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Abstract

Data augmentation is a practice that is widely used in the
fields of machine and deep learning. It is used primarily for
its effectiveness in reducing the generalisation gap between
training and validation, as well as to artificially increase in
available training data points. This is particularly relevant to
audio datasets, which are usually smaller and suffer from im-
balanced classes in some applications. This work presents
adSMOTE (audio SMOTE), a novel sampling and augmen-
tation strategy and also compares it to Specaugment, one of
the most effective augmentation strategies for audio data. We
show that our method outperforms the latter by a considerable
margin when the proportion of synthetic training samples is
high. We also provide source code for the complete algo-
rithm, which can easily be integrated into an existing model,
enabling the rapid development of augmentation frameworks.

1 Introduction
When gathering training data for a deep learning applica-
tion, it is necessary to have a sufficiently large dataset – if it
is too small, it might cause the model to over-fit to the data
when training. Augmentation is the practice of artificially
increasing the size of a dataset by adding new, meaningful
data points to it. In the case of audio, this can be done by
transforming either the raw waveform or a latent represen-
tation of a given piece of audio. The latter is the method
employed by Specaugment (Park et al. 2019), the current
state of the art. One commonly observed phenomenon in
many audio datasets with emotion class labels is class im-
balance (Poria et al. 2020; Cao et al. 2014; Livingstone and
Russo 2018). This is where particular emotions are over-
represented (e.g. neutral, happy), while others are under-
represented (e.g. disgust, anger). These “minority classes”
therefore need to be augmented at a high rate to reach parity
with the other classes in the dataset. We show that Specaug-
ment is not particularly suited to this, as it works by ran-
domly masking regions of the audio spectrogram, which is a
destructive process that removes some of the data available
to the model. We hypothesise that a method that just trans-
forms the spectrogram without masking would lead to better
model performance.
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The usage of very highly augmented datasets is scarce,
with some text model studies performing upto 40% data aug-
mentation (Kim et al. 2021). However, to our knowledge,
the investigation of the relationship between the proportion
of audio augmentation and the performance of deep learning
models has not been formally conducted.

2 Related Work
Methods proposed in order to solve the problem of audio
augmentation fall into two camps: ones that operate in the
signal domain and ones that operate in the frequency do-
main. Audio augmentation can be approached in many ways
and often requires a good understanding of the data and what
kind of application the augmented data is to be used in. For
instance, work done by Nagano et al. (Nagano et al. 2019)
leverages the fact that young children sometimes exhibit
a certain disfluency in speech wherein they prolong vowel
sounds. This naturally occurring phenomenon was exploited
to create augmented children’s speech by artificially length-
ening of vowel sounds.

More recently, there have been advances in Mel-
spectrogram augmentation techniques. Since spectrograms
are essentially 2D images, augmentation methods are of-
ten inspired by analogous techniques in image augmenta-
tion such as cropping, scaling and warping (Maguolo et al.
2021). Specaugment is an example of such an augmenta-
tion technique intended to simulate the irregularities and er-
rors in speech recordings. It does this by randomly mask-
ing some of the frequency and time components of an audio
clip’s Mel-spectrogram. It also applies warping to the spec-
trogram. The method achieved state of the art performance
on many speech recognition tasks, and has since been ex-
tended to be more computationally efficient and work on a
wider variety of audio signals (Jain et al. 2021).

As mentioned earlier, Specaugment is a destructive aug-
mentation process, which might lead to adverse effects when
training a speech generation task. We therefore introduce a
novel audio augmentation strategy that transforms the audio
signal directly, drawing inspiration from an existing over-
sampling method – Synthetic Minority Over-representation
Technique (SMOTE) (Chawla et al. 2002). We then train a
speech synthesis deep learning model, and show that the pro-
posed augmentation method outperforms the current state of
the art at high levels of augmentation.
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Figure 1: The original batch (top) is sub-sampled according
to the gamma parameter, and then an augmentation method
(either ours or Specaugment) is applied such that the propor-
tion of synthetic samples (bottom) is 1 − γ. The synthetic
data are then added to the batch along with the real data that
they are derived from. The final batch size is therefore the
same as the original. A smaller γ corresponds to a larger
fraction of synthetic data in the batch.

3 Methodology
3.1 The Gamma Parameter
Because we are interested in investigating the relationship
between the proportion of synthetic data in a batch and
model performance, it is necessary to parameterise this pro-
portion – we use the parameter Gamma (γ) for this. It rep-
resents the fraction of real data points, the rest are generated
by either augmentation method. This means that the lower
the value of γ, the higher the proportion of synthetic data in
the batch.

3.2 AdSMOTE Algorithm
Synthetic Minority Oversampling Technique
(SMOTE) (Chawla et al. 2002) was developed as a
way to counter the problem of imbalanced data classes
within datasets used for classification tasks (Sarakit,
Theeramunkong, and Haruechaiyasak 2015). It works by
interpolating between a point in the dataset and one of its
nearest neighbours, and has shown to be more effective than
similar techniques such as Gaussian noise, which might
produce values that may lie outside the distribution of the
data set (Arslan et al. 2019). Following a similar strategy,
we propose a novel augmentation strategy that is applicable
to audio data.

In this work, we extract two features from each audio clip:
the average fundamental frequency f0 of the speaker in the
clip, and the root mean square rms of the time series signal
s. These features are given by:

f0 =
1

N

N∑
i=1

π(s) (1)

rms =

√√√√ 1

L

L∑
i=1

s2 (2)

where L is the length of the audio signal in samples and π(·)
refers to the probabilistic fundamental frequency extraction
algorithm (pYIN) (Mauch and Dixon 2014; de Cheveigne
and Kawahara 2002). This algorithm generates N instanta-
neous fundamental frequency values (window length 93ms,
non-overlapping) which are averaged to get f0. Doing this
for each audio clip a dataset allows us to build a 2D fea-
ture space for this dataset, where each point corresponds to
a unique audio clip – this feature space is then made avail-
able to the model at run-time.

Algorithm 1: A high-level overview of the proposed
augmentation procedure. Arrays are in bold.

inputs : Input batch of signals batch, pre-cached
feature space fspace, desired proportion of
non-synthetic data γ, number of nearest
neighbours to calculate k

output: Batch of augmented signals aug batch

1 aug batch← [Empty]
2 batch size← length(batch)
3 Nreal ← round(γ × batch size)
// populate real data in aug batch

4 for idx ∈ [0, Nreal) do
5 append(aug batch, batch[idx])
6 end
7 idx← 0
8 while length(aug batch) < batch size do
9 sig ← batch[idx]

10 psrc f0 ← getFFreq(sig)
11 psrc rms ← getRMS(sig)
12 psrc ← [psrc f0, psrc rms]
13 nns← getNeighbours(psrc, fspace, k)
14 if k ≥ 3 then

// need >=3 points for polygon
15 hull← getConvHull(nns)
16 samples←

sampleHull(hull, Nsamples)
17 else

// basic SMOTE
18 pnn ← nns[0]
19 psynth ← interpolate(psrc, pnn)
20 samples← [psynth]
21 end
22 for ptgt f0, ptgt rms ∈ samples do
23 aug sig ← pitchShift(sig, ptgt f0

psrc f0
)

24 aug sig ← volumeShift(sig, ptgt rms

psrc rms
)

25 append(aug batch, aug sig)
26 end
27 idx← (idx+ 1) mod Nreal

28 end
// truncate to batch size

29 aug batch← trunc(aug batch, batch size)
30 return aug batch

As explained in Section 3.1, only a certain portion of the
input batch is transformed. For each one of these, if only 1
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Figure 2: Visualisation of the adSMOTE algorithm as ap-
plied to one batch (batch size = 32, γ = 0.25, k = 5) of
the LJ-Speech dataset, superimposed upon the rest of the
dataset. The inset plot shows how the convex hull of the
nearest neighbours of the batch point is sampled to gener-
ate the synthetic points.

nearest neighbour is considered, the synthetic point is gen-
erated by random uniform interpolation between the batch
point and its nearest neighbour. If however the number of
nearest neighbours is≥ 3, we can consider this collection of
points to be a polygon, inside which we uniformly sample
to get the new synthetic data points – refer to Figure 2. In
the case where k = 2, it is not possible to do the polygon
sampling because we won’t have at least 3 vertices to create
a polygon. In this case, we could use the batch point itself as
the 3rd vertex, essentially setting k = 3. For the purposes of
this study, we set the number of samples to be 5.

We then use the Sound Exchange (Bagwell 2015)
software (which provides the pitchShift and
volumeShift procedures in Algorithm 1) to turn
the source signals into target ones, for which the distance
between the source and target is calculated as follows:

dvol =

(
rmstarget
rmssource

)
(3)

dpitch = 1200 log2

(
f0 target

f0 source

)
(4)

where dvol is the volume ratio of the target signal to the
source signal, and dpitch is the pitch difference from the
source signal to the target signal in cents, a unit used to mea-
sure the distance between two frequencies – we use the for-
mula given by Ellis (Ellis 1885) in Equation 4.

4 Experiments
The experiments all use validation losses as the metrics for
comparison, and we augment only the training batch. In ad-
dition to validation performance, the normalised generalisa-
tion gap is also calculated – this can be thought of as the
gap between the training and validation: a measure of how
well the model is able to generalise to unseen examples. This

Figure 3: The validation loss curves for Specaugment and
adSMOTE with k = 1. It is observed that the difference
between our method and Specaugment is more prominent
when the proportion of synthetic data is higher, i.e. γ is
lower.

can then be divided by the train metric to get the normalised
generalisation gap g:

g =

∣∣∣∣Mv −Mt

Mt

∣∣∣∣ (5)

where Mt refers to the value of the training metric (valida-
tion loss in this case) and Mv refers to the validation metric.
A lower g therefore indicates the model has learned a good
representation of the data as there isn’t much difference in
performance between training and validation.

For the purposes of these experiments, a Specaugment im-
plementation derived from (Caceres 2019) was used with
W = 10, T = 40, F = 30. These parameters were chosen
following a hyperparameter search in which we determined
the best configuration for this application. As in the original
Specaugment paper, we use Nmasks = 2 for both frequency
and time domains. All plots are the result of averaging the
metrics over 2 runs.

4.1 Model and Dataset
The objective of these experiments is to investigate how
the proportion of synthetic samples affects the performance
of Glow-TTS (Kim et al. 2020), a text-to-speech applica-
tion. This flow-based model is robust to long input texts and
scales well to multi-speaker tasks, and models of this kind
are being extensively and actively researched (Cong et al.
2021; Casanova et al. 2021; Miao et al. 2020; Biliński et al.
2022). It was selected in this study in the hopes that our find-
ings are generally applicable to the field of speech genera-
tion.

The dataset used to train the text-to-speech model was
the LJSpeech dataset (Ito and Johnson 2017), an English-
language, single-speaker collection of short audio clips read
by a female speaker in a neutral tone.

4.2 Gamma Comparison
We initially look at how γ affects the validation loss of the
model with k = 1 by running experiments on a range of γ
values (1, 0.875, 0.75, 0.5). These preliminary results can be
seen in Figure 3, where it is noted that our method (solid
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Figure 4: A comparison of model performance over a range
of k values, showing that the validation loss keeps decreas-
ing as k is increased until k = 10 (red line, lowest loss value
in the graph). After this point (i.e. k = 15), validation loss
increases. We therefore take k = 10 to be our best perform-
ing variant.

Figure 5: A comparison of our best-performing adSMOTE
variant (k = 10) and Specaugment, across low values of γ,
showing that ours significantly outperforms the latter under
these conditions.

line) does not show much of a difference in model perfor-
mance over Specaugment (dotted line) for larger values of
γ. However, we can see at γ = 0.5 that adSMOTE performs
much better than the other augmentation technique.

Motivated by this finding, we continue in this direction by
using smaller values of γ for the future experiments.

4.3 Using Multiple Nearest Neighbours
We also parameterise the number of nearest neighbours, k,
that are considered for each point that needs to be trans-
formed. In this experiment, we compare our method against
itself, with k = 1, 3, 5, 10, 15.

Figure 4 shows that k = 10 is our best performing variant,
and we use this to compare against Specaugment in another
series of experiments that are summarised in Figure 5. Here,
we see that for each γ, our method outperforms Specaug-
ment by a considerable margin.

Since one of the main motivations behind augmentation
is to make the model robust to over-fitting, we also calculate
the normalised generalisation gap as per Equation 5. These
curves are presented in Figure 6 show that the generalisation
gap increases rapidly with no augmentation at all. This effect

Figure 6: Plot showing the normalised generalisation gap be-
tween the training and validation metrics of adSMOTE with
k = 10. We see that our method’s generalisation gap gets
lower as γ decreases, i.e. as the fraction of synthetic points
in the data batch increases.

is reduced when augmentation is applied, and our method’s
generalisation gap is lower when the proportion of synthetic
data is increased.

5 Limitations
One disadvantage of this method is the need for a pre-
calculated feature space, as described in Section 3.2. We
maintain this feature space so that items in the batch can
be compared to other points in the dataset, which means
that this feature space needs to be calculated once for each
dataset. This is in contrast to most other augmentation tech-
niques, which work without the use of such pre-cached data.

6 Conclusion
We have presented adSMOTE, a novel non-destructive au-
dio augmentation technique which synthesises audio data
by sampling the neighbourhood of the original point. The
increase in performance over Specaugment, particularly as
applied to speech generation, could be explained by the fact
that we leave the full information content of the data intact.
By uniformly sampling within the convex hull of the neigh-
bouring points, it effectively interpolates on a 2D plane,
drawing synthetic points that are close to the original dis-
tribution of the data.

We show that when a large portion of the training batch of
a speech generation model is made up of synthetic samples,
adSMOTE starts to significantly outperform Specaugment,
a state-of-the-art augmentation method.

It is in principle generalisable to a higher dimensional fea-
ture space, although that was not explored in this work. It
would also be beneficial to study this effect on other datasets
– currently, we only test on the LJSpeech dataset. Further ex-
periments on different speech datasets with multiple speak-
ers would be helpful in determining whether adSMOTE can
generally be applied to audio augmentation.
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