount of discipline, along the lines of the five problems

highlighted in this thesis (see the introduction, 3.1 for a recap) would be

helpful. It would show that the metrics had been developed with some

139

aim in mind, that thought had been given to their practical application,

to whether they were capturing and/or predicting numerically what they

purported to and whether they were ultimately of any use, at least in

certain situations.

The following chapter (4) will assess the current state of software metrics,

concentrating on the application of metrics for object-oriented systems.

Blank.
In

Original

141

Chapter 4 An Empirical Study of An Object-Oriented System

Synopsis

The aim of this chapter is to add to existing empirical knowledge of object-

oriented software by analysing a large, industrial object-oriented system using

data collected from design and maintenance phases of the same system. The

analysis uncovers patterns in the data which indicate relationships between some

attributes, notably inheritance and defects. This chapter also considers the

problems which were encountered in trying to apply predefined metrics and

demonstrates the ease with which an accurate locally applicable prediction

system can be derived.

4.1 Introduction

Chapter 2 concluded with a list of lessons to be learnt from past metrics

development and validation. In chapter 3, research into metrics for

object-oriented software was examined with regard to these themes or

lessons and a number of metrics were critically evaluated according to

the list. To recap, the lessons/themes are summarised below:

1. Lack of clear goal or aim;

2. Confusion between measurement and prediction systems;

3. Poor definition of attributes and counting rules;

4. Lack of or poor validation (formal and in terms of empirical

evaluation);
5. Failure to determine validity and/or usefulness of metrics.

The desiderata can be derived:

142

Desideratum Explanation
1. A clear goal The goal of the measurement or prediction

system must be clearly stated
2. Distinction between measurement and It should be made clear whether the

prediction system "metric" is a measure (direct) or a prediction
system (using direct measurements of
attributes in order to predict other, indirect
attributes)

3. Clear definition of attributes and counting The attributes of interest and the counting
rules rules for obtaining them must be explicitly

and unambiguously defined either by means
of a formula or ba clear textual definition

4. Acceptable standard of formal validation Formal validations should use measurement
and empirical evaluation theory to establish that a measure is a

proper numerical representation of the
empirically observed attribute and to ensure
calculations do not violate scales, or if the
authors feel there is a good reason for doing
so, explain why. Empirical studies should
use techniques and tests appropriate to the
data that has been collected, demonstrating

usefulness by comparing predictions against
actual results.

5. Demonstration of validity and/or The validity can be assessed formally and
usefulness. usefulness empirically. N. B. a metric may

be useful without being valid, and vice
versa.

Table 4.1: Ideal standards for metrics development

It was therefore felt important to incorporate the above into the

empirical investigation, as far as circumstances allowed. It must be

reiterated however, that the above are ideals. Certainly, it is reasonable
to expect that the first two should be attained. The third is also
important. To some extent the level of ambiguity depends upon the

person reading/applying the metric, but the developer of the metric must
look for possible ambiguity in the definition. The final two are more
difficult to achieve.

The original aim of the empirical study was to assess the Chidamber and
Kemerer (CK) metrics by seeing if they could be used to predict

maintainability, measured by defects. However, due to difficulties in

collecting the majority of the metrics from the available data, a

143

subsequent aim was introduced. The problems experienced with

collecting the CK metrics will be described in section 4.4.

The new aim was to investigate the process of developing locally

applicable metrics using available data and tool support. To clarify, the

aim was not to propose new metrics for 00 systems, but to demonstrate

that reasonable, locally applicable prediction systems could easily be

developed in situ. If the process of developing accurate metrics locally

could be shown to be straightforward, this would allow project or quality

managers to develop their own metrics rather than depend upon

predefined metrics. Such predefined metrics may be based upon

experience of applications, environments or projects not relevant to

other organisations, and as such may not work as well for other

organisations and may also require significant investment in tools such

as analysers in order to collect the metrics. This study will be described in

section 4.7.

4.2 System Background

The system to be analysed was a large subsystem (132+ KLOC, 32 classes)

of a much larger telecommunications product. The subsystem was

designed using Shlaer and Mellor's Object-Oriented Analysis (Shlaer and

Mellor 1992) and coded in C++. Design documentation, incident reports

and maintenance data (where a particular defect had been identified and

corrected) were made available. The system had been delivered and the

data supplied referred to defects identified from integration testing (when

the software was placed under change control) onwards. This included

12 months post delivery usage. The organisation supplying the data was

a large (around 20 000 employees), company well established in the

industry and experienced in the development of telecommunications

144

systems. The company is ISO 9000 accredited and places a high emphasis

on reliability. Extensive effort and resources are put into testing. Testing

does not rely on simulation alone, model rooms containing "mock ups"

of the system under test are also used. The system under study was the

first 00 development for a team of experienced C developers. All had

undergone thorough training in C++, object-oriented concepts and the

Shlaer-Mellor method.

4.3 Provisos for the Empirical Study

The goal of the empirical study was to use empirical techniques to

discover simple size and defect prediction metrics for use within the co-

operating section of Company X, with the following provisos:

The metrics must be easy and cheap to collect, utilising existing

mechanisms, such as code analysers, CASE tools, fault logs, change

requests etc.;

The measures taken should be available early in the lifecycle in order to

predict attributes of interest not available until later in the life cycle,

namely size and defects.

The following section, 4.4, is concerned with the attempt to apply the

Chidamber and Kemerer metrics suite. It describes the problems

encountered with collecting the metrics.

4.4 Application of the Chidamber and Kemerer Metrics Suite

The metrics suite consists of six metrics, namely

145

WMC (Weighted Methods Per Class)

DIT (Depth of Inheritance Tree)

NOC (Number Of Children)

CBO (Coupling Between Objects)

RFC (Response For A Class)

LCOM (Lack Of Cohesion Of Methods)

For a more detailed discussion refer to section 3.3.1, and to the original

papers (Chidamber and Kemerer 1991; Chidamber and Kemerer 1994).

It was found that only two of the metrics, DIT and NOC could be collected
from the available analysis/design documentation (both were collected
from the Shlaer/Mellor Information model). The other metrics could

only be collected by analysing code. It was decided to abandon the

attempt to collect the remaining four metrics for the following reasons:

(i) the CK metrics are described as design metrics, any value they may
have been proved to have had would be reduced if they could not be

collected until the coding stage;
(ii) the static code analyser used at Company X did not collect the CK

metrics, nor could the measures collected be used or adapted to suit;
(iii) there was little merit in recommending metrics which would cost

the company in effort (in collecting) and/or financially (investing in a

new analyser) if, as the experience indicated, so few could be collected by

the analysis/design stage. It is well known and widely accepted that

metrics are more valuable at earlier stages allowing designs to be

revisited before coding, or allowing informed decisions regarding

allocation of coding and testing resources.

It was not possible, then, to make an empirical "validation" of the CK

metrics - they are presented as a suite of metrics and the individual role

146

of each is not clear. Those collected, DIT and NOC, could be analysed,

along with the other independent measures taken. The results of the

analysis are presented in section 4.5.

4.4.1 Initial Conclusions on the Usefulness of DIT and NOC

Little use was made of inheritance in the system, so mean values were

very low and median values were nil. Such low levels limit the

feasibility of such measures as predictors (they were not intended merely

to indicate the presence or absence of a feature in the system, but to

quantify the feature, in this case inheritance). On reflection, the value of

NOC for a class and even a system overall is always likely to be low.

Where low levels of inheritance are used, few classes will have children,

and even where inheritance is used, it seems that more classes will be

children than parents. In the context of this case study, however, higher

levels of DIT have indicated a higher incidence of defects per KLOC.

4.5 The Effects of Inheritance on Defects

The CK metrics successfully collected, DIT and NOC, are both measures

of inheritance. DIT measure the depth of the inheritance hierarchy and

NOC measures the number of child classes belonging to a parent class.

Both of these measures were collected from the Shlaer/Mellor

Information Model, which could be described as an extended entity-

relationship model, with entities becoming classes (Shlaer and Mellor

use the term object rather than class). The relationships between the

classes are described, indicating how a class uses another in some way

and also where a class inherits from another.

147

Also collected (per class) were the number of defects and LOC (lines of
code, counted as the number of end of line markers, "; "). LOC was

chosen as a measure of size because it is a valid measure and was already
in use within the organisation.

The DIT and NOC for each class were compared with the number of
defects and LOC for each class. To allow for the affects of size, the

number of defects was size normalised to give defects per KLOC per class.

There were just two inheritance trees or structures in the system (figures

4.1 and 4.2), one of two levels consisting of seven classes and the other of

one level, consisting of five classes. There are two possible explanations
for this. Firstly that there is little in the problem area that naturally lends

itself to inheritance. This is probably true of many problem areas outside

of the examples in 00 texts, which often feature simple examples with

naturally extensive specialisation, e. g. GUIs, simple drawing packages,

classification structures etc. A paper by Bieman and Zhao (Bieman and

Zhao 1995) examines 19 C++ systems totalling 2744 classes and concludes

that the use of inheritance tends to be greater in GUI applications than

the others in the study, with the mean depth of inheritance for GUIs

being more than twice that for other systems. Secondly the analysis and
design method used, Shlaer/Mellor, does not provide explicit support for

inheritance - it is not discouraged, but there is no guidance in how to

look for possible inheritance hierarchies as in some other 00 methods.

Furthermore, the highest defect densities calculated were for classes at

the lowest level of their respective inheritance hierarchies. Compare

defects/KLOC in figures 4.1 and 4.2 below with a median defects/KLOC of
0 for the non-inheritance classes in the system. This suggests that classes

which utilise inheritance should be thoroughly tested since they are

148

more likely to contain defects. This in turn indicates that the developers

were right to be cautious about using inheritance for this project. One

question raised by this is whether the developers were using inheritance

"properly". Since there is little guidance available on what constitutes
"proper" use of inheritance, the question can be answered thus; the
developers were experienced (although this was their first object-oriented
development) and "stuck rigidly" to the Shlaer/Mellor method. As has

been mentioned this method does not explicitly support or encourage
inheritance, though neither does it prevent or discourage its use. It

seems likely that the caution of the team, lack of support by the method

and the lack of obvious candidates for inheritance in the problem area

were all factors in what would seem to be low levels of inheritance in the

system.

class 22
2.3 defects / kloc

class 23
2.1 defects/ kloc

class 28

.S
defects / kloc

ýý ýý
class 29

5.9 defects / kloc
class 30

5.1 defects/ kloc
class 32

4.9 defects / kloc
class 31

5
.2

defects / kloc

Figure 4.1: Larger inheritance hierarchy giving defects/KLOC

149

class 21

0 defect / kloc

class 24

1.3 defect / kloc
class 25

1.4 defects / klioc
class 26

4.2 defects/ kloc
class 27

1.8 dcfects/ kloc

Figure 4.2: Smaller inheritance hierarchy giving defects/KLOC

Other summary statistics, with inheritance classes separated out from

non-inheritance classes are shown in tables 4.2 and 4.3 below. It was

suspected that defect density would be higher for classes within an

inheritance structure than for those outside, since prior to size

normalisation, obviously higher levels of defects tended to be associated

with classes belonging to inheritance hierarchies. The raw data indicated

means of 2.97 defects per KLOC for classes in an inheritance hierarchy

and 0.5 defects per KLOC for those not involved in inheritance, a

threefold increase in the incidence of defects/KLOC in inheritance classes

compared with non inheritance classes (table 4.3). In order to test the

hypothesis that the classes involved in inheritance structures were truly

from a distinct sub-population, or whether the apparent increase in

defects in inheritance classes occurred by chance, a two tailed unpaired t-

test was applied. The result confirmed that they were indeed from a

distinct sub-population, the F-value being calculated at 6.33, compared

with a tabled value of 4.17 and with less than 1: 1000 chance of this

occurring by chance (2-tail prob. 0.00).

150

Group Count Mean

No inheritance 20 3.05

Inheritance 12 16.50

Table 4.2: Defects by classes

Group Count Mean N

No inheritance 20 0.90 0

Inheritance 12 3.00 2.

Table 4.3: Defect densities by classes

Group Count Mean Median Min Max

No inheritance

Inheritance

20

12

3.05

16.50

0

17

0

0

14

47

Group count Mean Median Min Max

No inheritance

Inheritance

20

12

0.90

3.00

0

2.20

0

0

2.70

5.85

This analysis of the effects of inheritance was followed up with a small

scale student experiment on the effects of inheritance on maintenance.

This study was carried out using an experiment conducted by Daly (Daly,

Brooks et al. 1996; Daly 1996). The experiment and results will be

discussed in Chapter 5.

4.6 An Examination of the Data Distribution

A number of variables were extracted from the analysis/design models,

incident reports and change control data. A factor in deciding what to

collect was the ease of collection from the available documentation -

the effort required to collect metrics is as much part of their "usefulness"

as their accuracy in capturing or predicting information about the system.

All of the variables were either automatically extracted from the

TEAMWORK" model, or taken from incident report/change log data

'0 Casetool, CADRE Technologies Inc.

151

Mnemonic Variable Explanation

ATTRIB Attributes Count of attributes per class from the information

model.
STATES States Count of states per class in the state model
EVNT Events Count of events per class in the state model

READS Reads Count of all read accesses by a class contained in the

CASE tool.

WRITES Writes Ditto writes

DELS Deletes Ditto deletes

RWD Read/write/delete Count of synchronous accesses (i. e. the sum of

s READS, WRITES and DELS) per class from the
CASE tool.

DIT Depth Inheritance Depth of a class in the inheritance tree where the

Tree root class is zero.

NOC Number of Children Number of child classes.

LOC Lines of code C++ lines of code per class.

LOC_B Lines of code (body) C++ body file lines of code per class.

LOC_H Lines of code C++ header file lines of code per class.

(header)

DEFECT Defects Count of defects identified per class.

Table 4.4: Variables collected

Table 4.4 lists the 13 variables collected, including the two CK metrics,

DIT and NOC discussed in section 4.4. The first nine variables

characterise the 00 system architecture or structure and may be collected

at analysis or design time. Duplicates are eliminated from the counts of

events and synchronous accesses. The remaining four variables can be

regarded as management variables since they represent the size and

defect proneness of the system.

152

The following table shows summary statistics (mean, median,

minimum, maximum) of the variables collected. (Raw data is in

appendix A)

Variable Mean Median Min Max Skew

ATTRIB 8.00 4.5 1 32 1.27

STATES 18.03 13 0 114 2.56

EVNT 20.53 10.5 0 122 2.13

READS 16.25 11.5 0 83 1.93

WRITES 14.22 8.5 0 56 1.09

DELS 1.50 1 0 5 0.95

RWD 31.97 22 0 131 1.3

DIT 0.44 0 0 2 1.29

NOC 0.25 0 0 4 3.45

LOC 4178.50 3524.5 603 20165 2.26

DEFECT 8.09 2 0 47 1.63

Table 4.5: Summary statistics of variables collected

It is apparent that since the median value is in all cases lower than the

mean, all variables are exhibiting some tendency to skew. This is

confirmed by the skewness figure in the final column, revealing a

positive skew, confirmed by the skewness coefficients. This is the

consequence of a few very large classes. Even excluding these few very

large classes, it is clear that classes have an unexpectedly high KLOC

values, typically in excess of 3.5 KLOC. It also confirms the observation

in section 4.5, that inheritance is not widely used, since median DIT and

NOC values are zero. Lastly, the median number of defects is 2 although

153

there is wide variation with the maximum value of 29 defects in a single

class.

Data skew can also be illustrated using boxplots examples of which are

shown in figures 4.3 and 4.4 below.

50.0-r

37.5

25.0

12.5

0.0

*

DEFECT T
Figure 4.3: Boxplots of defects per class

154

25000

20000

15000

10000

5000

01

*

0

LOC

Figure 4.4: Boxplots of LOC per class

P

Note that 'o' represents an outlier and '*' an extreme outlier. Figure 4.3

indicates a number of very defect prone classes and indeed a mere 22% of

the classes account for 75%41 of all defects, more evidence of an

approximate 20: 80 "rule". Figure 4.4 indicates several unusually large

classes, one in excess of 20000 LOC. The extreme outlier for DEFECT and
LOC is the same class (class 22, see figure 4.1), thus emphasising the need

to size normalise the defect data.

Class 22 is by far the largest class in the system (114 possible states, total

LOC 20165, compared with the next largest, class 23,60 possible states,

total LOC 12101 and with average class size of 18.03 possible states and

" 22`%, of 32 classes is 7.04. This was rounded up to the nearest integer, making 8 classes.
When rounded down to the top 7 classes the figure is 73°/, of defects.

155

total LOC of 1178.5). This makes it obvious that almost all of the

measures taken were size driven.

4.7 Correlating Variables

Preliminary analysis indicates relationships between size and defects and

also inheritance and defects. However, DIT is not useful to estimate the

number of defects which might occur. Thus other direct measures need

investigation to ascertain whether they could be used as predictors of

defects, as well as looking for predictors of LOC.

The first stage was to enter the variables collected into a cross correlation.

Spearman Rank was chosen because of the skewed distribution of data.

This is reproduced in part, below. The full table can be found in

appendix A.

ATTRIB STATES EVNT RWD LOC DEFECT

ATTRIB 1.000

STATES 0.562 1.000

EV NT 0.318 0.898 1.000

RWD 0.508 0.858 0.859 1.000

LOC 0.563 0.968 0.910 0.848 1.000

DEFECT 0.166 0.751 0.838 0.769 0.759 1.000

Table 4.6: Results of Spearman Rank Correlation

Although correlation coefficients outside the range 0.296 to -0.296 are

significant, it was decided only to consider those 0.75 and above/-0.75 and

below since these could be considered strong correlations. Interestingly

all of these variables correlate significantly with LOC (and for the most

156

part, with each other). This, together with the other inter item

correlation suggests that as the size of a class increases, so does the

number of states, events, synchronous accesses and the number of

defects. This again underlines the need to use size normalised data to

uncover effects which may be dominated by size (note the correlation

coefficient of 0.759 for DEFECT/LOC).

4.8 Building Prediction Systems

The next stage was to build simple prediction systems for defects

proneness (DEFECT) and size (LOC). The independent variables were

chosen using the information from the cross correlation and fed into a

stepwise multiple regression equation42. The R2 and adjusted R2 for any

equation must be high (this indicates that the model fits the data well).

Simple equations (using only one independent variable) were chosen

over more complex equations using more variables. The reasons behind

this were: adding in a second or third variable did not greatly increase the

R2 value; given that so many of the variables were quite highly

correlated, collinearity may have been a problem; simple equations are

preferable since the less effort needed to collect data and calculate

equations, the more likely it is that data collection will be timely and

calculation successful. Additionally, the variables selected for input into

the equation were all available at the analysis and design stage, allowing

for earlier (and thus potentially more valuable) predictions. Below is the

resulting equation for predicting DEFECT

42 This is the approach advocated by (Kitchenham, Pleeger et al. 1995)to ensure that only

aspects that contribute to the model are included.

157

Dependent variable is: DEFECT
No Selector
R squared = 87.6% R squared (adjusted) = 87.2%
s=4.240 with 32 -2= 30 degrees of freedom

Source Sum of Squares df Mean Square F-ratio
Regression 3821.50 1 3821.50 213
Residual 539.221 30 17.9740

Variable Coefficient s. e. of Coeff t-ratio prob
Constant -0.575487 0.9566 -0.602 0.5520
EVNT 0.422246 0.0290 14.6 s 0.0001

DEFECT = -0.58 + 0.42(EVNT).

Table 4.7: Regression equation and R2/adjusted R2 for DEFECT

The high R2 shows that the equation can be considered a good predictor

of defects. Since the constant and multiplier are both less than zero they

are rounded to two decimal places at this stage, since it is obvious that

rounding to the nearest integer would have a serious distorting affect.

Consequently rounding to integer figures will be performed upon the

predictions themselves.

The standard error of coefficient for the constant is high, indicating a

potentially large spread of values around the intercept, borne out by the

probability that indicates that the intercept given is not significantly

different from zero. This confirms a lack of confidence in a negative

intercept, offering some support for the rounding up of negative defect

predictions (produced using this equation) to zero, which occurs in

section 4.9.1.1.

The standard error for EVNT is low, as is the probability that it is

significant, so we may have confidence in this figure.

158

Figure 4.5: Scatterplot with regression line for DEFECT against EVNT
(x=inheritance, o=no inheritance)

Out of interest the addition of DIT into the equation improves the

adjusted RZ value. See Table 4.8 below. However, the larger negative

intercept is less pleasing, as is the fact that it is significantly different from

zero (probability = 0.028).

159

Dependent variable is: DEFECT
No Selector
R squared = 93.8% R squared (adjusted) = 93.4%

s=3.052 with 32 -3= 29 degrees of freedom

Source Sum of Squares df Mean Square F-ratio
Regression 4090.66 2 2045.33 220
Residual 270.062 29 9.31250

Variable Coefficient s. e. of Coeff t-ratio prob
Constant -1.65497 0.7173 -2.31 0.0284
DIT 4.38205 0.8151 5.38 < 0.0001
EVNT 0.381447 0.0222 17.2 < 0.0001

DEFECT = -1.6 + 4.38(DIT) + 0.38(EVNT)

Table 4.8: Adding DIT to the regression equation and R2/adjusted R2 for
DEFECT

This seems to confirm that inheritance classes in this system seem to be

more defect prone, shown by the positive coefficient for DIT. Again from

the dataset used, it was seen that the highest densities of faults came from

classes at the lowest levels of their inheritance hierarchies. It may thus

be fair to say that the fact that classes inherit (i. e. those for which DIT=1 or

above) are the most interesting. Thus the inheritance as measured by

DIT may also be of use in indicating the presence of a higher incidence of

defects, although not in predicting how many.

160

Dependent variable is: LOC
No Selector
R squared = 96.7% R squared (adjusted) = 96.6%
s= 737.0 with 32 -2= 30 degrees of freedom

Source Sum of Squares df Mean Square F-ratio
Regression 475082696 1 475082696 875
Residual 16296130 30 543204

Variable Coefficient s. e. of Coeff t-ratio prob
Constant 1101.01 166.7 6.60 <_ 0.0001
STATES 170.676 5.771 29.6 < 0.0001

LOC = 1101 + 170(STATES)

Table 4.9: Regression equation and R2/adjusted R2 for LOC

Note that figures in the equation for LOC are rounded to the nearest

integer. This must be done at some point, since we must have integer

values (0.6 of a line of code would be nonsensical). In this case large

integers are involved, the loss of the decimal places is unlikely to have

any untoward effect. Note also the large positive intercept, which is

significant. This indicates that any class will have a certain amount of

code associated with it before any functionality is added. In C++ classes

are divided into header and body files, with the header containing class

declarations (e. g. data, template, function) and some definitions (e. g. type,

constant, but not data or ordinary functions). Stroustrup (Stoustrup 1997)

lists 14 types of information which may be included in a header file,

which accounts for a overhead in terms of class header code, before

functionality is added (in the body file).

161

Figure 4.6: Scatterplot with regression line for LOC against STATES
(x=inheritance, o=no inheritance)

Figure 4.6 shows the distribution of values along the regression line. The

is obviously little scatter, indicating a strong relationship between the

number of states and size in LOC.

4.9 Testing Prediction Systems

Since historical project data was available, the prediction systems

(regression equations) could be applied to and tested against actual data

from the same project i. e. the number of states for a class could be entered

into the equations and the result compared against the actual LC)C for

that class, likewise for the other prediction system.

A means of testing the overall accuracy of prediction for the dataset was

needed. A common test is MMRE (mean magnitude of relative error).
However, the nature of much of the data (particularly for defects), being

162

small, discrete values made it unsuitable. For example, if a prediction

was made of 2 defects for a particular class, and the actual number was 1,

this would seem a reasonable estimate. However, using MMRE, the

conclusion would, quite correctly, be that the estimate was 100% out.

Another approach might be the chi-square test. Again this proved

unsuitable given the nature of the raw data (integer values, large gaps).

The need to show accuracy led to the ranges or bins specified being

narrow. Narrow bins in turn meant that many of these bins remained

empty, since there were only thirty-two data predictions. Thus the test

could not be carried out as the number of occurrences in each bin is used

as a divisor in the test. The only way to avoid the divide by zero problem

would have been to make the range for each bin wider. This would in

turn, mean that the accuracy of each prediction was less apparent. To

illustrate, for the number of defects, if the size of a bin had to be extended

to the range 0-19, for example, this tells us less about the accuracy of

predictions than smaller bins of say, 0-4,5-9, etc.

One avenue would be to re-express the data in such a way as to preserve

the order and size of the ratio between values. The following section

discusses data re-expression.

4.9.1 Data Re-expression

Re-expression of data is an accepted technique for data analysis. The

purpose being to make data analysis easier, by making the data more

symmetrical (i. e. less skewed). Certain patterns which may not be

obvious in raw data, for example, may become more apparent after data

is re-expressed. However, not all manipulation is acceptable. It is

important, for example, to preserve order. Tukey (Tukey 1977), gives

163

categories of data, such as ranks, counts, counted fractions, amongst

others, and suggests appropriate re-expressions in order to facilitate
analysis.

4.9.1.1 Re-expressions Applied

The predictions for DEFECT were rounded to the nearest integer value.
There is a possibility that low values for EVNT (i. e. number of events

equal to 0 or 1)will result in a negative value for DEFECT, because of the

negative intercept on the regression line.

It is reasonable to "round up" to the nearest positive integer, i. e. 0, since

there clearly cannot be a negative number of defects. There is further

justification for this since there is little confidence in the negative

intercept. The premise upon which the prediction system is based is that

the greater the number of events generated by a class, the greater the

number of defects is likely to be. If the number of events is 0 or 1, then

clearly a low, but non-negative prediction would be a reasonable

outcome. Thus the decision was made that any negative predictions

should be considered to be predictions of zero. This is born out by a

comparison - predicted negative defect values correspond to an actual
defect value of zero.

Re-expressing the data (actual and predicted) using logs is a simple

technique which will make a more normal distribution whilst

preserving order. For LOC and LOC prediction, logs of the data will be

taken (0 values are not possible using the regression equation derived),

whereas with DEFECT and the predictions for DEFECT, the data will be

"started" before re-expression by adding 1. This is because 0 values are

possible and using lower values to "start" the data would lead to non

164

integer values. " Tukey suggests this procedure where small counts are

involved.

Re-expression using square root is regarded as being halfway between raw

data and log re-expression. This will also be shown in the following

section for comparison purposes.

4.9.2 Comparing Transformed Actual and Predicted Values

Some exploratory analysis comparing the transformed actual and

predicted data was carried out.

It was necessary to allocate unique names to each variable to reflect the

transformation or change that took place. The following table may be

used to trace the relationships between variables.

" The reader is referred to (Tukey 1977) chapter 3 on easy re-expression and chapter seven

on choice of expression

A

165

Mnemonic Description

LOC lines of code per class (actual value)

PREDLOC predicted lines of code per class

LLOC log of LOC

LPRC log of PREDLOC

AIL OC square root of LOC

J PR C square root of PREDLOC

DEFECT no. of defects per class

PDFCTRND predicted no. of defects per class where -ve values are set to 0 and other

non integer values rounded to nearest integer

DEFECT+ DEFECT+1 (to allow log transformation)

PDFCT+ PDFCTRND+1 (ditto)

LD+ log of DEFECT+

LP+ log of PDFCT+

-JDFCT square root of DEFECT

J PR D square root of PDFCTRND

LDFCT log defect

Table 4.10: Definitions of variables

4.9.2.1 Comparing LOC and PREDLOC

The correlation tests in table 4.11 all reveal a high correlation between

values of LOC and PREDLOC. Concentrating on Spearman as a robust

test for a skewed distribution (we know LOC is skewed and can see the

same skew for PREDLOC in Figure 4.7), we see a correlation of 0.968.

Since we know already that there is strong evidence of a relationship

between the two, from the high adjusted R` value (96.6) shown in table

4.9, we can say that this high correlation indicates an accurate prediction

system for this data. This is quite striking when represented as a

scatterplot with regression line in figure 4.8. Most points are on or

touching the regression line, the rest are very close.

166

Correlation Test: Pearson Spearman Kendall

LOC/PREDLOC 0.983 0.968 0.887

Table 4.11: Correlations for LOC/PREDLOC

15

10

5

ý

F::]
0 10000 20000

PREDLOC

Figure 4.7: Histogram of PREDLOC

20000

15000

10000

O
(5000

5000 15000

PREDLOC

Figure 4.8: Scatterplot LOC/PREDLOC

167

r
e
s

d
u
a

s

1500

750

0

-750

x

x

X

36c
x

5000 10000

predicted

x

Figure 4.9: Residuals for LOC/PredLOC regression

Figure 4.9 shows that the model tends to perform less well for smaller

classes. An explanation for this is the high value of the intercept,

meaning that the prediction will never be less than 1101 LOC. There are

a number of actual LOC values in the 700 LOC to 800 LOC range, these

show as the clump of values at the -300/400 mark on the y-axis. A

reasonable conclusion to be drawn is that classes with few or no states

will also have smaller header files, thus the model will tend to over

predict for such classes.

4.9.2.2 Comparing Re-expressed Values

Although the raw data provided sufficient indication of a relationship in

itself, it is also interesting to look at the transformed data, since it will be

used for hypothesis testing because the raw data is not amenable to a chi-

square test (as explained at the start of 4.9)

x

168

4.9.2.2.1 Re-expressed values for LOC and predictions of LOC

As expected, the correlations (table 4.12) remain consistent with the raw

data, since it has merely been re-expressed or transformed, giving a more

normal distribution (see figure 4.10), rather than changed, and this re-

expression has been consistent between LOC and PREDLOC, to give LLOC

and LPRC. The scatterplot (figure 4.11) shows that the data is now more

normally spread along the regression line, rather than concentrated at

one end. Nevertheless, the datapoint remain strikingly close to the

regression line, demonstrating that the relationship between the actual

and predicted values is retained. The analysis of residuals (figure 4.12)

shows a more random scatter, suggesting the effects of the overprediction

for low values has less effect for the transformed values.

Correlation Test: Pearson Spearman Kendall

LLOC/LPRC 0.973 0.968 0.887

Table 4.12: Correlations for LLOC/LPRC

10+

8+

6+

4+

2+

2.6 3.4

LLOC

4.2

Figure 4.9: Histogram of LLOC

Figure 4.10: Scatterplot LLOC/LPRC

r
e
s

d
u
a

s

0.3 x

0.2--

0.1
x

0.0 Kx

x 0.1

XX

XX

X

x

3.2 3.6 4.0

predicted

Figure 4.11: Residuals for LLOC/LPRC regression

169

It is also interesting to consider the square-root transformation, which
Tukey described as a re-expression fitting halfway between raw values

170

and logs (Tukey 1977). Again, as expected, the correlations (table 4.13)

remain consistent, the more robust tests, Spearman's rank and Kendall's

tau remain the same for raw values, logs and square roots. The

histogram (figure 4.13) show that there the distribution is still somewhat

skewed. The scatterplot (figure 4.14) also demonstrates this; there is a

concentration of datapoints at the lower end, although far less

pronounced than on the scatterplot of raw values (figure 4.8). The

residuals (figure 4.15) still show a tendency to clump as do the raw values

(figure 4.9).

Correlation Test: Pearson SPearanan Kendall

'JLOCNPRC 0.976 0.968 0.887

Table 4.13: Correlations iLOC/NPRC

1 5-r

10+

20 80 140

ýLOC

Figure 4.12: Histogram of 'JLOC

171

Figure 4.13: Scatterplot \1LOC and'IPRC

X

r
e
s

d
u
a

s

15.0

7.5

X

X

x
0.0

-7.5

#x

xX

x

50 75 100 125

predicted

Figure 4.14: Residuals for VLOC and'PRC regression

Further evidence of the value of re-expression can be seen from the

following boxplots. Figure 4.16 shows the distribution of the raw values,

LOC and PREDLOC. It is obvious for both variables, that the data is

172

skewed, since the main body of data, represented by the box, is

concentrated at one end of the distribution. There is one extreme and

one very extreme outlier for each. The medians of the two variable
(indicated by the horizontal bar) seem comparable. The overall
impression is of two very similar sets of data, which in turn, with other

evidence so far, is indicative of the accuracy of the prediction for LOC,

PREDLOC.

25000

20000

15000

10000

5000

0l

ý

0

i

*

0

PREDLOC LOC

Figure 4.15: Boxplots of PREDLOC and LOC

P

Boxplots for LPRC and LLOC show that the data is a more normal
distribution (from the overall size of both the boxes and whiskers).

Interestingly, the spread of data is more pronounced in LLOC. This is

explained by the fact that the values from which it is derived, LOC, are

not constrained by a formula, unlike LPRC, derived from PREDLOC. The

predicted values will never be smaller than the constant, due to the non

zero intercept (actually 1101), this is shown on the plot by the short

whisker on the boxplot for LPRC. This shows that the lower values are

all higher than for LLOC. The actual values have no such constraints,

173

and so there is a potentially a wider distribution in values. Indeed the

two plots are very similar from the middle up. Again the medians of the

two seem comparable, which could indicate that the accuracy of the

predictions is higher around the central values, than for outliers. The

extreme and very extreme outliers are no longer apparent in this re-

expression.

4.5 T

4.0

3.5

3.0

2.5 1
LPRC LLOC r-

Figure 4.16: Boxplots of LLOC and LPRC

Pleasingly, the boxplots for the square-root re-expression (figure 4.18)

indicate that it is indeed "halfway" between raw values and log

transformation. The main body of the data is again more concentrated at

the lower end, though not as markedly as for the raw values (figure 4.16).

The very extreme outliers shown in figure 4.13 are now extreme outliers

(which as stated above, are not outliers in the log re-expression shown in

figure 4.17). Again, the position of the medians of each variable is

comparable, and the naturally occurring variable ('iLOC) shows a wider

distribution in values)

174

160

0

120

80

40

0

0

ýPRC ýLOC

Figure 4.17: Boxplot AOC and'PRC

P

4.9.2.2.2 Re-expressed values for DEFECT and predictions for DEFECT

The predictions for the number of defects per class had additional
transformations prior to re-expression by log and square-root, since

values had to be rounded to the nearest integer, negative values re-

expressed as zero and the data was "started" ready for the log

transformation by adding 1 (to avoid taking log of 0, this being

undefined).

Therefore raw values of DEFECT were compared with rounded and non-

negative values for the prediction of number of defects, terms

PDFCTRND. Although less striking than correlations for LOC and

related values in the previous section, the correlations are still

significant, so that when taken with the high adjusted R2 value shown in

table 4.8, there is an indication that the two are related. This is also

shown in the scatterplot, figure 4.19. The residuals for the raw data

175

(figure 4.20) show a reasonable degree of scatter, although there is a slight
tendency to be more crowded around the lower end.

Correlation Test: Pearson Spearman Kendall

DEFECT/PDFCTRND 0.938 0.860 0.742

Table 4.14: Correlations DEFECT/PDFCTRND

Figure 4.18: Scatterplot of DEFECT and PDFCTRND

176

e

12 -I xx

8ý
x

S4x
Ix
dx

0ý
u ý«
a ý.
I -4 x X

-0 15 30 45

predicted

x

Figure 4.19: Residuals for DEFECT / PDFCTRND regression

The log-re-expressed values, LD+ and LP+ display correlation's consistent

with the values for DEFECT and PDFCTRND, with Spearman and

Kendall correlations giving the same value, again indicating that re-

expression does not change order or relationships.

Correlation Test: Pearson Spearman Kendall

LD+/LP+ 0.878 0.860 0.742

Table 4.15: Correlations LD+/LP+

The scatterplot shows a more normal distribution with a less obvious

regression line. This plot also demonstrates the higher incidence of

defects in inheritance classes (as indicated by the "x") since most fall

above the regression line. The residuals (figure 4.22) are far more

randomly scattered.

Figure 4.20: Correlations LD+/LP+

x

0.4
r
e
S 0.0
i
d
U

-0.4
a
I
s

X

X x

w

YA
x x

x

-0.0 0.5 1.0 1.5

predicted

Figure 4.21: Residuals for LD+ and LP+ regression

177

Again for square-root re-expression the correlation remains consistent

with those for the log re-expressed values (see table 4.15).

178

Correlation Test: Pearson Spearman Kendall

VDFCTNPRD 0.878 0.860 0.742

Table 4.16: Correlations 'DFCTNPRD

Again the inheritance classes fall mainly above the regression line (figure

4.23), indicating a tendency towards a higher incidence of defects. The

residuals (figure 4.24) look randomly scattered, as with the residuals for

log-re-expression in figure 4.22.

Figure 4.22: Scatterplot IDFCT andýPRD

179

x

)0(

r1+
eIXx x
SO

XX
IX

d
u -1
a
IX
s

-0 246

predicted

Figure 4.23: Residuals for)DFCT andJPRD regression

The boxplot (see fig 4.25) for raw defects, DEFECT shows an extreme skew,

indicting the most classes contain few, if any, defects. This is further

emphasised by the fact that the median occurs towards the bottom of the

box. Likewise, the boxplot for PDEFECTRND is skewed, but with fewer

outliers, indicating its predictions fall mainly within the main body of

the data. The shaded area around the medians have a large overlap,

indicating similarity around the median.

60

45

30

15

0

*
*

0 JL

PDFCTRND DEFECT I

Figure 4.24: Boxplot PDEFECTRND and DEFECT

The boxplots for log re-expressed data (figure 4.26) and (figure 4.27) for

square-root re-expressed data are more comparable. Firstly the

distributions are more normal, with no outliers, and the boxes and

whiskers of a similar size. Again the medians on each plot overlap,

indicating a degree of similarity.

181

2.0

1.5

1.0

0.5

0.0

IT
! .1 LP+ LD+

Figure 4.25: Boxplots of LP+ and LD+

8

6

4

2

0
qPRD 4DFCT

F

I

Figure 4.26: Boxplots of /PRD and qDFCT

182

4.9.2.2.3 General Conclusions on the Re-expression and Comparison of
Actual and Predicted Data

The above plots and correlations provide sufficient evidence to suggest

that the re-expressions have not affected relationships between data

items whilst giving a more normal distribution. Thus hypothesis testing

using the re-expressed values will be valid, since the order and

relationships between data have not been changed.

4.9.3 Hypotheses and Hypothesis Testing

From the exploratory analysis and comparisons of the actual and

predicted data there arose the following hypotheses:

The prediction system for DEFECTS gives an accurate prediction of the

number of defects contained in a class;

The prediction system for LOC gives an accurate prediction of the

number of lines of code contained in a class.

4.9.3.1 Chi -square

Although Chi-square proved unsuitable for use on the raw data it was

possible to apply the test to the data when re-expressed as logarithms.

Chi-square for goodness of fit can be used to test whether the prediction

(expected value) is a good predictor of the actual (observed) value by

determining whether the two factors are independent of each other or

are dependent.

1153

For the hypotheses formulated above we wish the test to show that the

two are dependent. The results from the Data Desk44 contingency tables

are based on a null hypothesis that the two factors are statistically
independent and the alternative hypothesis of dependence. In both

tables it can be seen that there is a probability <= 1 in 1000 of
independence, i. e. in both cases, the factors are statistically dependent.

Each table shows the number of occurrences in each cell (from the data)

and the expected value for that cell (if the null hypothesis were true). If

the null hypothesis is true then the expected values will approximate the

actual values, and conversely if the null hypothesis is false, the two will

tend to differ. As can be seen from the tables (4.17 and 4.18) both show an

overall tendency to differ.

The x2 value for LOC is 81.88. The probability, of gaining a x2 value this

high is less than 1: 10000, so the null hypothesis can be rejected.

For defects the x2 value is 54.86. Again the probability of obtaining a

value of this size is less than 1: 10000, so the null hypothesis can be

rejected.

It can be concluded that the models make reasonable predictions for both

LOC and DEFECT.

" The stats package used.

184

Rows are levels of actual LOC
Columns are levels of predicted LOC
No Selector

2.70-3.10 3.10-3.40 3.40-3.70 3.70-4.10 4.10-4.40 total

70-3.10 540009
1.40625 2.53125 2.53125 2.25000 0.281250 9
3.03052 0.923167 -1.59099 -1.50000 -0.530330 0

3.10-3.40 040004
0.625000 1.12500 1.12500 1 0.125000 4

-0.790569 2.71058 -1.06066 -1 -0.353553 0

3.40-3.70 017109
1.40625 2.53125 2.53125 2.25000 0.281250 9

-1.18585 -0.962451 2.80879 -0.833333 -0.530330 0

3.70-4.10 002709
1.40625 2.53125 2.53125 2.25000 0.281250 9

-1.18585 -1.59099 -0.333912 3.16667 -0.530330 0

4.10-4.40 000011
0.156250 0.281250 0.281250 0.250000 0.031250 1

-0.395285 -0.530330 -0.530330 -0.500000 5.48008 0

otal 59981 32
59981 32
000000

able contents:
Count
Expected Values
Standardized Residuals

Chi-square = 81.88 with 16 df
p <_ 0.0001

Table 4.17: Chi-square test actual LOC and predicted LOC (re-expressed as
logs)

185

Rows are levels of actualDefect
Columns are levels of expected Defect
No Selector

0-0.5 0.5-1 1 -1 .51 . 5-2 total

p- 0.5 1080018
6.18750 5.62500 5.62500 0.562500 18
1.53268 1.00139 -2.37171 -0.750000 0

ý0.5-1 01102
0.687500 0.625000 0.625000 0.062500 2

-0.829156 0.474342 0.474342 -0.250000 0

1-1.5 1190 11
3.78125 3.43750 3.43750 0.343750 11

-1.43028 -1.31469 3.00019 -0.586302 0

1.5-2 00011
0.343750 0.312500 0.312500 0.031250 1

-0.586302 -0.559017 -0.559017 5.48008 0

total 1110101 32
11 10 10 1 32

00000

able contents:
count
Expected Values
Standardized Residuals

hi-square = 54.86 with 9df

S 0.0001

Table 4.18: Chi-square test actual defect and predicted defect (re-expressed

as logs)

4.10Conclusions

This case study of a large industrial C++ system has demonstrated a

number of points.

186

" First, that it not necessarily straightforward to apply pre-defined

metrics. There seems still a tendency for metrics to be complex, vaguely
defined and/or method independent. This is shown by the lack of

success in applying the CK metrics. Although among the most mature

and well defined of the metrics on offer, it still proved impossible to

collect the majority of them from the design documentation available. A

number of static code analysers now implement the CK metrics, but since

they were intended as design metrics, this detracts from their potential

usefulness.

" Second, that inheritance is less used than might be expected from the

prominence given to the mechanism in 00 textbooks. This was

confirmed by examining the design documentation and from anecdotal

evidence from the developers.

" Third, that inheritance has an effect on the number of defects in a class.
Classes in an inheritance hierarchy had three times the defect density of

classes not part of an inheritance hierarchy. Tests also confirmed the

inheritance classes were a distinct sub-population of the dataset. Defects

were also size driven, hence the use of defect densities. This seems to

confirm anecdotal evidence that developers avoided the use of
inheritance because they found it difficult to understand.

" Fourth, deriving locally applicable metrics from local data is not a
difficult task, providing suitable tool support is available. This of course

assumes that data, such as incident reports, change requests,
developmental effort etc. is collected as a matter of course. In this case

study, readily available design data was correlated against the dependent

variables of interest, SIZE and DEFECT. The most promising of these

were used to derive regression equations, of which the most simple with

187

high adjusted RZ values were selected. In order to demonstrate the

predictions made were reasonable, a chi-square test was carried out,

which demonstrated that the values were dependent.

As discussed in chapter 1, the results of a single case study by itself are not

generalizable. It has however, added to the empirical evidence on "real"

object-oriented systems, particularly regarding the use of inheritance.

The findings linking the use of inheritance has also lead to the formation

of a further hypothesis, that the use of inheritance will effect the effort

required to maintain software, such that software using inheritance will

take more effort to maintain than software which does not use

inheritance. This hypothesis will be tested in chapter 5.

Blank
In

Original

189

Chapter 5 An Experiment into the Effects of Inheritance on
Maintenance Changes

Synopsis

An experiment investigating the effects of inheritance on software maintenance

activities was carried out by a final year undergraduate' using material designed

at the University of Strathclyde and fellow undergraduates as subjects. The aim

of the experiment was twofold. Firstly it offered a means of testing the

hypothesis formulated in chapter 4, that the use of inheritance increased the

effort needed to maintain the software as compared with classes which did not

use inheritance. Second it offered a partial replication to the experiments carried

out at Strathclyde and added to the available empirical evidence on the

maintenance of object-oriented software. This chapter describes the experiment

and analysis of the data collected. It found that at three levels of inheritance,

the effort needed to carry out the maintenance change was more than that

required for the equivalent flat structure.

5.1 Reasons for the experiment

The empirical case study described in chapter 4 indicated that inheritance

was associated with a higher level of defects than classes which were not
involved in an inheritance relationship. Further, in the case study
described, the classes with the highest densities were found at the bottom

of their respective inheritance hierarchies, which would confirm the

perceptions of the developers concerning the difficulties involved in

using inheritance46, as well as publications on maintenance of object-

as The analysis presented here was carried out by the author. The student, Claire Joyce,
was, of course, expected to carry out an independent analysis as part of her project.
Happily our conclusions concur.
46 Such as difficulty in understanding classes using inheritance, which obviously has
implications for testing and maintenance

190

oriented software and inheritance, such as (Lejter, Meyers et al. 1992;

Wilde, Matthews et al. 1993; Dvorak 1994). It was therefore interesting to

repeat an experiment by(Daly, Brooks et al. 1996; Daly 1996) concluding

that software with an inheritance hierarchy three levels deep seemed to

be more maintainable than equivalent software not using inheritance,

and that it was not until five levels of inheritance were used that this

phenomenon was no longer apparent. Since this was inconsistent with

the results of the case study, the developers experience and indeed much

of the anecdotal evidence available, it was decided to investigate further

by replicating the experiment in part. The original work consisted of two

systems, using three levels, each compared against a 'flat' (i. e. no use of

inheritance) equivalent. This was followed by a further experiment

using an extended version of one of the systems, using five levels of

inheritance, again with an equivalent flat version. This experiment

would use one of the three-level systems. A full replication was not
feasible since the experiment would rely on volunteers and thus needed

to minimise the time commitment made. The subjects of the Strathclyde

experiment were under assessment, and so were compelled to take part.

5.2. Differences from the original experiment

It was decided to conduct the experiment following the original as far as

practicable . The experiment was invigilated by and data collected by a

final year undergraduate on fellow software engineering students.
Although intended as an external replication of the work at Strathclyde,

there were inevitably some differences, although these were minimised

as far as was possible. The following differences between this experiment

and the original remained:

sample size - this experiment had ten subjects, the original had 30;

191

experience - all had some training in 00, although this is unlikely to be

precisely the same as the training given to the Strathclyde students;

material used - this experiment used only the three level version;
time - this experiment extended the time to two hours from one and
three quarter hours.

experimental design - this experiments required each group to carry out

one set of changes on one treatment (inheritance or flat), Strathclyde

required groups to carry out both treatments.

5.3. Description of the experiment

There follows a brief description of the experimental procedure,

materials, subjects and the actual task to be completed.

5.3.1 Procedure

Each subject received a sheet of instructions regarding the experiment,

and two packs, one containing the maintenance change and the other the

source code listing. Subjects worked independently

Ten minutes were allowed for reading and clarifying the instructions.

The subjects then proceeded to open the first pack, containing details of

the maintenance change required and were. given a further ten minutes
for reading and clarification of the requirements. Once this was

complete, the subjects opened the remaining pack, containing the source

code listing. On opening this pack, the subjects could begin the task and

timing began. Completion of the task was dependent upon successful

compilation and testing against required output (using supplied data),

which was checked by the invigilator. If this was confirmed as correct by

the invigilator, timing was stopped, else the subject was asked to

192

continue. Once their task was complete, the subjects were asked to

complete a debriefing questionnaire, a copy of which is included in

appendix B.

5.3.2 Materials

Each subject was provided with:

" instruction sheet;
" packs containing maintenance task requirements and source code

listing;

" test data;

" HP work station, with Emacs editor and C++ compiler;
" source code.

5.3.3 Subjects' background

All ten subjects had a minimum of 6 months experience of object-

orientation using C++, all belonged to the same degree course and thus

received the same introduction to 00 and C++. Variations occurred

where subjects had outside experience, such as from work placements
during their sandwich year.

Subjects were randomly assigned into two groups; group A were given
the inheritance version (with three levels) and group B the flat version.

5.3.4 Maintenance task

193

The program to be modified was a simple library database system,
allowing the creation, display, modification and deletion of records.
Three categories of record were supported, book, conference and thesis.

The software was designed "in an object-oriented fashion" (Daly 1996)

and coded in C++ using single inheritance. The flat version was derived

from the inheritance version by removing inheritance links and then

adding the data and functions that would have been inherited directly to

the relevant classes (thus repeating code in each class). Any abstract

classes (i. e. those existing for the sole purpose of allowing classes to

inherit from them) were then removed from the flat version.

The flat version consisted of approximately 440 lines of code and four

classes (each class made up of a header and implementation or body file),

whilst the inheritance version consisted of approximately 390 lines of

code and six classes.

The task given to the subjects was to add a new class to the library system.
PhD-Thesis. This consisted of seven different fields and was intended as

a specialisation of the Thesis class. Subjects were to create an instance of
the new class with initial and default values, modify some values then

display the results.

5.4 Data Collection

Data collection was automated using a shell script designed for the

experiment. This was initiated at login and kept running throughout the

experiment to record the process of modification. To recap; the data

collected from the experiment was: time to complete, the final version of

194

the solution (to allow the number of LOC added to be calculated) and the

completed debriefing questionnaire.

5.5 Preliminary Analysis

The table below summarises the time (TIME) taken to complete the task

(in minutes), lines of code added (XTRALOC) and experience (EXP) in

using C++ in years for each subject (SUBJ).

SUBJ TREATMENT TIME XTRALOC EXP

I Inherit 63 42 2

2 Inherit 58 39 1

3 Inherit 63 57 1

4 Inherit 93 36 0.5

5 Inherit 109 35 0.5

6 Flat 31 77 1

7 Flat 40 76 1

8 Flat 61 76 1

9 Flat 32 79 1

10 Flat 69 79 2

Table 5.1: Quantitative data collected

The following tables, 5.2,5.3,5.4 give the summary statistics for the raw

data in table 5.1.

variable count mean median variance SD min. max

TIME 10 61.90 62 620.32 24.91 31 109

XTRALOC 10 59.60 66.50 388.49 19.71 35 79

EXP 10 1.10 1 0.27 0.52 0.50 2

Table 5.2: Summary statistics for data collected

195

variable count mean median variance SD min max
i-time 5 77.20 63 508.20 22.54 58 109

i-loc 5 41.80 39 79.70 8.93 35 57
i-exp 5 1 1 0.38 0.61 0.50 2

Table 5.3: Summary statistics for inheritance version

variable count mean median variance SD inin max

f-time 5 46.6 40 302.30 17.30 31

f-loc 5 77.4 77 2.30 1.52 76 79
f-exp 5 1.20 1 0.20 0.44 1 2

Table 5.4: Summary statistics for flat version

The data presented in tables 5.1-5.4 show a number of points of interest.

Firstly, the inheritance version has the most compact changes (in terms

of lines of code added, XTRALOC), for subjects 4 and 5 less than half of

the smallest change for the flat version. This is as expected, because the

use of inheritance removes the need to repeat sections of code since the

classes can use code (data or functions) declared in another class via the

inheritance mechanism. In the flat structure, this mechanism is

disabled, so the code must be repeated in any class that wishes to reuse

that code. The size of changes made in the flat group is similar (min 76,

max 79), whereas the inheritance group ranges from min 35 max 57. For

the population as a whole, the data is not normally distributed.

Time taken tends to be less for the flat group than the inheritance group.

It is interesting to note that those with the most experience in C++ did

not finish more quickly. In the case of the flat group, the most

experienced subject took the longest time. One explanation may be that

the use of inheritance meant that the subjects found it harder to

comprehend the code (which would be de-localised, i. e. relevant

information would be spread among ancestor classes, necessitating more

effort to be spent on understanding the code and how to implement the

changes than the flat group who did not have to consider the use of

inheritance). For the population as a whole, the time is normally

distributed.

Also interesting is that the least experienced programmers made the

most compact changes (both were in the inheritance group). The reasons

for this are unclear, possibly these subject relied more on their training in

C++, following "good practice" more closely.

The boxplots in figure 5.1 below show a difference in the time taken by

each group, with the inheritance group tending to take longer. There is

some degree of overlap of the confidence interval around the median for

each group (represented by the shaded area), but the medians themselves

do not correspond, (as can be seen from tables 5.3 and 5.4. There is some

overlap with the whiskers, indicating that the higher values for the flat

treatment are comparable with the lower values for the inheritance

treatment.

197

100+

80+

T

M 60
E

40+

Flat

TREATMENT

Inherit

Figure 5.1: Boxplots of time taken by flat group and time taken by
inheritance group

More striking are the boxplots of the lines of code added in order to make

the change (figure 5.2). Firstly there is absolutely no overlap between the

two, indicating a considerable difference in the values, with the flat

group obviously adding more code. Ignoring the extreme outlier for the

inheritance group (denoted by an "o") we can see a gap of around thirty

lines of code between the groups. There is little variation or spread in

the figures for the flat group, as evidenced by the absence of whiskers.

For the inheritance group, there is a little more variation (again ignoring

the outlier) but not a great deal. What figure 5.2 shows is that there is a

very definite difference in the number of lines of code added to effect a

solution according to whether inheritance was used or not.

198

70 4-

X 60 ý
T
R
A
L 50

O
C

40+

0

Flat Inherit

TREATMENT

Figure 5.2: Boxplots of lines of code added by flat group and time taken by
inheritance group

5.6 Hypothesis formulation and testing

From the raw data and summary statistics, there appears to be a

difference between the inheritance group and the flat group, both in

terms of size and time. The inheritance group tended to take longer to

make the changes (median=63) than the flat group (median=40), and the

changes made by the inheritance group were more compact (median=39)

than the flat group (median=77). The time data is normally distributed

so a two tailed t-test7 was run to ascertain if there was a statistically

significant difference between the two groups (by comparing the

47 The variances are known not to be equal

199

medians). The data for lines of code added is not normal distributed so, a
Mann-Whitney U test was run as a non parametric test to compare

medians.

5.6.1 Effort (TIME)

The hypothesis can be summarised as follows:

Ho: the use of a hierarchy at 3 levels of inheritance does not affect the

time taken to modify the software

Ha: the use of a hierarchy at 3 levels of inheritance does affect the time

taken to modify the software.

Ho is rejected at alpha=0.05 (the confidence limits used at Strathclyde),

with p=0.0449, just inside the limit. Thus for this study working with an

inheritance structure has a significantly positive effect on time taken to

complete the change (i. e. it took longer to complete the task).

2-Sample t-Test of µ1-µ2

No Selector

Individual Alpha Level 0.0500

Ho: µ1-µ2 =0 Ha: µ1-µ2 #- 0

i-time - f-time:

Test Ho: µ(i-time)-µ(f-time) =0 vs Ha: µ(i-time)-µ(f-time) ý0
Difference Between Means = 30.600000 t-Statistic = 2.403 w/7 df
Reject Ho at Alpha = 0.0500
lp = 0.0449

Table 5.5: Two-sample T-test time taken for inheritance version against
time taken for flat version

GUU

5.6.2 Size (LOC)

Ho: the use of a hierarchy at 3 levels of inheritance does not affect the

number of extra lines of code added to the software during the

modification

Ha: the use of a hierarchy at 3 levels of inheritance does affect the

number of extra lines of code added to the software during the

modification

Ho is again rejected at alpha=0.05, with p=0.0086, thus for this study there

is a very significant difference between the two samples. This indicates

that for this study, using the inheritance structure leads to more compact

changes.

To recap, the test indicates that changes to the inheritance version took

longer to complete than the flat version but were more compact than

those made to the flat version. This confirms what can be seen from the

raw data in table 5.1. It contradicts the result at Strathclyde that three

levels of inheritance made no difference to the maintainability of object-

oriented programs.

201

Mann-Whitney U

No Selector

Individual Alpha Level 0.0500

Ho: Medianl = Median 2 Ha: Medianl s Median2

Ties Omitted

lnherit: XTRALOC - FIat: XTRALOC :
est Ho: Median(Inherit: XTRALOC) = Median(FIat: XTRALOC) vs Ha: Median (Inherit : XTRALOC) ;t Median (Flat: XTRALOC)

Rank Totals Cases Mean Rank

nherit: XTRALOC 15 53
Flat: XTRALOC 40 58

otal 55 10 5.500
ies Between Groups 0

U-Statistic: 0.000

U-prime: 25.000

Sets of ties between all included observations 2

ariance: 22.917

djustment To Variance For Ties: -0.278
Expected Value: 12.500

-Statistic: -2.627

= 0.0086
Reject Ho at Alpha = 0.0500

Table 5.6: Mann-Whitney U test for inheritance version against size for
flat version

5.7 Analysis of the Effects of Experience

One obvious potential problem with the data is that as a result of being

randomly placed into groups, there was an imbalance in terms of

experience. Whereas with a larger sample, any problems would probably

be balanced out, with such a small sample, "unbalanced" groups are

more obvious. In this experiment, the subjects' experience (of C++)

could have been ascertained in advance, so in retrospect, it would have

been prudent to use some blocking technique, such as defining two

blocks "experienced" and "inexperienced" then allocating treatments

randomly to each block. However, given the small number of subjects, it

would not be possible to "randomly allocate" the versions among the

inexperience block since it would contain just two subjects.

LUL

As noted previously, in the experiment the two least experienced subjects

made the most compact changes as well as taking the longest time.

Presuming compact changes are good (since this seems to be one of the

"pros" of using inheritance), then we cannot conclude that relative
inexperience means relatively lower ability48.

To help discover any relationship between experience and performance,
in terms of the time taken to complete and the size of change made, the
data can be entered into scatterplots

5.7.1 Effects of Experience on Time Taken

In figure 5.3 below, the time taken is plotted against the experience. "x"

represented inheritance treatment and "o" the flat treatment. From so

few datapoints it is not possible to draw firm conclusions.

" It has been suggested that these subjects were "more thorough". Since their 6 months

experience was gained at university, and presuming the training received was "best

practice", it may be that they would implement a "good" change however long it took,

where the more experienced subjects (with this additional experience gained in industry)

would be more inclined to value speed over style. After all, productivity is still often

measured in terms of LOC ...

LVJ

x

100+

x

80 4-

T
1 60
M
E

40+

11

0.8 1.2 1.6

DF

Figure 5.3: Scatterplot of TIME against EXP

5.7.2 Effects of experience on size

X

f

As in 5.7.1 above, the number of datapoints is too small to allow firm

conclusions to be drawn. Again there is no obvious relationship shown

in the scatterplot.

204

70+

I XA
T
R
A

0Vt

50+
L
0
C 40

ý

x

x

0.8 1.2 1.6

EXP

Figure 5.4: Scatterplot of XTRALOC against EXP

x

5.6.3 Conclusions on the relationship between experience and time taken
and experience and LOC added

Regression of the data in figures 5.3 and 5.4 are not significant, i. e. they do

not indicate a relationship between the variables. As stated in section 5.6

we cannot safely regard experience as a proxy for ability. Thus we cannot,

from this study, draw firm conclusions on the relationship between

experience and time taken or LOC added. Thus the imbalance of

experience between treatments may not be too serious.

5.7 Debriefing Questionnaire

205

Each subject completed a debriefing questionnaire after their solution

was signed off as successful.

Appendix B contains a copy of the questionnaire and a summary of the

responses. Some questions have more than 10 responses (where a

subject gave more than one answer), some may have less (where a

response was not given or was inappropriate).

"i" refers to responses given by the inheritance subjects and "f" responses
by the flat subjects

As for quantitative data, there are too few datapoints to draw any certain

conclusions, but the data could raise a number of questions. Overall

there is a relatively even balance among the respondents. However,

question five indicates that the flat group took longer only in the editing

of the code (this group were naturally expected to cut and paste code since

inheritance was not used) than the inheritance treatment group who

tended to have problems in understanding and debugging of code.

It is interesting to note that although the problem was a natural

specialisation, suited to the use of inheritance, the inheritance group

tended to have more trouble with understanding the code (q 5) and had

less confidence in their understanding of the code (q9), which tends to

support the contention that inheritance makes code harder to

understand. Additional comments by participants in the inheritance

treatment suggest that class hierarchy diagrams are important in

understanding code which utilises inheritance.

5.8 Conclusion

206

As stated previously, the size of the dataset is too small for the results to
be considered to counter the conclusions of Daly et al (Daly, Brooks et al.
1996; Daly 1996), but it can be viewed as an attempt at replication that

raises questions regarding the conclusions of the original. In other

words, the results of the original cannot be regarded as proof that

inheritance of three levels does not adversely affect maintainability or

that it is beneficial.

Obviously the nature of experimentation and particularly replication (as

expounded at some length in Daly's thesis (Daly 1996)), means that even

with an identical number of subjects, one cannot claim to carry out an

exact replication (thus whether the findings agree with/rebut the original

are always open to debate). However, attempts such as the experiment
described in this chapter provide material which can be used as evidence
towards a counter argument. Evidence for both sides needs to be built up
before one can decide, on the weight of evidence, which side is more
plausible. For this experiment it is interesting that even with the design

of experiment being biased in favour of inheritance49, this application
suggested some adverse effects, which are more in keeping with

anecdotal evidence from professional software developers.

It is interesting to note that when Daly repeated the experiment with an
inheritance structure at five levels the mean time for changes by the

inheritance group increased on average by 19.8 minutes per subject,

compared with an increase of just 3.5 for the mean time to complete the

change for the flat group.

49 It is not possible to say whether or not this is intentional. However, factors that point
to a bias are first, the nature of the task, which is a natural specialisation encouraging
the use of inheritance to add a class at the bottom of an inheritance hierarchy, rather
than a routine maintenance task , such as fixing a bug, or a task with the potential of
"ripple through" effects such as changing data nearer the root of the class. Second the
Strathclyde subjects were taught by those involved in the experiment, which could be

considered as preparation and training for the purposes of the experiment.

207

The experimental findings, that three levels of experiment have a

positive effect in the time taken to complete a maintenance task, offer

some support to the contention that the use of inheritance makes the

program structure harder for developers to understand. Developers of

the system examined in chapter 4 confirmed that inheritance was little

used because it made things more difficult. This was borne out by

analysis showing classes which were part of an inheritance hierarchy to

have a higher incidence of defects. It seems reasonable to conclude that if

fewer extra lines of code were added (compared with the flat group), that

the extra time taken was not spent in editing or typing, and thus must

have gone into understanding the problem and developing a solution.

We can conclude that it would be well worth the effort to attempt to

replicate the experiment again, or possibly to introduce a new, less trivial

maintenance task.

Blank
In

Original

209

Chapter 6 Conclusions

Synopsis

From the literature review in chapter 2, a number of themes or lessons to be

learned were derived. These were applied to the literature representing research
into object-oriented software metrics in chapter 3. From this it could be concluded
that 00 metrics development seems to have been undergoing the same learning

curve as traditional metrics, rather than benefiting from past experience and

mistakes. Chapter 4 showed problems with the traditional approach of

applying predefined metrics and suggested that it was relatively easy to derive

measures and prediction systems to be applied locally as well as presenting the

results of a empirical analysis of an object-oriented software system. Chapter 5

follows on from one of the interesting observations on inheritance resulting from

the analysis in chapter 4, by describing an experiment looking into inheritance in

object-oriented software. This final chapter will look at the conclusions of this

work in more detail and suggest further work.

6.1 Summary of work done

The work carried out for this thesis involved an extensive literature

survey of object-oriented and traditional software metrics and related

subjects (including other object-orientated issues, measurement theory),

in excess of 300 references were examined, of these at least 55 pertained to

object-oriented software metrics.

From the survey some deficiencies with past approaches to metric
development and validation were uncovered. A number of publications

on object-oriented software metrics development and/or validation
(taken here to be either formal validation or empirical assessment) were

considered in the light of these deficiencies.

210

The case study was based on a large (132+ KLOC) industrial object-

oriented software system, designed using Shlaer-Mellor OOA and coded

in C++. This involved collecting and sorting though 39 metrics and

reducing them to a manageable number without losing interesting

information. Exploratory analysis was performed to find attributes of the

design which could affect maintainability. From the data collected,

prediction systems were developed and tested to demonstrate that it was

possible to derive local prediction systems from simple measures.

As a consequence of some of the results from this analysis, which

suggested a link between inheritance and errors in the system under

study, an experiment was conducted into the impact of inheritance on

object-oriented software maintainability.

6.2 Summary of problem area

The problem faced was twofold.

First, relatively little empirical evidence regarding the impact of object-

orientation on software development and maintainability exists. Thus

much of the literature dealing with object-orientation has tended to

display a very positive attitude, giving rise to a widely held belief that the

object-oriented paradigm offers advantages over conventional methods

in all respects (Fichman and Kemerer 1993). A more specific claim is

object-oriented systems are easier to maintain (Booch 1986). A body of

empirical evidence, either case study or experimentation, is needed to

provide information on how 00 affects important software attributes,

such as maintainability and quality.

211

Second, despite numerous metrics being put forward, many would be

unsuitable for our purpose; of predicting errors and size in an object-

oriented software system. There are four reasons why metrics /prediction

systems might be unsuitable:

" metrics having been developed for structured software and are thus

unlikely to be suitable for 00 software;
" metrics being speculative or of dubious validity/usefulness;

" metrics being specific to a particular language, environment or method;

" metrics seemingly suitable and valid/useful but difficult to collect (lack

of tool support or not available early enough in the development

process).

These problems are not all necessarily easy to avoid. The first is simple

enough - consider only those metrics which have been developed for

object-oriented software. However, the immaturity of such metrics

makes the second, third and fourth pitfalls more likely to occur. All

metrics will go through a speculative phase, before some demonstration

of their validity or usefulness can be made. As has been emphasised in

previous chapters (2 and 3), validity and usefulness are not the same

thing, so even if a metric can be shown to be valid, showing that it is

useful can be difficult. In order to show usefulness, empirical studies

need to be carried out. These would require suitable data. The more

studies carried out, the more confidence we can have in the results.

The third reason, that of metrics being suited only to a particular

language, method and so on, is also connected with the lack of data

available to empirical studies. It is likely that developers of metrics will
be familiar with and have data available for one particular language,

method environment and so on, and thus any development and testing

will be based upon that available data. Many metrics should not be

212

generalised, but frequently are. It is rare for metrics to be presented as
metrics for C++ systems, but more commonly they are presented as
metrics for 00 systems. In some cases it is obvious that certain features

are specific to, say, a particular programming language, but not always.

The fourth problem or reason for unsuitability with many proposed

metrics is difficulty in collection. With speculative metrics, little thought

tends to be given to collection (or even counting rules, in all too many

cases). Even where some validation or empirical evaluation is carried

out, it is not infrequent that a tool needs to be written specially to collect

the metrics. This constitutes additional effort on the part of the user

wishing to apply such metrics. Either they must write software to collect

the metrics or wait for tool vendors to incorporate them into case tools.

Furthermore, if, as in many cases, metrics are extracted from code (via

static code analysers, for example), the value is reduced, since they cannot
be used for early warnings or predictions.

It can be seen that predefined metric suites can suffer from a number of
disadvantages. That is not to say that they are without value. Interesting
things about the nature of the software systems under scrutiny can be

more easily uncovered. They provide the basis for other, independent

empirical studies (the Chidamber and Kemerer metrics and the Lorenz

and Kidd metrics have been applied independently, for example). They

may also provide ideas which can be adapted by users to suit the specific
needs of their environment or project.

6.3 Summary of aims

The aims of the thesis (section 1.1) were

L13

i) To investigate the impact of key 00 mechanisms, specifically
inheritance, on software maintenance.

This aim was motivated by several factors:

" inheritance can be closely associated with "object-orientedness" -
looking at an object-oriented program one would expect to see some

use of inheritance;

" Grady Booch's claim in 1986 that object-oriented software is easier to

understand and maintain (Booch 1986). In this paper Booch tends not
to concern himself much with inheritance and explains the claims for

maintainabilty and understandabilty as being "due to the fact that

objects and their related operations are localised" and so "reduce the

scope of change upon the system". Whilst this applies to encapsulation

and data hiding (which are not peculiar to 00), clearly the inheritance

mechanism leads to some degree of delocalisation, where variables and

operations may be declared in one class and used in another;

" Such concerns are voiced in a small number of papers, primarily

concerned with tool support, and are the third factor to influence the

aim. Papers by (Lejter, Meyers et al. 1992; Wilde and Huitt 1992; Wilde,

Matthews et al. 1993; Li and Henry 1993a) consider the effects of
inheritance (among other mechanisms) on maintainability and

understandability.

The aim has been achieved by the analysis of error data in a C++ system,

as described in chapter 4. The distribution of errors and error densities

was analysed. The findings can be summarised as follows:

214

" the Chidamber and Kemerer metrics could not all be collected from the

design documentation;

" there is some evidence in support of the "20: 80" rule, since 22% of

classes accounted for 75% of defects;

" it was found that classes involved in an inheritance hierarchy had

three times the defect density of non inheritance classes, that the highest

defect densities of all could be mapped to classes at the bottom of their

respective hierarchy (i. e. classes with no descendants), and that little use

was made of inheritance, with the median figure for DIT being 0;

" that size can be predicted very well from a simple measure available

early in the analysis/design phase, in this case by counting the number of

states, and this measure could be easily and automatically extracted from

the case tool model;

" that defects can be predicted well from a simple measure available from

the analysis/design phase, and this measure could be extracted

automatically from the case tool model.

" the value of building local prediction systems has been demonstrated,

since it was easier to collect simple, readily available measures and derive

prediction systems from them than to use pre-defined metric suites, and

these prediction systems could be shown to be accurate.

The significance of the findings will now be discussed. It is worth

emphasising that the extent to which the results of a case study can be

generalised continues to be a subject of debate. Yin's view, (Yin 1994),

that a case study can be generalised into theory, but not to other

populations, seems sensible.

215

Firstly it appears that not all of the Chidamber and Kemerer metrics can
be regarded as design metrics. This makes no comment on their accuracy

or validity; because they could not be collected, they could not be assessed.
However, their usefulness can be disputed. It is accepted that the earlier a

metric can be collected, the more use it can be since it can be used to make
decisions regarding the remainder of the development process. If a

metric is difficult to collect then its usefulness can be questioned in view

of the amount of effort expended in order to collect it. The two metrics

collected were of limited use. NOC (number of children) was not found

to correlate with any attribute of interest. Although DIT (depth of

inheritance tree) had some correlation with errors, it ignores the finding

that simply being part of an inheritance structure had an effect on the

number of errors. This is because the root of an inheritance hierarchy is

counted at 0, and is thus allocated the same value as a class which is not

involved in an inheritance hierarchy. Perhaps if the root were counted

as 1, the metric would more accurately reflect the finding that inheritance

impacts upon errors.

The 20: 80 "rule" is often quoted to illustrate that a relatively small

proportion of, say, modules are responsible for a large number of

problems, such as maintenance effort. This case study confirms this

ratio, albeit slightly adjusted at 22: 75 for classes : errors. Thus in the

context of object-oriented system, if the troublesome 20ish % of classes

can be identified early on, then this can be fed into the decision making

process with regard to testing effort, design reviews and so on.

The concentration of errors in inheritance hierarchies suggests that a
higher proportion of resources e. g. testing effort should be devoted to

classes in an inheritance hierarchy. As with the point above, if we are

able to pinpoint the most problematic classes, then we can more

1- 216

efficiently and effectively allocate resources to find/eradicate errors. This

concentration of errors also raises questions about the use of inheritance.

Bearing in mind that there is little use made of the mechanism in the

case study, it may be that inheritance leads to designs and/or code which

is harder to understand. This seems feasible, since there is inevitably

some delocalisation, whereby data or methods declared in one class may

be used in a descendant of that class. In order to understand what a class

is doing and how, the delocalized data and functionality must be brought

back together. This is not necessarily an easy task, it may involve several

levels of inheritance and even multiple inheritance in some situations.

Consequently, software that is harder to understand will be harder to

test/maintain because of the ability to understand software requisite to

those tasks.

The low levels of inheritance may be due to the difficulties that

developers had in understanding inheritance (this is confirmed by

anecdotal evidence), which in turn may in some part be due to their

relative inexperience (this being their first 00 development, although it

must be stressed that they had received training), but is also likely to be

influenced by the points made in the paragraph above, that the

declocalization which occurs when inheritance is employed makes the

software harder to comprehend. It is possible that the problem area to

which 00 was applied had an influence on the low levels of inheritance.

It is possible that some areas do not "lend" themselves naturally to the

use of inheritance, a possibility which may gain some credence from the

fact that examples given in text books are fairly limited, with GUIs

(where shapes and buttons etc. can be classified), chemical/ bottling

plants (different types of sensor, and so on) being popular. It may be that

many other real life applications require less classification and thus

require less inheritance. This may mean that in some situations it is

used as a mechanism for code reuse within the application, which may

217

in itself cause comprehension problems where classes which do not

appear to be related conceptually are placed in a hierarchy purely to
facilitate code sharing. "

The relationship between the position in the hierarchy and error density

is also worth further consideration. A feasible explanation is that classes

at the bottom of the hierarchy are "concrete", they are the classes that

"do" things. Superclasses may on the other hand be abstract. In other

words such classes were written to allow subclasses to inherit (and

probably add to) the behaviour of the parent class behaviour, so these

classes do not actually "do" anything. Indeed their methods may not be

complete and may not be able to be implemented without redefinition.

In the absence of other datasets or case studies to work on", a small scale

experiment was carried out, comparing an C++ program using

inheritance with an equivalent flat version. Its findings were:

" it took longer to implement the changes to the inheritance version;

" that the changes made to the inheritance version were more compact.

Again we cannot generalise these results, particularly since student

volunteers and small scale artefacts were used, so the population sample

cannot be regarded as representative of the "real world".

The experiment considered another type of maintenance, namely

perfective maintenance, where software is changed or augmented to

meet a change in user requirements. Since it does not consider errors,
the results cannot be considered as a confirmation (or repudiation) of the

It must be emphasised that this is not so for this case study.
si By which I mean datasets I could use or case studies I could apply the same approach to
rather than those carried out and published by others.

218

case study findings. They can be considered complementary to the case

study. It can be inferred that these developers/ maintainers; find

inheritance takes more effort to work with, compared with a flat

structure. In the case study, defects density for the inheritance classes was

three times the level for non-inheritance (i. e. "flat") classes. In the

experiment, the subjects took longer to complete the changes to the

inheritance version of the program, despite the change being a natural

specialisation of an existing class, and thus not disruptive of the existing
inheritance structure. It would not be unreasonable to conclude that the

problem is, at least in part, one of comprehension. In the experiment the

subjects working on the inheritance version took longer but produced

many fewer additional lines of code than the "flat" subjects. In the case

study the errors were concentrated on the inheritance classes. It is

certainly not unreasonable to suggest the errors are more likely if a
developer finds it harder to understand a class, and likewise it will be

harder to test and trap errors.

The ability to predict attributes of interest before they can be measured is

valued as a useful input into the project management function. The

prediction systems were derived from readily available measures, both of

which were available from the case tool analysis/design model. Both

predictions systems can be considered accurate (from the high adjusted R2

values of 96.6% for the prediction of LOC and 87.2% for the prediction of

errors). These metrics cannot be said to be generalizable, but the

approach could be, and the direct measurements taken could perhaps
hold as indicators of size and errors for other 00 systems. 2

sz This, of course, would need further empirical study with other datasets. The point is
that the constant and multipliers are unlikely to remain the same but it is possible that
the direct attributes may be suitable indicators of size and errors in other projects.

219

More importantly than the actual prediction systems presented, is that
this case study has demonstrated that deriving simple, local prediction

systems is possible. This is more significant than adding yet another set

of metrics to the public domain, it shows that there are ways of deriving

predictions without the need to have expert knowledge of measurement

theory, of the application type, of the paradigm and so on. It also suggests

that it is not always necessary to have an intermediate measure, such as

complexity, which would then be used to indicate maintenance effort.
Here we have taken a simple direct measure and used it to estimate the

number of errors, which is one aspect of maintenance effort. There will
be more discussion and a summary of the approach under aim (iv)

below.

ii) To examine previous work in the area of complexity metrics
development and identify any problems with the approach. These

problems could be used to derive "lessons to be learned", which would be

considered when assessing the metrics proposed for object-oriented

software.

Chapter 2 considered some of the important traditional metrics and
important themes in metrics development, such as measurement theory

and empirical validation/evaluation. From this five problems with

traditional metrics were identified, which could be translated as lessons

to be learned from past mistakes or inadequacies. These were:

" the lack of a clearly defined goal;

" the failure to distinguish between measures and prediction systems
(metrics can be taken to mean either);

" poor definition of attributes to be captured and the counting rules for

doing so;

220

" poor validation;

" failure to establish validity and/or usefulness of metrics.

iii) To consider the available 00 metrics in the light of what was
discovered from the above aims (examination of previous work and the

impact of inheritance on maintainability) and ascertain which, if any

metrics fulfilled the criteria of easy to obtain, useful metrics.

A large number of metrics were considered, some in more detail than

others. From this it could be seen that a majority of these metrics had

inadequacies, many of which could have been addressed if past

experience and problems had been heeded, for example the lack of a clear

goal. It is true that for practical reasons it may be difficult to avoid all of

the criticisms on the list above, particularly the latter two, to the

satisfaction of all. Sadly, many of the proposed metrics /predictions

systems were unclear on what was being measured and why. In order to

be taken seriously a metric should at least have its purpose made clear.
Secondly a number of the metrics proposed were simply traditional

metrics applied to 00 with little consideration for new features, such as

inheritance. Again this is not acceptable, particularly since the traditional

metrics suggested, such as McCabe, had already been largely discredited.

To some extent, the desire to be first to publish will lead to the

presentation of speculative metrics, with no empirical validation, and at

best some formal validation according to measurement theory. To be

taken seriously, such speculative metrics need to be followed up by

empirical validation. This has happened with the more popular metrics,

such as Chidamber and Kemerer and Lorenz and Kidd (a subset of

measures were investigated in (Harrison and Counsell 1997)).

iv) To show how local prediction systems can be easily derived from local

data, and the accuracy of these predictions ascertained.

221

Chapter 4 describes the process of selecting measures, deriving and
testing a prediction system. It shows that simple measures can be used to

predict attributes of interest without resorting to complex metrics with

multiple inputs or trying to capture complex intermediate attributes such

as complexity. A simple regression procedure was used to formulate the

equation using the selected input and a set of historical data, all of which

can be collected from existing electronic data sources, such as case tool,

incident reports, change logs and so on. This meant that little effort was

required to collect the input measures, since they already existed. Many

metrics require more unusual measures to be collected, which must be

done by hand or requires tool support incorporating the particular metric

set to be available. With many, if not most, metrics, the difficulty lies

not in the actual calculation but in the collection. By utilising measures

which are readily available since they are already collected for other

purpose, the effort of data collection is reduced. Data can be fed into a

statistics package which will formulate a regression equation to be used as

a prediction system.

6.4 Weaknesses/problems

(i) Neither the study nor the experiment can be considered definitive.

" Firstly there is just one small experiment and one case study. The

experiment would need further replication before we could feel

confident that the findings would hold for further studies,

particularly since the results of the experiment differed from the

original carried out at Strathclyde. Likewise using a number of case

studies allows for more confidence in the case study results - the

222

more case studies for which a hypothesis holds, the more likely that it

can be generalised.

In mitigation, it is in the nature of empirical work that we cannot

have a definitive answer to a question - we can build up a body of

evidence which will support the probability of a particular hypothesis,

but cannot claim to have proved it.

(ii) Additionally, it is always possible to criticise the use of student

programmers and question the effect of experimental conditions on the

subjects' behaviour. An experiment allows more control, but suffers in

that it cannot be said to mirror "real" software. By necessity, the

problems will be small scale, and more likely than not use student

programmers as subjects. In this experiment we were further hampered

by the need to rely on volunteers, since it was not possible to incorporate

the experiment into a taught unit and compel students to take part.
Subsequently numbers were smaller than had been hoped. This means

that the study cannot be said to support or refute the claims made by the

developers of the experiment at Strathclyde.

(iii) An additional problem lies with the experimental procedure, in the

way in which the subjects were allocated. With the benefit of hindsight it

would have been sensible to reduce the potential for problems with

random allocation and small groups. Ideally a blocking mechanism

would have been employed to ensure that the experience of the subjects

would have been better balanced between the two groups, by sampling

randomly from two blocks (one block of experienced subjects and one

block of inexperienced subjects).

(iv) It is in the nature of case studies that they cannot be generalised to

other populations. Firstly what can be collected is limited to what is

223

available or what the company will permit. Secondly the success of a case

study can be greatly affected by the enthusiasm of the industrial contacts,

which in turn can be affected by changes in personnel, workload etc.. The

case study gives "real data" but at the loss of control. In this case, data

from another project initially offered did not materialise following a

reorganisation of the company. The same problems with obtaining
further data were experienced when trying to obtain qualitative data to

enhance the understanding of the case study. This case study was

originally envisaged as a pilot study, allowing the examination of a larger

system with less disruption to the company. Second time around the

"right" or relevant questions to ask, measures to collect etc. would be

known in advance, allowing most data to be collected at the start of the

study when enthusiasm (that is the enthusiasm of the industrial

,
collaborators) for the project would be highest. This approach would
have been considerably more valuable than a single case study.

A further criticism is that the case study was based on the first 00 project
built by the team. This would almost certainly have some influence on

the data. However, it must be emphasised that the team were

experienced software developers and had all undergone training.

Additionally many companies are still in the early stages of migration to

00, so the case study may be of particular interest to them.

However, the case study and experimental results do confirm anecdotal

evidence that software designed using inheritance can be hard to

understand and thus maintain. Both the study and the experiment

suggest interesting avenues for further research, namely further

empirical research into the effects of inheritance on defects, and into the

effects of inheritance on maintenance effort.

224

6.5 Suggestions for further work

Further datasets/case studies are needed if results are to be generalizable.
It would be interesting to include data from projects where the

developers had experience of developing 00 software. This would
indicate if the concentration of errors in the inheritance hierarchy were
influenced by the inexperience of the team or were entirely due to the

use of the inheritance mechanism.

The experiment should be repeated using larger groups of subjects53 and/
a blocking technique to ensure a more even distribution of experience (if

the sample size demands this). Replication helps build a body of
evidence and could help ascertain whether 00 maintenance changes do

take longer to complete and avoid the possibility that the effect is due to
inexperience rather than the use of inheritance.

The case study and experiment have led to other ideas for related

research. It would be interesting to see the effects of maintenance

changes on the inheritance hierarchy. The changes to be made for the

experiment were natural specialisation of a class at the deepest level of

the existing hierarchy, allowing for a class to be added without disrupting

or affecting the rest of the hierarchy. This would not always be the case.

A maintenance change may well involve making changes to a class
higher up in the hierarchy or possibly inserting a class between two

existing classes. This is particularly true of "real" systems where non

trivial changes occur. It would be interesting to study the effect on and
disruption to the rest of the hierarchy, in terms of the stability of the

structure and potential for "ripple through" effects to subclasses and

collaborating classes. .

53 Also larger systems and more difficult changes, as recently carried out by Dr Rachel
Harrison at Southampton (verbal communication).

225

It would also be interesting to study the effect of feedback on the
development process. For example, if an inheritance hierarchy was

predicted to have an increased likelihood of defects at say design time,

how would this affect the development of the system (presuming action

was taken such as increasing resources, testing effort etc.) when compared

with the development of an identical system without the feedback.

It may also be of interest to separate the post delivery defects from those

found by pre-delivery testing. This may indicate if defects related to

inheritance are more likely to be missed during testing (possibly

indicating inappropriate or inadequate testing strategies), or whether the

high incidence of inheritance related defects found post delivery are due

to the sheer number of defects to be found there.

6.6 Contribution to knowledge of the thesis

The thesis has contributed the following:

"a hypothesis and empirical evidence on the effects of inheritance on

defects (via case study);

" empirical evidence, via an experiment, on the effects of inheritance on

maintenance effort, which will add to limited existing empirical

evidence since it is a replication of a previous experiment;

"a demonstration that it is possible to derive simple yet accurate locally

applicable prediction systems from existing data, without recourse to

complex pre-defined suites of metrics;

226

"a list of potential short comings of metrics (measures /predictions

systems);

9 an extensive review of object-oriented software metrics.

All contributions should be of interest to academia. In particular the case

study has led to a firm hypothesis and supporting empirical evidence
from a "real" system. This is a foundation for future research to deal

with an important issue (maintenance and perhaps testing) applied to a

paradigm which continues to dominate commercial software
development. The review of object-oriented software metrics is

extensive and covers not only the more popular metrics, but also

relatively obscure contributions, providing a good starting point for

anyone unfamiliar with the area of object-oriented software metrics. The

list of potential short comings, derived from the review of traditional

metrics development, provide a useful checklist for metrics
development and validation.

The first three points may also be of interest and of practical use to

industry. Firstly the link between inheritance and defects and
inheritance and maintenance effort, may cause extra care to be taken in

inspections, walkthroughs, reviews and testing of systems or parts of

systems which utilise inheritance. This in turn may lead to more defects

being spotted and fixed pre-delivery, and thus alleviate increased

maintenance effort to some extent. The third contribution, the

demonstration that it is possible to derive useful, local metrics without

recourse to predefined metrics, requiring new tools should perhaps

reassure quality and project managers that measurement and analysis

can provide useful project information without the need for a great deal

of effort or expense.

227

6.7 Final conclusions

The thesis has demonstrated that the aims outlined in chapter 1 have

been met (section 6.3). It has led to a number of potential avenues for

future research (section 6.5). It has resulted in papers and presentations
(section 1.6) which have generated interest from both academia and
industry.

228

References

Abbott, D. H., T. D. Korson, et al. (1994). A Proposed Design Complexity

Metric for Object-Oriented Development. Dept of Computer Science,

Clemson University.

Abreu, F. B. (1993). Metrics for-Object-Oriented Development. Proc. 3rd

International Conference on Software Quality, Lake Tahoe, Nevada,

USA.

Abreu, F. B. and R. Carapuca (1994). "Candidate Metrics for Object-

Oriented Software Within a Taxonomy Framework. " Journal of Systems

and Software 26(1): 87-96.

Abreu, F. B. and R. Carapuca (1994). Object-Oriented Software

n 1 R rin LY: NlP
a: -zy a U and Contr the Development e n

International Conference on Software Quality, Washington DC,

4th

Abreu, F. B., M. Goulao, et al. (1995). Toward the Design Duality

Evaluation of Object-Oriented Software S Stems. Proc. 5th International

Conference on Software Quality, Austin, Texas, USA,

Abreu, F. B. and W. Melo (1996). Evaluating the Impact of Object-

Oriented Design on Software Quality. Proc. 3rd International Software

Metrics Symposium (METRICS '96), Berlin, Germany, IEEE.

Adelman, L. (1991). "Experiments, Quasi-Experiments and Case Studies:

A Review of Empirical Methods for Evaluating Decision Support

Systems. " IEEE Transactions on Systems Man and Cybernetics 21(2): 293-

301.

229

Akiyama, F. (1971). An Example of System Software Debugging.

Proceedings. IFIP Congress: 353-8.

Albrecht, A. J. (1979). Measuring Application Development Productivity.

SHARE-GUIDE Symposium, Monterey, CA, IBM.

Albrecht, A. J. (1984). AD/M Productivity Measurement and Estimate

Validation. Report. IBM Corporate Information Systems and
Administration.

Albrecht, A. J. and J. R. Gaffney (1983). "Software function, source lines of

code, and development effort prediction: a software science validation. "

IEEE Transactions on Software Engineering 9(6): 639-648.

Alexander, C. (1964). Notes on the Synthesis of Form. Cambridge MA,

Harvard University Press.

Armour, F., B. Catherwood, et al. (1996). Experiences Measuring Object

Oriented System Size with Use Cases. ESCOM, Wilslow, UK.

Baker, A. L. and S. H. Zweben (1980). "A comparison of measures of

control flow complexity. " IEEE Transactions on Software Engineering

6(6): 506-511.

Baker, B. 0., C. D. Hardyck, et al. (1966). "Weak Measurements Vs. Strong

Statistics: An Empirical Critique of S. S. Stevens' Proscriptions on

Statistics. " Educational and Psychological Measurement 26(2): 291-309.

Balasubrarnanian, N. V. (1996). Object-Oriented Metrics. Asia-Pacific

Software Engineering Conference, IEEE.

230

Barnard, J. (1998). "A New Reusability Metrics for Object-Oriented

Software. " Software Quality Journal 7: 35-50.

Basili, V. R., L. Briand, et al. (1995). A Validation of Object-Oriented

Design Metrics. Technical. University of Maryland.

Basili, V. R. and B. T. Perricone (1984). "Software errors and complexity:

an empirical investigation. " Communications of the ACM 27(1): 42-52.

Basili, V. R. and H. D. Rombach (1988). "The TAME project: Towards

Improvement-oriented software environments. " IEEE Transactions on

Software Engineering 14(6): 758-771.

Behrens, C. A. (1983). "Measuring the Productivity of Computer Systems

Development Activities with Function Points. " IEEE Transactions on

Software En ing eering 9(6): 649-658.

Benington, H. D. (1956). Production of large computer programs. Symp.

on Advanced Computer Programs for Digital Computers, Washington,

D. C., Office of Naval Research.

Benington, H. D. (1983). "Production of Large Computer Systems. "

Annals of the History of Computing 5(4): 350-361.

Benyon-Tinker, G. (1979). Complexity Mod in a I I R

SS sy tem. Proceedings ACM Workshop on Quantitative Models.

ar

Bieman, J. M. and J. X. Zhao (1995). Reuse Through Inheritance: A

Quantitative Study of C++ Software. Proceedings of the Symposium on

Software Reusability, Seattle, Washington.

231

Binkley, A. B. and S. R. Schach (1996). "A Comparison of Sixteen Quality
Metrics for Object-Oriented Design. " Information Processing Letters 58(6):
271-275.

Booch, G. (1986). "Object-Oriented Development. " IEEE Transactions on
Software Engineering 12(2): 211-221.

Booch, G. (1991). Object-Oriented Analysis and Design with Applications.

Benjamin/Cummings.

Booch, G. (1994). Object-Oriented Analysis and Design With Applications.

Redwood City, California, Benjamin/Cummings.

Briand, L., K. El Emam, et al. (1996). "On the Application of Measurement

Theory in Software Engineering. " Empirical Software Engineering 1(1):

61-88.

Bunge, M. (1977). Treatise on Basic Philosophy: Ontology I: The Furniture

of the World. Boston, Riedel.

Burbeck, S. L. (1996). "Real-Time Complexity Metrics for Smalltalk

Methods. " IBM Systems journal 35(2): 204-226.

Capper, N. P., R. J. Colgate, et al. (1994). "The Impact of Object-Oriented

Technology on Software Quality: Three Case Histories. " IBM Systems

journal 33(1): 131-157.

Card, D. N. and W. W. Agresti (1988). "Measuring software design

complexity. " J. of Systems & Software 8: 185-197.

232

Cartwright, M. and M. Shepperd (1997a). Building Predictive Models
from Object-Oriented-Metrics. Proc 8th European Software Control and
Metrics Conf., Berlin.

Cartwright, M. and M. Shepperd (1997b). An Empirical Study of Object-

Oriented Metrics. Technical Report, Dept. of Computing, Bournemouth

University.

Cartwright, M. H. (1998). "An Empirical View of Inheritance. "

Information and Software Technology (accepted for publication).

Catherwood, B., M. Sood, et al. (1997). Oil t
Object-Oriented Systems. ESCOM 97, Berlin.

d ExnTri ence asur n

Chen, J. Y. and J. F. Lu (1993). "A New Metric for Object-Oriented Design. "

Information and Software Technology 35(4): 232-240.

Chidamber, S. and C. F. Kemerer (1995). "Reply To Comments on "A

Metrics Suite for Object-Oriented Design". " IEEE Transactions on
Software Engineering 21(3): 265.

Chidamber, S. R., D. P. Darcy, et al. (1997). Managerial use of object
oriented software metrics. Working Paper. Katz Graduate School of
Business, Univ. of Pittsburgh.

Chidamber, S. R. and C. F. Kemerer (1991). Towards a Metrics Suite for

Object Oriented Design. OOPSLA '91, ACM.

233

Chidamber, S. R. and C. F. Kemerer (1994). "A Metrics Suite for Object-
Oriented Design. " IEEE Transactions on Software Engineering 20(6): 476-

93.

Churcher, N. I. and M. J. Shepperd (1995). "Comment on "A Metrics

Suite for Object-Oriented Design". " IEEE Transactions on Software

Engineering 21(3): 263-265.

Constantine, L. (1997). "Efficient Objects. " Object Magazine 7(7): 71-72,18.

Coppick, J. C. and T. J. Cheatham (1992). Software Metrics for Object-

Oriented Systems. Proceedings - 1992 ACM Computer Science Conference

Communications, Kansas City, Mo, USA, ACM.

Coulter, N. S. (1983). "Software Science and Cognitive Psychology. " F)

Transactions on Software Engineering 9(2): 166-171.

Curtis, B., S. Sheppard, et al. (1979). Third time charm; stronger

prediction of programmer performance by software complexity metrics.

4th IEEE Intl. Conf. on Softw. Eng., IEEE.

Curtis, B., S. Sheppard, et al. (1979). "Measuring the psychological

complexity of software maintenance tasks with the Halstead and McCabe

Metrics. " IEEE Transactions on Software Engineering 5(2): 96-104.

Daly, J., A. Brooks, et al. (1996). Evaluating the effect of inheritance on the

maintainability of object-oriented software. Empirical Studies of
Programmers, Washington, DC.

234

Daly, J. W. (1996). Replication and a Multi-method Approach to

Empirical Software Engineering Research. PhD Thesis, Univ. of
Strathclyde.

de Champeaux, D. (1997). Object-Oriented Development Process and
Metrics. NJ, Prentice Hall.

de Champeaux, D., A. Anderson, et al. (1992). Case Study of Object_

Oriented Software Development. OOPSLA '92, ACM.

de Champeaux, D. and P. Faure (1992). "A Comparative Study of Object-

Oriented Analysis Methods. " J 5(1): 21-33.

de Champeaux, D., D. Lea, et al. (1992). The Process of Object-Oriented

Design. OOPSLA '92.

DeMarco, T. (1982). Controllin 9 f ar Me ts. Mana

Measurement and Estimation. NY, Yourdon Press.

99 m

Dvorak, J. (1994). "Conceptual Entropy and Its Effect on Class

Hierarchies. " IEEE Computer 27(6): 59-63.

Ebert, C. and I. Morschel (1997). "Metrics for Quality Analysis and
Improvement of Object-Oriented Software. " Information and Software

Technology 39(7): 497-509.

Fenton, N. and B. Kitchenham (1991). "Validating Software Measures. "

Journal of Software Testing. Verification and Reliability 1(2): 27-42.

235

Fenton, N. and S. Pfleeger (1996). Software Metrics "A -Rigorous and
Practical Approach. Second Edition. International Thomson Computer

Press.

Fenton, N. E. (1991). Software Metrics: A Rigorous Approach. Chapman

& Hall.

Fichman, R. G. and C. F. Kemerer (1993). "Adoption of software

engineering process innovations: the case of object orientation. " Sloan

Management Review 34(2): 7-22.

Finkelstein, L. and M. S. Leaning (1984). "A review of the fundamental

concepts of measurement. " Measurement 2(1): 25-34.

Fitzimmons, A. (1978). Relating the Presence of Software Errors to the

Theory of Software Science. Proceedings 11th Hawaii International

Conference on Systems Science.

Funami, Y. and M. H. Halstead (1976). A Software Physics Analysis of

Akiyama's Debugging Data. Proceedings of the Symposium on Computer

Software Engineering.

Furey, S. (1997). "Why We Should Use Function Points. " IEEE Software

14(2): 28,30.

Geritsen, R., H. Morgan, et al. (1977). "On some metrics for databases or

what is a very large database? " ACM SIGMOD Record (June): 50-74.

Gilb, T. (1988). Principles of Software Engineering Manag ment.
Addison-Wesley.

236

Gill, G. K. and C. F. Kemerer (1991). "Cyclomatic complexity density and

software maintenance productivity. " IEEE Transactions on Software

Engineering 17(12).

Graham, I. (1995). Migrating to Object Technology. Addison-Wesley.

Graham, I. (1995). P

Europe, London.

PQ M ri . Object Expo

Graham, I. (1996). "Making Progress in Metrics. Task Point Analysis can
be Performed at the Requirements Stage. " Object Magazine 6(8): 68-73.

Gray, R. H. M., B. N. Carey, et al. (1991). "Design Metrics for Database

Systems. " BT Technology Journal 9(4): 69-79.

Halstead, M. H. (1972). "Natural Laws Controlling Algorithmic
Structure. " SIGPLAN Notices 7(2): 19-26.

Halstead, M. H. (1977). Elements of Software Science. New York, Elsevier

North-Holland.

Halstead, M. H. (1979). Advances in software science. Advances in

Computers. NY, Academic Press.

Hamer, P. G. and G. D. Frewin (1982). MH Halstead's Software Science -
A Critical Examination. 6th Intl. Conf on Softw. Eng., Tokyo, IEEE.

Harrison, R. and S. Counsell (1997). An Assessment of the Impact of

inne t Maintainability of Obiect-Oriented en

INL

237

International workshop on Empirical Studies of Software Maintenance,

Bari, Italy.

Harrison, R., S. J. Counsell, et al. (1997). Empirical Assessment of Object-

Oriented Design Metrics. EASE-97, Empirical Assessment in Software

Engineering, Keele, UK.

Harrison, R., L. G. Samaraweera, et al. (1996). "An evaluation of Code

Metrics for Object-Oriented Programs. " Information and Software

Technology 38(7): 443-450.

Hatton, L. (1997). "Software Failures: Follies and Fallacies. " IEE Review

43(2): 49-52.

Henderson-Sellers, B. (1991). Some Metrics for Object-Oriented Software

Engineering. Proc. TOOLS 6, Prentice Hall.

Henderson-Sellers, B. (1994). Identifying Internal and External

hara ristics of Classes Likely to be Useful as Structural t

Metrics. OOIS '94.1994 International Conference on Object-Oriented

Information Systems 19-21 December 1994, London, UK, Springer-Verlag.

Henderson-Sellers, B. (1996). Object-Oriented Metrics: Measures of

Complexity. New Jersey, Prentice Hall.

Henderson-Sellers, B., L. Constantine, et al. (1996). "Coupling and

Cohesion (Towards a Valid Metrics Suite for Object-Oriented Analysis

and Design). " Object-Oriented
-Systems

3(3): 143-158.

Henderson-Sellers, B. and J. M. Edwards (1994). BOOKTWO of Object-

Qriented Knowledge: The Working Object. Prentice Hall.

238

Henry, S. and D. Kafura (1981). "Software quality metrics based on inter-

connectivity. " I. of Systems & Software 2(2): 121-131.

Henry, S. and D. Kafura (1981). "Software structure metrics based on
information flow. " IEEE Transactions on Software Engineering 7(5): 510-

518.

Henry, S. and D. Kafura (1984). "The evaluation of software systems'

structure using quantitative software metrics. " Software Practice &

Experience 14(6): 561-573.

Henry, S. M. and C. Selig (1990). "Predicting code complexity from

software designs. " IEEE Software 7(2).

Hitz, M. and B. Montazeri (1996). "Chidamber and Kemerer's Metrics

Suite: A Measurement Theory Perspective. " IEEE Transactions on
Software Engineering 22(4): 267-271.

Hopkins, T. (1994). Complexity Metrics for Quality Assessment of Ol

Oriented Design. 2nd International Conference on Software Quality

Management, Edinburgh.

Hudli, R. V., C. L. Hoskins, et al. (1994). Software Metrics for Object-

Oriented Design. Proceedings. IEEE International Conference on

Computer Design, VLSI in Computers and Processors, Los Alamitos, CA,

USA, IEEE.

Ince, D. C. and M. J. Shepperd (1989). An empirical and theoretical

analysis of an information flow-based system design metric. 2nd

European Softw. Eng. Conf., Springer-Verlag.

239

Ince, D. C. and M. J. Shepperd (1989). Quality control of software deigns

using cluster analysis. 1st European Software Quality Conf., Vienna, EOQ.

Jeffery, R. and J. Stathis (1993). Specification based software sizing: an

empirical investigation of function metrics. NASA Goddard Software

Engineering Workshop, Greenbelt, MD, USA.

Jones, C. (1987). A short history of function points and feature points.
Technical Paper. Software Productivity Research Inc.

Jones, T. C. (1978). "Measuring programming quality and productivity. "

IBM Systems Journal 17(l).

Kafura, D. and G. R. Reddy (1987). "The use of software complexity

metrics in software maintenance. " IEEE Transactions on Software

Engineering 13(3): 335-343.

Kemerer, C. F. (1987). "An empirical validation of software cost

estimation models. " Communications of the ACM 30(5): 416-429.

Kemerer, C. F. (1993). "Reliability of Function Point Measurements: A

Field Experiment. " Communications of the ACM 36(2).

Kemerer, C. F. and B. S. Porter (1992). "Improving the reliability of
function point measurement: an empirical study. " IEEE Transactions on
Software Engineering 18(11): 1011-1024.

Kitchenham, B., S. L. Pfleeger, et al. (1995). "Towards a framework for

software measurement validation. " IEEE Transactions on Software

Engineering 21(12): 929-944.

240

Kitchenham, B. A. (1981). "Measures of programming complexity. " Ia

Technical journal 2(3): 298-316.

Kitchenham, B. A. (1988). An evaluation of software structure metrics.
COMPSAC '88, Chicago, IL., IEEE.

Kitchenham, B. A. and K. Kansala (1993). Inter-item correlations among
function points. 1st Intl. Symposium on Software Metrics, Baltimore,

MD, IEEE Computer Society Press.

Kitchenham, B. A., S. L. Pfleeger, et al. (1997). "Reply to: Comments on
"Towards a Framework for Software Measurement Validation". " IEEE

Transactions on Software Engineering 23(3): 189.

Krantz, D. H., R. D. Luce, et al. (1971). Foundations of Measurement.

London, Academic Press.

Lee, Y. S., B. S. Liang, et al. (1993). Some Complexity Metrics for Object-

Oriented Programs Based on Information Flow. Proceedings, Computers

in Design, Manufacturing and Production, Pris-Evry, France, IEEE

Computer Society Press.

Lejter, M., S. Meyers, et al. (1992). "Support for Maintaining Object-

Oriented Programs. " IEEE Transactions on Software Engineering 18(12):

1045-1052.

Li, W. and S. Henry (1993a). "Object-Oriented Metrics that Predict

Maintainability. " Journal of Systems and Software 23: 111-22.

241

Li, W. and S. Henry (1993b). Maintenance metrics for the object oriented
paradigm. 1st Intl. Software Metrics Symposium, Baltimore, IEEE
Computer Society.

Lientz, B. and E. Swanson (1980). Software Maintenance Management.

Reading, MA, Addison-Wesley.

Lorenz, M. and J. Kidd (1994). Object-Oriented Software Metrics. New

Jersey, Prentice Hall.

Low, G. C. and D. R. Jeffery (1990). "Function points in the estimation and

evaluation of the software process. " IEEE Transactions on Software

Engineering 16(1): 64-71.

MacDonnell, S. G. (1992). Quantitative Functional Complexity Analysis

of Commercial Software Systems. PhD Thesis, Dept. of Engineering,

University of Cambridge.

MacDonnell, S. G. (1993). "Deriving relevant functional measures for

automated development projects. " Information & Software Technology

35(9): 499-512.

MacDonnell, S. G., M. J. Shepperd, et al. (1997). Metrics for-Database

systems: An Empirical Study. Proc. 4th IEEE Intl. Metrics Symp,

Alberqueque.

Mancl, D. and W. Havanas (1990). A Study of the Impact of C++ on
Software Maintenance. Conference on Software Maintenance 1990, San

Diego, CA, USA, IEEE Computer Society Press.

242

Maus, A. (1992). Entropy as a Complexity Measure and the Optimal

Module Size of Object-Oriented Programs. Algorithms, Software,

Architecture, Information Processing 1992 (IFIP).

McCabe, T. J. (1976). "A Complexity Measure. " IEEE Transactions on
Software Engineering 2(4): 308-20.

McCabe, T. J. and C. W. Butler (1989). "Design complexity measurement

and testing. " Communications of the ACM 32(12): 1415-1425.

Minkiewicz, A. F. (1997). PQ e _0biecf
' in V

00 Applications. ESCOM, Berlin, Germany.
asu 9 ea 1Z

Morasca, S., L. C. Briand, et al. (1997). "Comments on "Towards a
Framework for Software Measurement Validation". " IEEE Transactions

on Software Engineering 23(3): 187-188.

Moser, S. and O. Nierstrasz (1996). "Measuring the Effects of Object-

Oriented Frameworks on Developer Productivity. " IEEE Computer 29(9):

45-51.

Ottenstein, L. M. (1979). "Quantitative Estimates of Debugging

Requirements. " IEEE Transactions on Software Engineering 5(5): 504-514.
v

Pfanzagl, J. (1968). Theory of Measurement. Wurzburg-Vienna, Physica-

Verlag.

Pfleeger, S., R. Jeffery, et al. (1997). "Status Report on Software

Measurement. " IEEE Software 14(2): 33-43.

243

Pomberger, G. and W. Pree (1994). Quantitative and Qualitative Aspects

of Object-Oriented Software Development. Proceedings ISOOMS '94,

Object-Oriented Methodologies and Systems International Symposium,

Palermo, Italy, Springer-Verlag, Berlin.

Prather, R. E. (1984). "An Axiomatic Theory of Software Complexity

Measure. " The Computer Journal 27(4): 340-347.

Pressman, R. (1992). Software Engines Bering A Practitioners Approach.

McGraw-Hill.

Rajaraman, C. and M. R. Lyu (1992a). Some Coupling Measures for C++

Programs. TOOLS USA '92 (Technology of Object-Oriented Languages

and Systems).

Rajaraman, C. and M. R. Lyu (1992b). Reliability and Maintainability

Related Software Coupling Metrics in C++ Programs. Third International

Symposium on Software Reliability Engineering, IEEE.

Rao, B. (1993). C++ and the Object-Oriented Paradigm. McGraw-Hill.

Rask, R., P. Laamanen, et al. (1993). "Simulation and comparison of
Albrecht's Function Point and DeMarco's Function Bang metrics in a
CASE environment. " IEEE Transactions on Software Engineering 19(7):

661-671.

Rentsch, T. (1982). "Object-Oriented Programming. " SIGPLAN Notices

17(9): 51-57.

Roberts, F. S. (1979). Measurement Theory w, ith Applications to Decision

Making. Utility and the Social Sciences. Addison-Wesley.

244

Rombach, H. D. (1987). "A controlled experiment on the impact of

software structure on maintainability. " IEEE Transactions on Software

Engineering 13(3): 344-354.

Rombach, H. D. and V. R. Basili (1990). Practical benefits of goal-oriented

measurement. Annual Workshop of the Centre for Software Reliability:

Reliability and Measurement, Garmisch-Partenkirchen, Germany,

Elsevier.

Rumbaugh, J., M. Blaha, et al. (1991). Object-Oriented Modeling and
Design. Prentice-Hall.

Schmidt, H. W. and W. Zimmermann (1994). Reasoning About the

Complexity of Object-Oriented Programs. IFIP Transactions on Computer

Science and Technology.

Sharble, R. C. and S. S. Cohen (1993). "The Object-Oriented Brewery: A

Comparison of Two Object-Oriented Development Methods. " , oftware
Engineering Notes 18(2): 60-73.

Shepperd, M. and D. Ince (1993). Derivativ
Metrics. Oxford, Oxford University Press.

na d Validation

Shepperd, M. J. (1988). "A Critique of Cyclomatic Complexity as a

Software Metric. " Software Engineering Journal 3(2): 1-8.

Shepperd, M. J. (1989). A metrics based tool for software design. 2nd Intl.

Conf. on Softw. Eng. for Real Time Systems, The Royal Agriculture

College, Cirencester, UK, IEE.

245

Shepperd, M. J. (1990a). "Early life cycle metrics and software quality

models. " Information & Software Technology 32(4): 311-316.

Shepperd, M. J. (1990b). "An empirical study of design measurement. "

Software Engineering journal 5(1): 3-10.

Shepperd, M. J. (1992). Algebraic Models and Metric Validation. Formal

Aspects of Measurement. London, Springer-Verlag. 157-175.

Shepperd, M. J. (1994). Some observations on Function Points. Annual.

Conf. of the CSR, Invited Talk, Dublin,

Shepperd, M. J. and D. C. Ince (1991). "Design Metrics and Software

Maintainability: An Experimental Investigation. " Journal of Software

Maintenance 3(4): 215-232.

Shepperd, M. J. and R. Turner (1993). Real-Time Function Points: an
industrial validation. Proc. European Software Cost Modelling Meeting,

Bristol. UK.

Shlaer, S. and S. J. Mellor (1988). Object-Oriented Systems Analys, i.

Modelling the World in Data. Prentice Hall.

Shlaer, S. and S. J. Mellor (1992). Object Lifecycles: Modelling the World

in States. Prentice Hall.

Sneed, H. M. (1995). Estimating the Development Costs of Object-

Oriented Software. Evolving Systems. Durham '95.9th European
Workshop on Software Maintenance, Durham, UK, DSM Ltd.

246

Software Metrics Definition Working Group (1991). Software size

measurement with applications to source statement counting. Draft for

Review. Software Engineering Institute, Carnegie Mellon.

Stevens, S. S. (1946). "On the theory of scales of measurement. " Science

103: 677-680.

Stevens, W. P., G. J. Myers, et al. (1974). "Structured design. " IBM Systems

journal 13(2): 115-139.

Stoustrup, B. (1997). The C++ Programming Language. Reading,

Massachusetts, Addison Wesley.

Symons, C. R. (1988). "Function Point Analysis: Difficulties and
Improvements. " IEEE Transactions on Software Engineering 14(1): 2-11.

Symons, C. R. (1991). Software sizing and estimating. Mk II FPA

Chichester, John Wiley.

Tegarden, D. P., S. D. Sheetz, et al. (1992). Effectiveness of Traditional

Software Metrics for Object-Oriented Systems. Twenty-Fifth Hawaii

International Conference on System Sciences, Hawaii, IEEE.

Troy, D. A. and S. H. Zweben (1981). "Measuring the quality of structured

designs. " J. of Systems & Software 2(2): 113-120.

Tukey, J. W. (1977). Exploratory Data Analysis. Philipines, Addison-

Wesley.

247

van Vliet, H. (1993). Software Engineering. Principles and Practice.
Chichester, John Wiley.

Verner, J. M., G. Tate, et al. (1989). Technology dependence in function

point behaviour. 11th Intl. Conf. on Softw. Eng., IEEE.

Wegner, P. (1990). "Concepts and Paradigms of Object-Oriented

Programming. " OOPS Messenger 1(1): 7-87.

Weyuker, E. J. (1988). "Evaluating Software Complexity Measures. " I

Transactions on Software Engineering 14(9): 1357 -1365.

Wilde, N. and R. Huitt (1992). "Maintenance Support for Object-Oriented

Programs. " IEEE Transactions on Software Engineering 18(12): 1038-1044.

Wilde, N., P. Matthews, et al. (1993). "Maintaining Object-Oriented

Software. " IEEE Software 10(Jan): 75-80.

Wilkie, F. G. and B. Hylands (1998). "Measuring Complexity in C++

Software. " Software Practice and Experience 28(5): 513-546.

Wirfs-Brock, R., B. Wilkerson, et al. (1990). Designing Object-Oriented

Software. Prentice Hall.

Yau, S. S. and J. S. Collofello (1980). "Some stability measures for software

maintenance. " IEEE Transactions on Software Engineering 6(6): 545-552.

Yin, B. H. and J. W. Winchester (1978). The establishment and use of
mc asur ýe va litt' of software designs. ACM Softw. Qual.
Ass. Workshop.

248

Yin, R. K. (1993). Applications of Case Study Research. SAGE

Publications.

Yin, R. K. (1994). Case Study Research: design and methods. SAGE

Publications.

Zuse, H. (1991). Soft war
Walter de Gruyter.

and Methods. Berlin,

Zuse, H. (1992). "Properties of Software Measures. " Software Quality

journal 1(4): 225-60.

Zuse, H. and P. Bollmann (1989). "Software metrics: using measurement

theory to describe the properties and scales of static complexity metrics. "

ACM SIGPLAN Notices 24(8): 23-33.

i

I

Appendix A: Raw data for attributes collected

-RIB -ES -ECT _B

C

_H
27 14 12 14 1 3213 0 11 0 0 2 2512 701
12 3 8 3 1 2699 0 7 0 0 12 2127 572
4 3 0 3 1 1041 0 2 0 0 0 729 312
6 5 0 5 1 1169 0 3 0 0 2 825 344

55 27 27 27 1 4675 2 15 0 0 10 3852 823
35 17 17 17 1 3655 1 18 0 0 10 2874 781
27 13 13 13 1 3394 0 16 0 0 11 2677 717
47 19 27 19 1 7946 10 46 0 0 31 6632 131
6 5 0 5 1 1168 0 3 0 0 1 827 341
55 27 27 27 1 4198 0 15 0 0 10 3406 792

0 3 0 0 0 761 0 0 0 0 0 529 232
0 3 0 0 0 754 0 0 0 0 0 514 240
0 4 0 0 0 788 0 0 0 0 0 564 224

2 3 2 0 0 4701 0 9 4 0 12 3988 713
23 10 12 10 1 5181 14 21 0 0 21 4287 894

75 1 35 37 3 4445 26 15 0 2 55 3747 698

131 32 74 56 1 20165 47 114 2 0 122 1717 298
74 5 32 39 3 5114 26 17 0 2 53 4287 827

11 24 83 31 0 12101 25 60 2 1 71 1032 1781
21 1 11 7 3 4630 6 27 0 0 23 3818 812

34 11 15 16 3 6299 9 35 0 0 33 5220 107
16 2 9 5 2 1490 2 4 0 1 8 1119 371
17 2 10 5 2 1440 2 4 0 1 8 1058 382

11 3 3 6 2 2161 9 6 0 1 5 1652 509

8 2 1 5 2 1116 2 3 0 1 4 785 331
0 2 0 0 0 730 0 0 0 0 0 511 219
0 1 0 0 0 603 0 0 0 0 1 396 207
35 7 21 11 3 8155 9 33 0 0 26 6897 125
38 16 16 19 3 6813 10 37 0 0 33 5604 120
10 6 4 6 0 1940 3 7 2 1 11 1464 476

66 3 27 34 5 5239 27 23 0 2 39 4343, 896
74 3 34 35 5 5928 29 26 0 2 43 4942 986

II

Appendix A (cont): Spearman Rank Correlation for Metrics Collected

0 0
0
T

Q 0
0
T

0 0 0
ý

ö0

-0

'0

II
U
O
J

Ö
CO
rÜ

o rn O

0 0 0
T

T

r
ý

ý

J

NF
WZ
OD w
O

ýýN
O

(h ý
öäp
Tý

ct)CD

OO

OD Lf)
N
6

ý ý

U
0
z

pN0ý C» (0
ý Co Q

OO0Oý cA

ý (V O
ý CO ý

Op6

p
(CO prÜ

CD r- rý w
LL Oöw
0

pOm
00 �t (0 CD 0 CO c0

'ý m- ÖO
ý rn M. O0

OpO
cs pOrpJ

OÖ CO
Aý Co ý
O wQ

pÖO CD OOOO

ÖC OO C) ýN
OM) 0ý0 .

ý- ÖN~

O Cf) CO fý 00 p Co Cn 00 Co a:

_OOOOOOO0O3:

0 O
:3

0) (0 O CtO CO r CNO
ý

cOO
ý U)

O CA -t OD t- Co
ý

(Y) Co OD 00 Q

T- OOpÖOpc: 5 OOO 0=

[0
CD Ln
ÖON_N CMO COO (ND

ý Co Co
(ýD

N
Gr

O 'tt C/) r Cf) CC) N CM Co u) CD

OpöOOpOOÖÖO<

p0 O
CD U) Lo cn Co 03

O (" CO d (0 Co
N r, - LO

ý
CO

ý

O Cn Cn CA LO O^O .- Ci 00 00 00 0=
ýOOOOOOOO CD OOO

I-
m u) W0WmS

O¢Q~ýU LU QUZÜÜ
Qä

awC 3: ö OJ ö U) ZpwOO -i _A

III

Appendix B: Copy of debriefing questionnaire

Questionnaire

Personal Details

Name:

Qualifications:

Programming Experience:

1. How long into the test did it take you to grasp what was required e. g.
after reading instructions, examining the code etc.

2. How much trouble, if any, did you have with the C++ syntax?

3. On a scale of 1- 10 how difficult would you say the modification was (1 =
very easy, 10 = very difficult)

4. What caused you the most difficulty?

5. Overall what action would you say took you the most time to perform
i. e. understanding the code, removing syntax errors, editing the changes
etc.

6. What approach did you adopt to tackle the modification?

Understanding the code first, then tackling the task?

Tackle task immediately and attempt to understand the code as
required.

Cutting and pasting the existing files to meet required specification

IV

Other, please specify

7. Did you use inheritance or not? Explain why

8. If you answered yes to 7, which class did you use as the parent for the
class director? Why did you use this class and how long did it take to
make this decision?

9. How well did you understand the code?

10. What parts of the code, if any, did you not understand?

11. How would you judge the quality of the code you produced compared
to the code you were given?

12. Having performed the modification, would you do anything different
next time around? If yes, what?

13. Any other comments?

V

Appendix B (cont): Summary of Responses to Debriefing Questionnaire

1) Time taken to understand what was required
<=5 mins Tiff
10 mins f
30 mins Tiff

2) Trouble with syntax?
yes iiif
no iiffff

3) Difficulty of change (1=very easy, 10=very difficult)
1 iff
2 ifff
3i
4
5 ii

4) What caused the most difficulty?
understanding syntax/language Tiff
inheritance i
typos ff
other iif

5) What took up the most time?
editing iffff
debugging/typos iif
understanding code iii
coding f

6) Approach used?
understand first then tackle i
tackle first then understand as necessary iiif
cut and paste to meet spec iiffff

7) Inheritance used?

yý
Hill

no fffff

8) If inheritance used what was the parent class?
thesis iiiii

9) Understanding of code?
good/well ifffff
reasonably well iiii

10) Was any of the code hard to understand?
none iiifffff

VI

some i
most i

11) Quality of code added compared with original?
same iiiifffff
worse i

12) What would you do differently if given the chance?
nothing iiif
use inheritance ff
not use inheritance i
understand requirements /code better if
other f

