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Abstract
In this paper, we propose a point cloud synthe-
sis method based on stochastic differential equa-
tions (SDEs). We view the point cloud gen-
eration process as smoothly transforming from
a known prior distribution toward the high-
likelihood shape by point-level denoising. We
introduce a conditional corrector sampler to im-
prove the quality of point clouds. By leveraging
Markov Chain Monte Carlo (MCMC) sample,
our method can synthesize realistic point clouds.
We additionally prove that our approach can be
trained in an auto-encoding fashion and recon-
struct point cloud faithfully. Furthermore, our
model can be extend on a downstream applica-
tion of point clouds completion. Experimental
results demonstrate the effectiveness and effi-
ciency of our method.
Keywords: point cloud synthesis, stochastic
differential equations, point cloud reconstruc-
tion

1 Introduction

Point clouds is one of the most popular 3D shape
representations that can represent diverse shapes
with a set of sparse and discrete 3D points. With

recent advances in 3D sensors, numerous 3D
processing and understanding works based on
point cloud have been made [1], such as ob-
ject classification, semantic segmentation etc.
Among these works, deep learning based ap-
proaches show superior performance cross vari-
ous tasks. The past decade have witnessed great
advance in the deep neural learning on 3D point
cloud [2, 3]. These network require large-scale
dataset of point clouds shape to optimize mas-
sive parameters [4]. Therefore, create high-
quality and expressive point cloud becomes a
bottleneck in achieving a powerful neural net-
work.

Recent development in generative models
provides an alternative solution for acquiring 3D
data, such as variational auto-encoders (VAEs)
[5, 6], generative adversarial networks (GANs)
[7–9], auto-regressive [10], etc. All aforemen-
tioned point cloud synthesis methods are su-
pervised by either the Chamfer Distance (CD)
or Earth Mover‘s Distance (EMD) to optimize
the network to generate expressive point clouds
[11]. However, CD loss does not compute the
matching between ground truth and synthesis
and emphasizes accuracy rather than uniform
distribution of shape. EMD loss can be com-



puted as the minimal value of a linear program,
which is sensitive to overall distribution of point
cloud, but its computational expense is high.

Diffusion Probabilistic Generative Models
[12] emerged as a promising class of genera-
tive models and brought state-of-the-art perfor-
mance on multiple tasks. The training objec-
tive of diffusion probabilistic generative models
implicitly computes scores at each noise scale,
which uses a simple mean squared error (MSE)
loss function for training [12]. Therefore, point
cloud synthesis based on diffusion probabilistic
model can avoid the weakness of previous meth-
ods.

The key kernel of diffusion probabilistic gen-
erative models is to consecutively move each
point from a prior analytical distribution into
complex data distribution [12–16]. Point cloud
synthesis based on DDPMs [11, 17] involve se-
quentially corrupting ground truth point cloud
with slowly increasing noise, and then a neural
network is used to learn to reverse this corrup-
tion. However, previous works employ a fixed-
step Markov chain to approximate the diffusion
process and apply a fixed time-step in the re-
verse process. This can limit the expression of
point clouds synthesized by the network, such as
lack of smooth surfaces, or lack of sharp edges.

Inspired by [16], we propose the point cloud
synthesis based on SDEs. The overview of key
idea is given in Fig 1. Our goal is to learn a
transition kernel that can synthesize plausible
point clouds based on SDEs. We adopt time
embedding to exploit the arbitrary sample of
time. Point cloud synthesis can be benefit from
this in two aspects: a) the network can better
understand the time variable; b) the transform
process is smoother and flexible. For exam-
ple, we can adopt different sample time steps
for training phase and inference phase, in which
the reverse process can be conducted in arbi-
trary time length. Increasing sample times can
enhance the quality of synthesized point cloud
without training the network again. As the pur-
pose SDEs solver is to integrate the reverse-
time SDEs for sampling, the SDEs solver alone
is not enough to generate high quality point
clouds. To this end, we employ normalizing
flows formulation to parameterize the shape dis-
tribution to prior distribution. Additionally, we
introduce Langevin MCMC [18] samplers with

SDEs-based approaches to improve over sim-
ple progression sampling methods. We apply
our model to point cloud generation and unsu-
pervised representation learning. Experimen-
tal results demonstrate that our model achieves
competitive performance on two learning tasks:
point cloud synthesis, that generate point cloud
from a global latent variable, and auto-encoding
generation.

To summarize, the main contributions of this
work include:

1. We propose an improved diffusion prob-
abilistic generative model for point clouds, in-
spired by stochastic differential equation in gen-
erative model. It allows the reverse process can
be applied with arbitrary time length. The model
can generate high-quality point clouds by flexi-
ble and smooth transform.

2. Our method scales adopts randomly sam-
ple time-step and thus can be efficiently applied
to high-quality point clouds generation.

3. Experimental results show that our method
can achieve faithful generation and reconstruc-
tion. Besides quantitative comparison, we vi-
sualize results for different set-up experiments.
Our code is publicly available at git

2 Related Work

Point cloud generative models. The past
decade have witnessed great advance in the 3D
shape generation with neural networks. Gen-
erally speaking, this task relates to many fields
in computer graphics and computer vision, such
as 3D shape reconstruction based on 2D im-
age [19], depth map generation [20] and 3D
shape transform [21]. In this section, we focus
on 3D point cloud generation methods, specif-
ically in the area of synthesizing diverse and
high-fidelity 3D shapes, which are synthesized
point cloud data that are real world examples
Roughly speaking, previous works can be di-
vided into four categories based on their learn-
ing manner: Auto-encoder based geneation [5,
6], Autogressive-based generation [10], GANs-
based generation (generative adversarial net-
works) [7–9, 22–24] and flow-based generation
[17, 19, 21, 25, 26].

The success of diffusion probabilistic distri-
bution approach has inspired many follow-up

https://github.com/TLi347/point-cloud-SDE.git


Figure 1: Overview of point cloud generative modeling through SDEs. We can transform data to a
simple noise distribution with a continuous-time SDE and reverse this process for point
cloud generation. The reverse-time process can be obtained by the generative model SDEs-
Net.

works that extend the diffusion probabilistic ap-
proach to 3D point cloud generation. They
have viewed 3D point clouds generation as prob-
abilistic distribution transform and exploited
auto-encoding architecture with diffusion prob-
abilistic generation approach. For example,
Yang et al. [27] proposed to generate 3D point
cloud from a standard 3D Gaussian prior, which
leverage discrete normalizing flow with affine
coupling layers. Cai et al. [21] learned the gra-
dient of the log probability density with respect
to point clouds and samples point clouds us-
ing Langevin dynamics. Luo et al. [17] ex-
ploited the Denoising Diffusion Probabilistic
Models (DDPM) with fixed time-steps for point
cloud generation. Flowing their work, many re-
searches applied DDPM to various point cloud
related-fields, such as point-voxel generation
[19], point cloud completion [11] and achieved
remarkable results.

Our model is different from these models in
that we do not need fixed sample time steps of
diffusion probabilistic model, so that the point
clouds generation have flexible sample process.
In this way, the transform process is smoother
and flexible. The reverse process can be con-
ducted in arbitrary time length. In this way, the
generated point clouds will have higher quality
and sample effectiveness.

Diffusion probabilistic generative models.
As describe in Sec.1, most of generative mod-
els, such as GAN, VAE, auto-regressive mod-
els and flow-based moels rely on delicately de-

sign the loss function. Among them, Denoising
Diffusion Probabilistic Model (DDPM) [28] is
a representative one. It designs a bi-direction
process, which is to systematically and gradu-
ally destroy data distribution by injecting noise.
Then the network learns the reverse diffusion
process, yielding a highly flexible and tractable
generative model of the data.

Song and Ermon [13] first proposed learning
generative models to estimate the gradient of
the log probability density through a multi-scale
denoising score. After Ho et al. [12] proved
the potential of DDPM in term of image gen-
eration. Diffusion models are really taking off
and emerging as the go-to model for many tasks
that requires producing perceptual signals. Ho
et al. [12] proposed to use a fixed steps Markov
chain to simulate the diffusion process. How-
ever, limited by this setup, the sample process is
rigid and slow. Therefore, many works focus on
the sampling efficient and proposed improved
approaches [14, 15, 29]. Because the existing
methods do not have strict learning paradigm for
diffusion probabilistic models, Song et al. [16]
proposed to formulate the diffusion probabilis-
tic models by SDEs and lucidly explained from
perspective of variance trend. Our work builds
on the theory of [13] and we explore into 3D do-
main, which is challenging and fundamentally
different from aforementioned methods. Dif-
ferent from previous, we leveraging the SDEs
to make the transform process of point cloud
smoother and flexible. We improved the sam-



pling process to improve the generated point
cloud.

3 Method

Given N points in a point cloud X = {xi|i =
1, .., N} ∈ RN×3, we assume pdata to be the
distribution of the each point cloud X in the
dataset. For each point xi in point cloud X ,
the status in diffusion process {xti}Tt=0 can be in-
dexed by a continuous time variable t ∈ [0, T ].
The diffusion process is irrelevant of the start
distribution of point cloud and the ultimate dis-
tribution of the point cloud at t = T is denoted
by platent = N (0, I), where N is the Gaus-
sian distribution Formally, let x0 ∼ pdata and
xT ∼ platent.

Our goal is to learn and generate shape from
the distribution of each shape pdata. We pro-
pose to use stochastic differential equations to
model the distribution of the point cloud, which
induces a desired shape of points through trans-
forming a prior distribution pdata. However,
learning a generative model of point clouds
directly from an unordered and discrete point
cloud is slow and difficult to optimize. As a re-
sult, we need to characterize a distribution of the
set {pdata}. We parametrize a latent variable z
with continuous normalizing flow [30] that rep-
resents the global shape of point cloud. In this
case, generating a shape can be represented by a
conditional reverse diffusion process.

Sampling points from the induced latent vari-
able guarantees the integrity of point clouds.
Nevertheless, the conditional transform process
can only roughly estimate the average data dis-
tribution.

3.1 Formulation

This diffusion process can be represented as an
Itô SDE [31]. It is the rule for differentiating a
function of a stochastic process. In this paper’s
setting, it is the process that gradually transform
3D shape into 3D Gaussian noise. It can be for-
mulated as:

dx = f(x, t)dt+ g(t)dw (1)

where w is the standard Brownian motion
(Wiener process); f(·, t) : Rd → Rd is a drift

coeffcient of xt, and g(·) : R→ R the diffusion
coefficient of xt. In this paper, the diffusion co-
efficient is a d × d scalar matrix. The SDE has
a unique strong solution as long as the coeffi-
cients are globally Lipschitz in both state and
time [32]. Typically, xT is an unstructured prior
distribution (3D Gaussian Distribution), and x0

and pdata shared the similar distribution.
Following SDE, the forward process of diffu-

sion process can be discreted as:

x(i+1) = xi+f i(xi)+Giϵi, i = 0, 1, ..., T−1
(2)

Based on Eq.2 and [33], the reverse-time SDE
can be discretized as:

dx =f(x, t)−G(t)G(t)T∇x log pt(x)dt

+G(t)dw̄

dx =[f(x, t)− g2(t)∇x log pt(x)]dt

+ g(t)dw̄

(3)

where w̄ is a Brownian motion in the reverse
time direction, and dt represents an infinitesimal
negative time step. The reversed SDE can be
computed once we know the drift and diffusion
coefficients of the forward SDE, as well as the
output of pt(x) for each t ∈ [0, T ].

To estimate the gradient∇x log pt(x) we train
a SDE-Net model sθ∗ , where the θ denotes the
parameters of network. In this case, the train-
ing objective of SDE-Net model sθ(x, t) can be
denoted as:
θ∗ = argmin

θ
Et{λ(t)E(x0,z)E(xt|x0,z)

[∥sθ(xt, t, z)−∇xt log p0t(x
t|x0, z)∥2]}

(4)
When the drift f and diffusion coefficient g

of an SDE are not affine, it can be difficult to
compute the log p0t(x

t|x0, z) in closed form.
As shown in Eq.3 and Eq.4, xt is influced by

the λ(t) and brown motion dw where dw can be
denoted by a random noise. Following [14] and
[13], we set λ ∝ 1/E

[
∥∇xt log p0t(x

t|x0, z)∥2
]

and simplify the SDE in following formulation:

dx = σtdw (5)

where the σ denotes the noise scale; t ∈ [0, 1].
In this case,

p0t(x
t|x0, z) = N (xt;x0,

(σ2t − 1)

2 log σ
I, z) (6)

where I denotes the variance of data distribu-
tion.



Figure 2: The illustration of training phase of the proposed model.

3.2 Implement Method

Our goal is to generate point clouds with a de-
sired shape, decoded by the latent global repre-
sentation z. By starting from a noise with the
prior distribution platent and reversing the diffu-
sion process, we are able to obtain a point cloud
from the data distribution pdata. Crucially, we
treat the reverse-time SDE as diffusion process
running backwards in a conditional way along
with time. Then, the points are sampled from
a noise distribution and passed through the re-
verse diffusion process to form a shape. We de-
fine that the θ denotes the diffusion model to ap-
proximate stochastic differential equations, and
network ϕ learns the distribution of pdata. The
train phase is show in Fig 2.

3.2.1 Latent Variable Reparamenterization

A normalizing flow [30, 34] is a stack of affine
coupling layers f = {f1, .., fn} as a reversible
transform between an prior distribution and a
complicated distribution. In particular, pdata =
fn ◦ fn−1 ◦ . . . f1(z) is the output variable and z
can be estimated from pdata via the inverse map-
ping: z = f−1

1 ◦ ...f−1
n (pdata). ◦ denotes the

Hadamard product. Formally, given the latent
variable pdata with distribtuion P(pdata), let net-
work φ denotes instantiated affine coupling lay-
ers that maps pdata to the output variable z with
prior distribution P(z). The exact probability of
the output variable is estimated by the change of
variables formula:

P(pdata) = P(z)

∣∣∣∣det(∂φ

∂z

)∣∣∣∣−1

, where z = φ−1(pdata)

(7)

3.2.2 Time Embedding

In our diffusion model with stochastic differen-
tial equation, the additional input time step t al-
lows a single model to use a common set of pa-
rameters to handle different noise levels. How-
ever, we find out that the network can ignore the
time step t when attach it with input straightfor-
ward. Besides, it is suboptimal to increase the
parameter of network to handle this parameter,
which increases the learning burden. Likewise
position embedding in 2D image, we propose to
use Gaussian random features [35] to encode t.
In particular, the time embedding TE is define
as:

TE = [sin (2πwt); cos (2πwt)] (8)

where operator [a, b] denotes the concatenation;
w ∼ N (0, I) is a frozen random matrix.

3.2.3 Training Objective

We implement a point cloud auto-encoder based
on the stochastic differential equation in Section
3.1. It is possible to directly apply KL loss over
the latent variable outputed by ϕ, but it has been
proved that it unavoidably restricts the perfor-
mance of network [36]. We employ normalizing
flow to enhance the representation of network
instead of using KL loss to parameterize the la-
tent variable. Formally, leveraging on Eq.4, we



rewrite the objective of our network:

L(θ, ϕ, φ) =

(
θ
(
Xt, t, z

)√σ2t − 1

2 log σ
+ ϵ

)2

+DKL

(
ϕ(pdata|X0)∥P(z)

∣∣∣∣det(∂φ

∂z

)∣∣∣∣−1
)

+H
[
ϕ(pdata|X0)

]
(9)

where Xt = X0+ϵ
√

σ2t−1
2 log σ , and ϵ ∼ N (0, I)

is a random noise. Our model is trained in end-
to-end fasion through minimizing the above ob-
jective of all point sets in the dataset.

3.2.4 MCMC Sampler

Figure 3: The illustration of inference phase of
the proposed model. The dash line
represents the loop process.

The inference phase of numerical sampler is
shown in Fig 3. It corresponds to the reverse
process of SDE. During the inference phase, we
build a corrector conditional sampler that com-
bine numerical sampler of reverse process SDE
and Langevin MCMC approach. Specifically,
we estimate Xt−∆t for Xt via the SDE-Net
model sθ and global latent variable z on each
time step, and then we use Langevin MCMC
sampler to refine Xt. This simplified corrector
conditional sampler is as follows Algorithm.1:

As shown in Algorithm.1, r denotes the
signal-to-noise ratio of Langvein MCMC sam-
pler. ∥ω∥2 is a random noise with Gaussian dis-
tribution. ω, r and output of the SDE-Net sθ
jointly determine the step size ϵ. This additional
step that ref as the corrector step, helps us to ob-
tain a more accurate point cloud.

Algorithm 1 Conditional Corrector Smapler
Initialization:{xT , z ∼ N (0, I), σ, r}
for i← T to 1 do

for j ← 1 to n do
ω ∼ N (0, 1)# Sample random noise
g ← sθ(X

i
j−1, σ

i, z)# Predict gradient
ϵ← 2(r∥ω∥2/∥g∥2)2# Refine gradient
Xi

j ← Xi
j−1 + ϵg +

√
2ϵω

Xi−1
0 ← Xi

n

4 Experiment

We introduce the dataset of our experiment
in Sec.4.1, the architecture of our network in
Sec.4.2 and common evaluation metrics for
point cloud generation task in Sec.4.3. In
Sec.4.4, we show some qualitative results and
compare the quality of point cloud synthesis
based on our method with previous generative
models of 3D point clouds in terms of discussed
evaluation metrics. In Sec.4.5, we further prove
the effectiveness of our model training in auto-
encoder fashion and evaluate the representation
learning ability. In Sec.4.6, we evaluate our
model’s performance by point cloud comple-
tion.

4.1 Datasts

We carry out point cloud generation experiments
on the ShapeNet datasets [37]. It consists of
51,127 point clouds for training set and 1,184
for testing from 55 object categories. We take
the main experiment on chair, airplane, car and
guitar to prove the effectiveness of our method.
The proportion of training, testing and valida-
tion sets respectively are 80%, 15% and 5%.
We ramdomly sample 2048 points from each of
the shape for training. We emphasise that our
method is not limited by the sample number of
points and it can generate upsample and down-
sample point clouds as well.

4.2 Implement Details

We adopt PointNet for the architecture of en-
coder ϕ. As in [30], latent variable reparame-
terzation φ uses 3 layers with 256 hidden units
and Relu activation function. We employ an
MLP architecture for modeling network θ with



stochastic differential equations. We apply 6
layers of full linear for the model θ. And we
apply 1 layer of 64 hidden units for the Time
encoding. Models are trained with Adam over
10,000 iterations with a batch size of 128 and
an initial learning rate of 10−3. During the in-
ference phase, we set T = 103 to generate each
point cloud.

4.3 Evalution Metrics

For point cloud synthesis, we follow the evalua-
tion set-up in [27] and [23] to compare in terms
of minimum matching distance (MMD) [23],
the coverage score (COV) [23], 1-NN classifier
accuracy (1-NNA) [27] and the Jenson-Shannon
divergence (JSD) [27]. Minimum Matching
Distance (MMD) is a metric to compute fidelity
of synthesized point cloud. The coverage score
(COV) is to estimate the generative ability of
model, which is whether the generative point
cloud cover all the existing mode of the dataset.
The 1-NNA is used to measure the 1-NN clas-
sifier between our synthesized point cloud and
ground truth samples. If the generated shapes
like samples from the ground truth distribution,
when the score nears to 50%, that means the
generated shapes close to real data. The Jenson-
Shannon divergence (JSD) computes the simi-
larity between the our synthesized point cloud
and the test set of ground truth.

For point cloud auto-encoding, we adopt CD
and the EMD to evaluate the reconstruction
quality of the point clouds that we introduce on
Sec. 1.

4.4 Point Cloud Synthesis

Fig 4 shows some examples of point clouds gen-
erated by our model.

The results show that our method can syn-
thesize reasonable point cloud with distinguish
structure and clear surface. We normalize each
generated shape and evaluate the our gener-
ated point clouds by the metrics in Section
4.3. We quantitatively compare our method with
the following state-of-the-art generative models:
PC-GAN [23], GCN-GAN [38], TreeGAN [9]
and PointFlow [27]. The comparison results
are shown in Tab 1. It can be seen that our
method achieves state-of-art in Chair category

Figure 4: Examples of point clouds synthesized
by our model. Each shape is generated
from a global latent variable whose
distribution is Gaussian distribution

Figure 5: Examples of point clouds reconstruc-
tion of auto-encoder.

and reaches competitive result in another met-
rics.

4.5 Auto-encoder for Point Cloud

We compare with state-of-the-art point cloud
auto-encoder: AtlasNet [39], PointFlow [27]
and ours. We evaluate the quality of our method
with three categories: airplane, chair and whole
dataset and the comparison results are shown in
Tab 2. As shown in Tab 2, our method achieve
better performance in CD score and competitive
results when compared in EMD. We emphasize
that all the point cloud in comparison experi-
ments contain same number of points and nor-
malized by same approach. We visualize the



Table 1: Comparison of point cloud generation performance.

Category Model MMD(↓) COV(%,↑) 1-NNA(%,↓) JSD(↓)
CD EMD CD EMD CD EMD -

Airplane

[7] 3.819 1.810 42.17 13.84 77.59 98.52 6.188
[38] 4.713 1.650 39.04 18.62 89.13 98.60 6.669
[9] 4.323 1.953 39.37 8.40 83.86 99.67 15.646
[27] 3.688 1.090 44.98 44.65 66.39 69.36 2.236
Ours 3.508 1.132 41.02 39.20 78.00 82.12 2.383

Chair

[7] 13.436 3.104 46.23 22.14 69.67 100.00 6.649
[38] 15.354 2.213 39.84 35.09 77.86 95.80 21.708
[9] 14.936 3.613 38.02 6.77 74.92 100.00 13.282
[27] 13.631 1.856 41.86 43.38 66.13 68.40 12.474
Ours 12.879 1.819 39.53 41.86 69.46 73.50 9.499

Table 2: Comparison of point cloud reconstruc-
tion performance.

Dataset Metric [39](S1) [27] Ours

Airplane CD 2.000 2.420 2.921
EMD 4.311 3.311 3.624

Chair CD 5.479 6.795 6.631
EMD 5.550 5.008 4.578

All CD 6.906 7.550 6.130
EMD 5.617 5.172 4.456

point clouds reconstruction as shown in Fig 5.
It can be seen that our method can reconstruct
faithful and clean point clouds.

In addition, we project the global latent vari-
able produced by the encoder of auto-encoder
and interpolate between them. We further im-
plement extrapolation and visualize point cloud
in Fig 7. The extrapolation results demonstrate
that our model is able to learn informative rep-
resentations.

4.6 Point Cloud Completion

During inference, our model can generate a se-
quence of point-wise move distance sampling
each point cloud, which allows point cloud com-
pletion. Motivated by this property, we conduct
an additional experiment to point cloud comple-
tion as an application for point cloud synthesis.
Specifically, we use the partial point cloud as the
input and use the pre-trained encoder to estimate
the global shape variable. Then we employ the
global shape variable and the partial point cloud
to synthesize the completed point cloud. The vi-
sualized qualitative results are shown in Fig 6.
As shown in results, our model can complete
precise point cloud when the reference point
cloud is sparse.

5 Conclusions

We presented a framework for point cloud
generative model based on SDE. Our work
brought new point cloud conditional generation
approach to the family of point cloud genera-
tion based on diffusion models. By leveraging
the time encoding and SDE, our method can
make the transform between the noise and point
cloud more smooth and flexible. This makes
diffusion process can be sampled in anytime
step without re-train the model which enhance
the quality and effectiveness of generated point
cloud. Additionally, the we leveraged Lagvien
MCMC sample to improve the quality of gener-
ated point cloud. Experimental results demon-
strated that the proposed model can generate ex-
pressive point cloud and achieve competitive re-
sults compared with other methods.
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