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Abstract: E-textiles have emerged as a fast-growing area in wearable technology for sports and fitness
due to the soft and comfortable nature of textile materials and the capability for smart functionality to be
integrated into familiar sports clothing. This review paper presents the roles of wearable technologies in
sport and fitness in monitoring movement and biosignals used to assess performance, reduce injury risk,
and motivate training/exercise. The drivers of research in e-textiles are discussed after reviewing existing
non-textile and textile-based commercial wearable products. Different sensing components/materials
(e.g., inertial measurement units, electrodes for biosignals, piezoresistive sensors), manufacturing
processes, and their applications in sports and fitness published in the literature were reviewed and
discussed. Finally, the paper presents the current challenges of e-textiles to achieve practical applications
at scale and future perspectives in e-textiles research and development.

Keywords: e-textiles; wearable technology; sensors; sports; fitness; performance; injury; monitoring;
rehabilitation

1. Introduction

Wearable technologies are now accepted and widely used in multiple sports and fitness
activities across all levels of performance, from recreational to elite, in individual and team
sports, and including non-disabled and disabled athletes alike [1]. Wearables can be used
to monitor a wide variety of biosignals (e.g., heart rate and muscle excitation) and can also
track performance (e.g., distance and speed) and the technique (e.g., joint angles) used to
produce that performance. The most common types of existing wearables are typically
wrist-worn smartwatches, chest straps, devices mounted on or in the footwear, or, more
recently, those located within sports clothing [2]. Analysis of subsequent data can be used to
gauge improvements in fitness, help mitigate injury risk [3,4], inform recovery [5], monitor
technique [6], or, at a consumer level, simply provide motivation [7]. The typical sensors
used to date are inertial measurement units (IMUs comprising accelerometers, gyroscopes,
and magnetometers), Global Positioning Systems (GPS), and heart rate (electrocardiography,
ECG) and muscle excitation (electromyography, EMG) sensors.

Electronics textiles (e-textiles or smart fabrics) are advanced textiles that include elec-
tronic functionality ranging from conductive tracks to sensing/actuating, communications,
and microprocessing [8]. The global market for e-textiles is projected to reach around
$15 billion by 2028 [9]. E-textiles are a platform technology for wearables that are highly
relevant to sports and fitness applications. The motivation for incorporating sensing and
electronic functionality into textiles for sports and fitness applications is evidenced by the
growing number of clothing-based wearable devices aimed at this sector. Examples include
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STATSports Apex Athlete series [10] and Catapult One [11], both of which are GPS-based
tracking devices also incorporating IMUs, where the electronics containing sensing, com-
munication, and processing capabilities are implemented in a conventional rigid form with
the modules located in a pocket on the garment. GPS-enabled smart watches or footwear
could provide similar GPS data; however, their use is not permitted in most sports where
physical contact between participants is possible, but this is dependent on the changing
rules of each sport.

Textiles provide a comfortable, ubiquitous platform that individuals are entirely famil-
iar with. Considerable effort has gone into engineering technical textiles for sportswear [12],
where the market is dominated by household brands such as Nike, Adidas, and Puma.
E-textiles technology offers the ability to further enhance sportswear functionality by invis-
ibly integrating sensors, microprocessors, and communications into garments [13,14]. This
approach can potentially improve compliance with technology amongst users, develop the
ecological validity of the data where sensing can happen in the natural sporting environ-
ment, and collect data on more important metrics about populations remotely to develop
sensing algorithms and interventions. However, at present, the level of integration of the
electronic functionality within the garment is typically limited to separate modules that fit
into a pocket located on the clothing, as illustrated by the STATSports and Catapult cases. A
few other examples do include additional functionality in the textile. Prevayl’s Smartwear
incorporates conductive textile electrodes connected to the electronic unit with a 512 Hz
sampling frequency to detect the ECG signal and display the information on a smartphone
(Figure 1a) [15]. The product is used for both amateur and professional athletes. Equivital
LifeMonitor with built-in multi-sensors can monitor ECG, respiration, tri-axis accelerom-
etry, and temperature (Figure 1b). The product is mainly used in training (e.g., military)
and health and safety monitoring in harsh working environments (e.g., fire-fighting), but it
can also be used in professional sports monitoring (e.g., car races, bike races) [16]. Despite
the advances in e-textiles, it is not straightforward to achieve the required reliable and
robust electronic and sensing capability in textiles in a manner that has minimal effect on
the properties of the fabric. Most existing e-textile technology does not yet deliver practical
solutions that replicate the levels of sensing, processing, and communication functionality
achieved with the separate, rigid, discrete modules located in a pocket within the garment.
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This review contains a comprehensive evaluation of the capability of existing technolo-
gies and approaches to addressing a wide range of sports/fitness-related applications and
looks forward to the development of e-textiles and the corresponding research challenges.
Section 2 introduces the role of technology in sports in general, reviews the measurements
and parameters that are of interest to the participant or coaching/support team, and high-
lights a use-case scenario of monitoring training loads in an attempt to promote beneficial
adaptations and reduce injury risk. Section 3 discusses the commercial non-textile and
textile-based wearable devices in sports and fitness applications. Section 4 outlines the
drivers for research in e-textiles and presents research-based examples of existing e-textile
systems using different sensing technologies. Section 5 discusses future opportunities and
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the associated research and development required to realise practical e-textile solutions
that assist individuals across all abilities and age ranges.

2. Technology and Sensing in Sports and Fitness
2.1. Current State and Future Considerations of Technology in Sports Science

Technology has always played an important role in sports science; without it, much of
the scientific foundations within its sub-disciples would not have been possible. Histori-
cally, sports science was often restricted to a laboratory-based setting, in subject discipline
isolation, but the rapid development of technology (sensors, processing, and commu-
nications) has allowed the movement from the laboratory to training and competition
venues and environments. Calls to enhance the interdisciplinary nature of sports science
work [17–21] have slowly been realised in research [22–26], but the call is ever-present.
This multidisciplinary approach has happened more rapidly in practice in tandem with
the professionalism of multidisciplinary teams [27] involving coaches, strength and condi-
tioning specialists, medical doctors, rehabilitation therapists, physiologists, psychologists,
nutritionists, and many others. This has likely happened with the commercial development
of technology (e.g., cameras, heart rate monitoring, mobile force platforms), allowing the
capture of a variety of data to measure athletic performance and facilitate the design of
interventions to enhance performance, recover from injury, and monitor wellness, sleep,
and diet.

Athletes wear smartwatches, fitness trackers, heart rate monitors, and other sensors
to track their performance, monitor their health, and analyse their training. Previously
outlawed in many competitions, there is a slow but welcome allowance to wear sensing
technology in competitions, although sport-dependent. These devices can provide real-
time feedback metrics such as heart rate, calories burned, and distance covered, helping
athletes optimise their workouts and avoid overtraining. They can also help coaches
track the progress of athletes they work with and make informed decisions about training
and competition.

As wearable devices become more advanced, for example, with the development of
communication to transfer more information more rapidly and with the development of
mathematical processing from inertial sensors, they will provide ever more detailed and
accurate data, giving athletes and coaches a deeper understanding of physical and tactical
performance, and training loads. Analytics of this data will continue to improve, allowing
analysts to identify more complex patterns and trends and make more accurate predictions
about athlete performance and injury risk. However, many these processing capacities will
lie with large companies interrogating ever-growing data sets.

Virtual and augmented reality are a growing trend in sports [28–30] and have the
potential to have a large impact on how we learn skills [31] as they become even more
realistic, providing athletes with an immersive training experience that closely mimics the
real thing. However, as technology becomes more integral to sports performance, there is a
risk that it could create a divide between well-funded teams and athletes and those who
cannot afford the latest equipment and technology. This could widen the gap between elite
athletes and those who are just starting out, making it even harder for newcomers to break
into the sport [32–34]. At the same time, there is an opportunity to develop interventions
using virtual reality to develop the talent pool of athletes available, as long as practitioners
are sufficiently trained in how to use and adapt said interventions.

From an athlete/coach/practitioner perspective, we already have a deluge of data,
often with more metrics and data recorded than can be actioned. Some simple but key
questions need to be asked as we progress with these technological developments. Are
the metrics measured valid and reliable across a range of populations? As we move from
laboratory to different training environments, how rigorous does the setup need to be? As
technology develops different metrics, how sensitive are these to change (e.g., minimum
clinically or practically significant change or minimum detectable change), and what does
this mean for different populations? Are metrics named for trademark and marketing
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terms obscuring good science or confusing users? Do the users understand what this metric
is and how it can be modified through intervention—is it useful? Future academic work
will need to focus on developing actionable interventions through knowledge transfer
with companies and teams to develop an understanding of training interventions. With
a global pandemic of physical inactivity leading to early mortality and mental health
conditions [35], there is an opportunity, and a need, to develop technology to enhance
our ability to personalize health, rehabilitation, and well-being, which will start to be
intervention-led in conjunction with the progression of technology.

2.2. Technology for Training Load Monitoring in Sport

A common application of technology within sports is for training load monitoring.
Whether physical activity is performed for health and/or social benefits, sporting per-
formance, injury risk reduction, and/or post-injury rehabilitation, a primary concern is
the prescription and monitoring of an appropriate ‘dose’ of activity. This is often de-
scribed as the ‘training load’, representing the demands of the particular activity for the
particular individual in the particular context that it was performed [36]. At a simplistic
level of understanding, there is hypothesised to exist a ‘sweet region’ of ideal training
load, below which prior adaptations may be lost (i.e., disuse) and above which the nega-
tive consequences (e.g., tissue damage) of activity may exceed any beneficial adaptations
(i.e., overuse) [37,38]. Additionally, the balance between training stimulus and inter-session
recovery feeds into a ‘fitness-fatigue’ model of performance [39]. These simplistic models
can be applied to various biological systems and their related performance and/or injury
effects [40].

Training load is often divided into ‘external’ and ‘internal’ load. External load refers to
the activity and work completed (e.g., distance travelled, mass lifted, number of repetitions),
whereas internal load refers to the effects of that activity on biological systems [41–43]. In
this context, ‘load’ may not necessarily refer to the mechanical force experienced but rather
a description of the demands of the activity, just as in familiar terms such as ‘workload’,
‘cognitive load’, or ‘viral load’ [44,45]. Each of these categories can be further subdivided
into physiological or biomechanical loads. For example, external physiological load may
refer to metabolic power, whereas internal physiological load could be the oxygen uptake
or cardiovascular demand [46]. These metrics are typically measured using laboratory
equipment where a participant would participate in a VO2max (or equivalent) test to
measure oxygen uptake or take lactate samples from blood to calculate fatigue levels.
Through experimentation, regression equations [47,48] have been created to allow estimates
of VO2max, which can then be calculated using input from worn sensors (e.g., heart rate),
yet lactate has only recently become non-invasive [49] showing potential for e-textiles in
the future.

External biomechanical load may refer to ground reaction forces or centre of mass
accelerations, whereas internal biomechanical load may refer to joint contact forces or
muscle-tendon forces [44]. These alternate loads can, therefore, be prescribed, monitored,
and altered somewhat independently of each other to achieve the overall aims of a training
block or individual session, perhaps while also addressing secondary aims relating to injury
risk management [50].

Perhaps the most well-known and commonly used technologies for monitoring train-
ing load in sports, as already alluded to within this article, are heart rate monitors and
GPS or Global Navigation Satellite Systems (GNSS) technologies. GPS is one sub-section
of GNSS, with modern GNSS accessing a greater number of satellites and, therefore, po-
tentially greater precision and reliability [51,52]. Both are typically monitored at the torso,
heart rate via a chest strap, and GNSS via a unit positioned between the scapulae in a
manufacturer-provided elastic harness. Heart rate data are used to calculate metrics such
as peak or mean heart rate or time spent within heart rate zones generally corresponding to
the use of different physiological energy pathways (e.g., aerobic/anaerobic energy systems).
GNSS, on the other hand, can be used to calculate metrics, such as total distance covered,



Sensors 2024, 24, 1058 5 of 22

number of sprints, top speed, work:rest ratios, and the time spent in different speed zones.
Such training load metrics can not only be used for the prescription and monitoring of train-
ing sessions but can also facilitate manual or automated updating of subsequent session
designs based on previous differences between prescribed and achieved training loads [53].

One area of growing focus is the need and current relative inability to measure biome-
chanical training loads outside of a laboratory [45], especially internal biomechanical
training loads. That is, the forces experienced by specific tissues within the body (e.g., mus-
cle, bone, tendon, ligament). This is particularly relevant when seeking to associate training
load measures with injury likelihood or inform progressive overloading of the tissue during
rehabilitation or injury risk reduction programs. GNSS can describe the activity performed
(e.g., a 10 km run at a certain speed), and heart rate can indicate the cardiovascular demands
of the activity, but neither can describe the effects of the exercise on the musculoskeletal
system. Applications of GNSS are further limited in indoor sports (although Local Posi-
tioning Systems can be used [54,55]) and when activity is performed with relatively little
translational movement (e.g., holding an isometric squat position in a badminton doubles
match). As a result, many companies now incorporate an IMU into the GPS unit, with the
accelerometers used to measure cumulative accelerations experienced at the back. These
are expressed as modified load vectors such as PlayerLoadTM (Catapult Sports, Melbourne,
Australia [56,57]) or Dynamic Stress Load (STATSports, Newry, Northern Ireland [58,59]).
As the trunk is the heaviest body segment and is positioned proximally on the body, these
accelerations have been proposed to represent whole-body mass centre accelerations and,
therefore, relate to the ground reaction forces or impact magnitudes experienced by the
athlete (i.e., external biomechanical training load). However, this neglects the influence
of other body segment accelerations, considerable post-impact shockwave attenuation
inferior to the sensor [60], and the contribution of various frequency components to the
overall acceleration signal [58,61]. Even an entirely accurate measure of ground reaction
force or mass centre acceleration may not correlate with the internal forces experienced by
specific tissues if muscle forces are not accounted for [62]. Nonetheless, overall measures of
cumulative torso accelerations have been associated with oxygen uptake and heart rate
measures [54,63], distinguished between activities [64], and enabled the monitoring of
fatigue [56], among other factors.

IMUs positioned elsewhere on the body offer additional measurement opportunities.
IMUs on specific body segments can be used not only to quantify technique but also in con-
junction with machine learning or other algorithms used to detect certain activities [65–68]
and perhaps quantify the intensity of these movements. Greater insight can perhaps be
gained when data from wearable technologies are used alongside existing models of tissue
stress response or as inputs to neuromusculoskeletal models. For example, models of bone
remodelling [69,70] have been used to quantify a tibial ‘Bone Stimulus’ metric from tibial
accelerometry via IMeasureU’s IMU Step system. While this has shown reliable results in
running and soccer-related tasks [71,72], studies have demonstrated an inability of tibial
accelerometry to represent loads on the tibia bone [61,73]. Such bone forces are more
dependent upon muscle forces than any shockwave resulting from the ground reaction
force [61]. Nonetheless, physics-based and/or machine-learning models can be used to
predict tibial bone loads from wearable technology data (e.g., a pressure-sensing insole
and an IMU positioned on the foot) [74,75]. Similarly, open-source methodologies exist for
the use of multiple IMUs as input to whole-body musculoskeletal computer simulation
models that could also be used to estimate internal biomechanical loads [76,77]. However,
the number and/or size of sensors required will likely need to be reduced before any
real-world application for training load monitoring, perhaps predicting unknown segment
kinematics via machine learning [78–80] or optimal control algorithms (i.e., determining
the objective or ‘cost function’ of an individual’s movement via inverse optimal control and
using this to predict unknown kinematics during the movement) [81–83]. These predictions
and the selection of optimal sensor positioning and processing may be augmented through
the use of synthetic wearable technology data sets based on real or augmented laboratory
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motion capture data sets [73,84–88]. Alternatively, it may be possible to identify algorithms
to recognize certain activities [64–67] and then scale tissue-specific load estimates from
laboratory-based estimates using an intensity measure derived from a reduced number
of sensors [89]. The use of e-textile solutions with greater comfort and reduced conscious
athlete awareness may somewhat remove the constraint on the number and position of
sensors. Any developed tools for the estimation of tissue-specific internal biomechanical
training loads may facilitate the prescription and monitoring of specific loads, as well
as the ranking of exercises in terms of specific tissue loading [90,91] or the provision of
haptic [92,93] or audio [94,95] biofeedback.

There are a number of important considerations when choosing or developing wear-
able technology for sports, particularly for biomechanical loads. These include hardware
mass, dimensions, fixation, sensor range and sampling frequency, and calibration rou-
tines [96]. If the technology is intended to be used for injury-related applications, then
it should additionally build upon established causal relationships, be applicable without
any laboratory-based inputs, and be informed by specific guidelines such as individual-
or population-based normative boundaries, thresholds, or trends [97]. Researchers and
manufacturers should not forget the context in which the technology is to be applied and
the needs and preferences of the user (e.g., athlete and coach) [98]. Finally, we should assess
not only the metric itself but also the consequences of prescribing changes in that metric,
especially when the metric being used relies on average relationships rather than a direct
measure of physiological and/or biomechanical loads.

As stated in a recent International Society of Biomechanics in Sports career award
paper, ‘In the future. . . training and rehabilitation programmes will use wearable and sim-
ple imaging technologies to estimate tissue level biomechanics derived from personalised
neuromusculoskeletal modelling in real-time in the real-world. The future is not that far
away’ [99]. Developments in e-textile technologies may help to make that future a reality.

3. Commercialised Wearable Technologies for Sports

A wide variety of wearable technologies have been developed for or used in elite
sports and consumer fitness-related applications. The following are examples of commercial
devices, including where they have been explored in the scientific literature.

3.1. Non-Textile/Clothing-Based Wearables

Wrist-based wearables are the most popular form of wearable technology for ama-
teur athletes and have been used in numerous studies [100]. There are too many com-
mercial smartwatches available to list here, but examples such as the Apple Watch and
Fitbit Charge series provide typical functionality associated with such devices. This in-
cludes heart rate monitoring, general activity tracking (steps, distance, energy expenditure,
floors climbed, built-in GPS) and recognition and tracking of particular sports/activities
(e.g., walking, running, cycling, swimming). A comprehensive list of devices and their
applications, together with a summary of performance evaluation, has been presented
by Cosoli et al. [101,102]. Most smartwatches incorporate optical heart rate measurement
by photoplethysmography (PPG). This approach can be subject to motion artefacts, and
the quality of the fit and location on the wrist can also affect measurements, especially
when active [103]. Error rates are higher when swimming, where arm movements and
the water can also affect the PPG-based sensors [104]. Where arm movement is a key
aspect of a particular sport (e.g., baseball pitching or tennis serving), the IMUs within smart
watches can obtain sufficient kinematic data to provide real-time feedback on arm-related
technique, allowing the player to improve their performance, leading to an improvement in
ball speed and the pronation movement in serve [105]. The wearable WHOOP wristband
is a wristband specifically focused on fitness and health that tracks an individual’s training,
recovery, and sleep [106]. It uses PPG sensors to monitor heart rate, heart rate variability,
and sleep, and it uses this data to estimate training magnitude whilst exercising and the
rate of recovery. Other specialised wrist-based sensors have been developed for particular
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sports. For example, the BeastTM wrist-based sensor comprises IMUs with the associated
data processing and software, providing information tailored to resistance training [107].
The system provides information on repetition speed and power but was found to be less
accurate than linear position sensors when measuring speed, which could be due to the
position when worn [108]. Ultimately, the location on the wrist is not ideal for monitoring
many parameters and measurements are inferred, leading to higher error rates compared
to sensors positioned optimally in terms of performance. For example, straightforward
measurements such as step counting can be inaccurate compared with foot-based sensors.

Another commonly used and well-established class of wearable devices for monitoring
users when undertaking physical activity is chest straps with heart rate detection. These
detect the electrical signal associated with a heartbeat through the skin, and hence, the
electrodes located on the strap must be in contact with the skin. The same technique
is used for clinical ECG measurements, although chest straps are limited to 2 electrodes,
whereas clinical systems can use over 20. Early research into their efficacy was very positive,
demonstrating that consumer sports chest straps achieve 99% accuracy when compared to
clinical ECG equipment [109]. Studies exploring the suitability of chest straps to provide
data enabling measurement of the RR interval (the time between successive R waves in an
ECG signal) found that at high activity levels, the Polar H10 chest strap was superior to
a Holter device [110]. The Holter device is commonly used as a reference but was shown
to be unsuitable for intense activities and large body movements, whereas the chest strap
remained unaffected.

Wearable inertial sensors can be located on the body using pockets in clothing or by
simply strapping the sensor onto, for example, a limb. These started with pedometers
recording step count/frequency for daily ambulatory monitoring. The limitation of these
is that only total steps for the duration of the recording are shown, and no temporal
information is provided for the calculation of the rate of change of steps (i.e., were they
running or walking). As technology has progressed, inertial sensor-based devices have
helped address this limitation, allowing many sports to obtain various spatiotemporal
parameters [111].

The TritonWear (first version) system for monitoring swimmers comprises the Triton
Unit (firmware version 1.1.2), a small IMU designed to fit under a swimmer’s cap, and data
analysis and presentation software. The system can monitor up to 50 swimmers, providing
general motion data such as acceleration and swimming-specific data (e.g., stroke count
and stroke efficiency) with reported mean absolute percentage error (MAPE) of 0, 2.4, 7.1
and 4.9% for butterfly, breaststroke, backstroke & freestyle respectively for stroke count
data [112].

The Xsens MVN Awinda is a real-time human motion tracker that exploits IMUs placed
at multiple locations around the body using simple Velcro straps. The devices are con-
nected with a bespoke wireless protocol that enables synchronised data capture [113]. This
system has been used to analyse technique during walking [114,115], running [116,117],
cycling [118,119], and more novel activities such as goalkeeper diving [120], cricket bowl-
ing [121], change of direction tasks [122], and jumping in handball [123]. A similar array
of sensors, with the addition of EMG sensors designed to be stuck to the skin, has been
developed by dorsaVi Ltd. (Victoria, Australia) [124]. These sensors can be mounted
at the optimum position for the activity type and have been developed for elite sports,
medical and workplace applications (e.g., to monitor lifting). The inertial sensors have
been validated when placed on the medial tibia of each leg and used to predict the ground
reaction forces when running. The system achieved errors in the range of 5.4–6.1% across
three participants when compared to a force platform [125]. The dorsaVi technology pro-
duces comparable kinematic data to the Xsens Awinda system, indicating that the different
mounting methods have little effect on the data collected [126].
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3.2. Clothing and Textile-Based Wearables

IMUs located within clothing have been developed for a range of specific sports. For
example, sensors placed along the spine can be used to identify swimming stroke and
phase [127], commercialised with the Incus Nova wearable [128]. This sits in a pocket
between the shoulder blades and can also provide data when running. This highlights
the broad applicability of IMUs, where the same hardware can provide data for each
activity type, subsequently requiring the appropriate analysis. The STATSports Apex
Athlete series [10] and Catapult One [11] GPS devices are designed to monitor an athlete’s
performance in field sports where parameters such as the distance covered, number of
sprints, time in different speed zones, and top speed are monitored. These garment-based
wearables allow the electronics to be placed on the upper back between the scapulae, where
they are safe and relatively unobtrusive. The STATSports Apex, for example, has been
compared favourably with radar-based tracking technologies [129] and has been used to
gain insight into the performance of football players in different age groups, the results of
which could inform training programs [130]. The Nadi X, developed by startup company
Wearable X [131], include accelerometers and haptic feedback in the form of vibrations that
are designed to assist with obtaining and maintaining yoga positions. The rigid device
mechanically mounts to compression-fitting yoga pants behind the knee.

In the previous examples, the textile itself has no functionality other than to include
a pocket or mounting point for the conventional rigid electronic modules. In addition
to Prevayl’s Smartwear mentioned in the introduction with ECG electrodes embedded
in garments, other manufacturers have also increased the functionality of the textile or
garment. ZephyrTM has developed tight or loose-fitting t-shirts and a sports bra that
incorporate heart rate and heart rate variability sensing electrodes and a mounting point
for a detachable rigid module that monitors breathing and activity via IMUs. The garments
are essentially a chest band incorporated within the shirts/bra. The sensors utilise silver
conductive fabric electrodes that must be moistened before use, and the module must
be removed for washing and recharging [132]. Another smart garment developed by
Hexoskin also includes textile electrodes within the close-fitting ProShirt that provide
cardiac, respiratory, and activity monitoring [133]. The associated electronics, IMUs and
power supply are again provided in a rigid electronic module that sits within a pocket in
the garment. The validity and reliability of the Hexoskin smart shirt for measuring heart
rate during strenuous physical activity have been evaluated by comparing results with a
Polar Team Pro chest strap [134]. During peak activities with multidirectional upper body
movements, the Hexoskin provided erroneous data due to motion artefacts in 4 of the
nine athletes studied. Another vest-mounted heart rate monitoring top with two textile
electrodes is the Equivital Lifemonitor, but this, too, is subject to motion artefacts and is
better suited to lower activity levels [135]. These examples highlight motion artefacts as one
of the major challenges with wearable ECG/EMG sensors when used in physical activities.
Sensoria offers short-sleeved sports tops and bras that use textile electrodes, a snap-on
electronics module, and a Smart sock that utilises three textile pressure sensors under the
foot to capture cadence, step count and foot landing technique. The sensors are connected
to the Sensoria Core, a small, rigid electronics module that snaps into the dock located at
the top of the sock. In comparison with a shoe-based inertial sensor and video analysis, the
smart sock provided an excellent measure of cadence (ICC 0.91), speed (ICC 0.86), distance
(ICC 0.86) and foot strike pattern (ICC 0.91) [136]. Fabric-embedded electrodes are used
in the Athos Core compression garment designed to monitor muscle excitation alongside
heart and breath rates. The data collected by the Athos system were found to be comparable
with a research-grade surface EMG system [137]. A similar product developed by Strive
includes an IMU attached to compression-fitting shorts that include electrodes for detecting
EMG signals from quadriceps, hamstrings, and gluteal muscles [138]. A study funded by
Strive reported a good correlation between muscle and training loads [139]. Dragonfly Golf
is a clothing-based all-body motion analysis system that comprises 18 IMUs attached to
a full-body base layer garment [140]. The IMUs are housed in rigid modules that fasten
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to the corresponding connector on the suit, and this enables sensors to be removed for
washing and then re-attached. The suit includes a wiring loom that connects the sensors to
the central power supply, and a module that collects and wirelessly transmits the data. The
hardware is complemented by player and coaching apps that enable the visualisation of
the data and detailed analysis of the golfer’s technique.

E-textiles do not have to be engineered into full garments. For example, smart sensing
sleeves that cover the forearm or full arm have been developed. The Komodo AIO Smart
Sleeve is a general-purpose wearable device that incorporates a PPG sensor, IMU, battery
and Bluetooth Low Energy hardware in a typical rigid module that snaps onto the inside
of the sleeve and sits in contact with the skin [141]. The sleeve is available in both short
(lower arm only) or long (full arm length) versions, and in active mode, the device monitors
steps, distance, heart rate, sleep, and activity intensity. In health mode, the sleeve has an
additional wired electrode that connects to the module and is designed to be placed on the
chest. This provides one lead, two electrodes, and ECG data when stationary and cannot
be used when training. The level of functionality within the textile is low, with the sleeve
simply incorporating magnetic clip-on connectors and a single embedded wire to the top
connector. Motus has developed a sleeve for monitoring throwing sports such as baseball,
American football and cricket, but the functionality is again provided by a rigid module
that sits within pockets on a sleeve or band [142]. Myontec offers a suite of garments,
including compression shirts, shorts, waist belts and arm and lower-leg sleeves with IMU
sensors and EMG electrodes [143]. The shorts provide similar functionality to the Stive
system, with EMG sensing electrodes monitoring the quadriceps, hamstrings, and gluteals.
This has been used to longitudinally analyse neuromuscular responses to training [144].
The leg sleeve monitors the tibialis, gastrocnemius and soleus muscles, whilst the belt
targets the multifidus and erector spinae muscles in the back. The same module housing
the IMU, and other EMG monitoring electronics has been used within each garment using
a bespoke snap-on rigid connector.

This review highlights that many of the commercially available wearables, clothing-
related or otherwise, rely on IMUs potentially augmented with GPS or heart rate monitoring
systems. The hardware and sensor performance offered is similar across all examples, with
some variations in the number of sensors and the method/location of attachment. An
additional and key distinction is provided in the supporting application software that
collects and analyses the data. It is a crowded marketplace, and despite the market size for
wearable technologies and the expected growth, successfully monetising the technology
and surviving the competition is challenging [145].

4. Research in E-Textiles for Sports and Fitness
4.1. The Motivation for E-Textiles Research on Sports and Fitness

Textile implementations of sensors and electronics have a large range of potential
applications in monitoring progress and performance, reducing injury risk and motivating
regular exercise and training. To advance the current commercial products and enable the
wide adoption of e-textile technologies in sports and fitness, research has been conducted
in the areas of new materials and sensor components, manufacturing methods, system
integration and user-centred design. The aims of these studies include improving sensing
functions (e.g., accuracy, reliability), user comfort (e.g., flexibility, softness), durability
(e.g., washing, wearing) and design (e.g., aesthetic appearance, ease to put on and take off).
Other research has related to the charging/power, data acquisition/processing/transmission
and the interaction with other technologies (e.g., Internet of Things (IoT), Artificial Intelli-
gence (AI)), which are not within the scope of this review but for which information can be
found in published papers [8,146,147].

The benefits offered by e-textile implementation depend upon the application and the
solution, but there are several common advantages:
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• Textile/clothing-based solutions provide a comfortable and familiar platform to users.
E-textiles would enable unobtrusive and ubiquitous deployment sensors in clothing.
Textile-based soft products are safe in contact sports;

• Textiles are versatile materials that can be designed to change their properties to fit the
application needs through the optimal combination of textile materials and structures;

• The integration in clothing will improve compliance (users might forget to use con-
ventional technology, but they always remember to get dressed). Ease of use and
increased compliance can provide more data to better inform training and reduce the
risk of overload;

• The unobtrusive and seamless integration of miniaturised or flexible sensors is less
likely to influence the parameters being monitored. This allows close contact between
the sensors and the skin, reducing measurement errors caused by the displacement of
the rigid/large sensors relative to the underlying anatomy;

• Multiple sensors can be incorporated into a single platform (e.g., an item of clothing) in
multiple body positions rather than requiring users to wear several separate devices;

• Integration of sensing within garments enables sensors to be located at the optimal
location on the body and to measure a much wider range of signals than possible with,
for example, a smartwatch;

• Information or alerts can be provided through the textile, providing real-time feedback
to the user in a single platform.

4.2. Research on E-Textiles for Sports and Fitness Using Different Sensing Technologies

IMUs, biopotential electrodes and tactile/pressure interfaces are the most commonly
used technologies in sports [148]. Main applications include motion measurement, vital
signs monitoring and interactive applications. The level of sensor-textile integration varies
from simply attaching the sensor to the wearer using a textile (e.g., elastic strap) to integrat-
ing the sensor components (e.g., IMU chip, sensing yarn/ink) to form an integral part of
the wearable e-textile.

4.3. IMUs for Motion Detection and Joint Function Measurement

The use of IMUs has accelerated with improvements in hardware development and
data processing. IMUs have been used in e-textile wearables for sports and fitness due to
their low cost, portability, real-time data, and suitability for dynamic movements. They
have been used to monitor gestures/poses, range of motion, steps and types of activities
(e.g., walking, running, climbing). They can also be used in gait analysis to assess movement
patterns and monitor rehabilitation. IMUs have shown moderate to excellent correlations
with gold standard approaches for gait spatiotemporal parameters during running [149],
but users should be aware of poorer accuracy in high-speed and non-sagittal plane
(i.e., abduction/adduction or internal/external rotation rather than flexion/extension)
measurements [144,150]. Dahl et al. have validated an IMU system (Opal Gen 2) against a
gold standard optical system for sports-related common movements (e.g., cutting, running,
jumping) [151]. This study found a good level of agreement between the IMU and the
optical system supporting the use of IMUs for sports-related movement/rehabilitation as-
sessment, although the paper stated that continued validation and improvement of sensor
accuracy is required. Jenkins et al. have investigated the use of an IMU (LSM6DSLTR) to
monitor body configuration in relation to back injury risk in weightlifting exercises [152].
Taborri et al. have used IMU (Invensense ICM 20948) sensors integrated with a support
vector machine algorithm to identify faults (e.g., illegal running) during race walking,
which has the potential to assist officials in competitions (Figure 2b) [153]. The sensors
used in these examples were not directly integrated into textiles, with textiles only used
to hold the rigid enclosure of the IMUs in the form of a strap. In order to reduce the size
of the sensing system and improve its flexibility, an IMU (MC6470) sensing filament has
been developed by soldering the sensor on a narrow flexible circuit (<5 mm wide) and
woven into textiles for monitoring joint angles and movement types (e.g., walking, run-
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ning, climbing stairs) [154]. The flexible circuit was fabricated using photolithography and
etching processes described in [13]. Four wires were soldered on the filament to implement
the I2C protocol for data, clock, power and ground connections and woven into a textile
that can worn on the arm to measure joint angle (Figure 2c). Although sports and fitness
applications were not investigated in the paper, the technology is applicable to many sports
and fitness applications involving the monitoring of joint movements. In addition to the
standard IMU challenge of signal drift, which requires calibration and effective process-
ing, integration of IMUs into a wearable item (e.g., sleeve, t-shirt, leggings) providing
close and reliable contact with the skin is required to eliminate/reduce motion artefacts.
Although the filament-sensing yarn approach has improved the integration within the
textile, the establishment of scalable and cost-effective manufacturing is required to make
it commercially variable.
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Figure 2. (a) The assembled PCB prototypes with a 3D-printed case [152], reproduced with permission
from the publisher Elsevier; (b) electrical circuit with a protective case [153]; (c) IMU filament
embedded in a woven textile [154].

4.4. Electrodes for Heart Rate, Heart Rate Variability, and Muscle Excitation/Strength

ECG is the most common biosignal measured for the monitoring of cardiovascular
health and to provide early detection of arrhythmias. The conventional Ag/AgCl hydrogel
electrodes used in ECG monitoring are not suitable for long-term wearable applications
due to the stickiness, moisture evaporation and ease of contamination of the electrodes.
Textile-based dry electrodes have been developed for wearable ECG to overcome the
disadvantages of hydrogel electrodes (Figure 3). The electrodes form an integral part of
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the textile, which is then made into a wearable item that provides tight contact between
the electrodes and the skin to reduce signal noise generated via the movement of the
electrodes. Electrodes are mainly made by depositing conductive inks/paste on textiles
using printing [155–157], coating the textile in the electrode material solution [158,159] or
knitting [160,161], weaving [162,163], or embroidering [164,165] commercially available
conductive yarns or bespoke conductive yarns such as graphene-based yarn and PDOT:
PSS-modified yarn [166,167]. Sun et al. have developed an ECG t-shirt that can monitor an
individual’s heart rate during endurance training [168]. Ousaka et al. demonstrated the
feasibility of continuously monitoring ECG during a full marathon to use the technology to
prevent sudden cardiac accidents [169]. Bosco et al. investigated the use of a 12-lead ECG
strapped to the waist to collect ECG data underwater to analyse heart rate, arrhythmias,
conduction abnormalities and ischemic events in relation to various stages in diving [170].
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Figure 3. (a) ECG bracelet made of printed electrodes with snap button connectors: inner layer (a-1),
outer layer (a-2), bracelet form (a-3) [156], reproduced with permission from the publisher Elsevier;
(b) electrodes made using the pad-dry-cure method and the design of an ECG bra [158], reproduced
with permission from the publisher Elsevier.

EMG is used to monitor muscle excitation using the biological electrical activity
signals of the muscle, which can provide useful indicators of muscle activation patterns,
fatigue, and performance. EMG has an important role in analysing dynamic movement
and understanding the role of a muscle in a specific movement [171]. The measurement of
fatigue is important due to its negative impact on cognitive and motor performance, training
effectiveness, and risk of injury [172]. The materials and manufacturing process of EMG
electrodes are the same/similar to the ECG electrodes described above. Ohiri et al. have
incorporated stretchable electrodes and interconnects within a set of athletic compression
clothing, including a t-shirt, a pair of shorts, and calf sleeves for large-area EMG monitoring.
The modular approach allows the monitoring of the biceps/triceps, quadriceps/hamstrings,
and tibialis anterior/gastrocnemius muscles [173]. Liu et al. have developed a wearable
EMG with two electrodes embedded in bicycle pants to monitor muscle fatigue during
cycling. However, the study found that the EMG signal was affected by artificial noise due
to the electrode movement during exercise, leading to lower sensitivity compared to the
Ag/AgCl electrodes [174].

4.5. Piezoresistive, Piezoelectrical, and Capacitive Materials for Pressure, Contact Force/Speed, and
Respiratory Rate Measurement

Measuring the pressure/force applied to an object in sports and fitness activities
(e.g., running, jumping, boxing) is another important parameter to monitor during training
and to assess injury risk, e.g., from collisions. Piezoresistive, capacitive, and piezoelectric
materials and devices are commonly used for monitoring pressure and force through
the change in electrical resistance or capacitance or the generation of electrical charge in
response to pressure or force, respectively. Functional materials are integrated into textiles
using standard e-textile fabrication methods (e.g., printing, weaving, knitting, embroidery)
to produce conformable and flexible smart garments that can be worn in sports/fitness
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activities. For example, Ye et al. have developed an all-textile sensing system made of a
three-dimensional spacer fabric dielectric layer sandwiched between two nickel-plated
plain woven fabric electrodes to detect pressure, distance, and speed and which exhibits
good potential for real-time monitoring of human physical combat sports (Figure 4a) [175].
Ma et al. have developed a dual tactile-tension sensing textile made of a three-dimensional
spacer fabric sandwiched between two layers of woven textile electrodes (Figure 4b). The
textile electrodes are made of silver yarns and core-sheath conductive yarns that can
monitor the change of the impendence and capacitance to detect stretching and pressure in
taekwondo training [176].
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Figure 4. All textile-based sensors to measure (a) touchless and tactile signals in boxing: schematic
diagram (a-1), a sensor array sewn into a garment (a-2), capacitance response for slow, medium and
quick punches (a-3), local amplification diagram response to slow, medium and quick punches (a-4),
comparison of punching speed (a-5) and punching force (a-6) [175], reproduced with permission from
the publisher Elsevier; (b) stretching and pressure in taekwondo [176], reproduced with permission
from the publisher Elsevier.

These sensors can also be used to monitor the respiratory rate by detecting the expan-
sion and contraction of the chest during inhalation and exhalation, which can be indicated
by the change of resistance and capacitance. Sensors can be embedded in chest straps
or smart garments to allow real-time monitoring, such as piezoresistive sensors made of
silver-plated knitted textiles for respiratory rate monitoring [177].

Other applications include temperature-sensing textiles to monitor overheating or
hypothermia, moisture-sensing textiles to monitor sweat levels and hydration status, SpO2
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sensing textiles to monitor respiratory and cardiovascular health, and electroencephalogra-
phy (EEG) sensing textiles to monitor cognitive status [147,178].

5. Challenges and Future Opportunities

There are certain technical limitations of e-textile implementations that constrain
the practical application and wide adoption of smart fabric technologies. The follow-
ing challenges need to be considered in the research and development of e-textiles for
practical applications:

• The device’s sensing accuracy and the influence of the textile or clothing on the accu-
racy are challenges in many applications and will require calibration and correct fitting
of the wearables. For example, the data gathered from inertial sensors on garments will
depend upon how tight fitting the clothing is, as well as potential sensor-to-segment
alignment algorithms/procedures. The accuracy can also be affected by sampling rate,
sensor drift, and the external environment (e.g., temperature, magnetic interference).
Poor ECG/EMG electrode-skin contact will increase the electrode-skin impedance
and noise generated by motion artefacts. Accuracy can also be affected by the change
in humidity (e.g., sweating), an unstable connection between the electrodes and the
electronics, and the degradation of the electrodes. Many piezoresistive materials made
of carbon particle-filled polymers exhibit non-monotonic strain response, especially
under dynamic conditions due to the cyclical displacement of the conductive network,
which can be affected by strain rate, strain history, and maximum applied strain [179];

• The connector used in e-textiles is another component that impacts the size/flexibility
and reliability/durability of the sensing system. Sensors must be reliably connected
to signal-processing electronics and power sources, and unobtrusively embedding
these technologies is not straightforward. Connectors used in e-textiles that allow
detachment of the electronic/sensors (e.g., snap fastener, pogo pins, magnetic connec-
tor) introduce rigid components with considerable size compared to the sensors, and
those providing permanent attachment create potential failure points due to the poor
adhesion (e.g., conductive adhesive) and limited capability to accommodate the level
of flexing/bending of the textile causing stress on the joints (e.g., soldering);

• Electronic and sensing technologies incorporated during the manufacture of the textile
must survive the associated manufacturing process (e.g., weaving, knitting, surface
finishing), and e-textile processes must be compatible with mass manufacturing to
allow scale-up and reduction of cost. During use, textiles routinely experience physical
conditions (e.g., physical wear, bending and flexing, exposure to liquids, and washing)
and ensuring solutions are robust and reliable is a significant challenge;

• E-textiles are reliant on conventional primary or secondary batteries, and these are
bulky, rigid, and incompatible with the feel of the textile. Although the sensor com-
ponents are very small (e.g., IMUs) and flexible (e.g., electrodes for biosignals), the
presence of the battery has significantly impacted the size and flexibility of the overall
system. The integration of the battery with the textile is poor, and the battery will need
to be removed prior to washing, which happens regularly because of exercise. The
inherently rigid and bulky nature of the battery is intrusive and can spoil the user’s
perception of the e-textile technology;

• Co-design with target users to ensure their requirement is considered from the outset
of the project. The design needs to consider different requirements associated with
sex/gender, age, body size/shape, physical mobility, and digital literacy. Testing with
a large user cohort is essential to improve the data quality and explore/address the
challenges that may not be noticeable within a small user group;

• E-textiles-based applications that involve data collection, transmission, storage and
sharing must consider safety and the implications of data management and associated
ethics/privacy issues. The ownership of the data and how it will be used in a safe and
ethical way needs to be considered;
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• The lack of standards and legislation. The e-textile standards are under development
and have not been widely tested by technology/product developers. This has led
to the lack of standardised processes and methods, creating challenges in assessing
and comparing different work/products. Legislation and incentives are required to
address the environmental issues posed by the e-textile;

• Sustainability and circularity need to be considered from the design stage and across
the whole product development and product life cycle to minimise the impact on the
environment. Products need to be robust to allow longevity. Disassembly needs to
be considered to separate different components used in the e-textile for reuse and
recycling. In addition to the technology/product developers, other stakeholders
(e.g., consumers) need to become involved and accessible infrastructures need to be
established to achieve reliable and effective circularity.

Research is required to address the challenges above, which creates opportunities for
advancing e-textile technologies and developing fit-for-purpose products. Continuous
development of new materials/components and advanced manufacturing processes are
required to improve the sensitivity, reliability, durability, and level of integration of textile-
based technologies, enabling their long-term use in sports and fitness. Interacting e-
textiles with other technologies (e.g., digital technologies, AI) will add new functions for
e-textile-based wearable technologies. For example, using AI tools built on the analysis
of substantial movement and performance data collected by the e-textile sensors will
allow the development of personalised training plans and prediction of performance and
rehabilitation progress. Co-design with end users and testing prototypes with a diverse
group representing various characteristics of the intended users will allow the researcher to
capture valuable insights and feedback to improve the design and increase the likelihood of
product market fit. Responsible innovation can only be achieved and implemented with the
contribution of different stakeholders involved (e.g., technology developers, manufacturers,
distributors, end users, and policymakers), enabling e-textiles to become user-centric,
cost-effective, and sustainable solutions.

6. Conclusions

Wearable technologies have been widely used in sports and fitness applications at
both recreational and elite levels to track performance and health conditions. Wearable
sensors provide useful data in vital biosignals and key performance parameters (e.g., speed,
distance, acceleration) that can inform training to improve efficacy while reducing the
risk of injury. E-textiles provide a platform for the ubiquitous deployment of wearable
technologies due to the soft and comfortable nature of the textiles and their suitability
for everyday wearing. The level of integration varies among different techniques and
applications, from directly inserting the modular sensor/electronic unit (e.g., IMUs, GPS)
into a pocket of the garment to having the sensing material truly embedded into the textile
to make a sensing textile (e.g., ECG/EMG electrodes, force/pressure sensing fabric) that
are connected to a detachable electronic unit. These two types of integration are the most
common methods used in commercial e-textile products, and the fully integrated e-textiles
system (e.g., electronic units, including batteries) is still in its development stage.

Further advancement is required in order to gain the full benefit of e-textile-based
sensors. This includes the development of new materials and components with improved
accuracy, reliability and durability; integration of the e-textiles system with miniaturised
components to reduce the overall size and its impact on the sports/fitness garment; manu-
facturing processes that are scalable and cost-effective for both prototyping and volume
production; co-design and with end users to ensure product market fit, standardised pro-
tocols in data management/privacy and performance testing. In addition, sustainability
and circularity need to be considered in each stage of development, as well as the life
and post-life cycles of the products. The range of disciplines involved in e-textile research
should be broadened to identify new opportunities in sports/fitness applications and ad-
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dress the challenges directly related to the e-textiles and these related to broader disciplines
(e.g., energy efficiency, data-informed decisions).
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