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AVDOS-VR: Affective Video 
Database with Physiological 
Signals and Continuous Ratings 
Collected Remotely in VR
Michal Gnacek  1,2 ✉, Luis Quintero  3, Ifigeneia Mavridou  2, Emili Balaguer-Ballester4, 
Theodoros Kostoulas5, Charles Nduka2 & Ellen Seiss6

Investigating emotions relies on pre-validated stimuli to evaluate induced responses through subjective 
self-ratings and physiological changes. The creation of precise affect models necessitates extensive 
datasets. While datasets related to pictures, words, and sounds are abundant, those associated with 
videos are comparatively scarce. To overcome this challenge, we present the first virtual reality (VR) 
database with continuous self-ratings and physiological measures, including facial EMG. Videos were 
rated online using a head-mounted VR device (HMD) with attached emteqPRO mask and a cinema VR 
environment in remote home and laboratory settings with minimal setup requirements. This led to an 
affective video database with continuous valence and arousal self-rating measures and physiological 
responses (PPG, facial-EMG (7x), IMU). The AVDOS-VR database includes data from 37 participants who 
watched 30 randomly ordered videos (10 positive, neutral, and negative). Each 30-second video was 
assessed with two-minute relaxation between categories. Validation results suggest that remote data 
collection is ecologically valid, providing an effective strategy for future affective study designs. All data 
can be accessed via: www.gnacek.com/affective-video-database-online-study.

Background & Summary
Conscious and subconscious affect recognition is a cornerstone of social interaction between humans and is one 
of the aspects of computer-human interaction we are yet to understand fully1. The continuous growth of affective 
computing (AC) research and literature is thriving towards objectively measuring and understanding affect and 
emotions in environmental contexts. Affective computing research communities are continuously exploring the 
design of affect-aware artificial systems2. The challenge remains in gaining insight into emotions, an inherently 
internal function to the outside observer3.

Affect detection models are typically generated through a multistage process, which consists of recording 
biological markers and subjective experiences simultaneously through ratings or questionnaires. Multiple sen-
sors are often combined to form a more complete picture of affect through multi-modal classification4. The 
captured data is then used to model the relationship between these markers and subjective experiences to make 
predictions regarding the felt emotion5. This approach typically requires standardised stimulus databases and 
large datasets of affect measurements.

There is a sustained drive towards more reliable affective databases, designed to facilitate new insights by 
keeping up with changing technologies6–8. Videos are a relatively new addition to classic affective databases 
compared to other emotion induction methods, such as pictures, sounds, and words. Nevertheless, videos have 
become popular amongst researchers as a viable tool for eliciting emotional responses in experimental settings 
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and VR9,10. Several affective video databases of varying sizes, lengths and measures have been developed such as 
LIRIS-ACCEDE11, VASD12, DEVO13 or CAAV14.

However, these have shortcomings. Video stimuli are complex structures with multiple variables, including 
frame rate, audio, duration, plot development, and camera angles. These factors greatly influence the emotional 
impact of videos15. Altering the duration of validated videos can compromise their intended emotional induc-
tion. Indeed, stimulus features such as duration, as well as visual and auditory properties, are crucial variables 
in databases equipped with self-ratings and physiological measures for several reasons. Firstly, studies on heart 
rate variability (HRV) recommend a minimum recording time of 30 seconds for reliable data16. Other phys-
iological measures, such as heart rate, galvanic skin response (GSR), electromyography (EMG), and cortisol 
levels, exhibit varying response times17. Secondly, many databases rely on end-of-stimulus self-ratings, which 
may introduce biases and reduce accuracy, particularly with longer duration stimuli18,19. A solution for this is to 
collect continuous self-ratings for arousal and valence throughout the experience, as done by several studies5,11. 
Thirdly, a large proportion of studies investigating affect detection using physiological signals have been carried 
out in laboratory settings but with increasing availability, reliability and ease of use of wearable sensors20, more 
recent studies have been attempting to replicate the results outside the confines of heavily controlled laboratory 
environments21, e.g. in home settings. For this goal, we used the emteqPRO device - a VR HMD augmented with 
an array of sensors22 including seven channel EMG, a PPG and an inertial measurement unit (IMU) sensors (see 
Fig. 1). Previous studies robustly validated emteqPRO sensors for heart rate detection23, facial expressions24, 
breathing rate estimation25, valence and arousal26,27, and even pain perception28, enabling us to use this device to 
generate a novel, comprehensive database.

In summary, VR-based affective computing is groundbreaking since it has the potential to bridge controlled 
laboratory settings and real-world environments. VR, combined with dedicated sensors, offers an immersive 
platform to study emotions. This approach allows the fusion of perceptual and physiological data, facilitat-
ing a holistic understanding of emotions. It is a shift in research methodologies, providing valuable insights 
beyond traditional approaches29. The increasing popularity of VR as a research tool30,31 has resulted in more and 
more studies using videos, interactive VR content and in embedding physiological measures in VR paradigms32.  
However, there are only a few VR databases for affect detection that combine continuous self-ratings with 
a range of physiological measures33,34. These databases still lack key physiological measures for affect detec-
tion and, arguably, the most relevant physiological response underlying the valence dimension - facial 
micro-expressions35,36.

The need for a new video database for VR environments arises from the limitations of existing video-based 
datasets; fostering the shift towards VR-based studies featuring more immersive, easily controllable environ-
ments. Traditional datasets feature short video clips, which may not fully capture emotional dynamics. This 

Fig. 1 The mapping between seven EMG sensors on the emteqPRO and facial muscle groups. Note also the 
location of the forehead PPG sensor.
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problem is addressed with the AVDOS-VR database (Affective Video Database Online Study - Virtual Reality) 
presented in this paper.

The database adds to existing affective video databases with a novel approach by combining continuous 
self-ratings via a VR controller and multi-modal, physiological measures (Table 1) of standardised 30s-long 
videos presented via a VR HMD device. Longer VR videos offer more immersive and ecologically valid expe-
riences, enhancing our understanding of emotions. Additionally, the unique array of facial sensors in VR, such 
as the emteqPRO system used in this study, provide richer physiological data, enabling a deeper exploration of 
emotional responses. Furthermore, virtual reality for remote data collection ensures a consistent and controlled 
environment for participants. This setting minimises external factors that could affect emotional responses and 
contribute to the robustness of the dataset.

The AVDOS-VR database will pave the way for extensive video validation gathering in authentic environ-
ments within and beyond the confines of research laboratories. This feat was feasible thanks to employing a 
self-guided protocol for data collection. Thus, given these characteristics, AVDOS-VR is a significant addition 
to the scarce existing affective video databases. To the best of our knowledge, it is the first publicly available VR 
database to show that it is possible to reliably collect physiological data remotely with limited-to-no supervision 
and wireless setups through participant self-guided protocol, in contrast to other database protocols5,37.

Methods
Experimental setup. This study received ethical approval from the Bournemouth University Research 
Ethics panel (Ethics ID: 33494). Participants consented to taking part in the study and sharing their data.  
The study had two recruitment variants, displayed in Fig. 2. In the first variant, participants were shipped all the 
necessary equipment to their home addresses and the data collection was supervised via their preferred tool of 
video communication (Skype, Teams, Zoom etc). In the second variant, data collection was undertaken in the 
lab, with the supervising researcher present in an adjacent room. The supervision was provided via a video call to 
replicate the fully remote setting of the first variant. For this, the researcher stayed in a separate room. The reason 
for this second variant was mainly to speed up the data collection process by eliminating the time required for the 
shipment of equipment to participants.

Recruitment and participants. Participants of the first variant of the study (fully remote data collection) 
were recruited via opportunity sampling from a trusted circle of friends and social affiliates because of equipment 
security issues. Participants were not given any incentives or reimbursement for taking part. For the second  
variant of the study, participants were recruited through the Bournemouth University Psychology Participant 
Pool System. These participants were given £20 Amazon vouchers and research credits for the successful com-
pletion of the study.

Number of participants 37

Number of videos 31 (30 affective and 1 relaxation)

Video duration Affective (30 s), Relaxation (120 s)

Rating scales Valence and Arousal

Rating values Discrete (1–9)

Rating method VR controller touch-pad

Number of ratings 
(per video) Mean Min Max Total

Affective 24.905 0 207 27645

Relaxation 66.277 4 565 9809

Duration  
(per participant) Mean Min. Max. Total

Affective (good fit) 22m45s 14m20s 23m20s 14h2m

Total (inc. training) 27m56s 25m22s 32m25s 17h13m

Physiological Signals EMG, PPG, IMU, Skin contact (impedance)

Table 1. Physiological database summary.

Fig. 2 Flow diagram depicting study procedures for both recruitment variants and all segments of the study.
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Regardless of the used recruitment method, all participants were required to complete an online registration 
questionnaire where their eligibility to take part was assessed. Exclusion criteria were age (below 18 or over 45 
years), inability to wear contact lenses instead of glasses if eyesight correction was required, any currently diag-
nosed psychological conditions or any current or previous diagnoses of cardiovascular, respiratory, or neurolog-
ical conditions and possible alexithymia (score: 52+) as assessed by the Toronto Alexithymia Scale (TAS-2038) 
which suggests individuals reduced ability to identify and describe experienced emotions.

Out of a total of 43 participants, 24 took part in the fully remote data collection, and 19 additional partici-
pants in the laboratory simulation of the remote data collection. Six participants were excluded in total (three 
from each protocol remote/lab). Of these, one participant was excluded because of possible alexithymia (score: 
54) Four more participants had to be excluded due to a poor device fit. One participant was excluded because of 
corrupted files. The final sample consisted of N = 37 participants (21 fully remote, 16 remote lab), 16 males and 
21 females. The mean age for these participants was 23.4 years (range: 18–40, SD = 5.2). None of the participants 
experienced motion sickness during the study, although five participants reported that they were susceptible 
to motion sickness. A total of 25 participants stated that they have used a VR headset at least once in the past.

Video selection. The AVDOS-VR database, introduced in this paper, builds upon and extends 
the pre-existing non-VR AVDOS database. The original AVDOS database comprises 60 high-quality, 
emotion-evoking videos, which were previously validated through an online questionnaire39. Each of these vid-
eos has a precise duration of 30 seconds and is categorised into one of three emotional states: positive, neutral, or 
negative.

For this paper, 30 videos were selected from the existing AVDOS database for validation in VR environments 
using self-reported measures and physiological recordings, forming the AVDOS-VR dataset. Video IDs used 
throughout this study match the original AVDOS database for ease of reference and identification. Selected 
videos were chosen based on their original mean ratings within their respective affective categories, while also 
considering the videos with the smallest standard deviation (SD). This selection criteria was implemented to 
enhance inter-rater reliability in our study.

Pico VR and emteqPRO systems. Two emteqPRO/Pico devices were used for this study. The Pico G2 4k 
model featured a 3840 × 2160 screen resolution and a refresh rate of 75 Hz (see Fig. 3). The EmteqPro mask itself 
is a detachable accessory that can be mounted onto the Pico headset. For comfort, narrow and wide cheek inserts 
were provided to accommodate different face shapes and achieve optimal skin contact for the best signal quality. 
Participants could choose and replace these inserts during the initial signal check stage.

Figure 1 depicts facial muscle to EMG sensor mapping and the location of the forehead PPG sensor.  
The EmteqPro system produced two types of data files. The first file stored in a standard .json format contains 
custom event data pre-programmed to be triggered at specific key moments of the study like, for example,  
the start and end of each video. Each event has a unique timestamp which can be used to correlate events with 
physiological data from raw files.

The second file contained raw files .dab with physiological data recorded during the data collection. Namely, 
amplitude and contact states of facial electromyography (EMG), heart response using photoplethysmography 
(PPG), and movement from the inertial measurement unit (IMU). This file also contained metadata such as 
firmware versions, signal frequencies, and error logging. For the data analysis, the raw files were converted  
to .csv files to enhance readability using the dab2csv converter (dab2csv is available for download from Emteq 
Labs at https://support.emteqlabs.com). All the details from both raw and converted files are included in the 
AVDOS-VR database available online40. Sampling rates for each measure recorded are listed in Table 2. Raw 
EMG signal for the remote version of the study was recorded at 50 Hz, and the in-lab variation of the study was 
recorded at 1 kHz due to firmware updates made to the sensor, but the filtered EMG signal and other EMG fea-
tures did not change (see22 for a detailed description of filtering and data processing by the emteqPRO system). 

Fig. 3 The emteqPRO Pico G2 4k model. The mask padding shows EMG electrodes and a forehead PPG sensor. 
Note also narrow and wide size variants of cheek sensor pairs for the emteqPRO Pico model.
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The illustration in Fig. 4 provides an overview of the data processing activities conducted by both the internal 
emteqPRO software, custom AVDOS-VR Unity application and post-processing feature extraction in Python.

Continuous arousal and valence ratings. Annotations for arousal and valence self-ratings were recorded 
using a VR controller. x and y coordinates of the finger position used for rating were normalised in the range 1 to 
9. Raw finger positions on the VR controller were also recorded in the range 0 to 1.

The annotations from the circular touchpad in the VR controller were transformed to map the 2D rep-
resentation of valence and arousal. This transformation was performed with a stretching method41 that allows 
corrected visual representation of the affective self-ratings using the following formula where u(t) and v(t) are 
the Euclidean coordinates for the emteqPRO touchpad area at time t:
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The recording of a new self-rating event was triggered when a significant change in the rating was found, 
defined as a difference in the discrete scale for arousal and valence between 1 and 9. Small finger movements that 
did not result in this change were not recorded. The frequency of these self-rating changes was lower than the 
sampling rates for physiological measures.

Initial setup and procedure. The entire data collection was designed to be carried out with very limited over-
sight or supervision (in both variants). A custom Unity application was developed to deliver the experiment and to 
collect the data. To this end, we built an Android application package (.apk) and installed it on the Android operating 
system running on the emteqPRO Pico model. Instructions and training sessions were integrated into the application.

In the first variant (fully remote data collection), participants were asked to charge the device before data 
collection, switch it on and connect a controller using on-screen instructions. Participants also connected the 
device to their home wifi network to enable the streaming of data to cloud storage. In comparison, in the sec-
ond variant (laboratory simulation of the first variant), the device was already switched on, fully charged, and 
connected to the wifi network, and placed on the table in front of the participant. From that point onwards, the 
protocol was identical for both variants. Participants were responsible for putting the device on ensuring correct 
fit and comfort and launching the application. If any issues occurred, the subject and researcher would solve 
them via the previously established video call link.

After launching the custom application in the VR headset, participants were presented with a welcome 
screen. Animated instructions were utilised to teach participants how to interact with the study. A short sig-
nal quality check was performed to assess the fit quality of the device by checking an EMG sensor display. 
Participants were only instructed to proceed when the mask was fitted well and when the signal quality for these 
sensors was sufficient22.

Data type Channels Frequency Description

Facial EMG*

Frame# 1 Row index for human readable data references.

Time 1 1 kHz Relative time in seconds at which data was measured in the hardware.

Face State 1 — Indicates when the device is detected as worn by the user. 0: No face contact; 1: Face contact.

Fit State 1 — Continuous measurement (range 0–11), where higher values represent better mask fit.

Contact States 7 25 Hz 8-bit value denoting the contact information for each pair of EMG electrodes.

Contact 7 25 Hz Impedance measurement of the electrode-to-skin contact.

Raw 7 50/1000 Hz Raw analog signal from the EMG measurement device without filtering stages.

RawLift 7 50 Hz Supplementary data to internally calculate Contact States and Contact.

Filtered 7 1 kHz Filtered EMG measurements in the frequency ranges 100–450 Hz.

Amplitude 7 50 Hz Amplitude of the muscle EMG.

Heart Rate 1 1 Hz Average beats-per-minute (BPM) measured from the sensor on the user’s forehead.

PPG 2 25 Hz Raw photoplethysmography from the user’s forehead, and proximity to the sensor.

Accelerometer 3 1 kHz Linear acceleration for the X, Y, and Z axes.

Magnetometer 3 30 Hz Magnetic field strength on the X, Y, and Z axes.

Gyroscope 3 523 Hz Angular velocity on the X, Y, and Z axes.

Table 2. List of raw recorded physiological signals. *Each of the data types for Facial EMG contains the 7 
channels corresponding to facial muscles: RightFrontalis, RightZygomaticus, RightOrbicularis, CenterCorrugator, 
LeftOrbicularis, LeftZygomaticus, LeftFrontalis.
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Then, subjects received an introduction to arousal and valence concepts through interactive tutorials, ani-
mations, and two training videos. They were asked next to provide continuous ratings by moving their fingers 
across the touch sensor area on the controller. If no finger was detected to be touching the controller, a message 
was displayed at the bottom of the video screen asking participants to place their finger back on the controller 
and resume rating. Participants had an opportunity to repeat the training session as many times as they liked 
until they felt comfortable with the self-rating mechanism. To help participants keep track of their ratings in 
real-time, an affect diagram was displayed at the bottom of the screen. This diagram utilises facial representa-
tions used in the affective slider42 to represent valence and arousal states (Fig. 5).

Finally, during the main video validation task, positive, neutral and negative video conditions were dis-
played in separate blocks. For this, ten affective videos from the same affective condition were combined into 
five-minute-long blocks. The order of blocks and videos within each block was randomised for each participant. 
A two-minute relaxation video was played before each block. This video displayed a beach scene and was reused 
in each block. Participants were tasked with watching and continuously rating all videos. The VR environment 
depicted a room with a couch and a large screen.

Data Records
The AVDOS-VR database presented in this paper contains both raw and processed data. Data can be accessed 
via43 and the Python library used for data processing and transformation is available separately as part of a 
GitHub repository44.

Data. Available in both compressed and uncompressed formats, ‘data’ and ‘data.zip’ directories contain raw 
physiological and event data. Files for individual participants can be found within data folders and are labelled 
in the format ‘participant_xxx’ indicating the participant number. Participants who took part in the second ver-
sion of the data collection (remote lab-based) have a ‘v2’ flag at the end of the folder name ‘participant_xxx_v2’. 
Within each participant folder, five sets of .csv, .json and .raw files can be found. ‘video_1’ files include data from 
the training session where participants were getting familiar with the rating system. video_2, video_3 and video_4 
include relaxation (shown before affective videos) and condition data for each video category (positive, negative 
and neutral in random order with the order of each video within the category also randomised). Finally, video_5 
contains data from the last relaxation segment at the very end of the study.

•	 .raw - Raw physiological data format files. Must be converted via the 'Dab2CSV' converter included in the 
DabTools package provided by Emteqlabs45.

•	 .csv - Raw physiological data converted into comma-separated values. Refer to Table 2 for column 
descriptions.

•	 .json - Event data file containing timestamps and custom event labels including affective self-ratings for syn-
chronisation between physiological signals. (See Table 3).

Python library. The Python library provided contains the code used for processing the data. Juypter notebooks 
were created to break down the process into a readable step-by-step process. The following notebooks are available:

•	 ‘0_ verify_ and_ summarize’ - verifies data completeness and generates a summary (number of ratings, time 
spent etc.).
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Fig. 4 Overview of Data Processing. This diagram illustrates individual sensors, their collected data, post-
processing steps, and feature extraction procedures.
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•	 ‘1_ process_ data’ - data normalisation, feature extraction and general processing.
•	 ‘2_ statistical_analysis’ - presents the statistical analysis and data exploration from the features including 

plots.
•	 ‘3_ml_classification’ - produces the results running the cross-validation and hyperparameter optimisation for 

subject-dependent experiments.

Processed data. The ‘Dataset_ AVDOSVR_ postprocessed.csv’ file contains 50 Hz, normalised, filtered and 
labelled data from all participants used for feature extraction and consecutive steps. This file is a result of the ‘1_ 
preprocess_ and_plot’ notebook. Lastly, the file ‘video_ratings.csv’ contains mean valence/arousal values, and 
mean and total number of ratings per video.

Technical Validation
Study protocol and data quality. EmteqPRO devices offer a real-time fit assessment metric for individual 
EMG sensors (Emg/ContactStates, see Table 2 or the device manual40). These EMG sensors can have various 
states, including “lifted” (no skin contact), “contact” (initial or intermittent skin contact), “stable” (firmly estab-
lished contact), “fault” (indicating a faulty contact), and “settled” (stable with saturated filters, indicating higher 
measurement confidence in Emg/Filtered and Emg/Amplitude).

The overall device fit is estimated based on the EMG/Contact states taking all sensors into account, resulting 
in fit values ranging from −1 to 11. These values offer a straightforward device fit metric, where −1 indicates 
fit detection failure, 0 signifies the device is not on the user’s face, and 11 represents ideal sensor impedance 
(although not achievable on the user’s face). Higher values indicate a better device fit.

To initiate data collection, participants were required to adjust the device until the average fit reached a 
recommended threshold (8, denoting general functionality, i.e., all sensors making contact with the skin with 

Fig. 5 The experimental setup. From left to right we see (i) a controller used for interacting with the study, 
including a touch-pad used for self-ratings, (ii) the arousal and valence scale tracking finger position used 
for rating always displayed under the video, (iii) the video environment and (iv) a participant wearing an 
emteqPRO device and looking around before the experiment.

Event Description

Start of signal check The start of signal check and data recording.

Signal check finished. Fit state: “FitState value = x” End of the signal check. FitState, i.e., “VeryGood value = 9”

Cinema scene started Loaded cinema scene following successful signal check

Finger lifted Finger lifted during video segments

Finger back on touchpad Finger placed back on the controller during video segments

Video rating training finished End of the video training session

Category sequence: “Category_1, Category_2, Category_3” Order of randomly selected video category sequence, i.e., “Category 
sequence: Positive, Negative, Neutral”

Category sequence array numbers: “x, y, z” Numerical values of randomly selected video category sequence, i.e., “1, 2, 3”

Playing rest video Start of the rest video played between categories

Finished playing the rest video End of the rest video performed between categories

Playing category number: x Category name: “Category name” Name and numerical value of the category of videos, i.e., “Playing category 
number: 3 Category name: Positive”

Playing video number: “x” ID of the video being played

Finished playing video number: “x” ID of the video which has just finished playing

Video category finished 10 videos from a video category finished playing

Valence: x, Arousal: y, RawX: x, RawY: y Valence and arousal values. Normalised 1–9 and raw position values

Finished playing all videos All videos have finished playing

Video ratings study: finished data recording Video segment completed

Table 3. Names and descriptions of events stored in JSON files.
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at least 5 out of 7 pairs reaching settled status), as per the manufacturer’s manual. The current fit value was dis-
played to participants during the initial device calibration, and they were instructed to continue adjusting the 
device until this threshold was met, at which point data collection began. However, it is important to note that 
fit quality might degrade over time or immediately after calibration ends.

To evaluate signal quality for each participant across the two protocols (fully remote and remote lab), we 
calculated the duration in seconds during which the fit quality fell below the desired threshold. Figure 6 provides 
a visual representation of the time spent (percentage of overall duration) below the target average fit for each 
participant.

The device fit was below the desired threshold for 600.14 seconds in the remote version of the protocol and 
173.12 seconds in the lab version. Notably, out of the 600.14 seconds in the remote version, 522.48 seconds were 
attributed to just two participants. Despite this imbalance, the Mann-Whitney-U test revealed no significant 
difference between the two protocols, although the p-value approached significance (U = 231, p = 0.055).

The time of poor contact for these two participants (225.86 and 296.62 seconds individually) constitutes a 
relatively small portion of the overall study duration (mean of 27 minutes and 56 seconds, or 1676 seconds). 
Nevertheless, the nearly significant results could suggest that remote data collection warrants additional scru-
tiny, with lab data being marginally superior. However, when we treat these two participants as outliers and 
exclude them from the analysis, the Mann-Whitney test becomes more significant (U = 231, p = 0.009) with 
77.66 seconds of poor contact in the fully remote vs 173.12 in the lab version, suggesting the opposite result of 
remote data being more reliable.

In summary, this analysis indicates that neither of the two protocols provided significantly superior data 
quality. Unsupervised and fully remote data collection carries the potential for more fundamental issues, such 
as participants moving or removing the device during the study, which a supervising researcher would quickly 
notice. Both supervised and unsupervised remote data may have a higher likelihood of erroneous data bypassing 
initial checks, necessitating more rigorous validation procedures.

Self-reported affect ratings. Self-ratings/annotations of arousal and valence were recorded continuously 
for all videos. Ratings from all participants were aggregated for each video to compute average valence and 
arousal ratings. Results are shown in Fig. 7. We validated whether the average self-reported ratings in valence and 
arousal differed between the three affect-type conditions. Continuous self-ratings were grouped by participant to 
calculate mean arousal and valence ratings per block for each participant (N = 37). We used Shapiro-Wilk tests to 
check for normality in valence ratings. Negative and neutral valence ratings were normally distributed 
(W p(36) 0 970, 0 411= . = .  and = . = .W p(36) 0 973, 0 487 respectively), while positive valence ratings were not 

= . < .W p(36) 0 773, 0 001. Friedman testing showed that the mean reported valence was significantly different 
in all three conditions (χ = . < .p(2) 66 378, 0 0012 , post-hoc Wilcoxon signed-rank tests for neutral vs negative, 
W p703, 0 001= < . ;  posit ive vs neutral,  = < .W p665, 0 001;  posit ive vs negative condit ions, 
W p698, 0 001= < . ).

We applied an identical approach to arousal ratings. Shapiro-Wilk tests showed only positive arousal ratings 
were normally distributed ( = . = .W p(36) 0 975, 0 556), while negative ( = . = .W p(36) 0 940, 0 045) and neu-
tral ( = . = .W p(36) 0 940, 0 047) arousal ratings were not. Friedman test showed arousal ratings were likewise 

Fig. 6 Signal quality comparison between remote and in-lab recordings as measured in percentage of overall 
time where the device was worn below the expected level of fit. The figure shows all participants and a low 
amount of undesirable fit for both study protocols.
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significantly different for all three conditions (χ = . < .p(2) 42 378, 0 0012 ). Post-hoc Wilcoxon signed-rank 
showed arousal ratings for both negative and positive conditions were significantly higher compared to the ratings 
in the neutral condition ( = < .W p693, 0 001; = < .W p694, 0 001 respectively). As expected, there was no 
significant difference in arousal for negative and positive conditions (W p210, 0 984= = . ). The boxplot in Fig. 8 
depicts average valence and arousal ratings for each video block across all participants. In addition, Figs. 9, 10 
show changes in valence and arousal ratings over time for each video.

Physiological measures. Physiological signals were processed to study the variation of measures for each 
of the three experimental conditions (positive, neutral and negative). First, a subset of the available signal fea-
tures was selected (see Table 2). Namely, the EMG amplitude and contact data for each of the seven facial EMG 
channels, PPG sensor data to calculate mean heart rate (HR) and heart rate variability (HRV) measures, and IMU 
sensor data to analyse motion-related measures corresponding to accelerometer, magnetometer, and gyroscope.

We first divided the time series of the selected raw physiological signals into analysis segments using event 
markers identifying each of the experimental conditions. These segments were then either down-sampled 
(accelerometer, gyroscope) or linearly interpolated (EMG contact, PPG and magnetometer) to match the facial 
EMG amplitude sampling frequency of 50 Hz. Data samples were removed if the corresponding faceplate’s fit 
state was lower than 8, which is the threshold indicating an average abstract measure of mask fit with all EMG 
sensors making skin contact (minimum reliable value recommended for this device45).

The annotations with the continuous affective self-ratings have irregular sampling frequencies, therefore, 
they were merged with their corresponding physiological data using forward filling (propagating the last known 
reported rating until a new self-reported value is recorded).

Next, data were normalised (μ = 0, σ = 1) for each participant individually by using physiological data 
from all segments. Then, features were extracted using sliding windows with 30 s width and 10 s overlap.  
The 30-second window of 1500 initial patterns (at a resampled frequency is 50 Hz) is discarded if this number 
drops below 95% due to filtering (thus, the smallest time window consists of 1425 data points).

Feature extraction. All variables were processed with the following statistical features: Mean, Standard 
Deviation (Std), Minimum Value (Min), Maximum Value (Max), Median, Interquartile range (IRQ), the pro-
portion of negative (PNV) and positive (PPV) values, skewness, kurtosis, energy, and RMS.

Heart rate and heart rate variability analysis. In addition to these statistics, the PPG signal enables us to extract 
mean heart rate (HR) in beats per minute (BPM) and heart-rate variability (HRV) features, including standard 
deviation of the RR intervals (SDNN) and square root of the mean of the squared successive differences between 
adjacent RR intervals (RMSSD). We filtered outliers for any 30s-long window with HR outside the interval 40 to 
120 BPM. Afterwards, the raw PPG signal was processed using the NeuroKit Python library46. The mean heart 
rate and HRV were calculated for each condition separately, providing one mean HR value for each on the neu-
tral, positive and negative conditions. They are displayed in Fig. 11. No significant differences between mean 
heart rates were found between conditions (One-way ANOVA, F p(2, 34) 0 04, 0 961= . = . ). Likewise, HRV 
did not differ between the three conditions both for the SDNN measure (F p(2, 34) 0 507, 0 603= . = . ) and for 
the RMSSD measure ( = . = .F p(2, 34) 0 618, 0 541).

Facial EMG analysis. Facial mean EMG responses were calculated by averaging Emg/Filtered signal RMS (root 
mean square) over moving time windows separately for each condition and facial muscle group. Figure 12 dis-
plays between-conditions comparisons for each muscle group. As expected, positive videos rendered the highest 

Fig. 7 Valence and arousal self-ratings for each video averaged across participants and grouped per video 
condition (positive, neutral, negative). Blue circles represent ratings of the resting video that was played before 
each block and at the end of the task.
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activation in the zygomaticus (smile) and orbicularis (eye) muscles. By contrast, negative videos showed the 
highest activation of the corrugator (frown) muscle while also activating orbicularis muscles but to a lesser 
extent than positive videos. One-way ANOVA tests showed highly significant differences between condi-
tions for all muscle groups (p < 0.001) except left frontalis (F(2, 34) = 0.81, p = 0.12). Post-hoc paired t-tests 
(Bonferroni-corrected) were used to analyse differences between the specific conditions for each muscle group. 
These results are also displayed in Fig. 12.

Motion analysis. For the motion analysis, positive, neutral and negative conditions were compared for the 
z-axis (backward and forward movements), separately for the accelerometer, magnetometer and gyroscope 

Fig. 8 Valence and arousal self-ratings (1-9) for each video, averaged across participants and grouped per video 
condition (positive, neutral, negative). R + (positive), R- (negative) and Rn(neutral) are segments where the 
relaxation video is played before each corresponding category. R-end was the same relaxation video played at 
the end of the study.
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motion data. The z-axis was chosen because the approach-avoidance hypothesis suggests that both negative and 
positive categories should contain more backward and forward movement than the neutral category.

Magnetometer and acceleration sensors registered more movement on the z-axis (backwards and forwards) in 
negative and neutral categories than in positive (Fig. 13). Acceleration data showed significant differences between 
condit ions  (One-way  ANOVA,  ( = . = .F p(2, 34) 3 753, 0 027 ) ,  as  d id  magnetometer  dat a 
(F p(2, 34) 3 677, 0 029= . = . ), while gyroscope data was not significantly different ( = . = .F p(2, 34) 0 668, 0 515). 

Fig. 9 Valence ratings for the entire video duration, means across all participants. Video R is the relaxation 
video. Sudden change in affective ratings in some videos can be a result of a sudden event within a video such as 
a whale unexpectedly breaching the water surface.

https://doi.org/10.1038/s41597-024-02953-6


1 2Scientific Data |          (2024) 11:132  | https://doi.org/10.1038/s41597-024-02953-6

www.nature.com/scientificdatawww.nature.com/scientificdata/

Post-hoc t-tests for the acceleration data showed differences in the amount of z-axis for the positive vs negative condi-
tions (t p(36) 2 531, 0 008= . = . ) while failing to distinguish between the other two conditions (positive vs neutral: 

= . = .t p(36) 2 284, 0 986; negative vs neutral: t p(36) 0 080, 0 532= . = . ). For the magnetometer data, similarly to 
acceleration, post-hoc t-tests showed a difference between positive and negative conditions 
t p(36) 2 401, 0 011= . = . ), but no differences between the other two conditions (positive vs neutral: 

= . = .t p(36) 2 301, 0 986; negative vs neutral t p(36) 0 200, 0 579= . = . ).

Fig. 10 Arousal ratings for the entire video duration, means across all participants. Video R is the relaxation 
video. Sudden change in affective ratings in some videos can be a result of a sudden event within a video such as 
a whale unexpectedly breaching the water surface.
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Feasibility of affect classification with physiological AVDOS-VR measures. Experimental 
setup. This section provides a simple example of the effective usage of this new dataset for affect classification. 
This proof-of-concept method consists of classifying three levels of valence (negative, neutral, positive) and two 
levels of arousal (high and low). The ground-truth labels were defined as the video condition of the data set. The 
statistical validation of self-ratings suggests that video conditions are good indicators of the perceived valence and 
arousal levels and, hence, that they can be reliably used as class labels.

Preprocessing. Physiological signals were resampled, merged and processed as described: Features were 
extracted from 37 subjects to generate a data frame containing 2329 observations and 320 columns with physi-
ological features and their respective class labels. The classification task was performed with all 37 participants 
after applying the exclusion and filtering. The processed dataset is freely available in the project’s repository.

Data modalities. The 318 physiological features (described in subsection Feature extraction) were grouped in 
data modalities for the classification task. In total, 42 features corresponded to HRV, 108 to IMU data, 84 for the 
EMG amplitude (EMG-A), and 84 for the EMG contact impedance values (EMG-C). The annotations from the 
continuous self-reported arousal and valence were processed to extract 12 statistical features used as the inputs for 
determining the baseline classification results (Table 4, see arousal and valence classification in the results section).

Classifiers. As an example of the database capabilities, each data modality was employed to train four tradi-
tional machine learning classifiers commonly used for affect recognition47, and one deep learning (DL) model48. 
The classifiers comprised a ridge linear regression (where the output was categorised for classification) endowed 
with Tikonov regularisation optimised within the range [10 , 10 ]5 5γ ∈ − , an SVM with a Gaussian kernel opti-
mised for the variance [10 , 10 ]1 3σ ∈ − −  and optimal regularisation c [1, 10 ]3∈ , a random forest optimised in 
the number of trees ∈N {10, 50, 100} and depth ∈D {5, 10, 20}; and a K-nearest neighbours classifier with 
n {1, 5, 11, 15}∈ . The DL model was implemented as a shallow neural network using the Scikeras wrapper to 
integrate with the evaluation pipeline implemented in Scikit-learn. Networks used categorical cross-entropy loss 
function and an Adam optimiser with learning rate [0 05, 0 001]α ∈ . .  and dropout rate ∈ .p [0, 0 05]. A shallow 
architecture (one hidden layer) and a two-hidden layers network were implemented with 100 and 50/50 units 
respectively. This architectural structure has been chosen because deeper convolutional networks for affect rec-
ognition (see recent reviews in49,50) can be prone to over-fitting for EMG inputs, especially in datasets of compa-
rable sizes to the AVDOS-VR EMG database50.

Evaluation. Each combination of data modality and classifier was evaluated with nested leave-one-subject-out 
cross-validation (LOSO-CV), a standard two-stage approach for hyperparameter optimisation, followed by a 
robust, subject-independent out-of-sample validation with fixed hyperparameters. Each participant was treated 
as a test subject once, while the remaining data was used for training. This process was repeated for each par-
ticipant, and the performance metrics were averaged across all iterations to obtain the final evaluation of the 
algorithm’s performance. The best classifier is chosen based on the out-of-sample performance, as measured by 
the F1-score. The analysis was implemented in Python 3.9 (using the aforementioned libraries) and conducted 
on an Ubuntu 18.10 machine with AMD 2950X CPU, 128GB RAM, and two GPUs NVidia RTX 2080Ti.

Arousal and valence classification. Optimal hyperparameters are chosen for each combination of data modality, 
classifier, and test subject based on the out-of-sample overall classification performance. Based on the average 

Fig. 11 Violin plots depicting mean heart rate (BPM) and HRV (milliseconds) for the positive, neutral, and 
negative conditions.
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ratings for each video category presented in Fig. 7, arousal classification was defined as a 2-class problem com-
bining positive and negative videos (class 1), and neutral videos (class 0). Valence classification was defined as a 
3-class problem identifying each video category independently (negative: −1, neutral: 0, positive: 1).

Table 4 shows the F1-score obtained with the AVDOS-VR dataset and averaged over 37 participants. 
Annotations are a reliable proxy for the ground truth (the video categories), assuming that self-reported contin-
uous ratings yield the necessary information to predict the intended affect accurately (see below). Thus, we term 
the decoding performance using annotations baseline results. Then, each physiological modality captured is 
used individually as input. ‘Mask-all’ results combine all physiological signals/modalities captured by the device 
and do not include participants’ self-rating annotations.

Baseline results confirm that self-reported ratings yield a nearly perfect score of 1.0 (0.995014, rounded up) 
for a 3-class valence classification with the DL model (Table 4), as expected. Consequently, Fig. 8 depicts the 

Fig. 12 RMS EMG Amplitude for each segment. A participant-specific standardisation was applied. Post-hoc 
paired t-tests results: **p < 0.01, ***p < 0.001.

Fig. 13 Variation of motion data recorded on the Z-axis (backwards and forwards) as measured by the 
accelerometer, magnetometer and gyroscope sensors and displayed for the positive, neutral and negative 
conditions separately.
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close mapping between video categories and participants’ self-reported valence, despite the subjective nature 
of self-assessments introducing some variability. Negative and Positive valence videos (red and blue box plots) 
feature distinctly lower and higher self-ratings; neutral stimuli provide comparable ratings to relaxation videos 
(green). This correlation underlies the high baseline performance of the expressive DL classifier.

By contrast, the optimal arousal classifier F1-score drops to 0.84. This high but sub-optimal performance 
reflects the less salient relationship between arousal self-ratings and video categories by design since videos are 
optimised for valence elicitation (see Methods).

When classifiers consider all physiological measures for deriving input features, their performance reaches a 
0.78 F1-score for arousal and 0.77 for valence, below the baseline, as expected. The random forest performs best 
for arousal, and the DL model is best for valence.

Classification scores for the individual data modalities show that PPG features are the least informative 
for arousal (0.55) and valence (0.36) classification, producing almost the same F1-scores as chance (0.5 and 
0.33, respectively). The EMG amplitude is the most influential modality for affect detection, with F1-scores of 
0.78 and 0.79, better than when all physiological modalities are combined. The achieved classification perfor-
mance for binary arousal and 3-class valence is higher than recent datasets for VR-based affect recognition51.  

Fig. 14 This composite figure integrates a bar plot and a heatmap to illustrate classification performance, as 
assessed by the F1-score, across all classifiers, modalities, and participants. The heatmap visually presents the 
performance of each participant, with the x-axis representing participant IDs. Additionally, the bar plot depicts 
the average classifier performance across all participants for each classifier and modality combination.

https://doi.org/10.1038/s41597-024-02953-6


1 6Scientific Data |          (2024) 11:132  | https://doi.org/10.1038/s41597-024-02953-6

www.nature.com/scientificdatawww.nature.com/scientificdata/

A visual comparison of the averaged F1-scores across participants is also visually presented in Fig. 14, where the 
error bars indicate standard deviations across the participants.

Subject-specific feature importance. The heatmap in Fig. 14 shows the best F1-score achieved for each subject, 
per combination of data modality, classifier, and target variable. The labels in the centre indicate the subject ID 
used as the test set and the average F1 scores across participants. The legend below refers to the F1 scores in the 
heatmap plot and the corresponding classifier in the barplot. Results depict that EMG amplitude is the most reli-
able physiological modality for both arousal and valence classification (consistent with Table 4). In addition, the 
LOSO-CV employed for the evaluation allows discriminating subject-dependent responses that may be directly 
related to the target variables47,52. For instance, the DL model for valence recognition produced high F1 scores in 
some specific participants even though their data were not included during the training stage. Namely, F1 scores 
higher than 0.8 were achieved only with EMG amplitude in subjects 2 and 9; only with EMG contact imped-
ance in subjects 0, 6, and 7; or a combination of all features from the mask in Participant 24. Subject-specific 
responses were similar across participants for arousal classification and traditional ML classifiers in both target 
variables.

Usage Notes
Researchers have the option to use processed data ‘Dataset_ AVDOSVR_ postprocessed.csv’. This includes 
labelled and processed data conveniently prepared and ready for feature extraction. For those wishing to develop 
different processing methods, raw data is also available.

Timestamps. Event timestamps stored in .json files use J2000 format and must be converted to synchronise 
with physiological signals if not using a post-processed data file. An example timestamp from an event file is 
‘676562930518’. To convert it to a common Unix timestamp format used by the raw physiological data files, a 
constant of 30 years of milliseconds needs to be added to our event timestamp: 676562930518 + 946684800000 
= 1623247730518. The resulting Unix timestamp can then be easily decoded using numerous built-in libraries or 
online tools53. For the raw data, the Unix timestamp of the start of the recording is saved in the metadata ‘#Time/
Seconds.unixOffset’. This can be used in combination with the ‘Time’ column which stores the number of milli-
seconds since the start of the recording to synchronise custom events and physiological data observation rows.

Code availability
Data processing was carried out in Python (v3.9) and all code developed for its pre-processing, transformation 
and analysis is user-friendly, documented, and freely available via our Github repository44.
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