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Abstract

Background: BRCA1/2 deleterious variants account for most of the hereditary breast and ovarian cancer cases.
Prediction models and guidelines for the assessment of genetic risk rely heavily on criteria with high variability such
as family cancer history. Here we investigated the efficacy of MRI (magnetic resonance imaging) texture features as
a predictor for BRCA mutation status.

Methods: A total of 41 female breast cancer individuals at high genetic risk, sixteen with a BRCA1/2 pathogenic
variant and twenty five controls were included. From each MRI 4225 computer-extracted voxels were analyzed.
Non-imaging features including clinical, family cancer history variables and triple negative receptor status (TNBC)
were complementarily used. Lasso-principal component regression (L-PCR) analysis was implemented to compare
the predictive performance, assessed as area under the curve (AUC), when imaging features were used, and lasso
logistic regression or conventional logistic regression for the remaining analyses.

Results: Lasso-selected imaging principal components showed the highest predictive value (AUC 0.86), surpassing
family cancer history. Clinical variables comprising age at disease onset and bilateral breast cancer yielded a
relatively poor AUC (~ 0.56). Combination of imaging with the non-imaging variables led to an improvement of
predictive performance in all analyses, with TNBC along with the imaging components yielding the highest AUC
(0.94). Replacing family history variables with imaging components yielded an improvement of classification
performance of ~ 4%, suggesting that imaging compensates the predictive information arising from family cancer
structure.

Conclusions: The L-PCR model uncovered evidence for the utility of MRI texture features in distinguishing between
BRCA1/2 positive and negative high-risk breast cancer individuals, which may suggest value to diagnostic routine.
Integration of computer-extracted texture analysis from MRI modalities in prediction models and inclusion criteria
might play a role in reducing false positives or missed cases especially when established risk variables such as
family history are missing.
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Background
Hereditary breast and ovarian cancer (HBOC) accounts
for 5–10% of all breast cancer cases. Approximately 15–
24% of familial cases are attributed to germline deleteri-
ous variants in the two tumor suppressor genes, namely
BRCA1 and BRCA2 (hereafter referred as BRCA1/2) [1–
3]. A recent large prospective study showed a lifetime-
risk for breast cancer development by the age 80, to be
72% for carriers of a pathogenic variant in BRCA1 and
69% for BRCA2, respectively [4]. The assessment of gen-
etic cancer risk and subsequently the selection for gen-
etic screening in Germany is based on guidelines and
selection criteria that evaluate the empirical probability
(EP) for the identification of BRCA1/2 variants. This is
calculated by taking into consideration primarily the
family history of breast and ovarian cancer, the age at
disease onset and the identification of bilateral/contralat-
eral breast tumors, and should exceed 10% [2, 5]. A
triple-negative breast tumor (TNBC; no expression of es-
trogen, progesterone and HER2 receptors) regardless of
the family history and age at diagnosis is also considered
as inclusion criterion due to the high probability of
pathogenic variant detection (BRCA1/2 variants in 11.2–
18.3% of the cases) [6–8]. Furthermore, a number of
prediction models have been developed to assess the
likelihood of a BRCA1/2 variant detection, mainly by
taking into consideration the family cancer history of an
affected individual [9–11]. Nevertheless, information
about family structure is often limited and genetic
screening inclusion criteria are subjected to the personal
judgment of clinicians often leading to exclusion of
many affected individuals with genetic predisposition
from testing [12, 13].
Population-based gynecological screening as well as pre-

operative control of women with breast cancer is mainly
based on ultrasound and mammography. Over the last
years breast magnetic resonance imaging (MRI) is increas-
ingly used as a supplemental imaging modality in newly
diagnosed breast cancer individuals prior to therapy. It fa-
cilitates an accurate detection, preoperative staging and
monitoring of the tumor resulting in a more efficient plan-
ning of personalized treatment strategy [14, 15].
Many reports comparing MRI morphologic and kin-

etic features between BRCA1/2-related and sporadic tu-
mors have been published. BRCA tumors, especially the
BRCA1-associated, more frequently show benign fibro-
adenoma- or cyst-like features as compared to the spor-
adic ones. These include well-defined, oval and round
shaped masses with smooth, pushing margins and
homogenous internal enhancement [16–22]. They also
exhibit high T2 signal intensity, reminiscent of benign or
cystic lesions, in contrast to the low or intermediate sig-
nal intensity usually found in sporadic breast cancers
[19]. Moreover, benign MRI kinetic features such as

slow or intermediate early rise and persistent enhance-
ment in the delayed phase has been demonstrated in
33% of tested individuals with high genetic risk or
BRCA1/2 alterations [17]. Finally, the majority of
BRCA1/2 breast cancers showed a higher rim enhance-
ment, an imaging feature associated with aggressive ma-
lignant tumors [20, 21, 23]. Other studies though, could
not identify an association between MRI features and
BRCA mutation status [24, 25]. A significant limitation
of the aforementioned studies regardless of the results is
that the interpretation of MR images was based on the
manual review of radiologists, who were already aware
of the molecular findings.
Over the last years an innovative medical imaging ana-

lysis, referred to as imaging texture analysis or radio-
mics, has been developed [26]. This enables not only the
interpretation of macroscopic radiological features, but
also the computer-based extraction of hidden-to-the-
naked-eye textures and shape features from radiographic
images. Texture analysis roughly includes the following
steps: a) Acquisition of high quality radiological imaging
b) identification and manual or automated segmentation
of the lesion of interest, c) extraction of large amounts
of quantitative imaging features and d) analysis using
statistical models. Radiomics allowed the association of
image traits with phenotypes, tissue characteristics, gen-
omic signatures and protein expression patterns of a
tumor [26–30]. To date, analysis of breast MRI textural
features has been applied for the discrimination between
malignant and benign lesions [31–35], correlation with
tumor histological and molecular subtypes [36–40] and
even prediction of chemotherapy response [41].
An association between MRI texture features alone or

coupled with non-imaging variables and BRCA1/2 gen-
etic risk has not been previously examined. A strong re-
lationship could highlight the information extracted
from MRI as an additional selection variable for subse-
quent genetic screening. Here we present results from a
pilot study aimed at quantifying the efficacy of the breast
MRI phenotype as a potential predictor relevant to
BRCA-related breast cancer.

Methods
Study cohort
Clinical and genetic data of female breast cancer individ-
uals at high genetic risk referred for diagnostic purposes
to our interdisciplinary outpatient clinic were retrospect-
ively collected. All fulfilled the criteria of the German
Consortium for Hereditary Breast and Ovarian Cancer
for diagnostic genetic screening. Higher EP for identify-
ing BRCA1/2 pathogenic variants was calculated, when
the family history including the index case consisted of:
i) at least one breast and one ovarian cancer case
(48.4%), ii) at least 3 breast cancer cases, with two of
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them manifesting before the age of 51 (30.7%) iii) bilat-
eral/contralateral breast cancer by the index case with
the first tumor diagnosed before the age of 51 (24.8%)
iv) at least 3 breast cancer cases regardless of the age at
diagnosis (22.4%) [2]. In case of pedigrees with one af-
fected breast cancer relative and bilateral breast cancer
in the affected individual we considered three independ-
ent breast tumors and calculated an EP of 30.7%. Triple
negative tumors regardless of the family history were
also included (EP 11.2%) [6].
The initial study cohort consisted of 186 affected indi-

viduals at high risk of HBOC (empirical probability >
10%). Informed written consent was obtained from all pa-
tients. The study was approved by the Ethical Committee
of the Medical Faculty of the Friedrich-Alexander-
Universität Erlangen-Nürnberg. Genetic screening at the
time of diagnosis or during the aftercare identified patho-
genic variants in either BRCA gene in 92 cases, whereas in
the remaining 94 no alteration was detected (control
group). Individuals with alterations assessed as variants of
unknown significance (VUS) in BRCA1/2 or other breast
cancer susceptibility genes were excluded from the ana-
lysis. MRIs at the time of diagnosis and before the initi-
ation of treatment were available for 94 of the
aforementioned women. After excluding cases with an
MRI acquisition protocol which did not fulfill the stan-
dards for the imaging texture analysis (e.g. no suitable ma-
chine and/or machine settings/protocols, insufficient
magnetic field strength and resolution), the final number
of eligible breast cancer individuals for this study was 41:
16 with a BRCA1/2 deleterious variant (13 BRCA1 and 3
BRCA2) and 25 without (controls) (Fig. S1). In total 134
MRIs from all the cases studied were available. Clinical
data of the final study cohort including the age at disease
onset and unilateral or bilateral/contralateral cancer,
histopathological information about the receptor status
and detailed family cancer history with 1st, 2nd and 3rd
degree affected relatives as well as the calculated EP for
identifying a BRCA1/2 variant are summarized in supple-
mentary Table S1.

BRCA1/2 screening
DNA from peripheral blood lymphocytes was extracted
with an automated chemagic MSM I system according
to standard procedures (Perkin Elmer, Baesweiler,
Germany). Mutational analysis of BRCA1/2 genes was
performed either with Sanger sequencing and MLPA
analysis for copy number variant (CNV) identification
(MRC-Holland, Amsterdam, Netherlands) or with Next
Generation Sequencing on a MiSeq platform (Illumina,
San Diego, CA). The commercially available targeted
resequencing kit, TruSight Cancer Sequencing Panel
(Illumina, San Diego, CA), was used according to the
manufacturers’ instructions. Sequencing reads were

aligned and processed following standard clinical grade
genetic diagnostics as previously described [42]. The tar-
geted genes had an average coverage of 400 reads.
Complete coverage (> 30 reads) was obtained for the
coding regions and the 10 bp of flanking intronic
regions.

MRI acquisition
Breast magnetic resonance imaging was performed with
a 1.5 T scanner in the prone position (Avanto, Siemens
Healthcare, Erlangen, Germany), using a dedicated coil.
A routine scan protocol was performed, including axial
3D fat-suppressed fast low angle shot T1-weighted se-
quences (fl3d). After one unenhanced sequence, 6 ml of
gadolinium-based contrast medium (Gadovist, Bayer
AG, Leverkusen, Germany) were injected and five post-
contrast sequences were acquired (in-plane spatial reso-
lution 0.75 × 0.75 mm, repetition time 7.58ms, echo time
4.78 ms, slice thickness 1.5 mm, flip angle 20 deg, FOV
340mm, matrix 448 × 331). For feature extraction the
first subtracted 3D fat-supressed fast low angle shot
transverse T1-weighted sequence (the unenhanced T1-
weighted sequence was subtracted from the identical se-
quence performed after gadolinium administration).

Segmentation and imaging feature extraction
The DICOM-files of MR images were displayed with a
dedicated software (syngo plaza, Siemens Healthcare, Er-
langen, Germany) and anonymized using the “Incognito”
algorithm (last reviewed 2018-09-26) [43]. Next, they
were converted into mhd-format images. Breast cancer
lesions in the 3D images were manually segmented via
the open-source program MITK (last reviewed 2018-02-
28) [44]. The accuracy of each annotation was reviewed
and corrected if necessary, by one or more clinical radi-
ologists. The extraction of breast lesion image samples
from the T1-weighted MR images comprised three main
steps: first, the malignant lesions were manually anno-
tated in the 3D images, and then stored as binary masks
(Fig. S2). Secondly, a sampling of points in the image re-
gions that contain these malignant lesions was per-
formed. Finally, “image patches” were manually created
around the sampled points of the previous step.
In detail, the lesion annotation masks from the first

step were used to define regions of interest (ROI) in
their associated MR images. Within those regions, ran-
dom locations were chosen with a uniform distribution
(Fig. S3A). Locations extracted from images of women
having a BRCA1/2 mutation were referred to as positive
samples, while those stemming from controls were
called negative samples. About 1000 samples were cre-
ated from each image and a ratio of 1:1 for positives and
negatives was enforced. The samples extracted were
used as seed points, i.e. each sample defined the center
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point around which MR image intensity “patches” were
extracted. These patches provided local views of the le-
sions to the training system. In our setup, the patch size
was chosen to be 65 × 65 voxels. The image intensities
were normalized to values between 0 and 1 in order to
construct the patches (Fig. 1 and Fig. S3B).

Non-imaging features
Several non-imaging features were also used to comple-
ment the extracted imaging components (see also sup-
plementary Table S1). These include two clinical
variables: age at disease onset (Age) and bilateral/contra-
lateral breast cancer (BBC: 1 for positive, 0 for negative);
seven family cancer history variables: number of 1st de-
gree relatives with breast cancer (FDR.BC), number of
1st degree relatives with ovarian cancer (FDR.OC), num-
ber of 2nd degree relatives with breast cancer (SDR.BC),
number of 2nd degree relatives with ovarian cancer
(SDR.OC), number of 3rd degree relatives with breast
cancer (TDR.BC), number of 3rd degree relatives with
ovarian cancer (TDR.OC), male breast cancer (MBC)
and triple negative breast cancer (TNBC: 1 for positive,
0 for negative).

Lasso-principal component regression (L-PCR)
We set up four different classification problems to as-
sess: (i) The relative predictive performance of either the
TNBC histology, clinical variables and family history var-
iables, or imaging features [T1* weighted values from
4225 voxels sized 0.75 × 0.75 × 3.7 mm from the anno-
tated region of interest] regarding the BRCA genetic risk
estimation, (ii) whether imaging components could add
to the predictive value of the non-imaging variables and
to which extend, (iii) whether imaging components
could compensate missing data about cancer history of
distant (2nd or 3rd degree) relatives, and finally (iv)

whether imaging components have a similar predictive
value as family cancer history. For those classification
problems with two or less parameters we fit a standard
logistic regression with no model penalization, while for
those where the number of parameters was > 2, we fit a
lasso-penalized logistic regression. All models using im-
aging data were prefaced by a principal component ana-
lysis (PCA) transformation and the resulting principal
component scores were fed to the lasso-estimator. Spe-
cifically, we computed PCA on the full set of 4225 im-
aging variables extracted from the annotated ROIs such
that 95% of the total variance in the image ROIs were
explained. The surviving 41 principal components were
either entered directly into the L-PCR estimator or aug-
mented with subsets of non-imaging variables, depend-
ing on the classification problem in question. Since 41
parameters in 41 subjects would lead to a poorly deter-
mined and unreliable solution to the logistic-least
squares problem, we penalized the regression solution
using the lasso penalty. In general, the lasso penalty en-
forces a highly sparse solution upon the estimated re-
gression, allowing us to identify a small subset of
imaging principal components that should best discrim-
inate between the two groups (Fig. S4). Our model-
fitting procedure is described in more detail in the fol-
lowing section. All methods were implemented using the
R framework (3.4.1) [45], the Caret package [46] and the
glmnet toolbox [47]. The lasso penalty [47, 48] compen-
sates for the large number of variables relative to the
number of subjects, choosing only the most relevant
components to the classification problem (See also sup-
plementary Methods).

Model fitting and hyper-parameter estimation
Lasso regression requires choosing a tuning or hyper-
parameter (Lambda) [47, 48], which weights the

Fig. 1 Illustration of lesion annotation mask and intensity patches Left, lesion annotation masks depicted in red and marked by a white arrow
used to create intensity patches around the selected locations. Right, visualization of intensity patches
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influence of the penalization term on the model fidelity
or goodness-of-fit term (see also Fig. S5 and supplemen-
tary Methods). Lambda is selected to optimize the out of
sample model performance fit, while protecting against
overfitting. In practice Lambda is selected through an it-
erative grid search in the outer loop of a cross-validation
procedure [47, 48]. We searched for an optimal Lambda
between 0 (standard regression) and 3 (empirically
chosen) using a resolution of 0.05 and repeatedly fit and
tested the model on each cross-validation fold for each
choice of Lambda. Specifically, for each possible choice
of Lambda, we assessed model performance in the fol-
lowing manner: First we split the data at random into
training/testing subsets by using repeated k-fold cross-
validation with k = 5, leading to a data subset that used
80% of the original data to train the regression model,
and 20% of the data to be used to assess out-of-sample
model prediction performance. In standard k-fold cross-
validation, uncertainty in performance estimates may
both be reduced and information about the precision of
those estimates obtained by repeating. We repeated each
k-fold cross-validation L = 20 times and averaged across
the L estimates returned from each single k-fold. Within
each of the k-folds, one iteration proceeded as follows:
we fit the model to the training subset, and estimated
the out-of-sample AUC from the held-out 20% subset.
Next the held-out data was returned to the main dataset
and the process repeated until each subset of the data
had been used in both model training and in assessing
its out-of-sample performance on the unseen data sub-
set. The average across the five AUC estimates was re-
ported as the overall cross-validation estimate of
performance for a particular repeat. At the end the AUC
measure was averaged across the L repeats and placed
on the location on the tuning grid corresponding to that
choice of Lambda. The net result was a set of cross-
validation error curves and their associated standard er-
rors plotted as a function of tuning parameter. We se-
lected the optimal point on these curves yielding
maximal model performance and plotted the corre-
sponding receiver operating characteristic (ROC) for the
optimal lasso classifier for each of the data classification
problems. Model predictive performance was assessed
by using AUC. In all performed experiments AUC can
be interpreted as an estimate of the probability of the
classifier ranking a randomly chosen BRCA1/2 carrier
higher than a randomly chosen control.

Results
Prevalence of clinical data in the studied cohort and
comparison with the literature
The mean age of disease onset did not differ significantly
between both groups and ranged from 36.8+/− 7 years
for the BRCA carriers and 38+/− 11 years for the

controls (t-Test, p-value: 0.68). To examine whether the
genetic and clinical data in this cohort exhibit any differ-
ence compared to the literature, two-sided binomial tests
were performed. The contribution of BRCA1 (13 of 16)
and BRCA2 (3 of 16) pathogenic variants in HBOC cases
in the current study was not significantly different (bino-
mial p-value: 0.292) with that reported in literature
(BRCA1: 66% and BRCA2: 34%) [49, 50]. In our cohort,
12 of 13 cases with BRCA1 pathogenic variants and 5 of
21 (23.8%) of the controls developed a TN tumor,
whereas the prevalence in the literature is 80 and 14%,
respectively. Binomial p-values for this are 0.486 and
0.203, respectively [51, 52]. Finally, the proportion of bi-
lateral/contralateral breast cancer in the individuals of
our cohort (BRCA1 positive: 6 of 13, controls: 6 of 21)
did also not differ significantly from the previously re-
ported ones (44.1 and 17.2%, respectively) [53]. Binomial
tests yielded a p-value of 1 and 0.157, respectively. These
results indicate that the genetic and clinical data of our
study population are without any obvious bias.

Relative predictive performance of the data subgroups
From the 41 available imaging principal components,
the lasso regression selected 3 (PC26, PC8, PC9) as the
most relevant for the classification (Fig. S4). These alone
yielded an AUC performance of 0.86 (Fig. 2a and b).
First, second and third-degree family cancer history was
entered into a lasso regression within the same cross-
validation regime as the imaging-based model yielding
an overall AUC of 0.70 after selecting just one variable
(FDR.BC) (Fig. 2a and b). TNBC alone yielded an AUC
of 0.77 (Fig. 2a). Clinical components including Age and
BBC showed a predictive value slightly better than
chance (AUC 0.56) (Fig. 2a). BBC was ranked as the
most important variable, relative to which, Age showed
no predictive value (Fig. 2b) (see also supplementary
Table S2). As an exploratory measure, we computed
pairwise Spearman correlations between all variables
used in the analysis. As expected, in this simpler ana-
lysis, we observed strong associative relationships of the
target variable BRCA mutation status with TNBC and
the imaging components. The correlation plot also un-
covered less obvious but significant correlations emerged
such as family history subcomponents with the imaging
components (Fig. S6).

Combining imaging with non-imaging features improves
prediction performance
We compared the classification performance after com-
bination of imaging components with (i) TNBC, (ii) clin-
ical variables and (iii) family cancer history variables
(Fig. 3). From the three subsets the best predictive per-
formance regarding BRCA status was observed when
adding TNBC to the imaging components (AUC 0.94).
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TNBC was selected as the variable of highest import-
ance, followed by just two of three imaging components
(PC28, PC8) (Fig. 3a and b). Combining imaging with
the clinical variables yielded an AUC of 0.90 with just
BBC being retained along with the best 3 imaging com-
ponents (Fig. 3a and b). Finally, the family history

variables grouped together with imaging gave identical
classification performance to imaging with clinical infor-
mation (Fig. 3a). Out of all family cancer history vari-
ables lasso-regression model selected only the FDR.BC
as the most important along with the 3 imaging compo-
nents (Fig. 3b).

Fig. 2 Predictive performance of TNBC, clinical, family history variables and imaging components a ROC analysis curve illustrating the relative predictive
performance of clinical (blue) and family cancer history (orange) variables, TNBC (red) and imaging components (green) regarding genetic cancer risk
estimation. Predictive power is measured by AUC. b Variable importance rankings for the two clinical variables (top), for the family cancer history variables
and imaging components (middle) and for TNBC (bottom). Note that 3 imaging principal components, PC26, PC8 and PC9 are indicated as relevant to the
prediction. For the abbreviations in the graphs see also “non-imaging features” in the section of Methods. CI, confidence interval
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Imaging can compensate the predictive value of family
cancer history
Next, we investigated whether imaging can compensate
the information about distant (2nd and 3rd degree) rela-
tives (Fig. S7). To address this we contrasted AUC

performance of the full set of variables, but excluding
imaging information, against all variables, but excluding
the cancer data of distant relatives from the family his-
tory. In the former scenario, the AUC was estimated at
0.82, whereas in the latter we obtained a much improved

Fig. 3 Improved predictive performance of non-imaging variables combined with imaging components a ROC analysis curve showing the
relative AUC performance of the following variable combinations regarding genetic cancer risk: imaging components and clinical variables (blue),
imaging components and family cancer history variables (orange), and finally imaging components and TNBC (green). b Variable importance
rankings for the aforementioned variable subsets
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classification performance (AUC 0.95) (Fig. S7A). In
both cases lasso model selected TNBC as the variable
having the higher predictive power (Fig. S7B).
Further we assessed the algorithm performance when

considering imaging as a proxy for the whole family can-
cer history (Fig. 4). The following combinations were an-
alyzed i) all available genetic risk variables (TNBC,
clinical, family history) except imaging, ii) all available
variables (TNBC, clinical, imaging) except family history
and iii) the full set of variables. The analysis, where im-
aging was excluded, resulted in the worst performance
(AUC 0.82), with only TNBC and FDR.BC selected as
relevant to the classification (Fig. 4a, b and Fig. S7A).
When excluding all variables associated with family his-
tory, we gained an improvement in AUC to 0.95, with
only TNBC and 3 imaging components showing consid-
erable predictive power (Fig. 4a and b). Finally, when we
supplied all available variables to the algorithm, we ob-
served the same classification performance with the pre-
vious analysis (Fig. 4a). Similarly, importance ranking
indicated that TNBC and imaging components captured
the whole predictive power (Fig. 4b).

Discussion
The significance of the identification of BRCA1/2 patho-
genic variants for the surveillance and design of person-
alized treatment with appropriate chemotherapy scheme,
and prophylactic mastectomy/oophorectomy for the af-
fected individuals is well established [54–56]. After the
introduction of PARP (polyadenosine diphosphate ribose
polymerase) inhibitors as a therapy of choice for
BRCA1/2-related HBOC, the differentiation between
genetic and sporadic breast cancer became increasingly
important [57, 58]. Yet, the increased demand for gen-
etic testing has been accompanied by a significant in-
crease in health care costs, long waiting lists and delayed
delivery of results [59, 60]. Psychosocial effects, as a re-
sult of pathological findings, demand additional support,
further burdening the health system [61]. Nevertheless,
many high genetic risk breast cancer cases still escape
genetic screening, since prediction models, inclusion cri-
teria and guidelines are mainly designed on the basis of
subjective criteria such as the family cancer history [11,
62, 63]. Therefore, the accurate assessment of genetic
risk and consequently the optimization of pre-selection
for genetic testing by the clinicians are still ongoing and
remain challenging.
To date, there are only few studies exploring the asso-

ciation of radiographic texture features with BRCA mu-
tation status. However, all used computerized texture
analysis on digital mammographs and focused on differ-
entiating between healthy BRCA1/2-carriers and healthy
non-carriers at high genetic risk or low-risk women [64–
67]. To our knowledge the contribution of computer-

extracted MRI texture features to the prediction
BRCA1/2-associated genetic risk in already affected indi-
viduals has not been previously analyzed. Three imaging
principal components out of the 41 studied here, namely
PC28, PC8 and PC9, showed a relatively high predictive
power. Interestingly, their combined performance sur-
passed that of family cancer history by more than 5%
(Fig. 2a and b). This further supports their high value as
BRCA estimators, since family cancer profile is consid-
ered the most eligible inclusion criterion for genetic test-
ing as well as a main parameter used by many
commercially available BRCA-prediction models [11, 68,
69]. FDR.BC was highlighted as the top family history
variable in importance ranking (Fig. 2b). Nevertheless,
the predictive performance of ovarian cancer (OV) pa-
rameters could not be evaluated due to the small pro-
portion of OV affected relatives of the studied cases
(supplementary Table S1). TNBC alone was strongly
correlated with the prediction of BRCA deleterious vari-
ants, confirming previous studies establishing TNBC as
a powerful independent selection criterion for screening
(Fig. 2a, supplementary Table S2) [6, 7].
Somewhat unexpectedly, age at disease onset and BBC,

while commonly assigned as genetic risk estimators [2],
showed a relatively low predictive strength, with BBC
capturing the whole predictive power in our cohort (Fig.
2a and b). BBC has been previously linked to the predic-
tion of BRCA1 [69, 70], potentially suggesting that the
unequal proportion of BRCA1 compared to BRCA2 af-
fected individuals (13 to 3) in the current study, which
however is in accordance with the distribution in litera-
ture, could explain this finding. Larger studies analyzing
pure BRCA1 and BRCA2 cohorts are necessary to pro-
vide further insight into the role of BBC as predictor.
The unusually low importance of Age in the prediction
model in contrast to previous reports [9, 69, 70], may at
least in part be attributed to the design of our relative
small pilot study that included only breast cancer cases
at high genetic risk. The mean age of disease onset was
similar in both groups. Based though on the established
inclusion criteria only 10% of female individuals receiv-
ing genetic testing due to the early onset breast cancer
alone (BC at age < 36 years with negative family history)
are expected to carry a BRCA1/2 pathogenic variant [2].
This estimation may lend empirical strengthen to the
hypothesis that Age alone is indeed a weak risk estima-
tor. It is also likely that our regression model, which
contains and estimates at once a much wider range of
variables, compensates for correlations between Age and
other variables that would not be accounted for in previ-
ous, one-variable-at-a-time studies.
Next, we investigated whether imaging components

along with the non-imaging variables, a priori known to
be relevant for HBOC, could complementarily improve
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genetic risk estimation (Fig. 3). The Lasso-principal
component regression model yielded the strongest clas-
sification performance when imaging and TNBC were
combined, with TNBC driving the prediction (Fig. 3a
and b). The determination of tumor receptor status is
nowadays part of the medical routine due to its

importance for therapy decision-making and prognosis
[71, 72]. On the other hand, breast MRI has been lately
progressively incorporated into diagnosis [15, 73]. Since
both histopathological examination and MR imaging re-
sults are objective parameters in contrast to the more
subjective family cancer history, their combined

Fig. 4 Imaging compensates the predictive power of family cancer profile a ROC analysis curve illustrating the relative AUC performance of the
following combinations of variables: imaging components together with TNBC and clinical variables (blue), all available variables (orange) and
TNBC together with clinical and family history variables (green). Note that the subset of variables without the imaging components showed the
lowest predictive power and that the subset including imaging components has similar predictive value with the full set of variables. b Variable
importance rankings for the aforementioned variable subsets, indicating TNBC and imaging components as the most important estimators of
BRCA status
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evaluation along with texture analysis, could establish a
new promising estimator for optimizing genetic risk as-
sessment. The added value of imaging components was
also highlighted by the substantial improvement of the
predictive performance for both family cancer history
and clinical variables (Fig. 3a).
HBOC due to germline BRCA1/2 deleterious variants

follows an autosomal dominant inheritance, so that the
identification of many affected relatives in a three-
generation pedigree is expected. For this reason, the
positive family history represents the gold-standard esti-
mator for genetic evaluation [2, 9, 11]. Our analysis also
confirmed the strong correlation with BRCA status (Fig.
2a). Nevertheless, a significant number of breast cancer
cases at high genetic risk do not receive genetic screen-
ing as a result of missing family history data or non-
informative genealogical family trees. Adoption, smaller
families, few female and excess of male relatives as well
as the premature mortality of female relatives together
with the incomplete penetrance of the disease are com-
mon reasons for failure to identify individuals at risk
[12]. Taking these limitations into consideration, we ex-
amined whether the variables relating to family cancer
history could be replaced by imaging components in the
prediction model. When we performed the analysis by
excluding either the cancer data of distant relatives or
imaging we observed that the latter could supplant the
information on distant family cancer history and im-
prove the prediction power (Fig. S7A). TNBC and im-
aging components drove the prediction to the extent
that the lasso model selection zeros clinical and 1rd de-
gree family history variables out in choosing the best
model for classification performance (Fig. S7B). By re-
placing all family history variables with imaging compo-
nents, we gained an approximately 4% improvement of
the predictive performance, which was similar to the
predictive power of all available parameters tested (Fig.
4a). Again, TNBC and imaging components dominated
clinical und family variables (Fig. 4b), indicating that im-
aging information suffices, irrespective of whether family
history is included or not in the model. Collectively,
these results suggest that imaging data compensates the
information arising from family profile, emphasizing it’s
value as independent predictive factor.
The most important limitation of this study is the rela-

tive low number of subjects. Indeed the 95% AUC confi-
dence intervals reported suggest that conducting formal
hypothesis tests between the relative performance of the
different data modes are unlikely to prove significantly
different. However, we should not overlook the fact that
these preliminary results are based on state-of-the-art
statistical lasso techniques that are designed to compen-
sate for the uncertainty necessitated by small subject
groups when large numbers of variables are available for

each. Furthermore, the family of lasso-based techniques
come with robust mathematical guarantees that the se-
lected parsimonious model, and the associated learned
beta coefficients represent the true underlying model
even in the scenario when number of subjects (N) < <
total number of potential variables (p). These methods
also offer the unique opportunity to consider the impact
of fitting a much larger set of features all at once in ad-
dressing these kinds of clinical prediction problems. In
comparison standard regression-based techniques would
be overwhelmed by the scenario of when N < < p.

Conclusions
In this study we presented preliminary results show-
ing that imaging texture features extracted from T1
weighted breast MRIs can serve as a predictor allow-
ing for differentiation between high risk breast cancer
individuals with or without BRCA1/2 variants. Incorp-
oration of imaging components to the prediction
model, along with other established BRCA-related
genetic risk estimators, considerably adds to the likeli-
hood of ascertainment of HBOC carriers, potentially
enabling a more efficient decision-making for genetic
screening. The combination of imaging components
and triple negative receptor status was indicated as
the most important estimator. On the other hand, we
provided a new glimpse about prioritization of clinical
findings by showing clues that clinical genetic risk
predictors such as the age of disease onset could have
indeed a weak possibly lower value in estimating gen-
etic risk as was originally though. Finally, in the com-
mon scenario of missing family information, imaging
components can compensate the lack of family data,
thus improving assessment by the clinicians and ge-
neticists. Our study, similar to previous ones, high-
lights that the hidden information of MRI modalities
is noteworthy and should not be overlooked. In this
case, integration of computer-extracted MRI textures
in the radiologist routine diagnosis could prove a
cost-effective way for optimization of prediction
models and selection criteria for BRCA1/2 testing,
since it does not add significantly to the cost of
radiologic imaging. Finally, lasso based methods allow
the compensation of the small size sample by the
large numbers of variables/features tested. This can
facilitate the publication of reliable results not only
from large cohorts but also from smaller studies and
enable fast systematic reviews. Nevertheless, we ac-
knowledge that further studies in larger cohorts and
comparisons not only between high risk genetic
breast cancer carriers and not carriers but also with
low-risk affected women is warranted in order to con-
firm and strengthen the role of MRI texture features
as predictor for BRCA status.
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